Flower Species Detection System Using m
Deep Convolutional Neural Networks oo

Arun Solanki and Tarana Singh

Abstract A system that correctly identifies the name of a flower species may be
beneficial for botanists, camping enthusiasts, and researchers. Previously, classifica-
tion was only done based on a flower’s shape, geometry, and texture, which is not
enough for an efficient system. Some significant challenges in this classification task
include inter-species similarity, intra-class variation, and the same objects such as
leaves or grass around a flower, making this task a research topic. This research has
developed an efficient and robust deep learning flower classifier to overcome these
problems and limitations based on the current state of the art convolutional neural
networks and transfer learning. This research has utilized the Oxford-102 flower
dataset having 8189 images of 102 flower species. The proposed method is divided
into two different steps. Firstly, the flower images are segmented, and secondly,
these segmented images are fed as an input to a convolutional neural network for
classifying the species of the flowers. This work has used the PyTorch library for
recognition purposes. The flower’s dataset uses various pre-trained models on the
ImageNet dataset such as AlexNet, VGG, DenseNet, Inception v3, and GoogLeNet.
Out of these, DenseNet achieved the highest classification accuracy of 97.92% when
trained on GPU provided by Google Collaboratory. This classifier can be integrated
with a mobile application to provide an accurate real-time flower species prediction.

Keywords Convolution neural network (CNN) - Segmentation + Cropping -
Augmentation - Transfer learning - ReLU activation function

1 Introduction

Plant species recognition based on flower recognition remains a challenge in the
field of image processing and computer vision, primarily due to their widespread
presence, complex structures, and unpredictable species in nature. Due to this natural
complexity, it is highly undesirable to segment or extract regular features or combine
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shape, texture, and color features, resulting in moderate accuracy in benchmark
datasets increase. Several feature extraction techniques that combine global and
local feature descriptors have achieved the highest accuracy in flower classification,
but automatically identify and recognize large flower species in complex environ-
ments [1]. Still needs a powerful and efficient system. This paper also uses mecha-
nism of transfer learning to save our time and resources. For this, we have utilized
Oxford-102 dataset of images having 8189 flower images belonging to 102 kinds
of different flower species. The proposed method is divided into two major steps
[2]. Firstly, the flower images are segmented, and secondly, these segmented images
which act as input afterward go into a convolutional neural network for classifying
the species belonging to different flower categories. We have also pre-processed
the flower images which we will discuss in the later section of this paper. To facil-
itate our proposed work, we have employed PyTorch library for the recognition
purposes and various pre-trained models on ImageNet dataset such as AlexNet,
VGG, DenseNet, Inception v3, and GoogLeNet were used on the flower’s dataset.
Out of these, DenseNet achieved the highest classification accuracy when trained on
GPU provided by Google Collaboratory [3]. This classifier can be built into a mobile
application so that it can provide an accurate flower species prediction in real-time
environment. For the implementation of the flower species recognition system, we
have used python 3.6.6 version. We have employed PyTorch library for the devel-
opment of the code based on transfer learning. The whole training of the model is
done on Google Collaboratory which is free GPU provided by Google. We have
obtained the dataset which is used in our proposed methodology is from Science
and Engineering department of University of Oxford. This dataset is known as 102
flower category datasets [4]. This flower’s dataset is having 102 types of different
flower species. Each category of flower contains the images ranging from 40 to 258
images.

CNN comes under the picture of an artificial neural network that has wide recog-
nition in image classification. Several layers in a CNN includes convolutional layers,
pooling layers, and fully connected layers [5]. Operation in the series format is applied
to the data, which acts as input to the CNN network to find a particular pattern in
the image. This network does the processing of the data with a grid-like topology
[6]. A CNN model uses the image pixel in the form of an array as input. The input
data is processed through a hidden layer, and the final output is shown or given by
the output layer. The primary function of the hidden layer is feature extraction that
deals with the calculation and manipulation of the data [7]. This work is based on the
convolution layer, which filters the matrix and performs the convolution operations
to help pattern finding in the image. Hidden layers can be many depending upon
the architecture of the network like we can have a ReLU layer or a pooling layer or
convolution layer [8]. At the end of each process, we get feature maps convolved,
rectified, and pooled. The modified pixel values have to get passed through the fully
connected layer where the real object detection occurs [9]. Figure 1 illustrates the
overall architecture of a convolutional neural network. This also has the depiction of
all the layers contained in the network [10].
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Fig. 1 Architecture of convolutional neural network [11]

When reviewing previous studies, several flower identification methods have been
suggested [1, 6, 12]. These methods usually consist of four steps: pre-processing,
segmentation, manual design feature extraction, and classification [13]. Due to the
complex background of flower images, this task can be very time consuming, and
for many types, in particular, the accuracy obtained is still low. Recently, learning
feature representations using convolutional neural networks (CNNs) has been very
successful in various areas of computer vision, including object detection, segmenta-
tion, and visual image classification [9]. Feature learning methods provide a natural
way to capture clues using many codewords (sparse coding) or neurons (deep
networks) [14, 15]. All of these are useful clues because you can capture the natural
features of the object. Therefore, this article examines and presents the efficiency
of deep convolutional neural networks, which may more effectively identify plant
species based on flowers [16, 17].

This whole paper is organized into eight sections. In section one, introduction
and the motivation of the work are presented. In the second section of this paper, a
literature survey of the related domain is presented. In section three, the proposed
architecture of the system is discussed. The process flow chart of the proposed system
is discussed in section four. Then, in section five of this chapter, the pseudo-code
of the proposed system is presented, followed by the step-by-step discussion of the
implementation of the proposed algorithm in section six. Section seven discusses the
results of the proposed system, followed by the comparison of the proposed work
with the existing systems. At the end of the paper, a conclusion is given, followed
by future work.

2 Literature Survey

Krizhevsky [18] brings out the phenomenal results on the ILSVRC2012 through
developing a deep convolutional neural network. The top-1 error rate was 37.5% and
the top-5 error rate was 17%. This method was certainly better than other methods
in the past for the same domain. A system based on a convolutional neural network
was a build-up of deep layers ensemble with the structural network containing eight
layers. To avoid overfitting problem [19], there is the incorporation of the essential
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features. These features are pooling layers along with normalizing layers with the
functionality of dropout. According to Sermanet [20], using CNN for object loca-
tion and object detection in images will boost classification accuracy. It will also
increase the accuracy of detection and location tasks. This method is the winner
of the localization task on the challenge of ILSVRC2013 through the developed
integrated approach used for detection, localization, and recognition [21, 22]. This
algorithm gave brilliant results through classification accuracy. Szegedy [10] devel-
oped and designed the architecture of a deep convolutional neural network which
is called inception and there is seen great classification and detection results for the
challenge ILSVRC2014 [23]. The author in [20] states that for the benefit of classifi-
cation depth representation is essential. With the substantial increase in the intensity,
good results can be achieved on the ImageNet dataset using a conventional CNN.

We can use a convolutional neural network for the segmentation of the images
and can be employed to detect the objects in the images. Segmentation through CNN
has been achieved through the paper’s fully convolutional networks (FCN) concept
[20]. Several methods extend the concept of CNN to allow object detection tasks
with good accuracy on benchmark datasets. These methods are R-CNN [24] which
is region proposals with CNN. Another advancement is fast R-CNN explained in
[25]. Later on, there is the development of the architecture of Faster R-CNN [26] and
YOLO [27]. The results are similar if we compare FCN with these methods when
using CNN’s architectures, including AlexNet [28] and VGG-16 [10].

3 The Architecture of the Proposed System

Figure 2 shows the framework, which is the designed architecture for our proposed
method employed to deal with flower species recognition.
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Fig. 2 Architecture of the proposed work
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The efficient and robust system we have developed to classify different types
of flower species is depicted in Fig. 2. This figure shows the overall framework,
which is also the architecture of the proposed method. Architecture is composed of
modules, blocks, and sub-modules [29]. Architecture describes the flow of the code
right from data collection to the prediction of an unknown set of flower examples by
the trained classifier. Here, we have utilized the architecture type of convolutional
neural network, DenseNet, a pre-trained model on the ImageNet dataset [30]. This
is called a transfer learning mechanism. There are two significant modules in the
architecture are:

e Training Module: The training module of the architecture proposed contains
three blocks and five modules which are described below. The input to this
module is the raw flower images one by one. This module has three blocks:
Image Processing Block, which is mainly responsible for the data preparation for
the training and contains three modules: segmentation module, cropping module,
and data augmentation module. The second is the Transfer Learning Block, which
focuses on the transfer learning mechanism and comprises two major modules:
loading pre-trained model module and parameter tuning module. And the third
one is the ImageNet Weight Block, which has the weights of the ImageNet
dataset used in our flower classification problem.

e Testing Module: The testing module of the architecture proposed contains two
blocks and three modules which are described below. The output from this module
is the class label, the predicted species of an unknown flower image, which is
the input to this testing module. This module has three further modules: Predic-
tions with the Training Module, Segmentation and Cropping Module, and Image
Augmentation Module.

4 Process Flow Chart of the Proposed System

The process flow carried out in the proposed work is systematically explained by the
below flowchart, which contains all the steps of execution to accomplish the research
(Fig. 3).

4.1 Oxford 102 flower’s Dataset

We have the oxford 102 flower’s dataset at our disposal, which has to go into our clas-
sification model for flower species prediction [31]. Figures 4 and 5 are the depiction
of variability between flower species and variability within flower types.
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Fig. 5 Variability within classes

4.2 Flower Images Segmentation Using BiCoS

To improve classification accuracy, there is a need to separate foreground (the flower
structure) from the complex background due to leaves and grass, which is useless
for the classification task. So, we do the flower images segmentation to obtain the
desired segmented images of the flowers.

4.3 Cropped and Segmented Flower Images

After segmentation, the background becomes black. We need to remove that, so we
crop the segmented images using a python script to obtain the cropped and segmented
images of flowers.

4.4 Pre-trained Models on ImageNet Dataset

There are many pre-trained models like DenseNet, VGG-16, or AlexNet that can be
loaded from the Torchvision module of PyTorch.

4.5 Transfer Learning

This mechanism of transfer learning is gaining huge popularity in deep learning. We
load the pre-trained models on the ImageNet dataset into our code. This mechanism
is called transfer learning which is reusing things that have very high standards. Pre-
trained networks generally contain two things. One is feature detectors, and the other
is aclassifier. Feature detectors extract from each image the information [32, 33]. Our
classifier will learn the input given by feature layers, and therefore we will freeze the
feature layers to avoid any modification. If we talk about the most commonly used
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pre-trained models on the ImageNet dataset, these are AlexNet, DenseNet, VGG-16
and many more that have gained popularity over recent years.

5 Pseudo-Code of the Proposed System

Step 1: Loading Oxford 102 Dataset.
Step 2: Essential Libraries Loading.
Step 3: Data Segmentation and Cropping of Flower Images.
Step 4: Data Augmentation.

Step 5: Loading pre-trained model.
Step 6: Classifier Building.

Step 7: Model Training.

Step 8: Model Testing.

Step 9: Save Model Checkpoint.
Step 10: Load Model Checkpoint.
Step 11: Processing Images.

Step 12: Class Prediction.

Step 13: Sanity Check.

6 Implementation of the Algorithm

Step 1: Loading Oxford 102 Dataset—In this step, we load the Oxford 102 dataset of
flowers images into our code to apply our model for the prediction of flower species.
This dataset contains 102 species of flower images and is divided into training and
test sets.

Step 2: Essential Libraries Loading—This process involves the loading of essen-
tial libraries and packages to make use of the functions in the modules of these
packages.

Step 3: Data Segmentation and Cropping—We have to remove the complex back-
ground, which contains leaves and grass and these things create significant confusion
for the flower classification task. Therefore, we have segmented the flower images
using a technique called BiCoS segmentation for image classification. Then, this
segmented image is cropped with the help of a python script to improve the accuracy
of the network. Figure 6 shows the conversion of the original image of the flower
picked up from the Oxford 102 species to the segmented image and the conversion
from segmented image to cropped image.

Step 4: Data Augmentation—As our dataset is not very large, we need to augment
the dataset of flower images. This is because we want our program to learn as much as
it can. So, we must apply some random transformations to build a robust and efficient
flower classifier. For this, we have to train our model on various variations of the
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Fig. 6 Cropped image obtained from the segmented image

original image. These variations include rotation, translation, scaling, cropping, or
flipping of the original image.

The transformations are done on each image and these images are passed through
aneural network in each epoch. This will allow the network to train on a more signifi-
cant number of images. Therefore, we have increased the variety of our training data
which will further reduce overfitting. This also improves the capability of gener-
alization by the classifier, so there is a sure shot increase in the model’s accuracy.
To normalize the image values before entering them into the network, we have to
provide the network with mean and standard deviation. If we look at the dimensions
of image tensors, we can have the values of mean and standard deviation. PyTorch
library allows us to do the data transformation through its torchvision package.
Inside torchvision package, we have the module named transform, which has several
functions helpful in transforming the images.

Step 5: Loading pre-trained model—We load the pre-trained models on the
ImageNet dataset into our code. This mechanism is called transfer learning which is
reusing things that have very high standards. This mechanism of transfer learning is
gaining huge popularity in the field of deep learning. Pre-trained networks generally
contain two things. One is a feature detector and the other is a classifier. Feature
detectors extract from each image the information. Our classifier will learn the input
given by feature layers and therefore, we will freeze the feature layers to avoid any
modification. If we talk about the most commonly used pre-trained models on the
ImageNet dataset, these are AlexNet, DenseNet, VGG-16, and many more that have
gained popularity over recent years. All we save through the power of these trained
feature models on huge datasets is our precious time and the computer’s resources.
These models provide cutting edge results on the smaller datasets when reused.

Step 6: Classifier Building—We will build our classifier and this classifier has to
be replaced by the model pre-trained on ImageNet. We will freeze the feature layers
of the network. This is because we will provide the input according to our dataset.
The feature layer will learn these inputs and we don’t want these layers to learn the
same inputs as of ImageNet dataset. We will set the output size of the classifier as
102 as we have these many species in our dataset. We will achieve this task with the
help of defining a precise function.

Step 7: Model Training—In this step, it is time to train our classifier on our
flower’s 102 category dataset. We will train the final layers of the network. We only



226 A. Solanki and T. Singh

train the classifier parameter while the feature parameters are kept frozen. We can
change our optimizer as well as a scheduler in the piece of our code.

Step 8: Model Testing—In this step, our trained model is evaluated to measure
the performance of the test images of our dataset. At the end of this step, we obtain
the percentage accuracy, which means how many flower test images are correctly
classified.

Step 9: Save Model Checkpoint—We will save our model in the directory created.
This is done to ensure the backup of our created and trained model. This will come in
handy when we have to use this trained model on some unknown images of flowers.

Step 10: Load Model Checkpoint—We load our trained model to use this on the
unknown flower images to predict their species name.

Step 11: Processing Images—We will carry out the processing of the images
because we will take this image as the unknown image for which we need to predict
the class label. So, there is a need of related data transformations.

Step 12: Class Prediction—We will predict the class of flower species of the given
image unknown to the model. This whole process is carried out in the probability
that a particular flower type belongs to that class.

Step 13: Sanity Check—All the earlier parts of this code are combined in a
function. This function performs the plotting, or we can say just graphing where the
models predict with uncertainty.

7 Discussion of Result of the Proposed System
and Comparison of the Results with the Existing Work

7.1 Number of Epochs Versus Classification Accuracy

In Graph la, we plotted 60 values of classification accuracies measured at epochs
ranging from 1 to 60. This graph depicts the dependency of several epochs on the
classification accuracy of our deep learning trained classifier. As the number of
epochs increases, the accuracy also increases and reaches the maximum of 97.92 at
epoch 25. From then onwards, accuracy declined and then increased again. Then, the
graph follows a pattern of increase and decreases until epochs 60. But we observed
that the accuracy could not cross the value of the maximum, which is 97.92% at any
epochs after 25. So, we conclude that increasing the epochs after 25 do not affect
or increase the classification value of the model. Graph 4 shows the results of the
Proposed System.

In Graph 1, we have plotted the number of epochs on the x-axis and training
accuracy on the y-axis. We plotted 100 values of training accuracies measured at
the epochs, ranging from 1 to 100 in the training phase. This graph illustrates that
training accuracy shows a sudden increase till epoch 15. Still, from there onwards,
the accuracy doesn’t show a desirable increase and there is also not drastic decrease
in the training accuracy. This means that after epochs 15 the accuracy curve seems to
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Graph 1 aand b Number of epochs versus classification accuracy and training accuracy

be constant as it keeps on increasing and decreasing only by a very small or negligible
value.

7.2  Number of Epoch Versus Training Loss

In Graph 2, we have plotted the number of epochs on the x-axis and training loss
on the y-axis. We have plotted 100 values of training loss measured at the epochs,
which range from 1 to 100 in the training phase. This graph illustrates that training
loss shows a sudden decrease till epochs 10, but the loss doesn’t show a desirable
decrease and there is also no drastic increase in the training loss. This means that
after epochs 10 the loss curve seems to be constant as it keeps on decreasing and
increasing but only by a very or negligible small value.
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7.3 Validation Curve

Number of Epochs versus validation accuracy.

Graph 3a shows the dependency of the number of epochs on the validation accu-
racy. We have plotted 100 values of epochs on the x-axis and 100 values of validation
accuracy on the y-axis. As the number of epochs increases, the accuracy of the vali-
dation points also increases. Still, this accuracy value increases only until the epoch
value of 8 at a fast rate. Then, from epoch 8 the validation accuracy fluctuates. That
is it keeps on increasing and decreasing till epochs 100. Overall, we can say that after
epoch 8 the validation accuracy doesn’t show a significant increase or also does not
display a drastic decrease.

Graph 3b shows the dependency of the number of epochs on the validation loss.
‘We have plotted 100 values of epochs on the x-axis and 100 values of validation loss
on the y-axis. As the number of epochs increases, the loss of the validation points
decreases, but this value of loss decreases only till the epoch value of 8 at a very fast
rate. Then from epoch 8 the validation loss fluctuates. That is, it keeps on decreasing
and increasing till epochs 100. Overall, we can say that after epoch 8 the validation
loss doesn’t show a significant decrease or also does not display a drastic increase.
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7.4 Comparison of the Results of the Proposed System
with the Exiting System

Graph 4 compares the existing work [34] in flower classification with the proposed
method, which is robust and efficient. Both of the work is performed on the Oxford-
102 dataset. The existing work achieved a classification accuracy of 84.02% with
the use of five convolutional layers. Our developed deep learning flower classifier
system has set the really high standards in this domain by achieving a very high
recognition rate of 97.92%.

8 Conclusion and Future Work

This work has developed an efficient and robust flower species recognition classifier
based on deep learning. We have used the dataset from the University of Oxford,
which is the Oxford-102 flower dataset with a total of 8189 images of different
categories of flower species [35, 36]. We have divided our dataset into training
sets and validation set for evaluation purposes. We have employed PyTorch library
by Facebook to code our research work. DenseNet161, a pre-trained model of the
ImageNet dataset, was loaded to use its weights and later applied to our flower’s
dataset [11, 37]. This all result was achieved through transfer learning mechanism,
which is gaining popularity in deep learning. We have developed a four-step novel
approach for the classification of the 102 categories of flower species which is below;

1. The data Augmentation for better training of flower classifier.

2. The Flower Image Segmentation using the BiCoS method for removing the

complex background.

The cropping of segmented flower images using python script.

The model training using the pre-trained model—DenseNet.

5. For training purposes, we have used Jupyter Colab Notebook, a free graphics
processing unit (GPU) provided by Google Collaboratory. Our proposed method
achieved very high accuracy on the flower’s dataset, which is 97.92% classifi-
cation accuracy. This is one of the best results obtained in the domain of flower
species classification.

B w

A deep learning-based CNN classifier is being developed in this work, one of
the most robust and efficient with 97.92% classification accuracy on the benchmark
dataset. But still, there exists some more work in this domain that can be done
in future to use the system in the real world with high accuracy. Some future work
points are an extension in the dataset having more categories, integration with mobile
applications, and increase in the training data.
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