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Abstract

Sphingolipids are the major lipid components
on cellular membranes especially on lipid raft
regions, intermediating various important
biological functions for eukaryotic cells.
Sphingolipid metabolism pathways can utilize
sugar, protein, nucleic acid, and other
metabolites participating lipid transport in the
circulation, play an essential role in
maintaining cell homeostasis and are related
to a variety of different diseases including
lysosomal storage disorders (LSDs), Gaucher
disease, etc. The dynamic balance of
sphingolipid levels in organisms is regulated
by a series of sphingolipid synthases,
hydrolases, and metabolic enzymes, such as
sphingomyelinase (SMase), sphingomyelin
synthase (SMS), serine palmitoyltransferase
(SPT), ceramide synthase (CerS), glucosyl-
ceramide synthase (GCS), etc. Thus,
sphingolipids and its related enzymes are
potential targets for drug discoveries and
receive great research interests by medicinal
chemist. In this chapter, we will discuss the
relationship between sphingolipids and the
regulating enzymes involved in sphingolipid
metabolisms, and systematically summarize
the advances in the development of new
drugs in the field.
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Abbreviations

AAL Alternaria alternate lycopersici
CerS Ceramide synthase
FB1 Fumonisin B1
GCS Glucosylceramide synthase
HDL High-density lipoprotein
LDL Low-density lipoprotein
LSD Lysosomal storage disorders
SM Sphingomyelin
SMase Sphingomyelinase
SMS Sphingomyelin synthase
SPT Serine palmitoyltransferase

12.1 Background

Sphingolipids are essential lipids involved in
regulating cell functions and maintaining meta-
bolic homeostasis in organisms [1]. These lipids
share a sphingoid base backbone which is N-
acylated with various fatty acid chains.
Sphingolipids can be divided into three structural
classes [2], including sphingoid bases and
derivates (i.e., sphingosine, sphingosine-1-
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phosphate), ceramides, and complex
sphingolipids. Complex sphingolipids can be fur-
ther divided into phosphosphingolipids (i.e.,
sphingomyelin, C1P), neural glycosphingolipids
(Glc-Cer, Gal-Cer, Lac-Cer, etc.), and acidic
glucosphingolipids (i.e., gangliosides).

From the perspective of macro-molecular met-
abolic pathways, the sphingolipid metabolism
pathways can utilize sugar, protein, nucleic acid,
and some metabolites in other lipid metabolism
pathways (L-serine, Acyl-CoA, fatty acid, etc.) as
raw materials for de novo synthesis of
sphingolipids. In addition, some key active
molecules (such as phosphoethanolamide,
phosphor-choline, phosphor-inositol, DAG, etc.)
generated by sphingolipid catabolism can partici-
pate in the anabolism of other substances,
maintaining metabolic homeostasis of
organisms [3].

The dynamic balance of sphingolipid levels in
organisms is regulated by a variety of
sphingolipid synthases, hydrolases, and meta-
bolic enzymes. Functional deficiency or loss of
some essential enzymes would directly break the
balance, further leading to the occurrence of vari-
ous diseases including lysosomal storage
disorders (LSDs). LSDs are a class of inherited
metabolic diseases. Typical LSDs are caused by
mutations in genes that encode certain hydrolases
and/or activators, preventing cells from produc-
ing these functional proteins abnormally, and
then resulting in a large accumulation of related
substrates in the cells. For example, Gaucher dis-
ease is a functional deficiency of glucocereb-
rosidase caused by mutation of GBA1 gene,
resulting in abnormal accumulation of glucosyl-
ceramide. And glucosylceramide synthase
inhibitors (e.g., Genz-112,638) were proved to
alleviate the Gaucher disease.

Furthermore, abnormal sphingolipid metabo-
lism is prevalent in many common diseases. Cer-
amide is a well-recognized signaling molecule
mediating cell death. Although recent studies
have shown that different types of ceramides
could regulate cell growth and death differently
[4], the lipotoxicity caused by ceramide in obesity
and inflammation disease could not be ignored
[5]. Therefore, studying the in vivo synthesis

pathway of ceramide could lead new strategies
for the treatment of related diseases. Ceramide
can block Akt signaling pathway by activating
PP2A and PKCζ, further regulating cell growth
and other signals [6]. By inhibiting insulin stimu-
lation of Akt [7] and activating the expression of
some inflammatory factors (STAT3, etc.) [8], cer-
amide contributes to a variety of metabolic
diseases.

In a high-fat diet, excessive fatty acid intake
activates the intracellular palmitoylation meta-
bolic pathway, in turn regulates the transcrip-
tional activation of the de novo synthases of
ceramide, Sptlc2 and CerS, further promotes the
synthesis of ceramide and leads to obesity and its
syndromes [9]. Interestingly, the sphingolipid
metabolism of certain intestinal flora can also
stimulate the synthesis of ceramide in the host,
thereby promoting the development of inflamma-
tion and metabolic diseases [10]. Therefore, inhi-
bition of ceramide synthase (such as CerS) is a
potential therapeutical strategy.

Serine palmitoyl transferase (SPT) complex is
the first enzyme in de novo biosynthesis of cer-
amide, which locates at the upstream of the entire
sphingolipid synthesis pathways. In mammals,
the SPT complex is composed of two large
subunits, SPTLC1 and SPTLC2/3, and two
small subunits, SSSPTA and SSSPTB [11]. SPT
is very important in maintaining the balance of
sphingolipid metabolism in eukaryotes. Homozy-
gous SPTLC1- or SPTLC2-deficient mice are
embryonic lethal, while heterozygous SPTLC1/
2-deficient mice remain healthy [12, 13]. Com-
pared with normal mice, the levels of
sphingolipids (such as sphingosine, ceramide,
and S1P) in tissues and plasma of SPTLC1/2-
deficient mice are significantly reduced.
Inhibiting SPT in cells using SPT inhibitors
enables growth inhibition of some fungi and
tumor cells [14–16], indicating that SPT activity
is indispensable for the eukaryotic cell. The mis-
sense mutation of SPTLC1 gene is the main cause
of the congenital disease hereditary sensory neu-
ropathy type I (HSN1). High expression of
SPTLC2 can promote the synthesis of ceramide
in liver, activate the JNK signaling pathway, and
then lead to insulin resistance [17, 18]. Inhibition
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of SPT also has a certain effect on alleviating
atherosclerosis and obesity metabolic syndrome
[19, 20]. In addition, SPT can also affect the
assembly of lipid rafts on biological membranes
by regulating the synthesis of sphingolipids,
thereby promoting the localization of the NS pro-
tein of HBV and the replication of viral nucleic
acids [21]. Certain inflammatory factors (neutro-
phil elastase, etc.) can upregulate SPT activity to
promote the synthesis of ceramide, which in turn
lead to inflammation [22]. In recent years, the
crystal structure of human SPT complex has
been reported, laying an important structural
foundation for the study of the mechanism of
SPT and the development of inhibitors targeting
SPT [23].

Sphingomyelin (SM) is an important direct
metabolite of ceramide, which participates in the
formation of cell (organelle) membranes and the
conduction of various signals. The level of
sphingomyelin in organisms is mainly regulated
by sphingomyelin synthase (SMS) and
sphingomyelinase (SMase). SMase catalyzes the
decomposition of SM into ceramide, which plays
a key role in maintaining the balance of ceramide.
Based on the optimal working pH of enzyme,
SMase can be divided into three types, including
aSMase, nSMase, and alk-SMase. aSMase is
expressed in almost all types of cells and has
intracellular lysosomal form and extra-cellular
secreted form depending on localization. The
aSMase is normally located in the endosome/
lysosome compartments. During cell stress and
disease, aSMase can be preferentially transported
to the outer lobes of the cell membrane and
secreted into the extra-cellular space [24]. The
activation of aSMase promotes the accumulation
of a large amount of ceramide in the cell mem-
brane, causing metabolic disorders, inflammatory
reactions, or cell apoptosis, and ultimately lead-
ing to disease [25]. For example, in the patholog-
ical model of cystic fibrosis (CF) with Cftr gene
defect, the defect or inhibition of aSMase activity
can alleviate the CF caused by excessive accumu-
lation of ceramide in respiratory cell [26]. The
aSMase activation induces the accumulation of
ceramide, which will promote the rapid death of
tumor cells. Thus aMase could be a potential

therapeutic target for tumors [27]. The nSMase
located in the cell membrane has also been shown
to regulate the release of inflammatory factors and
the accumulation of Aβ by regulating the levels of
SM and ceramide, thereby participating in the
regulation of inflammation and neurodegenera-
tive diseases [28]. Alk-SMase is expressed only
in mammalian intestinal mucosa (also in human
liver), and functions through the secretion of
intestinal mucosal epithelial cells into the intesti-
nal lumen, involved in the regulation of the
metabolism and absorption of intestinal
sphingolipids and then affecting the progression
of diseases such as inflammation [29].

Interestingly, while SMase can improve the
level of ceramide and perform certain physiologi-
cal functions like ceramide, a SM synthase with
the opposite function to SMase, SMS, also has
physiological functions such as promoting the
development of inflammation, cardiovascular dis-
ease, and metabolic syndrome. This may be
related to the diversity of the SMS family’s cata-
lytic function and the difference in subcellular
distribution. The SM generated by SMS1 and
SMS2 can be transported to cell membrane to
participate in the assembly of lipid rafts on cell
membrane, promoting the function of lipid raft-
related proteins. For example, SMS2 can stabilize
the localization of CD36 to lipid rafts on cell
membrane, thus promoting the cellular absorption
of fatty acids [30]. SMS-produced DAG is con-
sidered to be a second messenger that activates
the PKC-JNK axis, impairing insulin action and
inducing insulin resistance [31]. SMS can main-
tain the CD14-TLR4 complex localization in cell
membrane and promotes its function, thereby
activating LPS-induced inflammatory signaling
pathway downstream of TLR4, promoting the
release of the inflammatory factor TNF-α, and
aggravating the progression of associated inflam-
mation [32]. In addition, SMS employing cer-
amide as a substrate, to somewhat alleviates the
effect of ceramide overaccumulation in promot-
ing apoptosis, and it can promote tumor growth
and drug resistance by activation of certain sig-
naling pathways (e.g., TGF-β/Smad) and promot-
ing cytokines (e.g., BCL-2) expression [33].
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In summary, sphingolipid metabolism
plays a vital role in maintaining homeostasis.
Sphingolipid metabolism has its unique and com-
plicated operating mechanism, involved in not
only the formation of cells, but also the transfor-
mation or transmission of intra- and extra-cellular
substances and signal transduction. The balance
of sphingolipid metabolism plays a key role in
modulating the normal development and growth
of the body. The imbalance of sphingolipid
metabolism caused by a variety of factors can
directly or indirectly lead to the occurrence of
diseases, suggesting that pharmaceutical inter-
vention of sphingolipid metabolism may be a
new way to treat certain diseases. However, in
the complicated sphingolipid metabolism path-
way, the effects of certain metabolites on diseases
are subtle and sometimes even two-sided,
suggesting the need for more comprehensive con-
sideration and scrutiny when intervening in meta-
bolic regulation.

12.1.1 Serine Palmitoyl Transferase
Inhibitors

Serine palmitoyl transferase (SPT) complex is the
first enzyme in de novo biosynthesis of ceramide,
which locates at the upstream of the entire
sphingolipid synthesis pathways [34]. SPT is
very important in maintaining the balance of
sphingolipid metabolism and inhibiting SPT in
cells shows significant growth inhibition for
eukaryotic cells. Inhibition of SPT also has a
certain effect on alleviating atherosclerosis and
obesity metabolic syndrome. Thus, SPT
inhibitors are potential drugs for sphingolipid-
related metabolic disorders.

SPT inhibitors can be divided into two
subclasses. The first type was the substrate-
mimics of SPT complexes. SPT has two natural
substrates, palmitate and serine. Both mimics can
be developed as potential SPT inhibitors.

In 1992, Marcia M. Zweerink and coworkers
proved two known compounds, sphingofungin B
and C, separated from Aspergillus fumigatus,
showed the anti-fungi activity by inhibition of
the sphingolipid synthetic pathways via SPT
complexes [14]. In 1995, Yurika Miyake et al.
proved myriocin as a highly efficient and selec-
tive SPT inhibitor using CTLL-2 cells as enzyme
source, with a remarkably low IC50 of
0.3 nM [35].

Moreover, a series of serine analogs such as L-
Cycloserine [36], β-chloro-L-alanine [37], and L-
penicillamine [38] were reported to show SPT
inhibition activities but none was as good as
myriocin and its derivates.

Medicinal chemists discovered a series of SPT
inhibiting compounds which are non-analogs of
SPT substrates. For example, Michael J. Genin
screened two new imidazopyridine and pyrazolo-
piperidine compounds (compound 1 and 2) [19],
and found them showed good SPT inhibition
properties in vitro (1: IC50 ~ 5 nM; 2:
IC50 ~ 64 nM). In vivo tests showed that both
compounds significantly reduced ceramide levels
in DIO mice and promoted HDL levels.
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Masahiro Yaguchi et al. discovered a new type
of SPT inhibitor—compound 3, which has a sig-
nificant effect on the disease of pl-21 acute mye-
loid leukemia PDX mice at an oral dose of 3 mg/
kg [15]. And Ryutaro Adachi et al. obtained a
new class of compounds with inhibitory SPT
activity through enzyme-level activity screening,
such as compound A (IC50 ~ 0.76 nM), which is
effective for the growth of non-small cell lung
cancer HCC4006 cells, with good in vitro activity
(EC50 ~ 3.9 nM) [16].

 

Dominic G. Hoch et al. obtained a class of
gambogic acid and its structurally related xan-
thone derivatives (compound 18) by combining
proteomics and metabolomics as a class of first-
in-class mammalian SPT covalent inhibitor, and

proved that its main mechanism is covalently
bound to SPT small subunit B (SPTSSB) to
destroy the formation of SPT complex [39].

12.1.2 Ceramide Synthase Inhibitors

Ceramide is an intermediate in the biosynthetic
pathway of lipids and a cell signaling molecule,
catalytically produced by Ceramide synthase
(CerS) [40]. CerS consists of six subtypes
(CerS1–6) that distribute in different tissues and
catalyze the synthesis of different ceramides. Ele-
vated ceramide levels cause many disorders such
as inflammation and obesity-related syndromes,
and the development of CerS inhibitors is essen-
tial for potential therapeutical methods to meta-
bolic diseases.
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Fumonisin B1 (FB1), a mycotoxin isolated
from Fusarium moniliforme by Gelderblom and
coworkers, can inhibit CerS through substrate
structural similarity (IC50: 0.1 μM) [41], but is
toxic that caused esophageal cancer, birth disabil-
ity, and growth disorders [42]. Its derivatives,
such as hydrolyzed esterification product PAP1,
had a better inhibitory effect but showed higher
cytotoxicity [43].

Alternaria alternate lycopersici toxin
(AAL-toxin), a fungal toxin isolated from
Alternaria alternata f. sp. lycopersici by Bottini
and coworkers, competitively inhibited ceramide
synthase (IC50: 0.04 μM) [44].

Australifungin, a toxin isolated from
Sporormiella australis byMandala and coworkers,
had broad-spectrum antifungal activity against
human pathogenic fungi [45], but the high chemi-
cal reactivity of the α-diketone and β-ketoaldehyde
functional groups limited its use [46].

FTY720 was a synthetic analog of sphingosine
and inhibited in a similar manner to FB1 (IC50:
6.4 μM), but the two had different inhibition
efficiencies for long and short chain ceramide
synthesis [47]. AAL(S) was an unphosphorylated
FTY720 analog that could be used to study
diseases associated with CerS1 [48]. The ST
series of compounds were derivatives of
FTY720 main chain modification with selective
inhibitory effects [49]. P053, a small-molecule
compound synthesized by Nigel Turner and
coworkers, selectively inhibited CerS1 (IC50:
0.5 μM), might be used to treat obesity [50].
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12.1.3 Glucosylceramide Synthase
Inhibitors

Glucosylceramide synthase (GCS, also known as
UCGC), catalyzes the conversion of ceramide to
glucosyl ceramide [51]. GCS small-molecule
inhibitors have been reported primarily for the
treatment of lysosomal storage disorders—
Gaucher’s Disease and Fabry disease and
emerged as promising studies related to type II
diabetes and tumor resistance in recent years.
They are generally divided into two categories
by chemical structure.

One class is ceramide analogs. The precursors
of the PDMP family are RV-49 (70% inhibition at
0.3 mM) and N-acyl-norephedrine (82%

inhibition of the most active compound at
0.3 mM). A non-competitive GCS inhibitor,
RV-378 (72% inhibition at 150 mM), was
synthesized by introducing a morpholine group
at 1-position. The 3-position ketocarbonyl group
of RV-378 is reduced to form a more potent
analog RV-583 (84% inhibition at 37.5 mM)
that is a competitive GCS inhibitor [52, 53].
RV-583 was originally a mixture of four
stereoisomers. And only the D-threo-PDMP
(1S,2R) is active against GCS [54]. By replacing
the morpholinyl group of RV-538 with a
pyrrolidinyl group, a pair of enantiomers
BML-129 and BML-130 that showed growth
inhibition of several kinds of cancer cells were
produced [55]. PPMP, P4, and 40-Hydroxy-P4
were prepared on the basis of structural
modifications of D-threo-PDMP and BML-129/
130 [56–58]. The most recent compound of the
PDMP family is CCG-20358, which turns the
alkyl chain linked to the N-acyl group into a
benzocyclopentane to increase the rigidity of the
entire molecule. It can cross blood–brain
barrier [59].
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An effective GCS inhibitor eliglustat (Genz-
112,638) is also a ceramide analog [60]. Further
development on it revealed two brain-penetrant
heterocyclic compounds Genz-667,161 and
Genz-682,452 (venglustat) with reduced chiral

centers [61–63]. Exelixis identified a more active
GCS inhibitor (EXEL-0346) through high-
throughput screening and hit optimization
[64]. Recently, a novel CNS-permeable GCS
inhibitor, T-036, was discovered [65].
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The other class is N-alkyl-deoxynojirimycins
(DNMs). Miglustat (Zavesca), an alkyl
iminosugar that mimics the transition state of the
cationic intermediate in glycosylation reactions,
is a competitive inhibitor of GCS. It is approved
for the treatment of type I Gaucher’s disease and
Niemann–Pick disease. An optimized iminosugar
(AMP-DNM) is a more effective GCS inhibitor
[66]. Subsequently, it was found that ido-AMP-
DNM, the C5-epimer of AMP-DNM, had a
slightly stronger inhibitory effect on GCS

[67]. Various iminosugar-based GCS inhibitors
have been identified, which differ not only in
the nature of the N substituent but also in the
configuration of the piperidinyl iminosugar
[68, 69]. However, DNMs are less selective for
GCS and generally active against GBA1 and
GBA2 as well. Some investigators designed a
hybrid structure of two classes of GCS inhibitors,
but with greatly reduced activity against GCS and
active against GBA1 and GBA2 [70].
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12.1.4 Sphingomyelinase Inhibitors

Sphingomyelinase (SMase) is an enzyme that
hydrolyzes sphingomyelin to produce
phosphocholine and ceramide. So far, at least
6 subtypes of SMase have been identified, mainly
based on their optimal pH value and cofactors
[71]. Among them, acid sphingomyelinase
(A-SMase) is the most important subtype, and
its biological activity accounts for 90% of the
total SMase activity [72].

There are now growing evidence that the acti-
vation of SMase and the accumulation of cer-
amide play an essential role in the development

of various human diseases. For example, the
inhibitions of SMase activity prevent ischemic-
stress-induced neuronal death [73], improve acute
lung injury caused by repeated airway lavage
[74], and reduce apoptosis in hepatic ischemia-
reperfusion injury [75]. The A-SMase activity is
also associated with major depression [76]. There-
fore, the discovery of potent SMase inhibitors is
of great significance for the development of drugs
for the prevention and treatment of related
diseases.

To date, a variety of inhibitors against
A-SMase and N-SMase have been reported. The
inhibitors of A-SMase are divided into two types,
the direct inhibitors and the functional inhibitors.
Direct inhibitors are characterized by not requir-
ing high lysosomal drug concentrations as a pre-
requisite for inhibiting A-SMase, and there are
few known examples of direct inhibitors
[77]. For instance, several bisphosphonates have
strong selective inhibition on A-SMase, among
which the compound 7b and 7C have better inhib-
itory activity [78], imipramine can inhibit
A-SMase4 [79]. Functional inhibitors are
characterized as cationic amphiphilic substances,
inducing the dissociation of A-SMase proteins
from the endolysosomal membrane to inactivate
A-SMase, including Astemizole and Amlodipine,
etc. [80].
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There are synthetic molecules and natural
products as N-SMase inhibitors. Luberto and
coworkers synthesized a series of compounds,
among which GW4869 exhibited significant
inhibitory activity against N-SMase both in vitro
and cellular models. This compound is a
non-competitive and selective inhibitor, which
means GW6948 did not inhibit A-SMase
[81]. Soeda synthesized a series of difluoromethyl

analogs (SMAs) of sphingolipids, among which
SMA-7 has better inhibitory activity. Liu found
that N-SMase was inhibited in vitro by physio-
logically relevant concentrations of glutathione
(GSH) and was activated in GSH-depleted cells
[82], whereas glutathione acts as a natural inhibi-
tor of N-SMase in the reduced (GSH) and
oxidized (GSSG) forms [83].
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Microbial-derived natural products were
screened as SMase inhibitors. Ryuji isolated a
known compound, Alutenusin, from cultures of
Penicillium sp. as a selective N-SMase inhibitor
[84]. Tanaka isolated Schyphostatin from the
mycelial extract of Dasyscyphus mollissimus,
which was found to be a competitive inhibitor of
N-SMase [85]. Schyphostatin was the most
potent natural product against N-SMase [86],
but unable to inhibit A-SMase activity
[87]. Arenz discovered some analogs of
Manumycin A are also the irreversible inhibitors
of N-SMase, whose inhibitory ability is strongly
influenced by their hydrophobic side chains [88].

12.1.5 Sphingomyelin Synthase
Inhibitors

With the increasing understanding of
sphingomyelin synthase (SMS) family proteins,
SMSs were found associated with the occurrence
and development of various diseases [89]. A

variety of SMSs inhibitors have been developed,
and some of them have been evaluated in disease
models.

The first reported SMS inhibitor was D609,
which had been known as a selective PC-PLC
inhibitor before. Meng and coworkers found that

D609 was capable of inducing U937 cell death by
apoptosis, which was associated with the inhibi-
tion of SMS activity [90]. A significant increase
in the intracellular level of ceramide and a
decrease in that of sphingomyelin (SM) and
diacylglycerol were observed, suggesting that
SMS is a potential target of D609 and inhibition
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of SMS may contribute to D609-induced tumor
cell death. However, D609 is very unstable under
aqueous conditions due to the carbonodithioate
structure, which restricted its further application
in in vivo study.

New types of SMS inhibitors including natural
products and synthetic molecules have been
developed in the past 10 years. Jaspine B, an
anhydrophytosphingosine derivative isolated
from the marine sponge Jaspis sp. by Salma and
coworkers, inhibited the activity of
sphingomyelin synthase (IC50: 5 μM) and
induced cell death in SMS1-depleted cells but
not SMS1-overexpressed cells [91].

Malabaricone C, isolated from the fruits of
Myristica cinnamomea King by Othman and
coworkers, was reported as an SMS inhibitor
[92]. It exhibited multiple efficacies, including
reduction of weight gain, glucose tolerance
improvement, and reduction of hepatic steatosis
in high-fat diet-induced obesity mice models.
However, Malabaricone C was also reported to
inhibit α-Glucosidase [93] and cholinesterase
[94] as well, suggesting that it was a multi-target
natural product.

Another natural product Daurichromenic acid
(DCA), isolated from Rhododendron dauricum
by Deepak and coworkers, was found as a
sphingomyelin synthase inhibitor [95]. In addi-
tion, DCA was proved to inhibit amyloid β aggre-
gation. Although these natural products showed
moderate inhibition against SMS, they all acted
on two or more targets. Thus, these compounds
were not ideal chemical tools to study the poten-
tial roles of SMS in disease models.

Medicinal chemists have put efforts into syn-
thetic SMS inhibitors and made great progress in
recent years. Swamy and coworkers designed a
series of ceramide mimics based on ginkgolic
acid which is a natural product and an SMS
inhibitor. Among them, compound 5 showed
moderate activity [96].
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A research group from Fudan University,
China contributed to the development of SMS
inhibitors. Deng and coworkers performed
structure-based virtual screening in combination
with chemical synthesis and bioassay [97]. They
found a hit compound D2, which was the first
small-molecule SMS inhibitor with potency close
to the micromolar range. Based on the structure of
lead compound D2, Qi and coworkers designed a
series of oxazolopyridine derivatives with good
selectivity [98]. Through a similar approach, Li
from the same research group developed a new
series of SAPA compounds, among which
SAPA1a showed the best in vitro activity
[99]. Progress of SMS inhibitors was made by
Mo and coworkers in 2018 [100]. They devel-
oped 4-benzyloxybenzo[d]isoxazole-3-amine
derivatives as potent and highly selective SMS2
inhibitors. Among them, compound 15w
demonstrated good pharmacokinetics and
attenuated chronic inflammation significantly in
db/db mice. This was the first reported oral avail-
able selective SMS2 inhibitor. In the coming
year, Li developed another oral available SMS2
inhibitor Ly93, with reported highest selectivity
till then (1400-fold over SMS1) [101]. The
2-benzyloxybenzamide derivative Ly93 signifi-
cantly decreased the plasma SM levels of
C57BL/6 J mice and was capable of dose-
dependently attenuating the atherosclerotic
lesions in the root and the entire aorta in apolipo-
protein E gene knockout mice. These preliminary
molecular mechanism-of-action studies revealed
SMS2 function in lipid homeostasis and inflam-
mation process, which indicated that the selective
inhibition of SMS2 would be a promising treat-
ment for inflammation.

Another research group from Japan also made
progress in this field. Adachi and coworkers

developed a human SMS2 enzyme assay with a
high-throughput mass spectrometry-based
screening system and found a hit compound
with the 2-quinolone scaffold. Further modifica-
tion of the hit compound led to a potent and
selective SMS2 inhibitor (compound 3, IC50:
6.5 nM) [102]. Recently, the research group
developed a new compound 37 as an effective
in vivo tool for the study of the SMS2 enzyme.
Compound 37 showed promising efficacy in
reducing hepatic sphingomyelin levels in a
mouse model [103].

12.2 Conclusion

Sphingolipid metabolism pathways play an
essential role in maintaining cell homeostasis
and are related to a variety of metabolic diseases,
such as insulin resistance, metabolic syndrome,
etc. The dynamic balance of sphingolipid levels
in organisms is regulated by a variety of
sphingolipid synthases, hydrolases and metabolic
enzymes, such as sphingomyelinase (SMase),
sphingomyelin synthase (SMS), serine palmitoyl-
transferase (SPT), ceramide synthase (CerS),
glucosylceramide synthase (GCS), etc. The
above-mentioned enzymes are potential targets
for drug discoveries in metabolic disorders and
receive a lot of research interests.

Medicinal chemists have discovered various
natural products and synthetic small molecules
targeting sphinogolipid metabolism-related
enzymes. From the primary discovery of
myriocin as an SPT inhibitor in 1990s, Fumonisin
B1 as CerS inhibitor in early twenty-first century,
to the very recent advances in SMS inhibitor
recognition of Ly93 by Fudan University,
hundreds of compounds were reported to be
potential drugs to the perturbation of
sphinogolipid metabolism and several of them
come to preclinical stages. However, there are
remaining challenges in drug development
towards sphinogolipid metabolism. (1) The affin-
ity of small-molecule inhibitors to target protein
need great improvement. Except very few
compounds mentioned in the chapter reaches a
low IC50 to sub-100 nM level, the main inhibitors
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to SMS, SMase and other related enzymes
showed a weak affinity hindering their
movements to clinical drugs. (2) Inhibitors with
better selectivity are needed. Sphinogolipid
metabolism is fundamental to the survival of
cells and mammals, the lack of selectivity of
sphinogolipid metabolism-related inhibitors will
cause severe side effects or even death.
(3) Distinguishing of clear indications of
sphinogolipid metabolism-related drugs are
favored. Due to the lack of understanding of
sphinogolipid metabolism in the development of
diseases, we do not have a lot of knowledge of the
indications of sphinogolipid metabolism-related
inhibitors. More clinical trials need to be done to
clarify their therapeutic effects for human.
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