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Abstract The most important component in the cryptographic system is the cryp-
tographic keys generator. These keys are generated by a random number generator
(RNG) since the security of the cryptographic system depends entirely on the quality
of generated keys. This paper summarizes the recent development of FPGA-based
hardware efficient and secure RNGs. The main aim of this study is to summarize the
knowledge of hardware performance, security strength, and suitability for the crypto-
graphic system from the different classes ofRNGs. It discusses the different classes of
RNGs, recalls the basic ideas, and provides the details of several well-known RNGs.
This work presents a comprehensive discussion on the hardware implementation of
RNGs on FPGAs. A complete list of LCGs-based pseudorandom number generators
(PRNGs) is presented with deep technical details on their mathematical formation
and implementations. Finally, the performance of RNGs with respect to utilization
of FPGA resources, frequency, latency, power consumption, security strength using
the national institute of statistical testing (NIST), and weaknesses is presented.
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1 Introduction

With the rapid development of information technology, the cryptosystem is used
widely to protect the data or information. A various encryption techniques are used
tomake ensure of information security. So the random number generator (RNG) used
in cryptography determines the system security. TheRNGs arewidely used in various
applications related to cryptography such as key generation, encryption/decryption,
masking protocols, Internet gambling, and block ciphers [1–4]. A different RNG is
proposed by the researchers that enhance the security of information. In the evolu-
tionary development of smart mobile devices that are connected to the internet, the
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information exchange over an insecure network is a major concern over the years.
The physical systems like environment monitoring, health care system, advanced
metering in smart grids, etc., which are connected over the Internet of things (IoT)
that generate a large amount of data that leads to privacy and security issues. To
assure the security of associated information over an Internet network, the RNG is
the primary requirement [5]. Due to trade-off between different factors (like hard-
ware performance, security, and cost), most of the cryptosystems are unsuitable for
real-time implementation on IoT-based resource constraint devices [6]. To accom-
plish this request, it is required to implement efficient hardware architectures capable
of generating pseudorandom bit sequences to provide the public and private keys for
effective data cryptography. Therefore, the hardware-based cryptosystem is compul-
sory in IoT applications for secure information exchange over smart mobile devices
that are connected with IoT. So, the primary requirement of a hardware-based cryp-
tosystem is low-hardware complexity, high speed, low-power consumption, secure
key generation, and high randomness. In this regard, different RNG methods were
proposed for the generation of the randomnumber to satisfy the randomness behavior
as required for cryptography.

The FPGA implementation of the RNG is more useful in real tile applications like
cryptography, secure communications, etc. The fully digital circuit or/and embedded
systems with high-speed and low-power consumption are suitable for IoT, cyberse-
curity, and Industry 4.0 security applications. The RNGs based on FPGA open the
opportunity to use the large number of combinational blocks that are connected
through programmable logic. So, this powerful platform is widely used in digital
circuit implementations [7].

This research work surveys the large set of FPGA implementations of RNGs.
First, summarize the different classifications of RNGs and provide the advantages
and weakness of different well-known RNGs both pseudorandom and truly random,
while linear and nonlinear system-based generators are discussed in the PRNG case.
The LCGs-based PRBGs are explained in detail and also discuss the choices of the
RNGs. Finally, present the performance of FPGA-based PRNGs in terms of FPGA
resources, timing performance, security strength, and weakness.

The remainder of the article is as follows. Sect. 2 refers to the classification of the
RNGs. Sect. 2.1 presents the FPGA implementations of nonlinear PRNGs, whereas
the next Sect. 2.2 focuses on linear system-based PRNGs. This section summarizes
the mathematical formation and VLSI architectures corresponding PRBGs with a
short comparison regarding area resources and timing performance of the FPGA
implementations. The FPGA implementation results (in terms of FPGA resources,
frequency, throughput, and power consumptions) and security status of linear and
nonlinear PRNGs are detailed in Sect. 3. This article ends with a conclusion section
that summarizes the review.
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2 Classification of the RNGs

RNGs are categorized mainly into two families: true random number generators
(TRNGs) and pseudorandom number generators (PRNGs). In TRNGs, the physical
process like jitter or thermal noise is used to generate random numbers. Therefore,
the TRNGs cannot be used in the encryption/decryption process because they cannot
be able to generate the same sequences corresponding to ciphering and deciphering
operations [7]. For this problem, there is only one possible solution is generated
sequences from TRNGs stored in memory. Additionally, TRNGs also suffer from a
low-throughput rate, therefore they cannot be used in high-speed applications.

In general, there are two types of PRNG: (1) linear and (2) nonlinear PRNG. The
linear system-based PRNG, linear feedback shift registers (LFSRs) [8, 9], and linear
congruential generators (LCGs) [6, 10–17] are used for generating pseudorandom
number sequences. In nonlinear PRNGs, the nonlinear output function or nonlinear
transition function is used to convert the linear system into a nonlinear [18–30].

2.1 Nonlinear PRNG

In nonlinear PRNGs, the nonlinear output function or nonlinear transition func-
tion is used to convert the linear system into a nonlinear. Various PRNGs based on
nonlinear system are used in the cryptography for their good randomness proper-
ties. Nonlinear dynamical systems consist of simple mathematical equations that
can exhibit chaos behavior. So, the cryptographic properties of generated random
sequences from the chaotic map are very crucial for the security of encryption algo-
rithms. Chaotic systems generate a pseudorandom sequence, which can be applied
in designing cryptographic keys to get their valuable characteristics like random
behavior, sensitivity to the initial conditions, and ergodicity.

Mathematically, a hyperchaotic systemcanbe defined as a chaotic systemwith two
or more than two positive Lyapunov exponents. Its dynamic behavior is expended in
more than two directions. So, the hyperchaotic attractor has more complex dynamic
behaviors as compared to a chaotic system. The expansion of this dynamic behavior
happens at the same time in two or more than two directions that make the hyper-
chaotic system, which shows better performance in many chaos-based applications
including technological applications, than chaotic systems. Nowadays, hyperchaos
has attracted attention from various scientific and engineering communities. So, the
application of hyperchaos is becoming more popular in the field of chaos-based
cryptography. Though, the well-known disadvantage of ordinary chaotic attractors
for topological applications possesses only a single positive Lyapunov exponent
(LE), hence its degree of disorder is not high as compare to hyperchaotic systems.

The recent literature of FPGA-based PRNGusing chaotic and hyperchaotic attrac-
tors is discussed. The FPGA implementation of six different multiplierless chaotic
PRNGs using Chua, Lorenz, Rössler, and the other three systems has been done
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in [7]. To increase the randomness as well as prevent the digital chaotic system
to fall into short-period orbits of the generated sequences, a PRNG based on the
one-dimensional logistic map was implemented on FPGA [23]. In [24], Rezk et al.
proposed an FPGA-based PRNG that is using the Lü and Lorenz chaotic attractors.
The PRNG based on a hyperchaotic system with a self-shrinking perturbance gener-
ator was proposed by Yang Liu et al. in [25]. A new 4D hyperchaotic oscillator was
proposed by wu et al. and analyzed its nonlinear dynamic behavior. Furthermore,
an analog circuit of this system is implemented on a chip for some relevant engi-
neering applications such as information encryption [26]. A hyperchaotic system and
its qualitative properties were discussed by Rajagopal et al. in [27]. This system was
also implemented in FPGA to prove that the system is hardware realizable.

2.2 Linear PRNG

The linear PRNG, LCGs, and LFSRs are used for generating pseudorandom number
sequences. The linear PRNGs are suitable for high-speed and low-power applications
in a hardware-based cryptosystem, but there is some limitation, i.e., limitation of state
and a short period of generated bit sequences. To mitigate this limitation, many-
related literature surveys are presents in detail thereafter.

2.2.1 LCG-Based PRNGs

The most popular random number generation method is linear congruential on
modular arithmetic. An LCG is originated on the system of linear recurrence equa-
tions, which is defined as xi+1 = [(a1 × xi ) + xi + b1]mod2K , where a (the “multi-
plier”), b (the “increment”), where 0 ≤ a, b ≤ 2k−1 are parameters of the generator.
LCG is convenient for high-speed and low-power constraints, but it is not capable
to generate more secure pseudorandom numbers. Because of this, many hardware
implementations are proposed to increase the security and period.

The authors of [14] proposed the high-secure dual-CLCGalgorithm-based PRBG.
The dual-coupled-LCG blocks are used to design this architecture, and these blocks
are designed by following recurrence relations:

xi+1 = [(a1 × xi ) + xi + b1]mod2n (1)

yi+1 = [(a2 × yi ) + yi + b2]mod2n (2)

pi+1 = [(a3 × pi ) + pi + b3]mod2n (3)

qi+1 = [(a4 × qi ) + qi + b4]mod2n (4)
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Bi =
{
1 ifxi+1 > yi+1

0 ifxi+1 < yi+1

}
(5)

Ci =
{
1 ifpi+1 > qi+1

0 ifpi+1 < qi+1

}
(6)

zi = Bi , i f Ci = 0 (7)

Here, constant parameters (a1, a2, a3, a4, b1, b2, b3, b4) and initial seeds
(x0, y0, p0, q0) are used in recurrence relation as given in corresponding Eqs. (1)–(4).
The comparator output, i.e., Bi and Ci is given by Eqs. (5) and (6). The random bit
sequences (zi ) are given by Eq. (7).

Authors of [15] optimized the implementation of the dual-CLCG algorithm [14]
that involves arithmetic operations such as multiplication. In this architecture, the
author uses the logical left shifting rather than multiplication operation, which
reduces the hardware complexity of dual-coupling of LCG [14]. Therefore, Eqs.
(1)–(7) can be rewritten as

xi+1 = [(
2r1 × xi

) + xi + b1
]
mod2n (8)

yi+1 = [(
2r2 × yi

) + yi + b2
]
mod2n (9)

pi+1 = [(
2r3 × pi

) + pi + b3
]
mod2n (10)

qi+1 = [(
2r4 × qi

) + qi + b4
]
mod2n (11)

Bi =
{
1 ifxi+1 > yi+1

0 ifxi+1 < yi+1

}
(12)

Ci =
{
1 ifpi+1 > qi+1

0 ifpi+1 < qi+1

}
(13)

zi = Bi ⊕ Ci (14)

Gupta and Chauhan of [6] further optimized the implementation of the dual-
CLCG algorithm [15], in which LCG blocks are designed using 2-operands modulo
adder instead of 3-operands modulo adder. So, the nth bit of final addition will
be calculated by XOR between nth bit of 2-operands modulo adder’s output,
i.e., (Sx1i [n − 1], Sy1i i[n − 1], Sp1i [n − 1]andSq1i [n − 1]) and nth bit of the shifted
value of variables (xi , yi , piandqi ), i.e., (xi [0], yi [0], pi [0] andqi [0]) corresponding
to each LCG block and given by

(
Sx2i , Sy2i , Sp2iandSq2i

)
as shown in Eqs. (15)–(18).

The values (Sx2i , Sx1i [n − 2 : 0]), (
Sy2i , Sy1i [n − 2 : 0]), (

Sp2i , Sp1i [n − 2 : 0]),
and

(
Sq2i , Sq1i [n − 2 : 0]) are stored in four registers corresponding to each LCG
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block that hold the value for further processing. These register values are assigned
to the next iterative values as given in Eqs. (19)–(22).

Sx1i [n − 1 : 0] = b1[n − 1 : 0] + xi [n − 1 : 0], Sx2i = Sx1i [n − 1] ⊕ xi [0] (15)

Sy1i [n − 1 : 0] = b2[n − 1 : 0] + yi [n − 1 : 0], Sy2i = Sy1i [n − 1] ⊕ yi [0] (16)

Sp1i [n − 1 : 0] = b3[n − 1 : 0] + pi [n − 1 : 0], Sp2i = Sp1i [n − 1] ⊕ pi [0] (17)

Sq1i [n − 1 : 0] = b4[n − 1 : 0] + qi [n − 1 : 0], Sq2i = Sq1i [n − 1] ⊕ qi [0] (18)

xi+1[n − 1 : 0] = {Sx2i , Sx1i [n − 2 : 0]} (19)

yi+1[n − 1 : 0] = {
Sy2i , Sy1i [n − 2 : 0]} (20)

pi+1[n − 1 : 0] = {
Sp2i , Sp1i [n − 2 : 0]} (21)

qi+1[n − 1 : 0] = {
Sq2i , Sq1i [n − 2 : 0]} (22)

Authors of [16] proposed the high-secure PRBG architecture based on variable-
input coupled-LCG. This architecture is designed using the coupling of LCG and
input seeds of these LCG blocks are change by another two LCG blocks in each
iteration. EachLCGblock is defining by recurrence relations. It is given byEqs. (23)–
(26). TheEqs. (2) and (24) are named as variable-input linear congruential generators,
were, the variables pi andqi are attained from twodifferentLCGs recurrence relations
as mentioned in Eqs. (25) and (26). The random bit sequence Zi is obtained from
the inequality condition, which is given in Eq. (27). Here, x0, y0, p0, and q0 are the
initialization values corresponding to each recurrence equation. The b1 and b2 are
the constant parameter of LCG blocks, as shown in Eqs. (25) and (26) (Figs. 1, 2, 3,
and 4).

xi+1 = [(
2r1 × xi

) + xi + pi
]
mod2n ≡ f1(xi , pi )mod 2n (23)

yi+1 = [(
2r2 × yi

) + yi + qi
]
mod2n ≡ f2(yi , qi )mod 2n (24)

pi+1 = [(
2r3 × pi

) + pi + b1
]
mod2n (25)

qi+1 = [(
2r4 × qi

) + qi + b2
]
mod2n (26)
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Fig. 1 VLSI architecture of dual-CLCG-based PRBG using 3-operands modulo adder [15]

Fig. 2 PRBG architecture of dual-CLCG using 2-operands modulo adder [6]
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Fig. 3 PRBG architecture is based on the variable-input coupled-LCG [16]

Fig. 4 PRBG architecture is based on the variable-input coupled-LCG and clock divider [17]

Zi =
{
1, if xi+1 > yi+1

0, otherwise

}
(27)

Gupta and Chauhan of [17] further improve the period length, security,
and hardware performance of variable-input coupled-LCG architecture [16]. It
is designed using several values of seed, i.e., p(p0, p1, . . . , p2n−2, p2n−1) and
q(q0, q1, . . . , q2n−2, q2n−1) change periodically instead of changing in every iter-
ation. Benefits of these techniques, the sequence of 22n maximum elements, i.e.,
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{xi} is generated by periodically changing the value of p. In this method, the first
2n elements are obtained by xi+1 = f1(xi , p0)mod m, the next 2n elements are
obtained as xi+1 = f1(xi , p1)mod m, and so on. After using all values of p, it
generates 22n total elements. All value of p (from initial value) is reused to circu-
larly continuing the process. Similarly, the sequence of 22n elements, i.e., {yi} is
generated by periodically changing the value of q. With this method, the first 2n

elements are obtained by yi+1 = f1(yi , q0)mod m, the next 2n elements are obtained
as yi+1 = f1(yi , q1)mod m, and so on. After using all values of q, it generates 22n

total elements. Now, this sequence of 22n elements {xi} and {yi} is computed by
inequality condition to generate pseudorandom bits sequence of 22n period, without
paying extra resources.

3 Result and Discussion

The performance parameters in terms of FPGA resources (i.e., number of flip-flops
(FFs), look-up-table (LUT), slices, and DSP blocks), timing performance (critical
path delay, frequency, and bit-rate), power consumption per unit frequency, and
security strength are presented in Table 1.

Let us start to conclude the results obtained with different linear and nonlinear
PRNGs, as demonstrated in Table 1. It appears demonstrated that the linear system-
based PRNGs have the lowest area resources, high throughput, and less power
consumable while maintaining the same security strength as compared with the
nonlinear system (chaotic and hyperchaotic ordinary differential equations)-based
PRNG approaches. These advantages leading the utility of linear system-based
PRNG in lightweight IoT enable devices for cryptographic applications, i.e., better
and more recommended schemes of PRNG.

The performance parameters of PRBGs belonging to the LCGs category are
demonstrated in Table 1. The one that is based on the dual-coupled-LCG using
two-operands modulo adder [6] has the lowest area occupation and high throughput.
However, some other LCGs PRNGs can be presented as good competitors, namely
(1) the variable-input coupled-LCG [16], (2) variable-input coupled-LCGwith clock
divider [17]-based PRBGs. Regarding the FPGA resources, throughput, the period
length of the bit sequence, and security strength, the LCG-PRBG-based on variable-
input coupled-LCG with clock divider [17] outperforms other linear PRNGs. In a
conclusion, if we compare linear PRNGs to other PRNGs, it can play an important
role in high-speed uses due to their parallel and rapidity generation.

4 Conclusion

This manuscript provided a widespread report on recent development in the FPGA
implementation of RNGs. We have first recalled the different types of RNGs and
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discuss their properties in terms of hardware complexity, performance, and secu-
rity strength. Thereafter, deeply investigate the nonlinear and linear system-based
PRNG. Then, a large review of the FPGA-based PRNGs using LCGs systems is
presented. For each type of PRNG, a hardware analysis regarding FPGA resources,
timing performance, and security strength has been provided. Each RNG technique
is discussed in detail. Finally, the performance parameter of FPGA-based PRNGs
in terms of FPGA resources, frequency, throughput, power consumption, security
strength, and weaknesses is presented.
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