
New Frontiers in Regional Science: Asian Perspectives 59

Tofael Ahamed   Editor

Remote 
Sensing 
Application
Regional Perspectives in Agriculture and 
Forestry



New Frontiers in Regional Science: Asian
Perspectives

Volume 59

Editor-in-Chief

Yoshiro Higano, University of Tsukuba, Tsukuba, Ibaraki, Japan



This series is a constellation of works by scholars in the field of regional science and
in related disciplines specifically focusing on dynamism in Asia.

Asia is the most dynamic part of the world. Japan, Korea, Taiwan, and Singapore
experienced rapid and miracle economic growth in the 1970s. Malaysia, Indonesia,
and Thailand followed in the 1980s. China, India, and Vietnam are now rising
countries in Asia and are even leading the world economy. Due to their rapid
economic development and growth, Asian countries continue to face a variety of
urgent issues including regional and institutional unbalanced growth, environmental
problems, poverty amidst prosperity, an ageing society, the collapse of the bubble
economy, and deflation, among others.

Asian countries are diversified as they have their own cultural, historical, and
geographical as well as political conditions. Due to this fact, scholars specializing in
regional science as an inter- and multi-discipline have taken leading roles in pro-
viding mitigating policy proposals based on robust interdisciplinary analysis of
multifaceted regional issues and subjects in Asia. This series not only will present
unique research results from Asia that are unfamiliar in other parts of the world
because of language barriers, but also will publish advanced research results from
those regions that have focused on regional and urban issues in Asia from different
perspectives.

The series aims to expand the frontiers of regional science through diffusion of
intrinsically developed and advanced modern regional science methodologies in
Asia and other areas of the world. Readers will be inspired to realize that regional
and urban issues in the world are so vast that their established methodologies still
have space for development and refinement, and to understand the importance of the
interdisciplinary and multidisciplinary approach that is inherent in regional science
for analyzing and resolving urgent regional and urban issues in Asia.

Topics under consideration in this series include the theory of social cost and
benefit analysis and criteria of public investments, socio-economic vulnerability
against disasters, food security and policy, agro-food systems in China, industrial
clustering in Asia, comprehensive management of water environment and resources
in a river basin, the international trade bloc and food security, migration and labor
market in Asia, land policy and local property tax, Information and Communication
Technology planning, consumer “shop-around” movements, and regeneration of
downtowns, among others.

Researchers who are interested in publishing their books in this Series should
obtain a proposal form from Yoshiro Higano (Editor in Chief, higano@jsrsai.jp) and
return the completed form to him.

More information about this series at https://link.springer.com/bookseries/13039

https://springerlink.bibliotecabuap.elogim.com/bookseries/13039


Tofael Ahamed
Editor

Remote Sensing Application
Regional Perspectives in Agriculture
and Forestry



Editor
Tofael Ahamed
Faculty of Life and Environmental
Sciences
University of Tsukuba
Tsukuba, Ibaraki, Japan

ISSN 2199-5974 ISSN 2199-5982 (electronic)
New Frontiers in Regional Science: Asian Perspectives
ISBN 978-981-19-0212-3 ISBN 978-981-19-0213-0 (eBook)
https://doi.org/10.1007/978-981-19-0213-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-19-0213-0


Foreword

I am honored to have the opportunity to provide some insight into the impacts of this
volume, Remote Sensing Application: Regional Perspectives in Agriculture and
Forestry, which is edited by Dr. Tofael Ahamed, my former colleague at the
University of Tsukuba. It has been said so long that the method of GIS/Remote
Sensing has huge potential to be incorporated into studies in natural science fields as
well as engineering and other practical policy-oriented fields. Thanks to miraculous
developments in informatics science and technologies and related fields, not only the
saying has now become factual but also the methodology has become critically
important in interdisciplinary and multidisciplinary studies which focus on policy
issues of climate change and global environment. In this sense, the method of
GIS/Remote Sensing and its application have a vast frontier with which studies in
regional science can be broadened and deepened.

For example, according to the Paris Agreement, which tries to adapt to the IPCC
projection and scenario, the goal is to make the peak emission of carbon dioxide in
the world at as lower level as possible by the middle of this century as early as
possible and after the peak has been attained it must be offset by carbon sinks by
drawing upon forest absorption, CCS technology, etc. The most substantial solution
in order to achieve the goal is transformation of the current energy system that is
critically dependent on fossil fuel into renewable energy system that is mainly
dependent on non-fossil energy sources. It is a prerequisite for the construction of
the so-called carbon neutral society. Further technology developments must be made
targeting the energy transformation in the long run as well as it must be done to
improve the efficiency of human activities in terms of GHG emission with a shorter
perspective in order to make the GHG emission peak as early as possible.

It is apparent and we do not need to emphasize that the years till 2040 or at latest
2050 are very critical for the existence of human beings on the globe. This means
that the construction of carbon neutral society, which can be realized by compre-
hensively re-organizing not only hardware but also software of the current society
relying on developed breakthrough technologies, must be propelled into action being
navigated by, e.g., precisely estimated reduction in GHG emission. While each
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(marginal) action of human beings must be evaluated and controlled in terms of
criteria of carbon offset, carbon sink, sustainability, etc., all actions need to be
controlled by being subject to a constraint on the total GHG emission in the world.
It is easy to conceptualize the necessity, and difficult to implement it in real settings.
In my view, GIS/Remote Sensing combined with advanced technologies of ICT,
IoT, AI, etc. is a very powerful and effective method for total control.

Another prosperous application field for GIS/Remote Sensing is adaptation to
climate change in order to pursue sustainability by minimizing risk of ecological
collapse, disaster, conflicts, etc. In the context of the total control, international
collaboration may be taken for granted and we need to know what is really
happening elsewhere on the globe and how we should control the subsystem
which is cognized in terms of region, country, continent, current generation, future
generation, etc. In this sense, GIS/Remote Sensing is also most prosperous and
useful architectures.

This book contains many novel and insightful articles which examine practically
useful applicability of GIS/Remote Sensing method to real critical issues in agricul-
ture and forest fields by presuming climate change and/or extreme weather. Readers
will see how GIS/Remote Sensing is powerful and effective in sustainability man-
agement, and they will be incentivized to further expand the frontier of GIS/Remote
Sensing in regional science and related fields.

Faculty of Life and Environmental
Sciences, University of Tsukuba,
Tsukuba, Ibaraki, Japan

Yoshiro Higano
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Preface

In recent times, remote sensing has become a significant component in policymaking
for sustainable development in the agricultural and forestry sectors to establish big
data schemes. Big data refers to the volume, variety, velocity, and veracity of data at
large scales. In this major component of big data transfer, data structures, data
acquisition times, and data authenticity provide for stakeholders’ interaction in the
action plan. In this regard, this book discusses the application of remote sensing from
regional perspectives with vegetation phonologies, water signatures, and socioeco-
nomic criteria to develop decision-making systems related to agricultural land-use
planning, land suitability analysis for different crops (rice, maize, cassava) and fruits
(grapes), yield forecasting, and damage assessment due to extreme events.

In Chap. 1, introductory notes related to the big data scheme and overall remote
sensing application in agriculture and forestry are presented to highlight some recent
applications of satellite-derived indices and algorithms to address the scope and
application of geographic information systems (GISs). Spatial and temporal resolu-
tions are considered to select the core applications in land-use planning, land
suitability analysis, water inundation mapping, change detection, forest productivity,
and damage assessment. The review notes along with our team analyses of different
regional applications of vegetation and water signature indices are presented
together. The high-resolution UAV-based application for yield forecasting of sug-
arcane is also presented to call attention to obtaining higher flexibility in temporal
resolution.

Chapter 2 discusses calorie-based seasonal multicrop land suitability analysis for
food and nutrition security with regard to diversified cropland-use planning in
Bangladesh. The integrated model proposed here can be implemented for the
management of land allocation for diversified crop production, providing more
decision-making information for policymakers to ensure regional food and nutrition
security. In Chap. 3, agricultural land suitability assessment is discussed based on the
soil-vegetation indices using multicriteria decision analysis (MCA) together with
weighted linear combinations and fuzzy multicriteria analyses. Furthermore, suit-
ability assessments were evaluated using ground reference yield data through yield
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forecasting. Chapter 4 focuses on cassava production and its suitability at regional
sites in Indonesia. The study referred to multicriteria analysis, including the analytic
hierarchy process (AHP) and the analytical network process (ANP). The AHP
method was applied to determine the relative importance of all of the selected criteria
and factors. The study will contribute to decision-making processes to increase the
production of cassava in suitable regions. In Chap. 5, drought-prone areas were
estimated from vegetation phenology analysis of maize in Indonesia using a deep
learning algorithm. The deep learning algorithm based on You Only Look Once
(YOLO) was applied to monitor the drought condition at different stages of maize
production. This research could be used for high computational and real-time
monitoring to forecast drought conditions in a simple and quick way. In Chap. 6,
the development of a land suitability model for grape cultivation was performed to
determine the best location for vineyard cultivation in Afghanistan. It is very
important for growers to increase table grape production and reduce the cost of
production. The multicriteria technique was used for this purpose. This research
could help decision-makers, growers, and other stakeholders conduct precise land
assessments for table grape production globally.

In Chap. 7, GIS-based MCA modeling was performed to determine the sustain-
ability of land uses in the suburb areas of Dhaka city in Bangladesh. This study also
assessed potential locations for the further growth of industries by land suitability
analysis (LSA) to emphasize both agriculture and industries in terms of sustainable
growth. In Chap. 8, change detection and land suitability analysis for the extension
of potential forest areas in Indonesia was conducted using a two-year series of
multispectral datasets. Change detection of forestland is important to understanding
the past and current trends of changes and projections for the future. This study could
help to create a new policy space for plantation forests and ecosystems in designing
national and subnational policies. In Chap. 9, estimating productivity and carbon
stock using phenological indices from satellite remote sensing is endeavored to
evaluate forest productivity and carbon stock for different types of forests in
Indonesia. Different vegetation indices were used to assess the level of forest
productivity with different classifications to estimate the carbon stock in six types
of forests using gross primary productivity (GPP) approaches. System dynamics
modeling was applied to simulate the generated data. The study of the productivity
of different types of forests provides justification for the protection and management
of forests on different time scales. In Chap. 10, the spatiotemporal evolution of
deforestation monitoring in Malaysia was conducted for long-term and continuous
forest monitoring on the Google Earth Engine (GEE) platform.

Chapter 11 focuses on climate-resilient agriculture assessment, targeting, and
prioritization for the Adaptation and Mitigation Initiative in Agriculture (AMIA), a
region of the Philippines. An assessment was carried out to evaluate the climate
change variability that increases per use in the agriculture sector. Climate risk
vulnerability assessment (CRVA) was performed based on two important climate
parameters, rainfall and temperature, across the three main islands. The adaptive
capacity was based on the different capitals identified and developed by experts from
the Department of Agriculture (DoA). To determine the sensitivity of a crop to
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climate change, maximum entropy (MaxEnt) was used. The MaxEnt model is a crop
distribution model commonly used to estimate the most suitable areas for a species
or crop based on probability in geographic areas where the distribution of crops is
scarce. Finally, to determine the vulnerability of each crop for the different munic-
ipalities, hazard, sensitivity, and adaptive capacity were summed based on their
weights.

In Chap. 12, high-resolution remote sensing technology based on unmanned
aerial vehicles (UAVs) for sugarcane production in tropical regions is discussed
for sugarcane canopy detection, disease detection, sugar content estimation, and
yield predictions. Finally, the harvest schedule and supply chain management are
optimized. This remote sensing technology can contribute directly to the increase in
profitability for both growers and sugar factories.

The last chapter discusses the conclusion and key findings from all the chapters in
this book, which leads to a data-driven concept for big data schemes to serve farmer
unions, stakeholders, policy planners, and urban developers. A team effort has been
made in this book to align all the applications of remote sensing and GIS in the
agriculture and forestry sectors for different countries that contributes to big data
schemes from a regional perspective.

Tsukuba, Ibaraki, Japan Tofael Ahamed
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Chapter 1
A Review of Remote Sensing Applications
in Agriculture and Forestry to Establish Big
Data Analytics

Sara Tokhi Arab, Md. Monirul Islam, Md. Shamsuzzoha, Kazi Faiz Alam,
Nazia Muhsin, Ryozo Noguchi, and Tofael Ahamed

Abstract The advancement of remote sensing provides a new opportunity for a data
analytical platform for robust decision-making based on near real-time datasets
derived from satellites and unmanned aerial vehicles (UAVs). The spectral signature
through passive and active remote sensing has the advantages of providing infor-
mation on plant responses in low-, medium-, and high-resolution images with
temporal variability and enables taking action for sustainable agriculture and forest
resource management. Therefore, the aim of this review article is to find a new
avenue for generating data management platforms in the field of agriculture and
forestry. The advancement of satellite remote sensing technology has already been
suggested to open the gateway to establishing big data analytical platforms through
decision support systems. Specifically, this review paper highlights some appropri-
ate and important applications of satellite and UAV-derived indices and algorithms
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to address the scope and application of geographic information systems (GISs) in the
field of agriculture and forestry research. The analytical signatures of changes in
vegetation and water storage in leaves and water bodies were analyzed and presented
using different phenological properties, land use land cover (LULC) changes, and
natural disaster damage assessments to support policy formations and the livelihoods
of farmers. The remote sensing and GIS-based analytical datasets cover crop calen-
dars and phenological changes from forest canopies that refer to productivity
according to seasons. Seasonal variations in the productivity of crops and forests
can ensure appropriate actions with resilience for the sustainable management of
bioresources.

Keywords Satellite remote sensing · GIS · Agriculture and forestry · Vegetation
indices · Water signatures · LULC · Land suitability · Change detection · Disaster
damage assessment

1.1 Introduction

Agriculture and forestry are the leading sectors in the world, especially in developing
countries. These sectors ensure food, feed, and nonfood products to meet the
demands of the world’s rising population and a wide range of industries. The
productivity of agriculture and forestry has increased remarkably in recent decades
due to the use of advanced technologies. For example, between 1948 and 2011, the
yield of soybeans and corn and labor productivity increased almost 16-fold in the
United States (US) (Wang et al. 2015). Furthermore, between 1960 and 2015,
agricultural productivity increased more than three times due to green revolution
technologies and a considerable increase in the usage of natural resources (such as
water, land, and other resources) (Foley et al. 2011). At the same time, the world was
witnessing the industrialization and globalization of industrial food and agricultural
products. Moreover, in recent years, due to the usage of production technologies, the
production of major crops has increased by 53% between 2000 and 2019, to a higher
record of 9.4 billion tons in 2019 (FAO 2021). This indicated that the 3.2-billion-ton
excess was more than the production of 2000. In addition, advanced cutting-edge
technologies, namely, satellite remote sensing, geographic information system
(GIS), unmanned aerial vehicle (UAV), big data analytics, global positioning system
(GPS), precision agriculture (PA), the internet of things (IoT), and artificial intelli-
gence (AI) technologies, have also been used in this sector to optimize agricultural
operations and input management, reduce input and yield losses and support
growers, interveners, policymakers, and governments in decision-making (Harrower
et al. 2002; Eli-Chukwu 2019). Remote sensing datasets provide the soil-water-
vegetation indices for policy implementation (Fig. 1.1). These big data, which come
from the combination of technology and advanced analytical processes, provide
effective and timely information about farms and forest areas. The big data processes
start from the collection of data, data management, and data use, mostly on a farm or
on a large scale (region), to enable decision support systems. To meet the growing
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needs of food and feed in the agriculture and forestry sectors, site-specific manage-
ment and the applications of remote sensing methods with big data analytical
platforms are inevitable (Stubb 2016; Kamilaris et al. 2017).

Among advanced methods, remote sensing technologies (active or passive) play a
significant role at different scales and platforms. Based on spatial resolution, there
are three main platforms that are generally used: ground-based, airborne, and
satellite platforms. Ground-based small-scale remote sensing instruments are very
helpful for field-level monitoring, such as temperature, humidity, plant water
requirements, and plant growth (Jackson 1986). This ground-based method has
better spatial resolution and accuracy in farm-level experiments than satellite remote
sensing and aerial imagery (Jackson 1986). Airborne remote sensing was mainly
controlled by piloted aircraft. However, recently, they have been replaced by UAVs,
which are unmanned, remote-controlled aircraft. Drones are a cost-effective tech-
nology able to easily transport to the farm and are more flexible in terms of flight
schedule and length. However, the only problem is a limited battery capacity. With
this UAV technology, researchers can easily obtain very high-resolution images of
agricultural fields (Franklin et al. 2006; Laliberte et al. 2006). Recently, there have
been more than 7000 satellites (space objects) orbiting the planet with different
spatial and temporal resolutions (high, medium, and low resolutions). These various
satellites are responsible for continuously collecting photos and data regarding
Earth’s surface (land, water, and atmosphere). As a result, a vast amount of remotely
accessible information is globally available for many countries, regions, and areas on
an annual, quarterly, daily, and hourly basis (Ruiz-Luna and Berlanga-Robles 2003;
Anderson 2001).

The application of remote sensing techniques is broader. They can be used for
land suitability assessments of different crops, fruits, and vegetables. In addition,
yield estimation, crop status analysis and drought detection, land use change, forest
change detection, urban land use planning, and climate resilience assessment can be
performed through remotely sensed technologies. Usually, these applications are

Data for Regional Perspectives
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Fig. 1.1 Big data scheme for soil-water-vegetation indices for core policy planning from a regional
perspective
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used over large areas at the regional level. However, satellite remote sensing has
recently enabled within-field monitoring, such as water stress, flood and cyclone
damage assessment, and the estimation of yield losses and damages. Remote sensing
tools and satellite remote sensing can provide timely and accurate information.
Information regarding the agriculture and forestry sectors can be provided in a
large platform (Huang et al. 2018). In this context, this review article discusses the
application of remote sensing through different phenological indices to find the best
land use opportunities, prevent natural disaster effects and losses in agriculture and
forest areas, and evaluate its potential to establish a big data analytics platform for
policy formulation.

1.2 Satellite Data Attribution

Satellite remote sensing is considered a primary source for acquiring spatial and
temporal datasets for the agriculture and forestry sectors. It measures the electro-
magnetic radiation that interacts with the atmosphere and objects. Each satellite has a
specific band, which is the portion of the electromagnetic spectrum sensed by the
satellite (Duveiller and Defourny 2010). The bands consist of visible light, infrared,
and invisible light to human eyes. Interactions of electromagnetic radiation with the
surface of the Earth can provide information about objects regarding the character-
istics of surface materials (Zhu et al. 2018). To detect the objects and the character-
istics of material in the ground, the spatial resolution of a sensor is critical. These
resolution categories include spatial, spectral, temporal, and radiometric (Fig. 1.2).

Medium spatial resolutions are Landsat (Landsat 1, Landsat 2, Landsat 4–5,
Landsat 7, and Landsat 8–9), Sentinel (Sentinel-1, Sentinel-2, and Sentinel-3),
SPOT (SPOT-1, SPOT-2, SPOT-3, SPOT-4, SPOT-5, SPOT-6, and SPOT-7), and
the Advanced Land Observing Satellite (ALOS-2), and the low spatial resolutions
are moderate resolution imaging spectroradiometer (MODIS Atmosphere products,
MODIS land products, MODIS cryosphere products, and MODIS ocean products),
Sentinel-3 A, and HJ-1A (NASA 2021; ALOS-PASCO 2021; USGS 2021). A
satellite spectral resolution indicates the wavelengths captured by the satellite.
According to the spatial resolution, remote sensing has been divided into three
parts: high, medium, and low. A high spatial resolution has been used in UAVs,
Quickbrid, IKONOS, ASTER, orthophotos, and others.

1.3 Phenological Assessment

Vegetation phenology assessment is a process of collecting data about vegetation or
plants in a particular area. Mapping and classifying vegetation are essential technical
tasks for managing natural resources and providing information about natural and
man-made environments through quantifying vegetation on a local to global scale in
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Fig. 1.2 Remote sensing imagery application and opportunities for big data analytical processes in
agriculture and forestry research to support field operational management
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a particular time period or through continuous time periods (He et al. 2005). Pervious
methods for vegetation phenology assessment included field surveys, literature
reviews, map interpretation, and collateral and ancillary data analysis. All these
methods were expensive, lagged data, and were time-consuming. In this regard,
remote sensing technology offers a practical and economical approach to studying
plant coverage changes, growth, and regular observations at various scales (farm
level, regional, and global scales) that can be assessed against time series data from
the present to several years ago (Langley et al. 2001).

1.3.1 Vegetation Indices

Several spectral vegetation indices have been developed from multiband to single
band indices to show the biophysical properties of vegetation in the agriculture
sector (Rouse et al. 1973; Bannari et al. 1995; Merrick et al. 2020). Most of these
indices are derived from the visible bands (ultraviolet, blue, green, and red) and the
near- and mid-infrared bands (wavelengths) (Rahim et al. 2016). Plants absorb the
red and blue wavelengths, reflect the green wavelength, and strongly reflect the near-
infrared (NIR) wavelength. Further variations in the biophysical and biochemical
properties of a plant, such as water content, pigment, carbon content, nitrogen
content, and other properties, cause further variation across the spectrum. Measuring
these variations and their relation to one another can provide information regarding
plant health, biomass, vegetation characteristics, and other biophysical and biochem-
ical prosperities of plants. Two main methods have been used for vegetation
extraction: image preprocessing and image classification through satellite remote
sensing datasets. One of the most common implantations of vegetation indices
calculated from multiband information is the normalized ratio between the red and
the near-infrared bands or other bands. The normalized vegetation index values
range from �1 to 1. For example, in the Normalized Difference Vegetation Index
(NDVI), zero and below correspond to nonplant surfaces; thus, values above 1 cor-
respond to vegetation areas. In Fig. 1.3, the UAV NDVI map indicates that the
higher the NDVI value is, the greater the plant density and healthy vegetation. As
noted, the NDVI palette not only quantifies green vegetation but also helps to
recognize and mitigate any issues with plant health and vigor, thus boosting crop
yields and making agricultural businesses more profitable (Lenney et al. 1996; Arab
et al. 2021). The following satellite-derived vegetation indices have recently been
used in agricultural and forestry research (Tables 1.1).

1.3.2 Soil-Vegetation Quality Indices

The soil-vegetation index was proposed by Huete in 1988 at the University of
Arizona, USA. This index is often used in arid regions where vegetative coverage
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is low (Huete 1988). The spectral reflectance of a plant’s canopy is a combination of
plant and soil particles, which are regulated by the optical characteristics of these
elements and the photon exchange within the canopy. When plants grow, the effect
of soil decreases, but it may still remain in the satellite imagery (Fig. 1.4). Various
soil and vegetation quality indices are used to analyze soil lines in agricultural fields
and forests (Table 1.2). The soil-vegetation index is basically developed from NDVI
and orthogonal indices (PVI). These indices have a variety of applications in
agriculture and forestry, including aboveground biomass estimation, leaf nitrogen
content, chlorophyll content, soil condition analysis, plant growth, desertification
research, and grassland yield estimation (Major et al. 1990; Baret et al. 1993; Xue
and Su 2017; Islam et al. 2021a, b).

1.3.3 Water Signature or Water Spectral Indices

Water spectral indices were developed in the late 1970s, and they show the presence
of spectral signatures of liquid water in soil or vegetation (Lyzenga 1978). These
water indices (WIs) are broadly used in agricultural, ecological, and forestry
research, including surface water body characterization, vegetation water status
estimation (crops, fruits, vegetables, and forest trees), soil water content assessment,
and wetland (e.g., paddy rice) monitoring (Colwell 1974). Several water-related

High : 0.587843

Low : –0.394859
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E
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Legend

NDVI Index
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0 5 10 20
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Fig. 1.3 Distribution of NDVI derived from Parrot Sequoia attached to the Parrot Bluegrass UAV,
mid-March 2019 first harvest in Ichibancha, Tsukuba city, Ibaraki Prefecture, Japan
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indices have been developed from visible, NIR, and shortwave infrared (SWIR)
bands (Hardisky et al. 1983; Gao 1996). Two main water indices and other water
indices developed from these two are presented in Table 1.3. However, an example
of NDWI as a measure of water indices is highlighted in Fig. 1.5.

Table 1.1 Lists of vegetation indices used in agriculture and forestry research

Vegetation indices Equation References

Normalized differ-
ence vegetation
index (NDVI)

RNIR�Rred
RNIRþRred

Rouse et al.
(1973)

Green NDVI
(GNDVI)

RNIR�Rgreen

RNIRþRgreen
Zhou et al.
(2016)

Renormalized differ-
ence vegetation
index (RDVI)

RNIR�Rred
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RNIRþRred
p Rondeaux et al.

(1996)

Simple ratio (SR) RNIR
Rred

Baret et al.
(1993)

Modified SR (MSR) [R700 � R670 � 0.2 (R700 � R550)] � (R700 + R670) Chen (1996)

Difference vegeta-
tion index (DVI)

RNIR � Rred Ranjan et al.
(2019)

Ratio vegetation
index (RVI)

RNIR � Rred edge Gitelson and
Merzlyak
(1997),
Vogelmann
(1993)

Chlorophyll-/pig-
ment-related indices
MCARI (modified
CARI)

[R700 � R670 � 0.2 (R700 � R550) � (R700 + R670)] Duveiller and
Defourny
(2010)

Normalized differ-
ence moisture index
(NDMI)

RNIR�SWIR2
RNIRþSWIR

Gao (1996)

Rice growth vegeta-
tion index (RGVI)

RedþNIRþSWIRð Þ� BlueþGreenð Þ
RedþNIRþSWIR1

Lillesand and
Kiefer (1994)

Table 1.2 Lists of important soil-vegetation indices used in agriculture and forestry research

Vegetation indices Equation References

Soil-adjusted vegetation
index (SAVI)

RNIR�Rredð Þ 1þLð Þ
RNIRþRredþLð Þ Huete

(1988)

Modified soil-adjusted veg-
etation index (MSAVI)

0.5 � {2R800 + 1 � SQRT)[2R800 + 1)2 � 8
(R800 � R670]}

Qi et al.
(1994)

Modified secondary soil-
adjusted vegetation index
(MSAVI2)

0:5� 2NIRþ 1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NIRþ 1ð Þ2 þ 8 NIR� Rð Þ
q

Chen
(1996)

Optimized soil-adjusted
vegetation index (OSAVI)

NIR�Rð Þ
NRIþRþ0:16ð Þ Rondeaux

et al.
(1996)
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Fig. 1.4 Distribution of SAVI derived from Landsat 8 OLI during June 2020 from the Kalapara
subdistrict in Bangladesh

Table 1.3 List of water-related indices used in agriculture and forestry research

Vegetation indices Equation References

Normalized difference water index (NDWIGao) based on plant water
content

NIR�SWIR
NIRþSWIR

Gao
(1996)

Normalized difference water index (NDWIMcFeeters) based on water
body

Green�NIR
GreenþNIR

Xu (2006)

1 A Review of Remote Sensing Applications in Agriculture and Forestry to. . . 9



1.4 Land Use Assessment

The assessment of land in the agriculture and forestry sectors is very important to
driving sustainable development in developing nations. Population growth, indus-
trialization, and rapid urbanization constantly cause agricultural land use changes,
which have an influence on the ecological balance and food security around the
world. Land use assessments have mainly focused on resource production and the
influence on climate change (Lambin et al. 2001), soil erosion (Yang et al. 2003),
biodiversity, food security (Lambin et al. 2003), and even threats to public health
(Shi et al. 2018) while also concentrating on determining the drivers of LULC.

1.4.1 Land Use Land Cover (LULC) Analysis

Within a timeframe, the categorization or classification of human activities and
natural elements (such as agricultural land, forest, urban area, water body, etc.) on
the landscape based on established scientific and statistical methods from appropri-
ate source materials refers to the land use land cover (LULC) classification. Data on
vegetation, water, natural surfaces, and cultural features are described in the LULC
classification (Akinci et al. 2013). Information about LULC is a very important
requirement for administrative purposes, business development, and policymaking.
The LULC data with their spatial details can also serve for environmental protection
and planning. LULC data are vital because they can be used as input for modeling,

Fig. 1.5 Distribution of normalized difference water index based on a water body during August
2021 in the Can Tho province of Vietnam
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especially those related to climate change and policy-oriented data (Disperati and
Virdis 2015).

LULC has two separate technologies that are interchangeably used (Dimyati et al.
1996). LULC classification can be performed from the available satellite images
(such as Landsat and Sentinel) using GIS and machine learning approaches through
image classification algorithms. For example, a composite natural color (RGB)
image is produced from the seven bands (bands 1–7) of a satellite image, and then
classification (supervised or unsupervised) is performed depending on the interest of
the study and the attributes required for that research. According to the purposes, the
spatial resolution can be fixed to develop an LULC map and to calculate the covered
area. The accuracy of LULC classification depends on the resolution of the image
and the ground reference information.

An LULC map with five land use classes (water body, wetland, vegetation,
agricultural land, and urban) of five districts adjacent to the Jamuna River,
Bangladesh, is shown in Fig. 1.6. The map was produced from Landsat 8 Operational
Land Imager (OLI) satellite imagery acquired in 2020. The map was prepared to
identify the effect of riverbank erosion in the five districts near the riverbank.

1.4.2 Land Use Change

The process by which the transformation of the natural landscape occurs through
human and natural activities is referred to as land use change. The driving forces
responsible for land use changes are population and climate. The demands of
increasing populations put pressure on land resources, and climate change affects
the supply or constraints of lands. These processes are very widespread, are accel-
erating, and impact natural ecosystems (Ruiz-Luna and Berlanga-Robles 2003;
Turner and Ruscher 1988).

The land use change can be determined from the LULC classification, which is
performed using satellite imagery through different remote sensing approaches,
including change detection. To understand the dynamics of landscapes during a
certain period, it is essential to identify land use change scenarios for sustainable
land use management. For example, it is possible to calculate the increment of urban
area in a certain place for a certain period or how much agricultural land or forest
area has been reduced in a certain area within a certain period, which may be short
term or long term. A land use change map from 2010 to 2017 in the suburban areas
of Bangladesh shows rapid land use changes within a short period of time in
Bangladesh (Fig. 1.7).
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1.4.3 Land Suitability Analysis

Land suitability analysis (LSA) is a GIS-based approach used to establish the
suitability of a given region based on land and environmental parameters to discover
the best possible area for agriculture, urbanization, and socioeconomic analysis. In
land suitability analysis, each criterion is overlaid based on the obtained weight
through three methods: the analytical hierarchy process (AHP), the analytical net-
work process (ANP), and fuzzy methods. The AHP was introduced by Saaty in 1980
and is still a powerful tool. This method can be used in two distinct procedures, such

Fig. 1.6 Distribution of LULC classes (water body, wetland, vegetation, agricultural land, and
urban) of five districts adjacent to the Jamuna River in Bangladesh
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as weighting vector layers and raster layers. After obtaining the weight for each layer
(vector or raster), the weight can be combined with other vector layers or raster
layers to develop the final suitability map (Richard 1994) (Figs. 1.8 and 1.9).

Fig. 1.7 Land use changes from 2010 to 2017 in suburban areas of the Gazipur and Rupganj in
Bangladesh

Land Suitability Analysis
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by AHP Score
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Fig. 1.8 Flowchart of land suitability analysis based on overlay methods
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On the other hand, ANP is more common than AHP for multicriteria decision-
making procedures. This method was also developed by Saaty (1980) and is used for
land suitability parameter (criteria) weight calculation. After obtaining the criterion
weight by ANP, the map layers overlay in the ArcGIS interface. The fuzzy method
has been used for multicriteria overlay analysis to investigate the relationship
between the memberships of the various fuzzy sets (Azizi et al. 2014; Burrough
et al. 1992).

Land suitability has many applications in agricultural crops (rice, tea, sugarcane,
oil palm, grapes, maizes, and so on) and the forestry sector (prospective forest area)
to ensure a better future. An example of a land suitability map is presented in
Fig. 1.8, which shows four suitability classes, S1 (highly suitable), S2 (moderately
suitable), S3 (marginally suitable), and N (not suitable), for vineyards in Kabul
Province of Afghanistan.

1.5 Disaster and Damage Assessment

Climate resilience assessment is vital in our period due to global climate change
since it aids in adapting to climate change impacts and provides a better knowledge
of present and long-term weather patterns. Drought, floods, flash floods, excessive
rainfall, soil erosion, cyclones, wildfires, and other natural disasters are the most
prevalent natural catastrophes, all of which have a direct impact on agricultural
productivity and forestry. Water, wastewater, and stormwater utilities, as well as the

Fig. 1.9 The map shows the vineyard land suitability in Kabul Province of Afghanistan
during 2020
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communities they serve, face issues as a result of climate change, including exces-
sive temperatures and more powerful storms. Since 1880, the total land and ocean
temperature has risen at an average pace of 0.13 �F (0.08 �C) every decade,
according to NOAA’s 2020 Annual Climate Report; however, the average rate of
increase since 1981 (0.18 �C/0.32 �F) has been more than double that pace. How
much carbon dioxide and other greenhouse gases we emit in the next decades will
determine how much warming the Earth will experience in the future. Human
activities now, such as burning fossil fuels and cutting forests, contribute approxi-
mately 11 billion metric tons of carbon to the atmosphere each year. In both the air
and the sea, trends showing increasingly severe temperatures have been seen.

1.5.1 Drought Severity

Drought is a widespread natural disaster that refers to a period of time with declining
soil moisture that consequently causes biomass and crop yield failure. Plant water
requirements are affected by the weather, biological features of the individual plant
and phases of growth, and physical and biological properties of the soil. Conse-
quently, agricultural drought causes agricultural product loss, food shortages, fam-
ines, migration, and natural resource degradation in an area (Malmgren-Hansen et al.
2020). Many countries have suffered as a result of global warming and climate
change, particularly developing countries where the majority of the population lives
in rural areas and whose livelihoods are dependent on natural resources. Drought
assessment using traditional methods requires time and budget, which is expensive.
Therefore, traditional techniques are extremely challenging in most developing
countries due to a lack of trustworthy data, limited information networks, and a
lack of technological and institutional skills. To overcome these issues, it is prefer-
able to use satellite sensor data, which are continuously accessible and cost-effective
and may be used to detect the start of a drought, as well as its length and extent with a
high efficacy level. In this regard, different types of satellite sensors, such as
MODIS, Landsat, AVHRR, and Sentinel, have been used for drought monitoring
(Rojas et al. 2011). A series of drought indices calculated based on a satellite remote
sensing dataset was used to detect regional drought, which is presented in Table 1.4.

To cope with drought and to minimize agricultural product losses, it is important
to analyze the drought impact on agricultural production at the early stages of plant
growth using satellite remote sensing (Fig. 1.10). Moreover, providing support via
agricultural organizations based on the drought conditions of each field could be an
effective intervention for different drought-affected farms.
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1.5.2 Flood Inundation

Flash flooding is defined as flooding that occurs within 6 h and commonly within 3 h
of severe rainfall (or other sources). Flash floods can be caused by several scenarios
but are most often due to extremely heavy rainfall, which are the main causes of
damaging crops and livestock in this region. The consequences of these losses are
very adverse for wetland farmers. However, the progress in minimizing or
preventing this catastrophe has been inadequate, and hurdles continue to increase.
Therefore, it is essential to develop an integrated approach to estimate damage
proportions and sustainable and effective intervention strategies for vulnerable
communities globally. Therefore, to improve and ensure sustainable livelihoods, it

Table 1.4 Major drought monitoring indices used in agriculture

Indicators Equation References

Normalized difference vegetation index
(NDVI)

RNIR�Rred
RNIRþRred

Turner and Ruscher
(1988)

Normalized difference water index (NDWI) NIR�SWIR
NIRþSWIR

Gao (1996)

Vegetation condition index (VCI) NDVIJ�NDVImin
NDVImax�NDVImin

� 100 Kogan (1990)

Temperature condition index (TCI) BTmax�BTJ
BTImax�BTmin

� 100 Kogan (1995)

Vegetation health index (VHI) aVCI + (1 + a) TCI Kogan (1997)

Standard precipitation index (SPI) P
ijk�Pij

δij

Bonaccorso et al. (2003)

Fig. 1.10 The map shows the vegetation condition index (VCI) during the drought period in
August 2021 in Kabul Province of Afghanistan
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is time to develop site-specific economic models by leveraging cutting-edge tech-
nology to optimize insurance premium rates based on different damage levels.

Application of Remote Sensing in Damage Assessment Through
Inundation Analysis

Heavy rainfall, storms, and cyclones will become more frequent and intense because
of global climate change, resulting in more floods and disasters (Seneviratne et al.
2012). In this regard, damage mapping is essential for enabling rapid crisis response,
such as to help rescue, humanitarian, and reconstruction efforts in a disaster region.
However, advanced technologies, particularly remote sensing and GIS, have become
essential new instruments in disaster management in this area (Du et al. 2014).
Furthermore, multiple approaches for classifying water pixels have been created by
analyzing the surface reflectance collected by distinct spectral bands of optical
sensors (Feyisa et al. 2014). Furthermore, numerous studies have revealed that
NDWI is an important index for inundation modeling and analysis around the
world in regard to removing surface water bodies and creating inundation maps
(Du et al. 2014; Islam et al. 2021a, b). An example of flash flood inundation mapping
based on a havoc flash flood on 28 March 2017 in Bangladesh is presented in
Fig. 1.11.

Fig. 1.11 Inundation map for damage assessment of Tahirpur subdistrict under Sunamganj district
from Bangladesh
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Intervention for Flash Flood-Affected Farmers Through Crop Insurance

Agricultural insurance has been studied and used extensively, but how much farmers
prefer it over other safeguards is still unknown (Jensen et al. 2018). Given the
magnitude and high exposure to various risks, mainly in developing nations, as
well as issues with risk premiums with index insurance (Clement et al. 2018), large-
scale, subsidized multiperil indemnity-based crop insurance programs have been an
important aspect of government countermeasures (Hazell and Varangis 2020).
However, without the explicit assistance of huge government subsidies, these pro-
grams have seldom experienced significant take-up rates, and in many countries,
demand has been meager even at costs well below actuarially reasonable rates (Feng
et al. 2020). Conventional indemnity-based insurance programs face a slew of well-
documented issues, such as knowledge asymmetry in the form of adverse selection
and moral hazard. They are also vulnerable to additional issues, such as high
administrative costs and covariate risks, resulting in increased bankruptcy risks or
higher reinsurance prices. These worries are amplified in developing countries,
where information and knowledge shortages, as well as other structural and func-
tional challenges, are more common (Anderson 2001). A damage-based crop insur-
ance scheme for flash flood-affected wetland areas could be a viable and fruitful
solution to assist all these challenges (Islam et al. 2021a, b).

1.5.3 Extreme Events

Extreme events enforce damage to crop yields and result in production losses in
agricultural lands. Tropical cyclones are one of the most recurrent extreme events
that cause extreme agricultural crop damage in South and Southeast Asian countries
(Shamsuzzoha and Al-Maruf 2012; Hoque et al. 2018; Sattar and Cheung 2019;
Malmgren-Hansen et al. 2020). In recent years, the tropical cyclone Amphan entered
the coastal region of Bangladesh on 20 May 2020 (NAWG 2020), and the area was
severely damaged. In this regard, a damaged area assessment (DAA) method was
used to calculate the damage type in agricultural land areas (total 309.08 km2) using
Landsat 8 OLI and TIRS datasets due to cyclone Amphan in the Kalapara subdistrict
in Bangladesh (Shamsuzzoha et al. 2021). The damaged area assessment was
measured as (1) not damaged (10.96 km2, 3.54%); (2) slightly damaged (51.99
km2); (3) moderately damaged (102.41 km2); (4) very damaged (89.76 km2); and
(5) extremely damaged (53.97 km2) at the Kalapara subdistrict affected by cyclone
Amphan (Fig. 1.12). In addition, 420 ground reference points were used to validate
the damaged areas and further validate the assessment due to cyclones
(Shamsuzzoha et al. 2021).

18 S. T. Arab et al.



1.6 Conclusion

The sustainable management of bioresources from agriculture and forests is very
important for food and environmental security. Agriculture and forestry are the
primary sources of nourishment for present and future generations. It is essential
to monitor these two domains in cost-effective ways. In this regard, satellite remote
sensing and other advanced technologies provide many opportunities in agriculture
and forestry for analyzing vegetation conditions; identifying and estimating crop
growth; providing surveillance of forests, forest tree decline, and temporal soil
changes in forests; evaluating desertification; and so on. In addition to vegetation

Fig. 1.12 The affected agricultural land in the Kalapara subdistrict in Bangladesh in the aftermath
of cyclone Amphan
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monitoring, it is also utilized for agricultural production forecasts with accurate,
accessible, effective, and timely evaluations. Furthermore, another use of remote
sensing in agriculture and forestry is the examination of land-based suitability and
change detection. These two techniques can quickly determine the best locations for
finding future land uses and changes that have occurred to land in the long run. Both
analyses are beneficial to land resource management and monitoring. To rescue
agricultural and forestry fields from natural catastrophes and to assist farmers’
livelihoods during calamities, damage-based crop insurance can be an important
risk management tool for poor farmers in emerging nations who face weather-related
output concerns. Identifying the danger of a flash flood or severe drought and giving
farmers precise information via inundation mapping or severity mapping might lead
to a solution via the implementation of a damage-based crop insurance system. In
addition to establishing advanced risk management methods and providing agricul-
tural financing, subsidies, and service supply, policymakers and research institutions
may benefit from damage estimation and assessing livelihood vulnerability on a
single platform in a farm base or regional base. Therefore, remote sensing and
GIS-based analytical datasets establish big data analytical platforms for sustainable
agriculture and forest resource management.
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Chapter 2
Calorie-Based Seasonal Multicrop Land
Suitability Analysis Using GIS and Remote
Sensing for Regional Food Nutrition
Security in Bangladesh

Rubaiya Binte Mustafiz, Ryozo Noguchi, and Tofael Ahamed

Abstract Cereal-based food consumption and agricultural practices contribute to
food nutritional insecurity, which has become a threatening issue in South Asian
countries. The purpose of this research is to develop a seasonal land use planning
model incorporating diversified crops for regional self-sufficiency based on land
suitability and a balanced calorie demand. A multicriteria decision-making analysis
was undertaken, and multicrop land planning maps were developed with the help of
a geographical information system (GIS) and fuzzy membership functions. The
vegetation index data were collected according to the crop calendar. The factors
and constraints were generated in ArcGIS 10.4® to perform spatial analysis. Fuzzy
overlay analysis was performed to determine the suitable areas for crop production.
The seasonal cropland suitability assessment results were validated with data from
the Survey of Bangladesh (SoB). Among the three individual cropping seasons in
Bangladesh, the analysis determined that, in the Kharif-1 season, 42% (3469 km2) of
the total area was suitable for vegetable growing and, in the Kharif-2 season, the area
of suitability was 55% (4543 km2). However, in the present practices, only 12% and
18% of the land are used for vegetable cultivation in the Kharif-1 and Kharif-2
seasons, respectively, which are less than the regional requirements. In addition, in
the Rabi season, the most suitable zones for cereals, vegetables, pulses, oilseeds, and
potatoes were reported as 35% (2891 km2), 19% (1569 km2), 15% (1239 km2), 10%
(826 km2), and 21% (1734 km2) of the total land area, respectively. Moreover, the
land areas suitable for farming pulses and oilseeds were found to be 15% (1239 km2)
and 10% (826 km2), respectively. The integrated model proposed herein could be
implemented for the management of land allocation for diversified crop production,
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providing more decision-making information for policymakers to ensure regional
food nutrition security in the target area as well as in other South Asian countries.

Keywords Calorie demand · Food nutrition · Fuzzy membership · Fuzzy
multicriteria decision-making · GIS · Land suitability · Seasonal crop mapping ·
Regional self-sufficiency

2.1 Introduction

Diet, nutrition, and health are closely interrelated. The availability of foods does not
ensure the intake of a well-balanced diet; a well-balanced diet depends on optimum
food consumption, purchasing capacity, and local food habits (World Health Orga-
nization 2019). The food nutrition security concept refers to increasing food avail-
ability, improving food accessibility, enhancing crisis prevention and management,
and improving the nutritional adequacy of food intake (El Bilali et al. 2019). Dietary
intake patterns are especially related to energy, protein, and micronutrient-rich foods
and the diversity of food items. The Food and Agriculture Organization (FAO) of the
United Nations evaluated in 2001 that 53% of the world’s average daily calorie
intake was provided by cereals and starch-based staples in overall food consumption.
Cereals and starch-based staples also compose approximately 26% of the daily
calories consumed in the United States (US); however, in Bangladesh, these staples
compose 83% of the daily calories consumed. In Bangladesh, the major food groups
have been limited and dominated by cereals. As a result, dietary patterns have been
relatively stable over time for this region where rice dominates as the major cereal.

In addition, rice is a staple food for over half of the world’s population (Food and
Agriculture Organization of the United Nations (FAO) 2004a, b). Rice accounts for
over 20% of the global calorie intake. Around 90% of the world’s rice is produced
and consumed in Asia by six countries (China, India, Indonesia, Bangladesh,
Vietnam, and Japan) (Abdullah et al. 2006). Rice feeds more than two billion people
in the developing countries of Asia (Food and Agriculture Organization of the
United Nations (FAO) 1995). In Asia, Africa, and Latin America, the demand
trend for rice consumption is increasing (Wang and Li 2005).

Therefore, monotonous dietary practices create a new hazard that can preclude a
healthy life. Specifically, South Asian food consumption is dominated by cereals
(Mottaleb et al. 2018); 25% of the world (Food and Agriculture Organization of the
United Nations (FAO) 2014a, b), almost 23% of the population, does not have
access to adequate calorie intake (WDI 2014). Bangladesh is vulnerable to inade-
quate nutritional security and has a tendency to increase cereal crop production.
One-third of households in Bangladesh are affected by food insecurity with signif-
icant inequalities regarding access to food (Bangladesh Institute of Research and
Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM) 2013;
HIES 2016). Rice accounts for over 50% by weight and 70% by calories of the total
food (Food and Agriculture Organization of the United Nations (FAO) 2014a, b).
Food habits are a natural practice for each region. However, imbalanced food
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consumption creates a new issue in terms of food nutritional inadequacy globally.
This inadequacy in food nutrition is observed more acutely in developing countries
where cereals dominate food consumption. Imbalanced food consumption practices
influence these countries to produce more cereals to ensure their social and political
stability. Most of the agricultural lands in developing countries are occupied by
cereal crop production throughout the year, which also creates another issue: water
resource depletion. Rice is mostly grown under irrigated conditions, and maize is
usually limited to irrigated areas or regions where precipitation is both adequate and
dependable (Koohafkan and Stewart 2008). Wheat is the most widely grown cereal
crop and is extensively grown in dryland regions under both nonirrigated and
irrigated conditions (Koohafkan and Stewart 2008). On a consumptive use basis,
80–90% of the water is consumed in agriculture (Hamdy et al. 2003). Using water
for irrigation expansion not only is a costly approach but also threatens conditions
because of soil degradation, particularly the buildup of salts and the depletion of
water resources (Cosgrove et al. 2000). Food and Agriculture Organization of the
United Nations (FAO) (2003) estimated that irrigated land, which currently covers
197 million ha in developing countries, will increase by 45 million ha by 2030.
Bangladesh is a developing country where food consumption is dominated more by
carbohydrates (rice and wheat-based food items) than by vegetables, oilseeds, and
pulses. Land use plans considering climatic factors would be a potential solution for
this region. The climatic requirements in different seasons are characterized by
different climatic atmospheres that normally affect crop germination, growth,
flowering, and ultimately yield (Todmal et al. 2018).

Following this concern, climatic smart agriculture and multicriteria decisions for
land use plans are required. Land suitability analysis (LSA) can be performed using
the multicriteria decision method (MCDM). Several approaches of MCDM using
fuzzy membership systems have been used to conduct land suitability evaluations
(Ostovari et al. 2019; Elsheikh et al. 2013; Kazemi and Akinci 2018). The MCDM
becomes more appropriate with geospatial references. In recent years, computing
technologies combined with GIS have enabled geospatial references using land
suitability evaluation based on FAO classes (Food and Agriculture Organization of
the United Nations (FAO) 1976). In MCDM, fuzzy set membership has the capa-
bility to standardize the criteria (Aydi et al. 2016; Feizizadeh et al. 2013; Romano
et al. 2015). The fuzzy set theory allows for continuous factors to be modeled for
suitability assessment within GIS analysis. However, most of those studies used
either the MCDM technique or the fuzzy set overlay alone, resulting in an inade-
quately handled weight of each factor or an inappropriate calculation of the suitabil-
ity index. Furthermore, the MCDM with fuzzy set theory has the potential to reduce
the subjectivity in the assessment of the results. An integrated approach combining
GIS with fuzzy set theory and land use planning using the proportion of calories has
substantial potential to design and allocate multicrop seasonal land use planning. In
addition, the fuzzy overlay technique in the GIS platform has the opportunity to
overcome the above limitations by applying the required (FAO-recommended)
calorie ratio to prepare seasonal multicrop land suitability maps for regional self-
sufficiency.
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Therefore, the purpose of this research is to develop a seasonal multicrop land
suitability analysis model based on land use planning to determine the optimal land
distribution according to dietary intake to ensure nutritional food security using
fuzzy-based multicriteria decision analysis. A methodology has been proposed to be
adopted in other countries to reduce the dependency on cereal production to achieve
nutritional food security.

2.2 Materials and Methods

The proposed method using GIS-based multicriteria analysis to develop a seasonal
map for land use planning consists of three major steps (Fig. 2.1): the calculation of
calorie demand of the target area, the creation of suitability maps of diversified crops,

Fig. 2.1 Research framework for multicrop land use plan
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and the proposal of seasonal maps. ArcGIS 10.4® (ESRI, Boston, CA) software was
used for criteria aggregation, data preprocessing and calculation standardization,
weight determination by a fuzzy membership function, fuzzy overlay, and raster
calculation.

2.2.1 Study Area

The study was conducted in the Dinajpur, Rangpur, Kurigram, and Gaibandha
districts of the Rangpur Division (Fig. 2.2b), a region that is highly vulnerable to
food nutrition insecurity. The area consists of 37 administrative units with an overall
population of 11,498,000 (Bangladesh Bureau of Statistics (BBS) 2011). In this
region, the unhealthy or borderline food consumption pattern rate is higher than in
other regions (Fig. 2.2a). Agriculture is the main source of income in the study area;
nevertheless, agronomic land use is highly inconsistent due to climatic factors, soil
property issues, water infiltration, environmental resources, and local socioeconomic
conditions. Based on weather data, the minimum and maximum mean annual

Fig. 2.2 (a) High prevalence of undernutrition throughout Bangladesh. (b) Northern part of
Bangladesh (Rangpur Division), (c) study area: four districts of Rangpur Division, Dinajpur,
Rangpur, Gaibandha, and Kurigram
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temperatures vary between 8.47 �C and 36.3 �C. The annual average rainfall
recorded is 765–1233 mm with high humidity at 41–77% (Bangladesh Bureau of
Statistics (BBS) 2018a, b). The elevation ranges from 5 to 30 m above sea level.

2.2.2 Desirable Calorie Demand

Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and
Metabolic Disorders (BIRDEM) has published a report of desirable dietary pattern
for Bangladesh in 2013. The suggested food formation was formed by varieties item
considering balanced nutrition (Table 2.1). This recommended food plan was
followed by FAO/WHO (World Health Organization) recommendations for require-
ments of macro- and micronutrients. Besides, food items were chosen according to
population, local people food habit, cropping practice, accessibility, and availability
(Fig. 2.1). This assessment was developed for a single year. In the same way, the
procedure was used for the following years.

The recommended desirable food items were calculated based on energy require-
ment, nutrient requirement, food intake pattern following the reference, household
dietary diversity score (HDDS), key food identification, and crop calendar. Besides,
the proposed result was adapted with the updated FAO/WHO recommendations for
requirements of macro- and micronutrients. A minor modified chart was assisted in
the current research. Desirable calorie demand was calculated as g/person/day. The
production of different crops was converted into calorie equivalents by assuming
that all crop production was consumed without any being exported or wasted. Food
items applied for energy requirements were calculated by weight. First, daily food
consumption was computed in g/day. After that, desirable food intake was calculated
(in metric tons per year).

Table 2.1 Recommended desirable food items

Food Desirable intake (g) Energy (%)

Cereal Major 350 400 56.0

Minor 50

Pulses 50 6.5

Vegetables items Carb-based 100 400 8.0

Non-carb-based 300

Oil seed 30 11.0

Sugar/molasses 20 3.0

Animal foods 260 10.5

Fruits 100 3.0

Spices 20 2.0

Total 1280 100.0

Source: Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic
Disorders (BIRDEM) (2013)
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(a) Step 1:

Desirable net calorie intake (g) or total requirement of each food items:

TF ¼
X

n

i¼1

Ri � P� 365 ð2:1Þ

P is the total population of target area. Annual based (365 days) calculation was
done. Ri is the daily requirement of major food items (n ¼ 8) by metric ton
(Table 2.1).

(b) Step 2:

In the second phase, potential diversified food crops were selected to estimate the
required production annually. In the analysis, the annual production information of
selected crops was collected from the Bangladesh Bureau of Statistics (BBS) (2016).
There were 78 varieties of food items locally grown, and they were divided into
8 groups of recommended food classes (Appendix). The total production of crops
can be expressed as:

TP ¼
X

n1

j¼1

CL j þ
Xn2

k¼1
VNk þ

Xn3

l¼1
VCl þ

Xn4

m¼1
OSm þ

Xn5

p¼1
PLp

þ
Xn6

q¼1
FRq þ

Xn7

r¼1
SPr þ

Xn8

s¼1
MSs ð2:2Þ

where CLj refers to cereals (vector variable), in which ith element is the intake of
nutrient of type i through the cereal of type j (j¼ 1,2, . . ., n1) and n1 is the number of
cereals, n1¼5, which can be produced in the study area. Similarly, VNk refers to
noncarbohydrate vegetables, in which ith element is the intake of nutrient of type i
through noncarbohydrate vegetables of type k (j ¼ 1,2, . . ., n2); n2 is the number of
noncarbohydrate vegetables (n2 ¼ 31). In the same way, VCl refers to carbohydrate
vegetables (n3 ¼ 2); OSm refers to oilseeds (n4 ¼ 4); PLp refers to pulses (n5 ¼ 7);
FRq refers to fruits (n6 ¼ 18); SPr refers to spices (n7 ¼ 8); and MSs refers to
molasses/sugars (n8 ¼ 3) (Table 2.1, Appendix). n (n1. . .. . . . n8) refers to the
variation of each food group. For example, CL is denoted as a cereal food that is
usually grown in the study area. In (n1 ¼ 5), there are five varieties of cereal: Aus
rice, Aman rice, Boro rice, wheat, and maize. Following this way, the next item is
VN that denoted noncarbohydrate vegetables, and here, n2 ¼ 31. In this group, there
are 31 varieties of vegetables, such as cauliflower, tomato, radish, bean, eggplant,
cabbage, bitter gourd, pumpkin, and other listed crops (Appendix).

(c) Step 3:

The specific crops that required further production to meet the calorie or nutri-
tional requirements were identified. Food items produced more than required region-
ally were also identified (from Eqs. (2.1) and (2.2)) and can be expressed as:
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TP � TF; G ¼ TP� TF ð2:3Þ

where G is a vector variable, in which element showed surplus (if positive) or
shortage (if negative) in intakes of nutrient. In this research, a primary land use
plan was proposed for cereal food items, vegetables, oilseeds, and pulses. Fruits,
spices, and molasses/sugars were not considered for current land use planning
(Fig. 2.3). Therefore, land use planning was designed based on 81.5% of the total
calorie consumption. Therefore, Eq. (2.2) is given by the following expression that
was used for this research (for Eq. (2.4), indices were as like as Eq. (2.2)):

TP ¼
X

n1

j¼1

CL j þ
Xn2

k¼1
VNk þ

Xn3

l¼1
VCl þ

Xn4

m¼1
OSm þ

Xn5

p¼1
PLp ð2:4Þ

2.2.3 Seasonal Cropping Strategies/Crop Calendar

In Bangladesh, diversified crops are grown by rotation usually three times on the
same piece of land in a year. There are three main cropping seasons: (1) pre-Kharif or
pre-monsoon (also called Kharif-1) from March/April to June/July, (2) Rabi or
winter from October/November to February/March, and (3) Kharif or monsoon
(also called Kharif-2) from June/July to September/October. In Kharif-2, rice is
mostly under rainfed conditions. During the Rabi season, a wide range of crops,
including rice (called Boro), wheat, maize, pulses (chickpea, lentil, and field peas),
potatoes, and oilseeds, are grown. In Kharif-1, short-duration cultivars and rice
(called Aus) are grown. Thus, rice-rice (R-R), rice-wheat (R-W), and rice-maize
(R-M) are the dominant systems; besides, other vegetables, pulses, and oilseeds are
grown. In Bangladesh, cropping practices are especially rice-based (Timsina et al.
2018). However, established landowners decide everything, and people’s intake of
nutrients must be constrained by the cropping pattern that is decided by landowners

Pulses
6.5%

Cereal
56%

Vegetables  
8% Oil seeds

11%
Fruits 3%

Animal foods 
10.5%

Sugar 3%

Species 2% 

Other
19%

Fig. 2.3 Recommended
energy percentage from
diversified food items per
person/day
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because tenant farmers are paid by with spot goods. Even if there can be several
established landowners and even if their dynamic cropping system may be different,
tenant farmers’ intake of nutrients must be restricted to what they produce as they
have almost no cash earnings and no access to the market. In addition, cropping
practices influence food consumption patterns regionally. The crops in each
sequence were selected from major cereals, minor cereals, pulses, oilseeds,
carbohydrate-based vegetables, and noncarbohydrate-based vegetables that are
locally grown in the study area. Usually, the triple-cropping strategy in a year is
the most popular and extensively applicable method in Bangladesh (Fig. 2.4) (Nasim
et al. 2017; Alam et al. 2010; Sarker et al. 1997; Hassan et al. 1985).

2.2.4 Land Suitability with Multicriteria Decision Analysis

LSA is a challenging task consisting of different domains; climatic conditions,
environmental aspects, and topography are involved and influential in the production
process. Moreover, the suitability of land is also affected by local regulations and the
availability of land. The complexity of LSA increases when areas with mixed land
uses and densely populated areas are considered. Multicriteria decision-making is a
process that combines and transforms many types of geographical data (Table 2.2)
into a resulting decision output (Malczewski 2006). The decision problems consist
of a large set of reasonable alternatives and multiple conflicting and disproportionate
criteria. As a result, many real-world spatial problems give rise to MCDM based on
GIS. According to the research objectives in this study, nine criteria were selected to
conduct MCDM with several steps in the spatial environment (Beinat and Nijkamp
1998). In MCDM, each criterion for a different crop was given a weight to represent
its importance in the phenomenon (Chow and Sadler 2010). Multicriteria evaluation
(MCE) approach (assessed by fuzzy membership function in ArcGIS® platform) was
used in the current study because various production variables can be evaluated and

Jan MarFeb MayApr Jun Jul Aug Sep Oct DecNov

MonsoonPre-Monsoon Winter...Winter

Kharif-1 RabiKharif-2Rabi

Fig. 2.4 Crop practice calendar in the northern part of Bangladesh
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weighted separately according to their relative importance in the optimal growth
conditions for crops.

Criteria Aggregation and Preprocessing

The criteria used (Table 2.2) in this study are (a) land use, (b) SAVI, (c) slope,
(d) land type, (e) topsoil, (f) soil pH, (g) flood prone, (h) temperature, and (i) rainfall.
These criteria were further classified into constraints and factors for analysis
(Fig. 2.5). According to Beinat and Nijkamp (1998), a factor is a criterion that
enhances or detracts from suitable alternatives for the activity under consideration,
and a constraint serves to limit any alternative.

Land Type

Considering seasonal flooding, the Government of Bangladesh (GoB) has divided
the land into five categories: highland, medium highland, medium lowland, lowland,
and very lowland (Bangladesh Bureau of Statistics (BBS) 2016). The study area
comprised highland (29.5%), medium highland (17.5%), medium lowland (47%),
and lowland and very lowland (<6%) (Fig. 2.5a). Medium highland and lowland
were considered highly suitable, highland was considered moderately suitable,
lowland was considered marginally suitable, and very lowland was considered
unsuitable for crop growth.

Table 2.2 Inputs for criteria of crop suitability

No Data Description Source

1 Land use map Scale 1:25,000 2019, SoB, Bangladesh

2 SAVI Derived from
30-m resolution

Landsat 8, USGS

3 Slope map Derived from
30-m resolution

2019, DEM, STRM

4 Land type Scale 1:50,000 2018, BCA, Bangladesh

5 Topsoil map Scale 1:50,000 2018, BCA, Bangladesh

6 Soil pH map Scale 1:50,000 2018, BCA, Bangladesh

7 Flood-prone map Scale 1:50,000 2018, BCA, Bangladesh

8 Temperature map Scale 1:50,000 2018, BCA, Bangladesh

9 Rainfall map Scale 1:50,000 2018, BCA, Bangladesh

10 Recommended
desirable food
items

Listed in Table 2.1 Bangladesh Institute of Research and
Rehabilitation in Diabetes, Endocrine and
Metabolic Disorders (BIRDEM) (2013)

11 Crop production
data

Locally grown
78 varieties of
crops

Bangladesh Bureau of Statistics (BBS) (2016),
Bangladesh
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Fig. 2.5 Criteria for land suitability analysis: (a) land type, (b) precipitation, (c) flood prone, (d)
soil pH, (e) topsoil, (f) slope, (g) SAVI of the Kharif-1 season, (h) SAVI of the Kharif-2 season, (i)
SAVI of the Rabi season, (j) temperature of the Rabi season, (k) temperature of the Kharif-1 season,
(l) temperature of the Kharif 2 season, and (m) land use map (SoB) for 2019
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Rainfall

Rainfall in the critical stages of paddies increases crop yield through the rapid
dissolution of nutrients for uptake by plants (Amin et al. 2015). According to
Bangladesh Meteorological Department (BMD), the four districts in the study area
receive 1250–2000 mm of annual rainfall. The annual average rainfall was recorded
between 756 and 1233 mm (Fig. 2.5b).

Flood Prone

Bangladesh ranks as the sixth most flood-prone country in the world (United Nations
Development Program (UNDP) 2004). Flood-prone environments include deepwa-
ter areas submerged under more than 100 cm of water from 10 days to a few months
and areas that are affected by flash floods of longer than 10 days (Bangladesh Bureau
of Statistics (BBS) 2014; Chauhan et al. 2017). The area was divided into five
categories depending on the flood-prone data; not flood prone (45%), severe river
flooding (13%), moderate river flooding (8%), low river flooding (19%), low flash
flooding (14%), and moderate tidal surge (>1%) (Fig. 2.5c). According to the depth
and duration of water stagnation, not flood-prone areas were considered highly
suitable, areas susceptible to low river flooding were considered moderately suitable,
areas susceptible to moderate river flooding were considered marginally suitable,
and areas susceptible to moderate tidal surge and severe river flooding were consid-
ered unsuitable for field crop farming (Ministry of Environment and Forests (MoEF)
2008).

Soil pH

The pH of the soil is defined as the negative logarithm of the hydrogen ion
concentration of the soil solution. pH is an important factor in quality assessment
(Guo et al. 2018). However, it has been found that major cereals can grow in a wide
range of pH values, varying from 4 to 8 (Samanta et al. 2011; Ayehu and Besufekad
2015; Kihoro et al. 2013; Amin et al. 2015). Additionally, the suitable pH condition
for growing vegetables is usually considered to be the neutral pH level (6.5 < pH <
7.5) (Hu et al. 2018). Considering the availability of data, the study ranked pH values
of 5.5–7.3 as highly suitable conditions, covering 83% of the study area (Fig. 2.5d.
Moreover, areas with pH values of 7.3–8.4 and 4.5–5.5 each covered 5% of the land.

Topsoil

Vegetable cropping systems are highly influenced by seasonal variations and soil
texture properties. Within a season, crop growing profiles are influenced by soil type
(Schutter et al. 2001). Additionally, the major cereal grain yield in clay soil was 46%
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higher than that in sandy loam soil averaged across cultivar and water areas (Dou
et al. 2016). The effective soil depth is defined as the thickness of soil above a layer
restricting root growth (e.g., consolidated rock or cemented materials, such as
gravel) (Zolekar and Bhagat 2018). The chemical relationships influencing soil
fertility are complex and affected by the soil development and the type of clay
present; the proportions of the components and sizes of sand, silt, and clay have
important properties on soil structure (Dexter 2004). There were seven categories of
topsoil formats available in the area: predominant loam (1.6%), predominant sandy
loam (0.38%), predominant clay (26.4%), predominant silty clay (54.5%), predom-
inant clay loam (0.27%), predominant silty clay loam (6.8%), and predominant silt
loam (9.9%) (Fig. 2.5e). These categories were converted into a land suitability class
according to their seasonal crop cultivation characteristics based on the United States
Department of Agriculture (USDA) soil texture suitability rating for diversified
crops and were observed as sands, loamy sands, sandy loams, sandy clay loams,
and silts.

Slope

The slope is a vital topographic element for cropland suitability analysis. Slope
affects many landscape processes, such as soil water content, erosion potential,
runoff, and surface and subsurface flow velocity. The thickness of the soil layer
decreases with increasing slope (Ashford et al. 1997). This layer was developed by
using the original Shuttle Radar Topography Mission (SRTM) and digital elevation
model (DEM) for the study area. The Universal Transverse Mercator (UTM)
projection and WGS84 datum were used as rectifying agents in ArcGIS®. The
slope was calculated from the maximum rate of change between each cell and its
neighbors. Every cell in the output raster had a slope value. Seasonal plants generally
require flat land; only a slight slope between 0% to 8% is protected from the danger
of erosion (Zolekar and Bhagat 2015). In the study area, the slope range was mostly
under 40% (Fig. 2.5f), which was a suitable condition for most of the field crops
(Nahusenay and Kibebew 2015; Novara et al. 2019; Basche et al. 2016).

Soil-Adjusted Vegetation Index (SAVI)

Soil has a spectral signature that varies from that of other types of land cover. In the
visible and near-infrared zones, reflectance increases in proportion to an increase in
the wavelength. However, the rate of increase is affected by various factors. Soil
moisture and organic matter may lower the soil reflectance. The relationship between
red and near-infrared reflectance remains constant for different soil type physiogno-
mies. When the moisture content changes, the two values are associated and have a
linear relationship. This relationship is very specific for each type of soil. SAVI is
therefore useful for monitoring soils and vegetation. Furthermore, SAVI is a mod-
ification of Normalized Difference Vegetation Index (NDVI), which corrects for the
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influence of soil brightness when the vegetation cover is low (Jiang et al. 2006).
SAVI was extracted from Landsat 8 Operational Land Imager (OLI) imagery and
extracted by a mask for the study area. Datasets were acquired from 2015 to 2019.
These datasets were used to build the triple raster for three seasons. Each raster
represented a specific period of multiple years (Fig. 2.5g–i). For each of the seasons,
a single raster was created.

To reduce the soil background effect, modified indices were proposed using the
soil adjustment factor L to account for first-order soil background variations and
obtain SAVI (Huete 1988). SAVI can be expressed as follows:

SAVI ¼ ρNIR � ρRED
ρNIR þ ρRED þ L

1þ Lð Þ ð2:5Þ

where ρNIR is the reflectance value in the near-infrared band, ρRED is the reflectance
value in the red band, and L is the soil brightness correction factor. An L value of 0.5
in reflectance space was found to minimize soil brightness variations and eliminate
the need for additional calibration for different soils.

Temperature

Temperature was the most important criterion of this research. Seasonal conditions
and crop yield are greatly affected by land surface temperature (Kawasaki and
Uchida 2016). In this study, three different temperature layers were considered for
three distinct seasons: Kharif-1, Kharif-2, and Rabi. Using cell statistical tools, the
average temperature was calculated. In the Kharif-1 and Kharif-2 seasons, temper-
atures fluctuated between 34 �C and 31 �C and between 32 �C and 30 �C, respec-
tively (Fig. 2.5j, k). However, in the Rabi season, the temperature ranged from 23 �C
to 25 �C (Fig. 2.5l). Temperature and rainfall are two climatic factors that have
favorable influences and, in some cases, unfavorable influences on the development,
growth, and yield of different crops.

Land Use

Land use data allow the evaluation of an area for vegetation, settlement, forest, and
waterbodies. Land use data were collected from the SoB, which was split into
92 blocks. After aggregation in the ArcGIS® platform, the data were used to develop
a more accurate land use/land cover (LULC) map for the land suitability analysis. In
this study, rivers, forests, waterbodies, and settlements were considered restrictions
in the analysis. Subsequently, excluding the constraints, only agricultural land was
contemplated for land suitability analysis. Agricultural land was subclassified into
cultivated land (80%), uncultivated land (0.5%), and vegetation land (19%)
(Fig. 2.5m).
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2.2.5 Fuzzy Membership Function

After aggregating all the criteria, fuzzy membership functions were used for the
further analytical procedure. Firstly, the value of each criterion was given to the
system for decision-making. The second step was fuzzification. In this process, input
values from the domain were transformed into fuzzy inputs with the help of the
membership function. Thirdly, the fuzzy-based inference used the rules to input map
explanations to outputs. The next step was defuzzification; it was a process of
transposing the fuzzy outputs to input formatted outputs, from the given fuzzy sets
and corresponding membership functions. The system refers a decision to the final
output value (Thaker and Nagori 2018). The fuzzification process has no sharply
defined boundaries that characterize the imprecision of classes. Fuzzification con-
verts the primal values of each phenomenon to the likelihood that the phenomenon
belongs to a defined set. The defined set can be considered suitable, within an
acceptable distance, or having the possibility of finding a specified condition. The
original values were reclassified on this membership continuum through
predetermined fuzzy membership functions. In the fuzzification process, each
value of the phenomenon central to the core of the definition of the set was set to
1. Those values that were not part of the set were set to 0. Those values that fell
between these two extremes were in the transitional zone of the set, the boundary. As
the values moved away from the ideal or the center of the set, they were assigned a
decreasing value on a continuous scale from 1 to 0; the assigned values decreased,
and the original phenomenon value had a lower probability of being a member of
that set (Zadeh 1965; Olivero et al. 2011; Mitchell and Cohen 2014; Barbosa 2015).

2.2.6 Fuzzy Reclassification

Fuzzy set theory was used to standardize factors using different fuzzy membership
functions. The membership was within the 0–1 range. Fuzzy set theory allowed the
concept of these continuous factors to be modeled in a suitability assessment within
GIS or a spatial domain. In a standard approach, membership within a class was
clearly and crisply defined as either in the class or not in the class (Bellman and
Zadeh 1970). In the present study, fuzzy membership classification was used to
accommodate the high uncertainty of scoring methods in assigning the suitability
classes; several fuzzy membership functions were used in ArcGIS 10.4® for nor-
malization. For this research, fuzzy functions were determined based on references
and a literature review (Tables 2.3, 2.4, 2.5, 2.6, and 2.7).

Out of seven varieties of fuzzy membership functions in ArcGIS 10.4®, four
fuzzy functions were used in this study considering ecological criteria: the large,
small, Gaussian, and linear functions. These functions generate continuous fuzzy
classifications of standardized criteria. The reclassification tool in ArcGIS® allows
the transformation of categorical data to the range from 0 to 10 and then divides the
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resulting transformed data by 10 to derive a 0 to 1 scale. The equations for the fuzzy
large (Eq. (2.6)), small (Eq. (2.7)), linear (Eq. (2.8)), and Gaussian functions
(Eq. (2.9)) are found below.

μ xð Þ ¼ 1

1þ x
f 2

� ��f 1 ð2:6Þ

The fuzzy large transformation function was used when large input values were
more likely to be members of the set. For example, the rainfall layer was followed by
a fuzzy large membership function; the higher yield of rice can be obtained with a
greater amount of water supplied to the area.

μ xð Þ ¼ 1

1þ x
f 2

� � f 1
ð2:7Þ

The fuzzy small transformation function was used when small input values were
more likely to be members of the set. The criteria slope, topsoil, and flood-prone
layers were each followed by a fuzzy small function in this research, e.g., the slope
was followed by the fuzzy small function for rice cultivation. Here, the most suitable
slope condition was 0� to 4� for rice. If the slope increases, the condition becomes
more unsuitable following the study area.

μ xð Þ ¼ e �f 1� x�f 2ð Þ2ð Þ ð2:8Þ

The SAVI criterion followed a fuzzy linear transformation function that related a
linear function between the user-specified minimum and maximum values for
reclassification.

μ xð Þ ¼ f xð Þ ¼
0

x� a
b� a
1

8

>

<

>

:

x � a

a < x < b

x � b

ð2:9Þ

The fuzzy Gaussian function converts primal values into a normal distribution. If
the input values decrease in membership, they move away from the midpoint. The
midpoint of the fuzzy Gaussian function was set to 1 (Purnamasari et al. 2019). The
land type, soil pH, temperature, and land use layers were analyzed under the fuzzy
Gaussian membership function. For example, both extreme high and low tempera-
ture are unsuitable for rice growth. According to the analysis, the most suitable rice
growing temperature is 10–20 �C. These values are different for each nine criterion
and each crop item following the references.

In the fuzzy large, small, and Gaussian membership functions, the control point
included a midpoint (f2) and a spread (f1). A midpoint was a specific point that had a
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0.5 value of membership in the large and small functions. Gaussian functions were
determined by the user based on references (ESRI, CA, USA). The spread was
generally allocated a number between 1 and 10. The fuzzy membership curve
became steeper for a higher spread value. The fuzzy linear transformation function
applied a linear function between the minimum and maximum values. Any value
below the minimum was determined to be 0 (not a member), and any value above the
maximum was 1 (a member) (Barbosa 2015; Bahrani et al. 2016). For this research,
fuzzy functions were determined based on references and a literature review
(Tables 2.3, 2.4, 2.5, 2.6, and 2.7).

2.2.7 Overlay

Fuzzy Overlay

In ArcGIS®, the fuzzy overlay analysis consents to the possibility of a phenomenon
belonging to multiple sets in multicriteria overlay analysis and analyzes the rela-
tionship among the memberships of the multiple sets. Each fuzzy overlay method
permits the exploration of the membership of each cell belonging to various input
criteria. To analyze the relationships and interactions between all the sets for the nine
criteria in the overlay model, fuzzy overlay techniques were used. Since the
fuzzification process is based on the degree of membership to a set, the overlay
techniques describe the interaction of the inaccuracies in the small, large, linear, and
Gaussian memberships of the sets. The fuzzy overlay technique was used based on
set theory (ESRI, CA, USA). Set theory is the mathematical discipline quantifying
the relationship of each membership to specific sets.

The available fuzzy set overlay techniques in ArcGIS® are fuzzy And, fuzzy Or,
fuzzy Product, fuzzy Sum, and fuzzy Gamma. Each of these techniques describes the
cell’s membership related to the input sets. In this study, fuzzy Gamma overlay
assisted in developing nine varieties of cropland suitability maps for three identical
seasons, which were determined based on references and a literature review (ESRI,
Boston, CA).

Scoring for Individual Suitability Map Preparation

After conducting fuzzy overlay, the resulting map was shown as stretched values that
required scoring for visual understanding and significant justification. The land
suitability analysis for the diversified crops was conducted using different classifi-
cation categories proposed by the FAO. In the FAO’s framework for land evaluation,
the first class was designated as suitable (S) or not suitable (N). The suitability
classification aimed to show the suitability of each land unit for crop production. In
practice, three classes—S1, S2, and S3—are usually used to identify land that is
highly suitable, moderately suitable, and marginally suitable, respectively (Fig. 2.6).
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2.2.8 Seasonal Land Suitability Map Preparation

The seasonal suitability maps were prepared considering regional diversified food
demand. In addition, land suitability analysis helped to identify the suitable zone for
each type of crop. After that, seasonal suitability maps (Kharif-1, Kharif-2, and Rabi
season) were prepared following the crop calendar. In this stage, ArcGIS® was used
for spatial and statistical analyses to develop seasonal crop suitability maps
according to regional required food demand. Then, the proposed results were
compared with the present farming practices of the study area.

2.3 Results

2.3.1 Regional Crop Production for Balanced Nutrition

Crop production data showed that some crops produced more than required and
some crops cultivated less than required in the study area considering the nutritional
balance (Fig. 2.7). Major cereal rice, minor cereals, and carbohydrate-based vegeta-
bles were cultivated 2,396,992 metric tons, 750,366 metric tons, and 3,104,403
metric tons higher, respectively. On the other hand, production was lower than the
requirement for noncarbohydrate-based vegetables, pulses, and oilseeds: 1,009,120
metric tons, 204,293 metric tons, and 89,550 metric tons, respectively.
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2.3.2 Land Suitability for Diversified Crops

The F-MCDM model indicated the suitable areas for different crops in the Kharif-1,
Kharif-2, and Rabi seasons in different localities (Fig. 2.8a–r). In the Kharif-1
season, the highly suitable area was found to be 30.9% for Aus rice (Fig. 2.8d),
and the suitable area for vegetables was 50% (Fig. 2.8b). The not suitable area was
found to be 25.5% and 17% for rice and vegetables, respectively (Table 2.8). The
results of the Kharif-2 season showed that the highly suitable area for the local
variety of Aman rice (Fig. 2.8h) was approximately 5% smaller than the highly
suitable area for vegetables (Fig. 2.8f). A moderately suitable area was detected as
34.6% for rice and 22% for vegetables in the Kharif-2 season. The not suitable area
appeared to be 46.5% for Aman rice (Table 2.8).

Furthermore, highly (S1), moderately (S2), marginally (S3), and not suitable
(N) areas showed diversified results for the five types of crops grown in the Rabi
season. The highly suitable area was 47% for Boro rice (Fig. 2.8r). The highly
suitable zone for winter vegetables was found to be 40% (Fig. 2.8j), and the not
suitable area was found to be 16.5% in the Rabi cropping season. Basically, the
northeastern part of the study area appeared to be a suitable zone for pulse (Fig. 2.8n)
cultivation; in this region, the highly suitable area covered 43%. In addition,
marginal and not suitable areas were detected altogether at 20%. Highly suitable
areas for growing carbohydrate-based vegetables (potatoes) (Fig. 2.8l) were found to
reach 19% and were mostly located in the northern part of the study area. Moreover,
scattered suitable area was found for oilseed cultivation, which covered some of the
northern and western regions; highly, moderately, marginally, and not suitable areas
for growing oilseeds were detected at 16%, 17%, 9%, and 58%, respectively
(Fig. 2.8p).
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Fig. 2.7 Crop production status (surplus and shortage) per year regarding balanced nutritional
requirement
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Fig. 2.8 Land suitability map: (a, b) Kharif-1 vegetables, (c, d) Kharif-1 Aus rice, (e, f) Kharif-2
vegetables, (g, h) Kharif-2 Aman rice, (i, j) Rabi vegetables, (k, l) potatoes, (m, n) pulses, (o, p)
oilseeds, (q, r) Boro rice
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Fig. 2.8 (continued)
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Fig. 2.8 (continued)
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2.3.3 Seasonal Land Suitability for Multicrop

Combining the specific crops of each season, triple-cropping suitability maps were
prepared showing distinct suitable zones. The calorie ratio was integrated with
seasonal suitability analysis to produce three specific suitable maps of the Kharif-
1, Kharif-2, and Rabi seasons. The study area was masked by the land use maps from
the SoB, where three seasonal maps were developed using the land practices for
agriculture. Restricted areas, such as rivers, settlements, and forests, were not
aggregated for the final output or area calculation and appeared as a white color in
the resulting maps (Fig. 2.9).

The result from the Kharif-1 calorie-based distribution map shows that 42%
(3469 km2) of the land area consists of the most suitable area for vegetable
production (Fig. 2.9a). Considering rice, 20% (1652 km2) of the land area was
most suitable. In addition, 21% of the land was recognized as suitable for growing
both crops. Suitable areas for growing rice were mostly located in the northern part
of Dinajpur and Rangpur districts and some western parts of Kurigram district.
Suitable areas for growing vegetables were identified mostly in the middle part of
the study area, covered by Gaibandha and Kurigram districts. Moreover, the south-
ern regions of two districts, Dinajpur and Rangpur, were also recommended for
summer vegetable production. This common suitable area can be used for growing
both rice and vegetables. However, according to the balanced calorie recommenda-
tion, this area can be used for rice and some cereal crop cultivation. The local
agricultural practices of the Kharif-1 season map also showed that the rice cultiva-
tion zone was mostly the northern parts and some discrete areas of the four districts.
However, a very stimulating result was found in so much that only 12% (991 km2) of
the area was suitable for growing vegetables (Fig. 2.9b). Fallow land accounted for
45% of the land used in the Kharif-1 season (Table 2.9).

Mainly two types of crops, Aman rice and vegetables, are usually grown in the
subsequent season, Kharif-2. The results of the Kharif-2 map indicated that 55% of
the area and 35% of the area were the most suitable for vegetables and rice,
respectively (Fig. 2.9c). The moderately suitable area for rice and vegetables was
6% (495 km2). The not suitable area for rice and vegetables was 4% of the total land
area. The area suitable for vegetables was mostly located in Kurigram and
Gaibandha districts. Areas suitable for rice cultivation were found mainly in
Dinajpur and Rangpur districts. The current cultivation method practices showed
that 57% of the area was used for rice and 18% of the area was used for vegetable
farming (Fig. 2.9d). In the Kharif-2 season, 21% of the area was noted as fallow land
(Table 2.10).

In the Rabi season, land was occupied by five varieties of crops (Fig. 2.9e): Boro
rice and cereals, winter vegetables, carbohydrate-based vegetables (potatoes),
pulses, and oilseeds. The results of the seasonal suitability map showed that 35%
(2891 km2), 19% (1569 km2), 15% (1239 km2), 10% (826 km2), and 21% (1734
km2) of the land were reported as the most suitable areas for cereal crops, vegetables,
pulses, oilseeds, and potatoes, respectively. Areas suitable for carbohydrate-based
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Fig. 2.9 Seasonal crop growing suitable zoning: (a) Kharif-1 season land suitability map, (b)
Kharif-1 present practice map, (c) Kharif-2 land suitability map, (d) Kharif-2 present practice map,
(e) Rabi season land suitability map, and (f) Rabi present practice map
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vegetables and noncarbohydrate-based vegetables were mainly located in Kurigram
and Gaibandha districts. Land suitable for cereal crops was distinctly observed in the
four districts of the study area. The oilseed cultivation area predominantly appeared
in the northern parts of Dinajpur and Rangpur districts. The farming practice of the
Rabi season showed that 45% (3717 km2) of the area was used for cereal crops
(Fig. 2.9f). In addition, 21% of the area was used for pulses and oilseeds. Only 4%
(330 km2) of the area was used for noncarbohydrate-based vegetable growing, and
18% of the land was used for potato cultivation (Table 2.11).

2.4 Discussion

This research has provided a comprehensive strategy to create agricultural land use
plans for diversified seasonal crops considering calorie demand. Previously, much of
the research conducted only reported land suitability for site-specific plans or single-
cropping plans (Noorollahi et al. 2016; Sulaiman et al. 2019). However, this research
attempted to develop season-based multicrop land suitability maps. Preparing a
seasonal map using balanced, calorie-rich crops was another concern that required
a new dimension of land suitability analysis. In this study, regional calorie demand

Table 2.9 Comparison between the present practice and the suitable area of the Kharif-1 season

Criteria

Present practice Suitability zoning

Area (%) Area (km2) Area (%) Areas (km2)

Cereal 39 3221 20 1652

Vegetables 12 991 42 3469

Mixed crops 4 330 21 1734

Table 2.10 Comparison between the present practice and the suitable area of the Kharif-2 season

Criteria

Present practice Suitability zoning

Area (%) Areas (km2) Area (%) Areas (km2)

Cereal 57 4708 35 2891

Vegetables 18 1487 55 4543

Mixed crops 4 330 6 495

Table 2.11 Comparison between the present practice and the suitable area of the Rabi season

Criteria

Present practice Suitable zoning

Area (%) Area (km2) Area (%) Area (km2)

Cereal 45 3717 35 2891

Vegetables 4 330 19 1569

Pulses and oilseed 21 1735 15+10 1239 + 826

Potatoes 18 1486 21 1734
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and balanced nutrition conditions were checked by statistical data mining, and the
results were used as a weight for the land use map preparation, which will ensure
better performance in land use planning. This result provided another aspect that
confirmed the recommendation to improve food nutrition security.

Usually, either the AHP-based weighted overlay or the equal-overlay technique is
used in most studies (Salman et al. 2010; Seyedmohammadi et al. 2019; Pilevar et al.
2020; Tashayo et al. 2020); few studies conducted with fuzzy membership methods
employed in the GIS platform incorporate the AHP technique (Pilevar et al. 2020;
Ustaoglu and Aydınoglu 2020; Amini et al. 2019), but considering the preparation of
seasonal, diversified crop suitability maps using the F-MCDM approach is an
innovation of this research. However, individual suitability maps were also
constructed to check the identical suitable zones of diversified crops. A multicriteria
decision-making system was applied to reduce the biases for land suitability assess-
ment. Variation in the seasonal temperature was one of the most dominant factors in
this area and influenced the locations most suitable for crop cultivation. Remote
sensing data have a vital role in land suitability analysis as they aid in categorizing
the growing locations of each crop as suitable or not suitable.

Crop production data represented the rice-based dominant cultivation practice in
the study area compared to nutritional requirement (Fig. 2.7). Such deviations from
“ideal crop production patterns” were observed with the currently produced patterns.
Besides, rice is the staple food in this region and ensures social stability for the
country. Therefore, the common belief of the people of the country is if they can
grow plenty of rice, the country will not face food insecurity; this concept created a
new issue in sense of food nutritional adequacy. Now, the main concern of this study
is not only the food security but also to ensure the food nutrition security of
Bangladesh.

Regarding seasonal land planning, a diversified production plan was developed
including present practices following the locally grown crop calendar (Fig. 2.9a–f).
Three seasons were considered: Kharif-1, Kharif-2, and Rabi. In the Kharif-1 season,
42% (3469 km2) of land was recommended for growing vegetables, but previously,
this value was 12% (991 km2). In the Kharif-2 season, the vegetable-growing area
was detected to be 55% (4543 km2); before, it was 18%. In the following season, the
land area suitable for growing vegetables was 4%, but this study identified 19%
(1569 km2) of land as suitable for cultivating vegetables. Moreover, this recommen-
dation was also shown in the Rabi season; 25% (2065 km2) of suitable land was
detected for pulse and oilseed cultivation, although this area was only 21% previ-
ously. Only agricultural land was considered in this study, which is a limitation for
developing a planning model. Moreover, spices, fruits, and molasses/sugars were not
studied in the proposed seasonal maps. In addition, dairy products were not consid-
ered in this research. This planning model helps to ensure 81.5% food nutrition
security.

Furthermore, the aim of this research was to develop diversified crop production
based on nutritional consideration of cereals, vegetables, pulses, and oilseeds. The
study area was vulnerable because of poor food consumption practice. Therefore, the
hypothesis of this research was to find a way to increase diversified food (nutritive)
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cultivation along with consumption. In this regard, the suitable area was noted by
land suitability analysis for recommendation to the locally adapted grown crops.
However, the limitation of this research was economic analysis, which was insub-
stantial considering food nutrition security. Further research is necessary to allocate
economic analysis. Additionally, in the study area, the chain shops are not intro-
duced and not familiar to the farmers and inhabitants. Usually, most of the agricul-
ture products are sold in the local market. Moreover, postharvest losses were also
higher due to lack of transportation. Therefore, closed economic condition was
considered to introduce diversified cropping practice in the local region. In this
respect, the production values of different crops were converted into similar units by
presuming that all crop productions were consumed without being exported or
misused to ensure regional self-sufficiency of the present planning model.

2.5 Conclusion

This research not only concerned food security but also emphasized ensuring food
nutrition security in Southeast Asia. Throughout all Southeast Asian countries,
nutritional diets are the most imbalanced in Bangladesh. Therefore, the goal of this
research was to conduct a land suitability analysis for land use planning considering
nutritional proportions using the required calorie intake ratio from cereals, vegeta-
bles, and pulses. The geographical extent was considered with high-resolution vector
and satellite remote sensing datasets to develop land suitability maps for the Kharif-
1, Kharif-2, and Rabi seasons. In addition, the development of seasonal land
suitability maps with a balanced food demand ratio in GIS platform provided better
findings. This study clearly revealed the spatial distributions of different crops from
remote sensing data in conjunction with the evaluation of biophysical variables of
soil. Topographic information in the context of GIS could be helpful for crop
management decisions regarding intensification or diversified foods. The findings
in this study were compared with the present cropping practices: in the Kharif-1
(42%), Kharif-2 (55%), and Rabi (19%) seasons, suitable land was found for
vegetable cultivation. Regarding calorie-based land use planning, it is recommended
that an additional 30% of land can be used in the Kharif-1 season, an additional 37%
of land can be used in the Kharif-2 season, and an additional 15% of land can be used
in the Rabi season; vegetable crops have the potential for further agricultural land
use compared to the present practices. Moreover, 25% of suitable land was recog-
nized for pulses and oilseeds, which could be used for cultivation considering the
local demands of the study area. The land use layer from the SoB was applied to
unmask the agricultural land to help with the accuracy assessment. The
recommended seasonal land suitability maps based on the nutrition demand and
the F-MCDM approaches confirmed the satisfactory results of land use planning.
Finally, a nutrition assessment will help to recommend policy for the planning of
land use in the coming years, which is the key issue concerning food nutrition
security in the developing countries.
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Appendix: Diversified Crop Practices in the Northern Part of
Bangladesh

Category
(number) No Crop name

Category
(number) No

Crop
name

Category
(number) No Crop name

Cereal (CL)
(n1 ¼ 5)

1 Aus rice 22 Water
gourd

Fruits
(FR)
(n6 ¼ 18)

1 Mango

2 Aman rice 23 Wax
gourd

2 Banana

3 Boro rice 24 Tomato 3 Pineapple

4 Maize 25 Radish 4 Jackfruit

5 Wheat 26 Bean 5 Papaya ripe

Noncarbohydrate
vegetables (VN)
(n2 ¼31)

1 Pumpkin 27 Carrot 6 Watermelon

2 Brinjal 28 Spinach 7 Litchi

3 Patal 29 Bengal
spinach

8 Guava

4 Okra 30 Red
amaranth

9 Lime lemon

5 Ridge gourd 31 Amaranth 10 Pomelo

6 Bitter gourd Carb-veg
(VC) (n3 ¼
2)

1 Potato 11 Melon

7 Arum 2 Sweet
potato

12 Star apple

8 Ash gourd Pulses (PL)
(n5 ¼ 7)

1 Lentil 13 Kirai

9 Cucumber 2 Pea
(motor)

14 Blackberry

10 Long bean 3 Green
gran

15 Carambola
apple

11 Snake gourd 4 Black
gram

16 Wood apple
(bell)

12 Amaranth 5 Arhar 17 Green
coconut

13 Cucurbitaceae 6 Khesari 18 Ripe
palmyra

14 Sponge gourd 7 Gram 1 Chili

15 Colocasia 1 Sesame 2 Onion

(continued)
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Category
(number) No Crop name

Category
(number) No

Crop
name

Category
(number) No Crop name

Spices
(SP)
(n7 ¼ 8)

Oilseed
(OS)
(n4 ¼ 4)

16 Green papaya 2 Mustard 3 Garlic

17 Green banana 3 Groundnut 4 Turmeric

18 Rabi brinjal 4 Coconut 5 Ginger

19 Cauliflower Molasses
(MS) (n8 ¼
3)

1 Sugarcane 6 Coriander
seed

20 Cabbage 2 Date palm 7 Fennel seed

21 Cucurbita 3 Palmyra
palm

8 Fenugreek
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Chapter 3
Agricultural Land Suitability Assessment
Using Satellite Remote Sensing-Derived
Soil-Vegetation Indices

Rubaiya Binte Mustafiz, Ryozo Noguchi, and Tofael Ahamed

Abstract Satellite remote sensing technologies have a high potential in applications
for evaluating land conditions and can facilitate optimized planning for agricultural
sectors. However, misinformed land selection decisions limit crop yields and
increase production-related costs to farmers. Therefore, the purpose of this research
was to develop a land suitability assessment system using satellite remote sensing-
derived soil-vegetation indicators. A multicriteria decision analysis was conducted
by integrating weighted linear combinations and fuzzy multicriteria analyses in a
GIS platform for suitability assessment using the following eight criteria: elevation,
slope, LST, and vegetation indices (SAVI, ARVI, SARVI, MSAVI, and OSAVI).
The relative priorities of the indicators were identified using a fuzzy expert system.
Furthermore, the results of the land suitability assessment were evaluated by ground
truth yield data. In addition, a yield estimation method was developed using indices
representing influential factors. The analysis utilizing equal weights showed that
43% of the land (1832 km2) was highly suitable, 41% of the land (1747 km2) was
moderately suitable, and 10% of the land (426 km2) was marginally suitable for
improved yield productions. Alternatively, expert knowledge was also considered,
along with references, when using the fuzzy membership function; as a result, 48%
of the land (2045 km2) was identified as being highly suitable; 39% of the land (2045
km2) was identified as being moderately suitable, and 7% of the land (298 km2) was
identified as being marginally suitable. Additionally, 6% (256 km2) of the land was
described as not suitable by both methods. Moreover, the yield estimation using
SAVI (R2 ¼ 0.773), ARVI (R2 ¼ 0.689), SARVI (R2 ¼ 0.711), MSAVI (R2 ¼
0.745), and OSAVI (R2 ¼ 0.812) showed a good predictive ability. Furthermore, the
combined model using these five indices reported the highest accuracy (R2¼ 0.839);
this model was then applied to develop yield prediction maps for the corresponding
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years (2017–2020). This research suggests that satellite remote sensing methods in
GIS platforms are an effective and convenient way for agricultural land use planners
and land policy makers to select suitable cultivable land areas with potential for
increased agricultural production.

Keywords Satellite · Remote sensing · Soil-vegetation indices · Fuzzy membership
function · Yield prediction · Agricultural land suitability

3.1 Introduction

Proper land use planning is essential for enhancing agricultural production and
ecological conservation and for the protection of biodiversity (Kennedy et al.
2016). Inappropriate land management practices lead to a higher rate of soil erosion,
a diminished crop production, a hindered productivity, and a deteriorated soil quality
(Pimentel and Burgess 2013). Therefore, land management focusing on suitability
should be a key issue of research and policy development mainly due to its influence
on crop production. The knowledge of local land conditions has become increas-
ingly recognized for its importance in sustainable land management (Jyoti et al.
2015). Farmers of local communities assess their farmland using consistent obser-
vations and collective experiences (Niemeijer and Mazzucato 2003). However, for
rural communities, this knowledge is usually insufficient to understand the adequacy
of suitable condition, management strategies, and land use decisions.

In addition, many conventional techniques for Earth monitoring applications
require specific spectral features that are defined only for multispectral data such
as deep learning, exploiting both temporal and cross-sensor dependencies, and deep
neural networks achieve much better performance than traditional methods (Mazza
et al. 2018; Li et al. 2020). Furthermore, innovative farming technologies incorpo-
rate biology with computers, and device exchange-based smart agriculture becomes
achieved in a structured farm management system. The high spatial imagery from
remote sensing datasets may provide an aid to systematically consider issues asso-
ciated with smart farming technology. Remote sensing methods support the forma-
tion of growth profiles of plants and temporal evolution scheme of soils over their
developmental phases (Ennouri and Kallel 2019). Remote sensing indices that
incorporate environmental recovery factors are useful for tracing the development
of crops, their interrelatedness, and the consequences of the variables of interest for
crop development. Following this concern, the application of smart agriculture and
satellite remote sensing-based soil-vegetation indices evaluations for agricultural
land condition assessments is the key target of this research. Therefore, land
suitability assessments can be performed using the multicriteria decision method
(MCDM). Such evaluation provides information about specific land use potentials
and constraints. The MCDM becomes more suitable when incorporating geospatial
references. In recent years, computing technologies combined with GIS have
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enabled geospatial references using MCDM-land suitability evaluations. Further-
more, the MCDM, combined with linear combination and fuzzy set theory, has the
potential to reduce subjectivity in the assessment of results. Several approaches to
the MCDM that utilize equal-weighted linear combinations or fuzzy membership
systems have been applied to conduct land suitability evaluations (Olivero et al.
2011; Elsheikh et al. 2013; Kazemi and Akinci 2018; Habibie et al. 2019). In
addition, for sustainable land resource management, the Food and Agriculture
Organization (FAO) has proposed guidelines for land evaluation (Food and Agri-
culture Organization 1976). According to the guidelines, land is classified into four
categories: highly suitable, moderately suitable, marginally suitable, and not suit-
able. Additionally, the equal-weighted linear combination-fuzzy overlay technique
in the GIS platform has the capabilities needed to overcome these limitations by
applying the required calorie ratio (FAO recommended) to prepare land suitability
assessments for smart agricultural practices. However, there is a lack of datasets in
some areas of developing regions where assessments of land suitability are really
challenging. In addition, recent datasets of geographic information system (GIS)
have limitation, especially land uses, drainage, and lack of soil sampling information
for soil nutrients in a distant time period.

It is worth mentioning that quick and accurate land suitability assessments can aid
in the improvement of yield prediction models. Regarding the judgment of the
prediction of yield using vegetation indices (VIs), it is the most straightforward
approach to establishing empirical relationships between ground-based yield mea-
sures and VIs (Tucker 1979; Das et al. 2020; Romano et al. 2015). In this regard,
satellite remote sensing technologies and GIS applications for monitoring crops have
the potential to establish timely assessments of changes in the growth and develop-
ment of crops on regional scales (Campos et al. 2018). The yield prediction is also
helpful for making decisions on regional food security policies and production
inventories to understand the availability of field crop.

Additionally, local farmer’s perceptions and their assessment of land suitability
can differ from scientific approaches due to the much broader contextual implica-
tions of the former and how they are often framed. This often results in differences in
perceived problems and the required solutions (Essougong et al. 2020). In most
cases, developing location-specific descriptions by soil sampling and analysis is
expensive and challenging. Following this concern, advanced and affordable smart
satellite remote sensing multicriteria technologies that consider climate factors are
required for land suitability and accuracy assessments.

Therefore, the purpose of this research was to develop a soil-vegetation intent
land suitability assessment model based on multicriteria decision-making analysis to
determine optimal land distributions according to soil-vegetation indices to ensure
elevated productivity, and a yield prediction method was developed using vegetation
indices. A methodology that can be applied across various countries is proposed to
reduce the complexities of farmland evaluation practices.
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3.2 Materials and Methods

The proposed method utilizes a GIS-based multicriteria analysis to develop a soil-
vegetation index-associated suitability analysis by exploiting satellite remote sens-
ing for land suitability assessment and consists of three major steps (Fig. 3.1): the
calculation of soil-vegetation indices for land suitability mapping of diversified
crops, regression analysis using ground truth yield data for validation, and the
utilization of a yield prediction model to develop a yield map. ArcGIS 10.4®

(ESRI, Boston, CA) software was used for criteria aggregation, data preprocessing
and calculation standardization, weight determination by an equal-weighted overlay,
fuzzy membership function, fuzzy overlay, and raster calculation.

Fig. 3.1 Framework for land suitability assessment using satellite remote sensing-derived soil-
vegetation indices
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3.2.1 Study Area

The study area is located between 25�140 and 26�020 N latitudes and 88�220 and
89�540 E longitudes in the northern part of Bangladesh and has a total area of 8260
km2. The study was conducted in the Dinajpur, Rangpur, Kurigram, and Gaibandha
districts of the Rangpur division where the inhabitants derive their livelihoods from
agriculture (Fig. 3.2). The area consists of 36 administrative units with an overall
population of 11,498,000 (Bangladesh Bureau of Statistics (BBS) 2011). The
population is economically active in agriculture; nevertheless, agronomic land use
is highly inconsistent due to climatic factors, soil property issues, water infiltration,
environmental resources, and local socioeconomic conditions. Based on weather

Fig. 3.2 Study area: northern part of Bangladesh, four districts: Dinajpur, Rangpur, Gaibandha,
and Kurigram

3 Agricultural Land Suitability Assessment Using Satellite Remote. . . 69



data, the minimum and maximum mean annual temperature varies between 8.47 �C
and 36.3 �C. The annual average rainfall recorded is 765–1233 mm, with a high
humidity in the range of 41–77% (Bangladesh Bureau of Statistics (BBS) 2018). The
elevation ranges from 5 to 30 m above sea level.

3.2.2 Image Acquisition

Landsat 8 is the most recently launched Landsat satellite and carries the Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments. OLI collects
data in the visible, near-infrared (NIR), and shortwave infrared (SWIR) spectral
bands and in a panchromatic band. These two sensors provide seasonal coverage of
the global landmass at a spatial resolution of 30 m (visible, NIR, and SWIR), 100 m
(thermal), and 15 m (panchromatic). The 100 m TIRS data are registered to the OLI
dataset to create radiometrically, geometrically, and terrain-corrected 12-bit data
products. Images were acquired from 2017 to 2020. In this study, all satellite data
were downloaded from the United States Geological Survey (USGS). The image
was acquired (less than 10% cloud cover) in growing stage of the specific crop cycle
(dry season irrigated rice).

3.2.3 Digital Image Preprocessing

All satellite images were first processed by resampling the band resolution at 30 m
and then mosaicked and masked. Subsequently, an algebraic raster operation and a
radiometric calibration as well as geometric and atmospheric corrections were
applied to the remote sensing images using ArcGIS 10.4®. Image acquisition was
performed for each band. After that, all selected bands were converted to a 30 m
resolution using a resampling technique to ensure a similar cell size and data
uniformity. The average reflectance values were calculated for the study area in
each band using the raster calculator tool to compensate for the spatial variability to
minimize the bias. Three different blocks collected during related time periods were
mosaicked to cover the large study area.

3.2.4 Criteria Aggregation for Land Fertility Assessment

Three vital layers were developed by satellite data, and five vegetation indices were
used as the input parameters to develop the land suitability analysis (Fig. 3.3). The
most important land and soil affiliated indices, SAVI, SARVI, ARVI, MSAVI, and
OSAVI, were utilized to describe land conditions (Table 3.1). In addition, the slope
and elevation layers were used as representative land conditions. The land surface
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Fig. 3.3 Criteria: (a) elevation, (b) slope, (c) LST, (d) SAVI, (e) ARVI, (f) SARVI, (g) MSAVI,
(h) OSAVI
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temperature (LST) was taken as another influential criterion of agriculture land
suitability assessment.

Elevation

Elevation is an important factor that plays a vital role in the variability of plant cover
and causes temperature changes, particularly in highland areas. Areas with higher
topographic elevations are more affected by rainfall and soil erosion (Bozdağ et al.
2016). Soil erosion is the alarming condition of agriculture field crop. Also, it is the
main problems of agricultural development, such as landslides and flood events;
these disasters have been severely influenced by the soil erosion process
(Senanayake et al. 2020). Most of the study area is plains land, and the elevation
is less than 131 m (Fig. 3.3a). The elevation data were extracted using a digital
elevation model (DEM) and were downscaled to a 30 m resolution.

Slope

Slope is a vital topographic element for indicating suitable farmland in assessments.
Slope indicates many landscape processes, such as soil water content, erosion
potential, runoff, and surface and subsurface flow velocity. The thickness of the
soil layer decreases with the increasing slope (Ashford et al. 1997). The slope
gradient has an impact on the runoff and soil loss: the greater the slope gradient,

Table 3.1 List of data and original data sources for land suitability analysis

No Data Native format Description Source

1 Land use map 92 small vectors
Blocks (point, line,
polygon, and tabular)

Scale at 1:25,000 m 2019, SoB,
Bangladesh

2 Elevation map Raster Extracted from
30 m resolution

2020, STRM

3 Slope map Raster Derived from 30 m
resolution

2020, STRM

4 Land surface tem-
perature (LST)

Raster Derived from 30 m
resolution

2020, Landsat
8

5 SAVI map Raster Derived from 30 m
resolution

2020, Landsat
8, USGS

6 ARVI map Raster Derived from 30 m
resolution

2020, Landsat
8, USGS

7 SARVI map Raster Derived from 30 m
resolution

2020, Landsat
8, USGS

8 MSAVI map Raster Derived from 30 m
resolution

2020, Landsat
8, USGS

9 OSAVI map Raster Derived from 30 m
resolution

2020, Landsat
8, USGS
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the higher the potential for runoff and soil loss (El Kateb et al. 2013). The slope was
developed by using data from the original Shuttle Radar Topography Mission
(SRTM) and the DEM. The DEM was downscaled to a 30 m resolution. The
Universal Transverse Mercator (UTM) projection system and WGS84 datum were
used as rectifying agents in ArcGIS. The slope was calculated from the maximum
rate of change between each cell and its neighbors. Every cell in the output raster had
a slope value. Field crops generally require flat land; only a slight slope between 0%
and 8% is resistant to erosion (Zolekar and Bhagat 2015). When the slope gradient is
very steep (40%), soil sediment losses remain at the same high levels after cultiva-
tion abandonment because slope gradient is the main factor controlling soil erosion
(Koulouri and Giourga 2007). In the study area, the slope range was under 10%
(Fig. 3.3b), which is a suitable condition for most farming practices (Nahusenay and
Kibebew 2015; Novara et al. 2017).

Land Surface Temperature (LST)

The LST (Fig. 3.3c) was calculated for selected land areas using temporal informa-
tion from Landsat 8 OLI images when less cloud coverage was present
(Jeevalakshmi et al. 2017). From 2017 to 2020, the LST data received from the
obtained images ranged between 17 �C and 33 �C. The LST calculation was based
on the moving average method. A single raster was formed from multiple years of
raster datasets as the multiple predictions’ raster.

LST was calculated for the cropland using temporal information from Landsat
8 OLI that was selected during period of less cloud coverage. Two steps were
required to calculate the LST; first, the NDVI was calculated for the given time
period.

NDVI ¼ ρNIR � ρRED
ρNIR þ ρRED

ð3:1Þ

After that, the resulting NDVI value was used to analyze the proportion vegetation
(PV), which can be expressed as follows:

PV ¼ NDVI� NDVImin

NDVImax � NDVImin

� �2

ð3:2Þ

After calculating the PV, the land surface emissivity (ελ) could be expressed as
follows:

ελ ¼ 0:004 � PVþ 0:986 ð3:3Þ
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Second, the thermal bands are included in band 10 and band 11 from the Landsat
8 imagery. The thermal bands were converted to digital numbers (DN) to estimate
the radiance. The spectral radiance could be expressed as follows:

Lλ ¼ MLþ QCAL þ AL

Lλ ¼ 0:0003342 � Band10þ 0:1 and Lλ ¼ 0:0003342 � Band11þ 0:1

Lλ ¼ 0:0003342 � Band10þ 0:1 and Lλ ¼ 0:0003342 � Band11þ 0:1 ð3:4Þ

where Lλ is the TOA spectral radiance at the sensor aperture, ML is the band-specific
multiplicative rescaling factor from the metadata, QCAL is the quantized and cali-
brated standard product pixel value (DN), and AL is the band-specific additive
rescaling factor from the metadata. Then, the brightness temperature (BT) could be
expressed as follows (Jeevalakshmi et al. 2017):

BT ¼ K2
ln K1=Lλð Þ þ 1½ � � 273:15 ð3:5Þ

where BT is the satellite brightness temperature (�C); K2 is the calibration constant
2 (K), where the band-specific thermal conversion constant is taken from the
metadata; and K1 is the calibration constant 1 (K), where the band-specific thermal
conversion constant is taken from the metadata. Finally, LST was calculated and
expressed as follows (Jeevalakshmi et al. 2017):

LST ¼ BT

1þ λ�BT
ρ

� �
� ln ελ

ð3:6Þ

where λ is the average wavelength of band 10; ελ is the emissivity calculated from
Eq. (3.6); and ρ is (h * c

σ ), which is equal to 1.438 � 10�2 mK, where σ is the
Boltzmann constant (1.38 � 10�23 J/K), h is Planck’s constant (6.626 � 10�34 J s),
and c is the velocity of light (3 � 108 m/s).

Soil-Adjusted Vegetation Index (SAVI)

Soil has a unique spectral signature that differs from that of other types of land cover.
In the visible and near-infrared zones, reflectance increases in proportion to increases
in wavelength. However, the rate of increase is affected by various factors. Soil
moisture and organic matter may lower the soil reflectance. The association between
red and near-infrared reflectance remains constant for different soil type physiogno-
mies. When the moisture content changes, the two values are related and have a
linear relationship. This relationship is very specific for each type of soil. SAVI is
therefore useful for monitoring soils. Furthermore, SAVI is a modification of the
Normalized Difference Vegetation Index (NDVI), which corrects for the influence of
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soil brightness when the vegetation cover is low (Jiang et al. 2006). SAVI (Fig. 3.3d)
was extracted from Landsat 8 OLI imagery by a mask for the study area. Datasets
were acquired from 2017 to 2020. These datasets were used to build a single raster
using map algebra in the ArcGIS platform.

To reduce the soil background effect, modified indices were proposed using the
soil adjustment factor L to account for first-order soil background variations and
obtain the SAVI (Huete 1988). SAVI can be expressed as follows:

SAVI ¼ ρNIR � ρRED
ρNIR þ ρRED þ L

1þ Lð Þ ð3:7Þ

where ρNIR is the reflectance value in the near-infrared band, ρRED is the reflectance
value in the red band, and L is the soil brightness correction factor. An L value of 0.5
in the reflectance space was found to minimize soil brightness variations and
eliminate the need for additional calibration for different soils. The described
SAVI value was 0.798 to �0.302 for the study area (Fig. 3.3d).

Atmospherically Resistant Vegetation Index (ARVI)

The ARVI (Fig. 3.3e) is obtained using a self-correction process for the atmospheric
effect on the red channel, using the difference in the radiance between the blue and
red channels to correct the radiance in the red channel due to the excellent atmo-
spheric resistance of the ARVI (Somvanshi and Kumari 2020).

ARVI ¼ ρNIR � ρRED � γ ρBlUE � ρREDð Þð Þ
ρNIR þ ρRED � γ ρBlUE � ρREDð Þð ð3:8Þ

where γ depends on the aerosol type. A good default value is γ ¼ 1 when the aerosol
model is not available. ARVI is resistant to atmospheric effects due to its self-
correction process. This index uses the difference in the radiance between the blue
and red bands to correct the radiance in the red band. Simulations show that ARVI
has a similar dynamic range as SAVI, but on average, its sensitivity to atmospheric
effects is four times less than that of NDVI. The ARVI value fluctuated between
0.886 and �0.662 (Fig. 3.3e).

Soil-Adjusted and Atmospherically Resistant Vegetation Index (SARVI)

SARVI has a similar dynamic range to NDVI but is four times less sensitive to
atmospheric effects than NDVI. SARVI performs much better for moderate- to
small-sized aerosol particles (e.g., continental, urban, or smoke aerosol) than for
large particles. Consequently, a single combination of blue and red channels in
ARVI calculations may be used in all or most remote sensing applications (Kaufman
and Tanre 1992).
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SARVI ¼ 1þ Lð Þ ρNIR � ρRED � γ ρBlUE � ρREDðð Þð Þ=
ρNIR þ ρRED � γ ρBlUE � ρREDð Þð Þ þ Lð Þ ð3:9Þ

where L is a correction factor similar to that in the SAVI calculation and γ is similar
to that in the ARVI calculation. SARVI can minimize both canopy background and
atmospheric effects (Haboudane et al. 2004; Kim et al. 1994). In this research, the
SARVI value was found to range from 0.679 to �0.397 (Fig. 3.3f).

Modified Soil-Adjusted Vegetation Index (MSAVI)

Richardson and Wiegand (1977) proposed a modified secondary Soil-Adjusted
Vegetation Index (MSAVI), which can be expressed as follows:

MSAVI ¼ 0:5 � 2ρNIR þ 1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρNIR þ 1ð Þ2 � 8ρNIR � ρRED Þ

q� �
ð3:10Þ

MSAVI does not rely on the soil line principle and has a simpler algorithm; it is
mainly used in soil organic matter analysis, drought monitoring, and soil erosion
analysis. In addition, it is useful for plant growth analyses, desertification studies,
grassland yield estimations, and leaf area index (LAI) assessments. In the study area,
the MSAVI value was observed to be between +1 and �1 (Fig. 3.3g).

Optimized Soil-Adjusted Vegetation Index (OSAVI)

The Optimized Soil-Adjusted Vegetation Index (OSAVI) is a newly developed
alternative that can accommodate greater variability due to high soil background
values (Mao et al. 2020). OSAVI does not depend on the soil line and can eliminate
the influence of the soil background effectively. However, the applications of
OSAVI are not extensive; it is mainly used for the calculation of aboveground
biomass, leaf nitrogen content, and chlorophyll content (Gitari et al. 2019).

OSAVI ¼ ρNIR � ρRED
ρNIR þ ρRED þ X

ð3:11Þ

where X ¼ 1.6. OSAVI is mainly used for the calculation of aboveground biomass,
leaf nitrogen content, chlorophyll content, etc. The observed value was between
0.531 and �0.201 (Fig. 3.3h).
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3.2.5 Data Aggregation

Pattern Analysis

Several criteria were used for pattern analysis, which required pattern analyses from
multiple years or months of data to form a predicted raster for reclassification. The
single raster-based calculation was not reliable, nor did it provide enough datasets.
This section shows several criteria from multiple years of data (2017–2020) for
building a predicted raster for LST, SAVI, ARVI, SARVI, MSAVI, and OSAVI.
The following section introduces the pattern analysis for multitemporal datasets into
a single raster.

Moving Average

The moving average was processed after completing the digital image processing
steps. The moving average was calculated in each year and can be expressed as
follows:

MAn ¼
Pn
i¼1

Di

n
ð3:12Þ

where D is the number of data points in the raster cell and n is the amount of data to
average.

Multiple Predicted Raster

As a part of the point pattern analysis, a single predicted raster was made. After that,
LST, SAVI, ARVI, SARVI, MSAVI, and OSAVI were computed from 2017 to
2020. The basic extent encompassed the overall density pattern. This is basically the
ratio of the observed number of single predicted rasters of points (r) to the study
region area (a) and referred to as the multiple predicted raster (MPR). The MPR was
applied as a criterion for land suitability analysis.MPR can be expressed as follows:

MPR ¼ r
a

ð3:13Þ

where r is the ratio of the observed number of single predicted raster points and a is
the area of the study region.
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Land Use/Land Cover

Land use data enable the estimation of an area’s coverage with vegetated areas,
settlements, forests, and water bodies. Land use data were collected from the Survey
of Bangladesh (SoB), which was split into 92 blocks. After aggregation in the
ArcGIS platform, the data were used to develop a more accurate land use/land
cover (LULC) map for the land fertility assessment. In this study, rivers, forests,
water bodies, and settlements were considered restrictions in the analysis. Subse-
quently, after excluding the constraints, only agricultural land was considered for
land evaluation. Agricultural land was subclassified into cultivated land (80%),
uncultivated land (0.5%), and vegetated land (19%) (Fig. 3.2).

3.2.6 Land Fertility Assessment

The weighted overlay was used to prioritize the weights of each criterion to generate
a land fertility assessment map. The reclassified raster data layers were combined
with the weighted overlay in ArcGIS®. First, the combination criteria were input as
equally weighted linear combinations. Second, the land suitability analysis was
carried out by a fuzzy membership function, fuzzy reclassification, and fuzzy
overlay to evaluate the consistency of the two outcomes.

Map Development by Weighted Linear Combination

First, reclassification was conducted to interpret the raster data by substituting a
single value as the new value or by categorizing the ranges of values into a single
value. Each criteria source map was reclassified into four classifications (Table 3.2).
Land suitability analysis was conducted using different classification categories
proposed by the FAO. As suggested by the FAO’s framework for land evaluation,
the first class was designated as suitable (S) or not suitable (N). The suitability
classification aimed to show the suitability of each land unit for crop production. In
practice, three classes, namely, S1, S2, and S3, are typically used to identify land that
is highly suitable, moderately suitable, and marginally suitable, respectively. The
analysis was built using the aforementioned criteria and reclassified into four classes.
Finally, the classes were found based on their weighted linear combination.

Weighted Overlay ¼
Xn
i¼1

Ci �Wn ð3:14Þ

where Ci is each criterion (i) that has been reclassified and Wn is the number of data
(n) that were weighted.
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Map Development by the Fuzzy Membership Function

The fuzzification process had no sharply defined boundaries that characterized the
imprecision of the classes. In this process, each value of the phenomenon central to
the core of the definition of the set was set to 1. Those values that were not part of the
set were set to 0. Those values that fell between these two extremes were within the
transitional zone of the set, which was defined as the boundary (Olivero et al. 2011;
Zadeh 1965; Bellman and Zadeh 1970; Mitchell and Cohen 2014). In the present

Table 3.2 Criteria reclassification for weighted linear combination

Criteria
Suitability
class Subcriteria Reference

Slope S1 0–8% Zolekar and Bhagat (2015), Gitari et al. (2019),
Shimoda et al. (2018)S2 8–15%

S3 15–25%

N >25%

S1 0–25 Bozdağ et al. (2016), GRiSP (2013), Yalew
et al. (2016)Elevation S2 25–125

S3 125–250

N >250

S1 20–25 Jeevalakshmi et al. (2017), Ceglar et al. (2018),
Samanta et al. (2011)LST S2 18–20

S3 15–18

N 9–15, >25

S1 0.372483–0.797756 Huete (1988), Ren and Feng (2014), Venancio
et al. (2019)SAVI S2 0.217838–0.372483

S3 0–0.217838

N �0.301941–0

ARVI S1 0.293275–0.885854 Somvanshi and Kumari (2020), Kaufman and
Tanre (1992), Sonobe et al. (2018)S2 0.1542–0.293275

S3 0–0.1542

N �0.662108–0

SARVI S1 0.301197–0.671395 Kaufman and Tanre (1992), Svinurai et al.
(2018), Cho and Skidmore (2008)S2 0.301197–0.16658

S3 0.16658–0

N �0.39713–0

S1 0.752112–1 Richardson andWiegand (1977), Ren and Feng
(2014), Ren et al. (2018)MSAVI S2 0.752112–0.443157

S3 0.443157–0

N �1–0

S1 0.245221–0.526082 Mao et al. (2020), Ren and Feng (2014),
Gilabert et al. (2002)OSAVI S2 0.145221–0.248311

S3 0–0.145221

N �0.201272–0
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study, fuzzy membership classification was used to accommodate the high uncer-
tainty of the scoring methods in assigning the suitability classes; several fuzzy
membership functions were used for normalization. For this research, fuzzy func-
tions were determined based on references and a literature review (Table 3.3).

Out of the seven varieties of fuzzy membership functions available, three fuzzy
functions were used in this study considering ecological criteria: the fuzzy small,
Gaussian, and fuzzy linear functions. These functions generate continuous fuzzy
classifications under standardized criteria. The reclassification tool in ArcGIS
enables the transformation of categorical data to range from 0 to 10 and then divides
the resulting transformed data by 10 to derive a 0 to 1 scale. The equations for the
fuzzy small (Eq. (3.15)), fuzzy linear (Eq. (3.16)), and fuzzy Gaussian functions
(Eq. (3.17)) are as follows:

μ xð Þ ¼ 1

1þ x
f 2

� � f 1
ð3:15Þ

The fuzzy small transformation function was used when small input values were
more likely to be members of the set. The criterion slope was followed by a fuzzy
small function in this research.

μ xð Þ ¼ e �f 1 x�f 2ð Þ2ð Þ ð3:16Þ

The layers of SAVI, ARVI, SARVI, MSAVI, and OSAVI were each followed by
a fuzzy linear transformation function that related to a linear function between the
user-specified minimum and maximum values for reclassification.

μ xð Þ ¼ f xð Þ ¼
0

x� a
b� a
1

8><
>:

x � a

a < x < b

x � b

ð3:17Þ

The fuzzy Gaussian function converts the primal values into a normal distribu-
tion. If the input values decrease in membership, they move away from the midpoint.
The midpoint of the fuzzy Gaussian function was set to 1 (Purnamasari et al. 2019).
The elevation and LST layers were analyzed under the fuzzy Gaussian membership
function.

In the fuzzy small and fuzzy linear membership functions, the control point
included a midpoint (f2) and a spread (f1). The midpoint was a specific point that
had a 0.5 value of membership in the large and small functions. Gaussian functions
are determined by the user based in the references (ESRI, Boston, CA). The spread
was generally allocated a number between 1 and 10. The fuzzy membership curve
became steeper for higher spread values. The fuzzy linear transformation function
applied a linear function between the minimum and maximum values. Any value
below the minimum was determined to be 0 (not a member), and any value above the
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maximum was 1 (a member) (Fern et al. 2018). To analyze the relationships and
interactions between all the sets for the eight criteria in the overlay model, fuzzy
overlay techniques were used. The available fuzzy set overlay techniques in ArcGIS
are fuzzy And, fuzzy Or, fuzzy Product, fuzzy Sum, and fuzzy Gamma. Each of
these techniques described the cell’s membership related to the input sets. In this
study, the fuzzy Gamma overlay assisted in developing suitability maps for three
identical seasons, which were determined based on references and a literature review
(ESRI, Redlands, CA).

3.2.7 Validation Using Ground Truth Data

The detected fertile zone was verified by ground reference data. The time series
datasets played a vital role in developing and validating the yield prediction models.
In Bangladesh, nearly 80% of the total land is allocated solely to rice cultivation
(Mottaleb et al. 2018). Additionally, in the northwestern part of the country, approx-
imately 70% (Acharjee et al. 2017; Alamgir et al. 2020; Zinat et al. 2020) of the land
is cultivated with dry season irrigated rice (boro rice). To facilitate further analysis,
the major rice crop was carefully chosen for approval. The suitable area was verified
by ground truth yield data. The yield data of dry season irrigated rice were collected
from the Department of Agricultural Extension (DAE), Ministry of Agriculture,
Bangladesh, for the 36 subdistricts in 2017–2020 to evaluate the accuracy of the land
suitability analysis (Figs. 3.4 and 3.5). After preparing the data in Microsoft Excel®,
the correlations among the five selected indices were evaluated.

3.2.8 Yield Prediction and Analysis

The performances of the yield prediction models were examined by field data. After
the correlations among the five selected vegetation indices were established, the
yield map was developed. Simple and multiple regression analyses were carried out
between the mean values of the vegetation indices and the ground reference data of
the dry season irrigated rice to determine the best-fitted models for rice production.
These data were classified to evaluate the production that occurred between 2017
and 2020. The SAVI, ARVI, SARVI, MSAVI, and OSAVI values were aggregated
into a time series pattern (Appendix). The yield data were compared through
regression. The 5 vegetation indices values were collected from reference points in
the 36 subdistricts. Ground truth data information was obtained from the 36 sub-
districts, and the yield was reported in metric tons per hectare (MT/ha).
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3.3 Results

3.3.1 Land Suitability Analysis

The weighted linear model was used to prioritize the weights of each criterion to
generate the land suitability assessment. First, the variables were analyzed as equally
weighted linear combinations. Second, the suitability assessment was carried out by

Fig. 3.4 Ground reference information points in 36 subunits
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a fuzzy membership function to verify the consistency of the two procedure results
(Table 3.4). The land fertility analysis (Fig. 3.6a) with equal weights showed that
43% of the land (1832 km2) was highly suitable, 41% of the land (1747 km2) was
moderately suitable, and 10% of the land (426 km2) was marginally suitable. In
addition, the restricted zone was defined as an unsuitable area. In this research, the
unsuitable area was found to cover 6% (256 km2). However, the land suitability
analysis using the fuzzy membership function (Fig. 3.6b) showed that 48% (2045
km2) of the land area consisted of the most suitable area, 39% of the land (1661 km2)
was moderately suitable, and 7% of the land (298 km2) was marginally suitable. In
addition, restricted areas accounted for 6% of the land area. In fuzzy overlay
analysis, 256 km2 of the area was classified as fallow land that is not suitable for
cultivation.

3.3.2 Yield Estimation

The predictors derived from the satellite imagery in the form of spectral bands or
vegetation indices (SAVI, ARVI, SARVI, MSAVI, and OSAVI) were the most
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Fig. 3.5 Comparison of different indices and ground reference information points in 36 subunits

Table 3.4 Percentage and area of each land suitability analysis

Classification

Suitability assessment by equal-
weighted linear combination

Suitability assessment by fuzzy
membership function

Percentage (%) Area (km2) Percentage (%) Area (km2)

Highly suitable (S1) 43 1832 48 2045

Moderately suitable (S2) 41 1747 39 1661

Marginally suitable (S3) 10 426 7 298

Not suitable (N) 6 256 6 256
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effective spectral parameters for predicting rice yield (Fig. 3.7). In addition, the
individual index values were extracted from the ground truth information (Figs. 3.4
and 3.5) for the subdistricts that were located in the highly suitable areas. A trend line
approach was used to verify the index influences at different study points (Fig. 3.8).
Regression analysis was performed between the vegetation indices and the observed
yield. The SAVI, SARVI, ARVI, MSAVI, and OSAVI values were obtained from
satellite imagery from 2017 to 2020 (Table 3.5). The results showed good accuracy
in the regression analysis using SAVI (R2¼ 0.773), ARVI (R2¼ 0.689), SARVI (R2

¼ 0.711), MSAVI (R2 ¼ 0.745), and OSAVI (R2 ¼ 0.812) (Fig. 3.9). From the
multiple regression model, it was observed that using more than one variable for the
yield prediction increased the model accuracy by enhancing the R2 value. However,
the best-fitted models were obtained using the SAVI-ARVI-SARVI-MSAVI-
OSAVI composite vegetation index. The yield prediction model with the composite
index had a goodness of fit of R2 ¼ 0.839. The model was used to estimate the yield
in the time series dataset (Table 3.6).

The developed yield map indicated that in 2017, the maximum yield was 4.59
MT/ha (Fig. 3.10). Furthermore, in 2018 and in 2019, it was 4.9 MT/ha and 5.08
MT/ha, respectively. For 2020, the predicted yield range appeared to be between
0.269 MT/ha and 4.537 MT/ha.

3.4 Discussion

This research provided a comprehensive strategy to create agricultural land use plans
for cultivation considering suitable conditions, which were derived from satellite
remote sensing data. Previously, much of the research conducted only reported land
suitability for site-specific plans or single-cropping plans (Noorollahi et al. 2016;
Sulaiman et al. 2019). However, this research attempted to develop an overall land

Fig. 3.6 Suitable classes of land suitability analysis using soil specified remote sensing data. (a)
Equal-weighted overlay. (b) Fuzzy overlay
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suitability assessment using soil-vegetation representative variables that extracted
only satellite remote sensing data from the GIS platform when field soil sampling is
inconvenient and expensive. Applying only remote satellite datasets to assess
suitable land conditions was a source of concern that added a new feature to
MCDM-land suitability analyses. In this study, the reliability of five vegetation
indices was verified by a regression analysis that incorporated ground truth yield
data, and the results were used for yield map preparation. Vegetation phenology
analyses have potential (Habibie et al. 2019; Das et al. 2020) in estimating yield
prediction with good accuracy in highly suitable areas. In addition, two topological
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Fig. 3.7 Comparison of actual yield and predicted yield for different indices: (a) SAVI (b) ARVI,
(c) SARVI, (d) MSAVI, (e) OSAVI

86 R. B. Mustafiz et al.



factors (slope and elevation) and another environmental parameter, LST, were
extracted from the USGS, which ensured better performance of the results in land
use planning.

Either the AHP-based weighted overlay or equal-overlay technique is typically
applied in most studies (Seyedmohammadi et al. 2019; Pilevar et al. 2020; Tashayo
et al. 2020); few studies have conducted fuzzy membership methods employed in the
GIS platform by incorporating with the AHP technique (Radočaj et al. 2020; Amin
et al. 2015; Pilevar et al. 2020). Some studies have conducted farmland assessments
based on soil testing (De Lima et al. 2019; Buthelezi et al. 2013); however,
considering the preparation of a suitable map for agricultural land using soil-
represented remote sensing data for the linear combination of the F-MCDM
approach is a new dimension of this research. A multicriteria decision-making
system was applied to reduce the biases in the analysis. Variation in the land surface
temperature was an important factor in this area and influenced the locations
considered most suitable for crop cultivation. Moreover, atmospherically restricted
vegetation indices (ARVI) and soil-adjusted atmospherically restricted vegetation
indices (SARVI) were used to reduce the biases associated with atmospheric effects.

Most of the suitable lands were located in the northern part, and marginally
suitable lands were mostly located in the northwestern part; this result was likely
due to the influence of high elevation. In addition, unsuitable zones were found
mostly in the eastern part due to the presence of water bodies that are not arable for
cultivation along with other adverse edaphic factors. Previous studies had the
limitation of obtaining inappropriate validation results due to inadequate ground
reference information. In this research, the validation of the results was accom-
plished by physical verification with the corresponding time series yield data of the
most cultivated crop, dry season irrigated rice, which usually grows over 70%
(Pilevar et al. 2020) of the agricultural land area. The suitable conditions were not
verified by the other crop yield data, which was the main limitation of this research.
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Fig. 3.9 Regression analysis for vegetation indices and ground reference time series yield infor-
mation. (a) SAVI, (b) ARVI, (c) SARVI, (d) MSAVI, (e) OSAVI
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Table 3.6 Yield prediction models based on satellite remote sensing-derived soil-vegetation
indices

Soil-adjusted
vegetation indices R2 Simple regression

SAVI 0.773 Y ¼ 2.6021* SAVI + 2.5319

ARVI 0.689 Y ¼ 2.726 *ARVI + 2.8479

SARVI 0.711 Y ¼ 2.5832* SARVI + 2.8184

MSAVI 0.745 Y ¼ 2.024* MSAVI + 2.6627

OSAVI 0.812 Y ¼ 4.0094 *OSAVI + 2.4039

All combination 0.839 Y ¼ 0.534* SAVI + 0.226 *ARVI � 0.907 *SARVI + 0.0922 *
MSAVI + 3.264 * OSAVI

Fig. 3.10 Yield prediction map (MT/ha) (a) 2017, (b) 2018, (c) 2019, (d) 2020
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3.5 Conclusions

This research established a method to identify the most suitable agricultural land by
using the potentiality of satellite remote sensing data integrated with weighted linear
combinations and fuzzy multicriteria analyses in a GIS platform. The multicriteria
decision analysis was performed for suitability assessment using eight criteria: eleva-
tion, slope, LST, and vegetation indices (SAVI, ARVI, SARVI,MSAVI, and OSAVI).
To derive a more accurate result, a land use/land cover layer was also used to mask
restricted zones. The land suitability analysis with equal weights showed that 43% of
the land (1832 km2) was highly suitable, 41% of the land (1747 km2) was moderately
suitable, and 10% of the land (426 km2) was marginally suitable. Conversely, expert
knowledge was also considered, along with consistent assessments when using the
fuzzy membership function; 48% of the land (2045 km2) was highly suitable, 39% of
the land (2045 km2) was moderately suitable, and 7% of the land (298 km2) was
marginally suitable. The yield estimation using SAVI (R2 ¼ 77.3%), ARVI (R2 ¼
68.9%), SARVI (R2 ¼ 71.1%), MSAVI (R2 ¼ 74.5%), and OSAVI (R2 ¼ 81.2%)
showed a good accuracy. In addition, every combination of these five indices
represented the best accuracy (R2 ¼ 0.839), which was used to develop the yield
maps for the corresponding years (2017–2020). The results of the land suitability
evaluation for field crops will be very useful in the decision-making process to increase
production as well as for the sustainable management of agricultural lands. Thus, the
influence of vegetation index evaluations, suitable condition assessments, and yield
prediction models is essential for understanding future land use and production trends
in the agricultural crop sector in Bangladesh, as well as other applications.
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Chapter 4
Land Suitability Assessment for Cassava
Production in Indonesia Using GIS, Remote
Sensing, and Multi-Criteria Analysis

Riska Ayu Purnamasari, Ryozo Noguchi, and Tofael Ahamed

Abstract Sustainable land use is essential for increasing the production of cassava
as a diversified crop for ensuring food security in Indonesia. Understanding the
spatial factors and criteria is required for locating suitable production areas to
increase cassava production. In this study, a spatial model was developed to assess
the suitability of land for supporting sustainable cassava production. The model was
divided into three stages considering different criteria. First, satellite digital images
were processed from Landsat-4 Thematic Mapper (TM), Landsat-8 Operational
Land Imager (OLI), and Sentinel-2 satellites to create vector data layers and a
normalized difference vegetation index (NDVI) database. Second, a spatial analysis
was performed to identify highly suitable areas for cassava production using a
geographical information system (GIS) and the multi-criteria analysis including
the analytical hierarchy process (AHP) and the analytical network process (ANP).
Third, a sustainability evaluation was conducted based on land suitability informa-
tion for a study period of 5 years. Land suitability assessment was performed to
increase cassava production. We found that 43.11% (11,094 ha) of the study area
was highly suitable for cassava production, whereas 30.87% (8233 ha) was moder-
ately suitable and 9.83% (2623 ha) was marginally suitable with incorporating AHP
analysis. Moreover, 17.69% (4718 ha) of the land was occupied by residents and
settlements. On the other hand, ANP analysis also conducted to confirm the AHP
results. Although many decision problems are studied through the AHP, however as
the novelty in this study, ANP have added the better decision judgment based on the
expert opinions. This research recommended that the integrated approach of GIS
based on multi-criteria can be extended with satellite remote sensing vegetation
datasets to assess the regional production and site-specific management of cassava
crops.
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4.1 Introduction

Land suitability assessments are important for sustainable land use and for the
selection of potential crops in the changing climates of Indonesia. Indonesia is a
developing country with the fifth largest population in the world (Statistik 2014).
The dependence on rice of increased population as a staple food can create the threat
of food insecurity (Elsheikh et al. 2013). To mitigate this dependency, diversification
through the consumption of local foods, such as cassava, is desirable. Cassava is a
good alternative of rice that poses fewer risks as a root crop and plays an important
role in Indonesia, which is one of the Asian countries to support sustainable local
food (Noerwijati and Budiono 2015) production (Campo et al. 2011; Noerwijati and
Budiono 2015; Feenstra 1997; Ariningsih 2018). Cassava can be easily grown,
cultivated, and distributed to local communities (Kolawole et al. 2010). The benefits
of cassava as a local food could strengthen the food security of developing countries
(Kolawole et al. 2010). In the future, cassava has the potential to become a promising
crop that can adapt to changing climatic patterns due to its low water and soil acidity
requirement compared to rice (FAO 2013; Khumaida et al. 2016). Therefore,
sustainable cassava production in Indonesia must ensure maximum benefits for
growers. While considering the sustainability of cassava production, criteria related
to environment, ecological, economic, and social indicators must be addressed
(Sydorovych and Wossink 2008; Tiwari et al. 1991). Furthermore, food security is
one of the major concern in the context of agricultural sustainability and the
sustainable supply of food for the increasing population (Ahamed et al. 2015).
Sustainable land use for cassava production significantly drives maximizing the
production of cassava to contribute to the food security of Indonesia.

To increase cassava production, suitable areas and ecological conditions must be
identified (Heumann et al. 2011). Such important tasks associated with increasing
the production of cassava can be addressed through spatial analyses of land suit-
ability. Suitability classification reflects the suitability of each land unit for cassava
production. In the Food and Agriculture Organization’s (FAO 1976) framework for
land evaluation, land was divided into four classes: highly suitable (S1), moderately
suitable (S2), marginally suitable (S3), and not suitable (N). Spatial assessments of
land suitable for cassava production could serve as a starting point for sustainability
evaluations. Additionally, interactions between suitability and sustainability have
been reported in the FAO’s international framework for evaluating sustainable land
management. Environmental factors deemed the suitability which can reflect the
level of sustainability for the same land use over a period of time.

As a spatial tool, geographic information systems (GIS) have been used to
conduct spatial analyses of suitability for various purposes, especially land suitabil-
ity (Ferretti and Pomarico 2013; Malczewski 2006; Smyth and Dumanski 1993). In
addition, applications of remote sensing in agriculture include several aspects such
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as plant phenology, economic features, and land use management (Ceballos-Silva
and Lopez-Blanco 2003). These applications have played an important role and
suggest that remote sensing technology is suitable for monitoring agricultural
activities (Lobell et al. 2015; Purnamasari et al. 2019; Misra et al. 2020). In regional
scales of land suitability assessment, satellite remote sensing provides the opportu-
nity to include phenological information of vegetation. The vegetation information
can help determine the growth information of cassava plantations and help to inform
the decision-making process of land suitability (Vrieling et al. 2011).

Therefore, investigating land suitability depends on multiple criteria and factors
in the decision-making process that can largely be assessed using geospatial datasets
(Ceballos-Silva and Lopez-Blanco 2003). A key step of land suitability assessment
for cassava production is to determine the weight of each factor that influences the
land suitability. The presence of various and multiple criteria makes land suitability
assessment complicated because factors that influence land suitability have unequal
levels of significance (Elsheikh et al. 2013). This inequality of weight also varies by
location, land use, and productivity. The criteria for evaluation is largely dependent
on geographical aspects and the socio-economic status of the country. A common
rule for choosing a weight is very challenging, as growers have perceptions of
weight that match their experiences.

A number of multi-criteria decision rules have been implemented to solve the
land use suitability problems. The decision rules can be classified into multi-
objective and multi-attribute decision-making methods (Malczewski 1999, 2004).
The multi-objective approaches are mathematical programming model-oriented
methods such as linear programming. The single-objective multi-criteria evaluation
has a “goal” and is computed using multi-attribute analysis. The methodology has
several ways to weight the criteria such as ordered weighted averaging (OWA) using
weighted linear combination (WLC), AHP, and analytical network process (ANP).
AHP method introduced by Saaty (1990) has incorporated into the GIS for land use
suitability analysis. As an extension of the criterion importance weighting in WLC,
the OWA allows the decision-maker to specify a degree of risk in their approach to
decision-making (Rinner and Voss 2013; Feizizadeh and Blaschke 2014). AHP
method uses pairwise comparison of each criterion, while WLC directly assigns
the weights of relative importance to each attribute map layer and OWA involves
two-step weighting (criterion and order of weights) (Ahmed 2015).

The AHP is a multiple criteria decision-making process that uses analytical
hierarchies to determine the importance of criteria and their associated relationships
in complex problems (Brandt et al. 2015; Qureshi et al. 2017; Saaty 1990). The AHP
has the advantage of assigning the weights based on the preferences of experts for
the regional concepts. For this reason, the AHP-modeling framework is widely
accepted and has been extensively applied for multi-criteria decision analysis
(MCDA) purposes and utilized in many decision-making problems regarding land
suitability evaluation at a regional level (Zabihi et al. 2015; Akıncı et al. 2013;
Zolekar and Bhagat 2015; Malczewski 2004).

Furthermore, GIS and AHP tools have recently been used for land suitability
assessment and planning for suitable sites of agricultural land use, major crops, and
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local foods (Pramanik 2016; Akıncı et al. 2013; Bunruamkaew and Murayam 2011;
Elsheikh et al. 2013; Zolekar and Bhagat 2015; Zabihi et al. 2015; and Widiatmaka
2016). In land suitability analysis, criteria associated with topographic features,
vegetation, and weather parameters are included. The extension and evaluation of
suitability analysis methods can help to assess and improve the sustainability of crop
production over time. Selecting the most appropriate model for land suitability
assessment is important for current and future land use planning. Several approaches
have been used to conduct land suitability assessments. The FAO land evaluation
framework (1976) was the first procedure to assess local, regional, and national land
use planning. In recent years, computing technologies combined with GIS have
included geospatial criteria to help find solutions for land suitability at the regional
scale. Therefore, GIS, remote sensing, and AHP would be used in land suitability
analysis for various criteria related to ecological conditions or maximizing cassava
production at the regional scale in Indonesia. Thus, the aim of this study was to
develop a spatial model to assess land suitability levels for cassava production by
integrating GIS, remote sensing, and AHP.

4.2 Methodology

The model was built in three stages. First, Landsat-4 Thematic Mapper (TM),
Landsat-8 Operational Land Imager (OLI), and Sentinel-2 Multispectral Instrument
(MSI) satellite digital images and vector data layers were processed to establish
criteria for the suitability analysis. Such criteria included land cover type, topograph-
ical features, and the normalized difference vegetation index (NDVI). Second, we
obtained highly suitable sites for increasing cassava production using GIS and AHP
techniques. Third, we evaluated the sustainability levels of cassava production using
four categories and images from the satellite database (Fig. 4.1). Primary data were
collected through fieldwork involving questionnaires, interviews, and surveys.
Additionally, secondary data from Statistics Indonesia and the Geospatial Informa-
tion Agency of Indonesia were used. A global positioning system (GPS) receiver
was used in our field survey to determine the locations of cassava fields in the city of
Serang and to provide ground truth information (Table 4.1).

4.2.1 Study Area

Geographically, the city of Serang is located at 5990–6220 south and
106,070–106,250 east. The city is bordered by the Java Sea to the north and is
surrounded by the Serang Regency to the east, south, and west. The city of Serang
holds a position as the central government of the Banten Province and is an
alternative area for Indonesia’s state capital, Jakarta, which is located approximately
70 km away. The city includes 6 districts and 46 villages and covers a total area of
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266.7 sq. km. Most of the area is flat land with an elevation of less than 500 m and is
characterized by a tropical climate (Fig. 4.2a–c). The city includes coastal land to the
north, rural areas to the south and north, and an urban area in the middle of the
region. The urban area includes infrastructural facilities that support socio-economic
development.

Residences are also concentrated in the central part of the region. Rice cultivation
constitutes the main land use in the northern area, whereas fields and dry land are
found in the southern area. Cassava is an important alternative source of food,
especially for traditional cuisine that is prepared for traditional events. In the city
of Serang, cassava has historically been grown by poor farmers with minimal input
on poorly managed land. When land is managed poorly, cassava can cause severe
erosion on steep slopes (Howeler 1991).

Land Suitability Analysis

GIS
Reclassification of each Criteria

Weighted Overlay

Suitability Map of Cassava Production

Sustainability Evaluation

Datasets of the suitability criteria

Pairwise Comparison and

Calculation of Weights

Distance
River

RainfallSlope
Land
Cover

Distance
Road

Elevation Soil

Ecological Economic

AHP

NDVI

Time Series Data

Land Use Change

Sustainability Assessments

Social

Fig. 4.1 The framework of site suitability for cassava production
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4.2.2 Criteria for Suitability Analysis

The criteria for the suitability analysis were land cover, slope angles, elevation
levels, soil types, rainfall, distance from rivers, distance from roads, and the vege-
tation index (Fig. 4.3a–h). The details of criteria’s characteristics focusing on Serang
city are given in the following sections.

Land Use/Land Cover

Land use/land cover (LULC) data files describe the vegetation, water, natural
surfaces, and cultural features of a land surface (Akıncı et al. 2013). Most land in
the city of Serang is covered by rice fields. Other areas include fields, settlements,
forests, plantations, and water bodies. The LULC database was divided into four
classes. Class I referred to fields with fertile soils that were easily cultivated for
cassava. Class II land was used for rice cultivation with cassava intercropping. Class
III referred to plantation and forested land on steep slopes, and class IV land was
unsuitable for cassava cultivation due to the presence of settlements, residents, water
bodies, or mangrove forests.

Table 4.1 List of data used and their original sources of land suitability assessment for cassava
production

No Data Description Source

1 Land use map Scale at 1:50,000 2011, Ministry of Environment and
Forestry

2 NDVI map Extracted from 10-m
resolution

2016, Sentinel-2 MSI

3 Slope map Derived from 30-m
resolution

2015, DEM STRM

4 Elevation map Derived from 30-m
resolution

2015, DEM STRM

5 Road map Scale 1:50,000 2005, Indonesia Geospatial Agency

6 River map Scale 1:50,000 2005, Indonesia Geospatial Agency

7 Rainfall map Scale 1:50,000 2010, Indonesia Geospatial Agency

8 Location of market GPS data 2014, Survey

9 Cassava field location GPS data 2014, Survey

10
11
12

Cassava production
Land use/land cover
map 2010
Land use/land cover
map 2016

Statistics data
Derived from 30-m reso-
lution
Derived from 30-m
resolution

2014, Indonesian Statistics
2016, Landsat-4 TM
2016, Landsat-8 OLI
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Fig. 4.2 (a–c) Geographical extent of the study area
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Slope

In the city of Serang, most topography was classified as slopes between 0% and 45%
in steepness. On slopes between 0% and 15%, most crops were easily cultivated. For
cassava cultivation, slope angles were considered when determining cassava land
management. Steep-sloped areas generally undergo soil erosion (Heumann et al.
2011), and soil steepness levels can affect soil formation. Additionally, a slope of
15% is optimal for livestock production and crop planting including the cassava
(FAO 2000). Land variety, in terms of slope angles, constitutes an important factor
in determining the suitability of cassava production areas.

Fig. 4.3 (a–h) Criteria for land suitability analysis for cassava production
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Distance from Rivers

The Cibanten River, the main river in Serang, supplies irrigation water. Other rivers
in the area include the Cilandak, Cikaduan, Cikarang, Cipari, and Pelamunan rivers.
The physical factors associated with water supply, such as the distance from water
bodies, streams, rivers, and irrigation zones, were used to determine suitability levels
for cassava production (Noerwijati and Budiono 2015). Rice fields were found in
plains areas located close to major water resources, such as large rivers and water
bodies, whereas cassava can be planted on sloped areas located farther from water
resources (Statistik 2014).

Fig. 4.3 (continued)
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Rainfall

Serang is characterized by a tropical climate, and significant periods of rainfall occur
throughout the year. The precipitation amount is 1500–2000 mm per year, respec-
tively (Statistik 2014). Cassava can also be intercropped with maize, legumes, or
rain-fed crops in areas of high and well-distributed rainfall (Devendra and Thomas
2002). Cassava can grow in areas that receive as little as 400 mm of average annual
rainfall. However, higher yields have been obtained in the presence of greater water
supplies (FAO 2013). Moisture stress on cassava roots can result in low yields,
especially in years characterized by low rainfall (Devendra and Thomas 2002).
Therefore, irrigation management should be practiced effectively.

Soil Types

The major soil types found in Serang are alluvial, red regosol, red yellow podzolic,
and latosol soils (Wargiono and Sudaryanto 2000). Alluvial soils are mostly used in
rice-based cropping systems, and regosol soils are used for upland rice and dryland
crop cultivation (Wargiono and Sudaryanto 2000). Regosol soils are found in hilly
areas and in the center of mountain slopes. In Java, cassava-growing areas are
generally located where soils classified as Mediterranean, alluvial, podzolic, latosols,
or regosols are found. According to Wargiono, latosol areas are optimal for culti-
vating cassava. Latosol soils have good physical properties and are deep and tolerant
to erosion. However, podzols include low levels of organic matter and tend to erode
easily. Wargiono and Sudaryanto (2000) divided soil types for cassava cultivation
into four classes. Class I includes latosol, gray hydromorphic, and planosol soils.
Class II includes yellow podzolic soils. Class III refers to yellow regosol and red
podzolic soils. Class IV refers to unsuitable soils that consist of gray alluvial
hydromorphic soils with high water contents.

Elevation

In Asia, practically no cassava is grown at an elevation of 1000 m above sea level. In
Indonesia, most cassava-growing areas are located in the lowland humid and
subhumid tropics (Heumann et al. 2011). In some areas, cassava can be grown in
hilly or mountainous areas, but the sustainability of these systems is compromised
when sustained inputs are introduced for maintaining soil fertility and reducing
erosion. Additionally, elevation has a strong effect on temperatures in some areas.
In the city of Serang, elevation ranges from 12.5 m to 375 m. Most of the area is
suitable for cassava production, although the optimal elevation for cassava produc-
tion is approximately 62.5–137.5 m.
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Distance from Roads

The number of vehicles in the city has increased due to economic growth, but road
networks have not been expanded at the same rate. Therefore, traffic congestion in
the city has increased. Regarding socio-economic factors, main roads are needed to
sell fresh cassava at any distance from areas of cultivation. In selecting areas suitable
for cassava production, the distance from roads must be considered because such
distances affect transportation costs for supply processes. Shorter distances between
fields and roads facilitate access to the transportation infrastructure and link farmers
and farming activities to marketing channels (Statistik 2014).

Normalized Difference Vegetation Index (NDVI)

To avoid soil erosion during cassava production, land covered by low vegetation can
reduce the rate of surface runoff. Vegetation index variations were assessed using a
satellite-based measure: the NDVI. The NDVI is a vegetation index that is correlated
with several important biophysical properties and that generates different crop
indices (Ahamed et al. 2013; Elhag 2014). The proportion of vegetative biomass
in the area being sensed or captured in satellite data is important for crop monitoring.
Additionally, crop stages can be determined from NDVI data. In Indonesia, cassava
production begins with planting at various times, but most field harvests occur
during June or July. In this study, the NDVI was calculated for each cassava field
using temporal information from Sentinel-2 MSI images acquired at the end of the
growing period and before the harvest in January or February, because cassava needs
about 7 until 8 months to grow.

4.2.3 Digital Image Processing

We used image data for each criterion. A 1:50,000 scale map of land cover types,
rainfall levels, distances from rivers, soil types, elevations, distances from roads, and
NDVI data was used for the analysis. Basic vector data layers were collected from
the Geospatial Information Agency of Indonesia. Landsat-4 TM, Landsat-8 OLI, and
Sentinel-2 MSI vegetation index (VI) datasets were used for field-level area crop
monitoring in conjunction with NDVI data.

NDVI Computation Technique

The NDVI was proposed by Rouse et al. (1973), and it has become the most popular
indicator for studying vegetation health and crop production. The NDVI is devel-
oped from two important wave bands: the red and near-infrared (NIR) bands. It has
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been widely used for agricultural mapping and yield monitoring. The NDVI is
calculated as follows:

NDVI ¼ RNIR � Rred
RNIR þ Rred

ð4:1Þ

We acquired all available cloud-free Sentinel-2 scenes and calculated the NDVI
from band combinations corresponding to the red and NIR reflections using Band
4 and Band 8. The Sentinel-2 mission combines 2 satellites—Sentinel-2A and
Sentinel-2B—equipped with identical multispectral instruments capable of acquir-
ing data in 13 bands at different spatial resolutions (between 10 m and 60 m). These
satellites provide continuity for the Satellite Pour l’Observation de la Terre (SPOT)
missions of the European Space Agency (ESA).

4.2.4 Reclassification of Criteria

Reclassification technique was used to simplify or change our interpretation of raster
data by changing a single value to a new value or by grouping ranges of values into
single values. Each criteria source map was reclassified into four classifications. The
reclassification used the following suitability classes: highly suitable (S1), moder-
ately suitable (S2), marginally suitable (S3), and not suitable (N) (Fig. 4.4a–h).
Spatial data were converted into raster layers and then processed in ArcGIS® (ESRI,
USA). They were then classified into four classes as integer raster that represented
different suitability levels based on assigned threshold values (Table 4.2) (Tienwong
et al. 2009).

For each of the suitability levels, we chose a suitability score. The suitability score
is a way of computing values across the source layers so that there is a common
standard. All source layer values are placed on the same scale with the same units.
The same scale is used for all individual suitability layers and for the final overall
suitability layer. In this study, we used a score of 9 for highly suitable areas, a score
of 6 for moderately suitable areas, a score of 3 for marginally suitable areas, and a
score of 1 and a restricted value for unsuitable areas.

4.2.5 Land Suitability Assessments

The land suitability assessment for the cassava production model was developed
using the classification categories of land suitability proposed by the FAO (1976).
The suitability classification is designed to determine the suitability of each land unit
for a particular use. In the FAO’s framework for land evaluation, land, the first class,
is designated as suitable (S) or not suitable (N). These suitability classes can then be
further subdivided as needed. In practice, three classes (S1, S2, and S3) are often
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used to identify land that is highly suitable, moderately suitable, or marginally
suitable for cassava production. The AHP application was used to support our
weighted overlay calculations in the GIS environment. The AHP results were
obtained from experts in related fields and from literature reviews. Through this
process, the consistency ratio (CR) was calculated and was used in the land suitabil-
ity analysis. The AHP method was applied to determine the relative importance of all
of the selected criteria and factors (Ahamed et al. 2013).

A set of questionnaires within the AHP framework were developed. In the
questionnaire, respondents can determine the relative importance of each criterion

Fig. 4.4 (a–h) Reclassification of criteria
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with respect to others, for example, the importance of soil with respect to land use,
water, roads, and markets, and vice versa. Sets of questionnaires were disseminated
to five key people in the province with various backgrounds (cassava experts,
agriculture experts, and agriculture planners) during the field survey. The AHP is
widely used by decision-makers and researchers. Calculation of criteria weights is
central in the AHP method and depends on experts’ opinions and determination for
each criterion.

Fig. 4.4 (continued)
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The study results are fully dependent on the applied AHP evaluation, how the
criteria were defined, and how the criteria were measured. The structured interviews
were performed with relevant professionals who were working for the cassava
production in Indonesia for more than 10 years. Through this process, the CR was
calculated and used in the land suitability analysis. The total suitability score (Si) of
each land unit was calculated using the following expression:

Si ¼
Xn
i¼1

Wi � Ri ð4:2Þ

Table 4.2 Reclassification of criteria of land suitability assessment for cassava production

Criteria
Suitability
class Sub-criteria

Percentage area
(%)

Area
(ha)

LULC S1
S2
S3
N

Class I
Class II
Class III
Class IV

11.38
43.27
27.61
17.74

3059
11,631
7422
4767

Slope (%) S1
S2
S3
N

0–8%
8–15%
15–25%
> 25%

83.81
10.25
3.07
2.87

22.352
2.734
818
765

Rainfall (mm) S1 1000–1500 89.22% 23.794

S2 1500–2000 10.78% 2.875

Distance from roads
(m)

S1
S2
S3
N

<1000
1000–2000
2000–3000
>3000

88.31
10.51
1.11
0.07

23.794
2.803
296
18

Distance from rivers
(m)

S1
S2
S3
N

<500
500–1000
1000–1500
>1500

72.4
20.76
4.66
2.18

19.309
5536
1.242
581

Elevation (meters) S1
S2
S3
N

12.5–62.5
62.5–137.5
137.5–212.5
212.5–337.5

76.93
17.14
4.14
1.79

20,517
4571
1104
477

Soil type S1
S2
S3
N

Latosol
Podzolic
Regosol
Alluvial
hydromorphic

37.93
21.36
20.48
20.23

10,115
5698
5462
5395

NDVI S1
S2
S3
N

Vegetation
Rice field
Forest
Water body
settlements

10.06
13.83
43.94
32.16

1829
2514
7986
5845
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Analytical Hierarchy Process (AHP)

Weights were used to determine the priorities of criteria (land cover, distance from
rivers, rainfall levels, distance from roads, slope angles, elevation levels, soil types,
and vegetation index data) and to identify the suitability of different land uses for
cassava production. The resultant AHP weights were used to determine the priority
of each criterion for weighted overlay applications using GIS.

In the first stage of the analysis, we organized elements of the decision model into
a hierarchy that included first level (goal), second level (criteria), and third level
(alternative) elements. The first level involved selecting the best goal. The second
level of the hierarchy considered rules or criteria associated with the goal. The lowest
level considered alternative decisions (Fig. 4.5).

The second phase involved scoring the criteria via pairwise comparisons and
scoring scales of relative importance (Table 4.3). Questionnaires were used to gather
expert opinions on the relative importance of the considered criteria and factors.
Comparative results (for each factor pair) were described as integer values of
1 (equal value) to 9 (extremely different), where a higher number denotes that the

Goal
Goal:

To assess the suitability 

of cassava production

Distance 

from River

NS

RainfallSlope
Land 

Cover

S1 S2 S3

Criteria

Distance 

from Road

Alternative

Elevation Soil NDVI

Fig. 4.5 The AHP framework to select suitable areas for cassava production

Table 4.3 Preference scale for AHP pairwise comparison (Saaty 1989)

Scale Degree of preference Explanation

1 Equal importance Two activities contribute equally to the objective

3 Moderate importance Experience and judgments slightly favor one
activity over another

5 Strong or essential
importance

Experience and judgments strongly favor one
activity over another

7 Very strong importance An activity is favored very strongly over another

9 Extreme importance The evidence favoring one activity over another is
the highest possible order of affirmation

2, 4, 6, 8 Intermediate values between
two adjacent judgments

When compromise is needed

Reciprocals Opposites Used for inverse comparisons
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chosen factor was considered to be more important than other factors to which it was
compared. For example, when comparing land cover and slope angle criteria, a score
of 1 indicates that both were equally relevant to evaluating suitability, and a score of
9 indicates that land cover is more important than the slope angle. All scores were
assembled in a pairwise comparison matrix with diagonal and reciprocal scores
located in the lower left-hand triangle. Reciprocal values (1/3, 1/5, 1/7, and 1/9)
were used where the row criterion was found to be less important than the column
criterion (Table 4.4).

Third, we calculated the matrix and ensured the consistency of the pairwise
comparison criteria. The AHP also provided measurements for calculating normal-
ized values of each criterion and alternatives and for determining the normalized
principal Eigenfactors and priority vectors. The pairwise matrix was calculated and
is given by the following expression:

C11 C12 . . . C1n

C21 C22 . . . C2n

� � � �
� � � �

Cn1 Cn2 � Cnn

2
6666664

3
7777775

ð4:3Þ

The sum of each column of the pairwise matrix was denoted as follows:

Cij ¼
Xn
i¼1

Cij ð4:4Þ

We then divided each element of the matrix by its column total to generate a
normalized pairwise matrix:

Table 4.4 Pairwise comparison for the AHP model among the criteria selected for cassava
production

Soil
Land
cover Elevation Slope Rainfall

Distances
from roads River NDVI

Soil 1 3 5 5 7 9 9 3

Land cover 0.33 1 3 3 7 7 9 1

Elevation 0.2 0.3 1 1 3 5 7 0.3

Slope 0.2 0.3 1 1 3 3 5 0.3

Rainfall 0.14 0.14 0.33 0.33 1 3 3 0.14

Distance
from roads

0.11 0.14 0.2 0.33 0.33 1 1 0.14

Distance
from rivers

0.11 0.11 0.14 0.2 0.33 1 1 0.11

NDVI 0.33 1 3 3 7 7 9 1
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Xij ¼ CijPn
i¼1

Cij

¼

X11 X12 . . . X1n

X21 X22 . . . X2n

� � � �
� � � �

Xn1 Xn2 � Xnn

2
6666664

3
7777775

ð4:5Þ

Finally, we divided the sum of the normalized matrix column by the number of
criteria used (n) to generate the weighted matrix of priority criteria:

Wij ¼

Pn
j¼1

Xij

n
¼

W11

W12

�
�

W1n

2
6666664

3
7777775

ð4:6Þ

The initial consistency vectors were derived by multiplying the pairwise matrix
by the vector of weights:

C11 C12 ⋯ C1n

C21 C22 ⋯ C2n

� � � �
� � � �

Cn1 Cn2 � Cnn

2
6666664

3
7777775
�

W11

W12

�
�

W1n

2
6666664

3
7777775
¼

C11W11þ C12W11þ ⋯ þC13W11

C21W12þ C22W12þ ⋯ þC23W12

� � � �
� � � �

Cn1W1n Cn1W1n � Cn1W1n

2
6666664

3
7777775

¼

V11

V12

�
�

V1n

2
6666664

3
7777775

ð4:7Þ

The principal eigenvector (λmax) was then calculated by averaging the values of
the consistency vector:

λmax ¼
Xn
i

CVij ð4:8Þ

Eigenvalues were calculated by averaging the rows of each matrix. Eigenvalues
were also referred to as relative weights. The largest eigenvalue was equal to the
number of criteria, and when λmax ¼ n, judgments were consistent. Normalized
eigenvalues were generated as weights of priority criteria. The principal value
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suggests that eight criteria were consistent, as the calculation results reveal a
maximum value of 8.34 (Table 4.5). The judgments were also checked to determine
the consistency index (CI), which was calculated as:

CI ¼ λmax � n
n� 1

ð4:9Þ

Here, n is the total number of criteria. Saaty (1989) also introduced the consis-
tency ratio (CR) and compared it to the consistency index and the random index
(RI) value, which is the calculated value for matrices of different sizes (Table 4.6).
The consistency ratio was calculated as:

CR ¼ CI
RI

ð4:10Þ

A lower CR ratio indicates a higher degree of consistency. For further confirma-
tion and understanding about weight and influence among the criteria, ANP is also
employed in this research.

Analytical Network Process (ANP)

ANP is an extension of the AHP and proposed by Saaty (1990). ANP is a nonlinear
structure with bilateral relationships (Azizi et al. 2014). In this research, ANP was
used to obtain the weight of the criteria to compare with the weight from AHP. In the
ANP analysis, first, the construction of a conceptual model was developed to
determine relationships among the criteria and alternatives. If no relationship exists
among the criteria, then there is influence among the criteria and alternatives. The
criteria were compared pairwise by Super Decisions® software to form an
unweighted super matrix. Then, the priorities derived from pairwise comparison
matrices were entered as parts of the columns referred as the evaluation matrix U for
criteria (C1, C2, C3, C4, C5, C6, C7, C8) and alternatives (A1, A2, A3, A4). The
evaluation matrix for the criteria can be expressed as follows:

U ¼

U11 U12 ⋯ U18

U21 U22 ⋯ U28

� � � �
� � � �

U41 U42 � U48

2
6666664

3
7777775

ð4:11Þ

In contrast, the evaluation matrix V in which alternatives (A1, A2, A3, A4) are
evaluating according to the criteria (C1, C1, C3, C4, C5, C6, C7, C8) is expressed as
follows:
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V ¼

V11 V12 V13 V14

V21 V22 V23 V24

� � � �
� � � �

V81 V82 V83 V81

ð4:12Þ

Then, the weighted super matrix is expressed as a function of the evaluation
matrices U and V. The super matrix S should be a probability matrix and irreducible.
The weighted super matrix can be expressed as follows:

Sweighted
0 U

V 0

� �
¼

A1

⋮
A4

C1

⋮
C8

2
666666664

3
777777775

A1 ⋯ A4 C1 ⋯ C8

0 ⋯ 0 U11 ⋯ U18

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 U41 ⋯ U48

V11 ⋯ V14 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
V81 ⋯ V84 0 ⋯ 0

2
666666666664

3
777777777775

ð4:13Þ

After that, limit super matrix is obtained by raising the weighted super matrix to
powers by multiplying the matrix itself (Table 4.8). The limit super matrix can be
expressed as follows:

Slimited ¼ lim
n!/Sweighted ð4:14Þ

Examples of weighted super matrix and limit super matrix are given to show the
relations among the criteria and alternatives for one expert opinion (Tables 4.7 and
4.8). At the end, the weighted overlay approach was used for applying a weight
priority of the criteria to generate a land suitability map for cassava production in the
GIS environment.

GIS Analysis

Suitability assessment criteria were used as the reclassified raster data layers for land
cover, slope angles, elevation levels, soil types, rainfall levels, distance from rivers,
distance from roads, and the vegetation index. All of the reclassified raster data were
combined with weighted overlay tools. This reclassification was used to simplify or

Table 4.6 Random Consistency Index (RI) to determine consistency ratio (CR) (Saaty 1989)

N 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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change our interpretation of raster data by changing a single value to a new value or
by grouping ranges of values into single values. Each criteria source map was
reclassified into four classifications. The classification used the following suitability
classes: highly suitable (S1), moderately suitable (S2), marginally suitable (S3), and
not suitable (N). Spatial data were converted into raster layers and were then
processed in ArcGIS® (ESRI, USA). They were then classified into four classes as
integer rasters that represented different suitability levels based on the assigned
threshold values (Tienwong et al. 2009). Weighted overlays are overlay analysis
tools used to identify the best or most preferable locations for cassava production.
The criteria included in the weighted overlay analysis were not equal in importance.
The weights of key criteria were calculated using the AHP/ANP application. Using
the reclassification and weighted overlay method, a spatial analysis was conducted,
and a suitability map for cassava production was created (Eckert and Shetty 2011;
Gatrell et al. 2011).

4.2.6 Ground Truth Information and Field Survey

Primary data were collected through questionnaires, interviews, and surveys. GPS
data and field survey for cassava production locations were collected in November
2016. Ground references were collected to determine the locations of cassava fields
located in the highly suitable areas of Serang to check the accuracy of the model.

4.2.7 Sustainability Evaluation

Several indicators and frameworks are commonly used for sustainability evaluation
(Ahamed et al. 2015; Von Wiren-Lehr 2001). In this study, we focused on pillars of
agroecological sustainability indicators that are related to ecological, social, and
economic factors and are associated with several criteria, such as availability,
accessibility, affordability, and profitability. The criteria were considered to evaluate
the sustainability of cassava production between 2010 and 2015 (Fig. 4.6).

4.3 Results

In the GIS analysis, the reclassified rasters were used with AHP and ANP weights
and ranked accordingly. The CR was the indicator of judgments to refer to the AHP
weight, whether consistent or not. All the CR value was less than 10% which is
acceptable for AHP analysis. Among the eight sub-criteria identified, the AHP
application ranked soil type as the first priority (34%) followed by land cover
(18%), the vegetation index (16%), rainfall (11%), elevation level (8%), slope
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(7%), distance from roads (3%), and distance from rivers (3%) when selecting
suitable lands for cassava (Table 4.9). The ANP model also included a consistency
test and observed 6.3%, which was also less than 10% to assess the degree of
consistency of the experts. The ANP application ranked soil as the first priority
(36%) followed by land cover (18%), the vegetation index (14%), rainfall (11%),
elevation (8%), slope (6%), distance from rivers (4%), and distance from roads (3%)
(Table 4.9).

The weighted overlay was used for applying a weight priority of the criteria to
generate the land suitability map for cassava production. The reclassified raster data
layers of land cover, slope angles, elevation levels, soil types, rainfall, distance from
rivers, distance from roads, and the vegetation index were combined with weighted
overlay tools and AHP/ANP weights to generate suitability map (Fig. 4.7). A
suitability map for cassava production was created from a weighted overlay, and
we found in the AHP analysis that 41.60% (11,094 ha) of the study area was highly
suitable for cassava production, 30.87% (8233 ha) was moderately suitable, and
9.83% (2623 ha) was marginally suitable. Whereas the result of ANP analysis found
that 44.62% (11,901 ha) of the study area was highly suitable for cassava production,
27.17% (7246 ha) was moderately suitable, and 10.51% (2803 ha) was marginally
suitable. Additionally, the same result of AHP and ANP shows 17.69% (4718 ha) of
the land area was found occupied by residences and settlements (Fig. 4.7 and
Table 4.10). Highly suitable areas for cassava production covered 41.60%
(11,094 ha) of the total area of Serang city. These areas were mainly dry lands
with moderately well-drained soils. Soils in this group were loamy with topsoil that
was leveled and bounded for paddy rice. There is high possibility to use this area for
growing casava after draining to avoid waterlogging. The moderately suitable area
covered 30.87% (8233 ha) of the total area of Serang. These areas were poorly
drained and coarsely textured with alluvial terraces. Marginally suitable areas for
cassava production cannot support cassava plantations. Only 9.83% (2623 ha) of the
land area was categorized as marginally suitable. Deep and coarsely textured soils
positioned on slopes of less than 20% of the mentioned areas. Soil fertility levels
were moderately low. Upland crops and fruit trees are often found with low levels of

Profitability

Farmer 

Income

Productivity

AffordabilityAccessibilityAvailability

Production

Land Use

Population Price

Ecological Social Economic

Sustainability

Distance Market

Pillars

Factors

Sub-
factors

Fig. 4.6 Criteria of sustainability evaluation

4 Land Suitability Assessment for Cassava Production in Indonesia Using GIS,. . . 123



T
ab

le
4.
9

P
ri
or
ity

cr
ite
ri
a
w
ei
gh

ts
ac
co
rd
in
g
to

ex
pe
rt
’s
op

in
io
ns

fo
r
se
le
ct
in
g
la
nd

su
ita
bi
lit
y
in

ca
ss
av
a
pr
od

uc
tio

n

C
ri
te
ri
on

na
m
es

W
ei
gh

ts
of

cr
ite
ri
on

E
xp

er
ts
in
iti
al
s

(E
xp

er
ie
nc
e
of

ex
pe
rt
s,
ye
ar
s)

E
xp

er
tA

E
xp

er
t
B

E
xp

er
tC

E
xp

er
t
D

E
xp

er
tE

M
ea
n

(1
1
ye
ar
s)

(1
0
ye
ar
s)

(2
0
ye
ar
s)

(2
1
ye
ar
s)

(1
5
ye
ar
s)

A
H
P

A
N
P

A
H
P

A
N
P

A
H
P

A
N
P

A
H
P

A
N
P

A
H
P

A
N
P

A
H
P

A
N
P

S
oi
l

0.
35

6
0.
38

7
0.
40

8
0.
43

6
0.
33

9
0.
34

5
0.
35

5
0.
36

1
0.
24

4
0.
24

6
0.
34

0
0.
35

5

L
U
L
C

0.
21

4
0.
22

3
0.
18

1
0.
17

5
0.
19

8
0.
19

8
0.
19

4
0.
19

4
0.
10

2
0.
10

0
0.
17

8
0.
17

8

N
D
V
I

0.
18

4
0.
15

6
0.
17

0
0.
16

5
0.
19

8
0.
19

8
0.
19

4
0.
08

9
0.
06

7
0.
06

4
0.
16

2
0.
13

4

E
le
va
tio

n
0.
10

9
0.
10

0
0.
08

5
0.
06

9
0.
09

9
0.
09

6
0.
09

1
0.
08

9
0.
03

4
0.
03

2
0.
08

3
0.
07

7

S
lo
pe

0.
07

4
0.
05

9
0.
07

2
0.
03

7
0.
08

0
0.
08

0
0.
07

9
0.
07

9
0.
03

8
0.
03

9
0.
06

9
0.
05

9

R
ai
nf
al
l

0.
03

1
0.
03

6
0.
04

2
0.
02

2
0.
04

3
0.
04

0
0.
04

2
0.
03

7
0.
39

8
0.
40

7
0.
11

1
0.
10

8

R
oa
d

0.
01

4
0.
02

2
0.
02

3
0.
01

9
0.
02

4
0.
02

3
0.
02

4
0.
02

4
0.
05

4
0.
05

2
0.
02

8
0.
02

8

R
iv
er

0.
02

0
0.
01

7
0.
02

1
0.
07

8
0.
02

1
0.
02

0
0.
02

1
0.
02

2
0.
06

3
0.
06

1
0.
02

9
0.
04

0

C
R

0.
08

0
0.
08

0
0.
05

8
0.
06

5
0.
03

3
0.
03

9
0.
04

3
0.
04

0
0.
09

1
0.
09

1

124 R. A. Purnamasari et al.



fertility, a lack of water during dry seasons, soil erosion on steep slopes, and high
levels of acidity in some areas.

The 4718-ha (17.69%) area of land that was classified as unsuitable for cassava
production due to the presence of settlements and residences cannot be replaced with
cassava fields. This area included the coastal area in the northern part of Serang and
is characterized by sandy soils with high mineral contents. Although cassava can
grow under high nitrogen (N), potassium (K), and organic matter (OM) application
conditions, to obtain high-quality yields, appropriate management strategies must be
applied to boost cassava production in coastal areas. The weighted overlay map used
to locate suitable cassava production areas could serve as a reference map for
predicting production methods that could support measures to increase local food
production in the city of Serang. According to the GPS locations for cassava
production recorded in November 2016, most cassava-growing areas were concen-
trated in the southern part of the region (Fig. 4.8).

In the sustainability evaluation, several sub-criteria (e.g., land use, production,
population, distance, market, price, productivity, and income) were considered.
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Fig. 4.7 (a, b) Land suitability distribution using weighted overlay

Table 4.10 Suitable area for cassava production

Suitability class

AHP ANP

Area (%) Area (ha) Area (%) Area (ha)

Highly suitable 41.60 11,094 44.62 11,901

Moderately suitable 30.87 8233 27.17 7246

Marginally suitable 9.83 2623 10.51 2803

Not suitable 17.69 4718 17.69 4718
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These data were collected from primary and secondary sources. Over the period
examined, production and land use were unsustainable due to a shift from agricul-
tural to settlement land use. Although cassava production has been located in the
most suitable areas, we found that the land of cassava fields from 2010 to 2015
decreased 3.38% annually based on our collected data (Table 4.11). Furthermore, the
NDVI images based on Landsat-4 TM and Landsat-8 OLI showed the vegetation
conditions, which reflect the land use change and physical features that cover the
Earth’s surface (land cover) (Fig. 4.9). Most land in the city of Serang was cultivated
land with plantation fields, irrigated paddy fields, and rain-fed areas. Additionally,
protected areas were occupied by settlements.

4.4 Discussion

We found that most land areas suitable for cassava production were located in the
southern part of Serang in the Banten Province because the soil steepness levels in
this area are less than 15%, and this condition could affect soil formation. From the
ground truth survey, cassava farmers with fields in this area grow cassava in rotation
with other crops to prevent depletion of nutrients from soil. The production of
cassava in new areas has faced several barriers, especially regarding labor and the
conversion of peatland and forests in agricultural areas. Future yields can be
maximized through the implementation of several management practices (e.g.,
minimum tillage, contour ridging, fertilization, strip cropping, and intercropping
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Fig. 4.8 (a, b) Validation of land suitability analysis using ground reference information
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with government support and rural appraisals from experts). Our study results
illustrate the effectiveness of spatial assessments for evaluating suitable land use
for sustainable cassava production. Therefore, geospatial technologies that combine
GIS, remote sensing, and AHP could be used to support land suitability assessments
of cassava production. Geospatial modeling has limitations in obtaining highly
accurate validation results due to a lack of ground reference information of previous
years. As such, future studies should integrate several indicators based on high-
resolution spatial and temporal remote sensing data.

Furthermore, this empirical method accepted key input from experts through
AHP-based questionnaires and structured questionnaire surveys for cassava growers
and agricultural officers in the study area, which significantly enhanced the decision-
making capabilities of the land use plan. However, the AHP method has limitations
in that it employs suitability determinations that can be subject to bias in both the
scope and quality of outputs for the variation of weights. We thought of many ways
to provide equal weights after fieldwork was conducted extensively in the city of
Serang. Inequality usually varies for site-specific cases and crop selection (such as
with cassava) in regional contexts. The judgment of pertinent criteria is complicated,
and there are preferences of priority among the criteria. In such a case, AHP has the
advantage of weighting the criteria based on experts’ opinions. However, it is very
difficult to judge the subjectivity of decision-making during the modeling stages. To
overcome the limitation and influences of criteria, we have also employed ANP for
further confirmation of weights. Additionally, consistency ratio was introduced for
AHP and ANP to validate the judgment of experts. The consistency ratio indicates
the degree of coincidence between the AHP or ANP models and experts’ opinions
for weighting the criteria in the model. The weights were given to identify the
preferences of criteria to analyze in the GIS environment.
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Fig. 4.9 (a, b) Land use changes in Serang city drawn from Landsat satellite information for 2010
and 2016
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In the GIS analysis, weights from AHP and ANP were used to develop the
weighted overlay using the criteria. The ground truth information validated the
weighted overlay and confirmed the suitable locations of cassava fields in Serang
city. Most of the fields were located in the highly suitable areas and some were in the
marginally suitable areas. The validation was required to understand spatial vari-
ability of cassava production for regional perspective and identify the causes of
decreasing production of cassava. Along with spatial variability, socio-economic
factors should be included for increasing cassava production.

4.5 Conclusions

This study identified suitable areas to evaluate the sustainability of land use for
cassava production using a multi-criteria model integrating with GIS, remote sens-
ing, and AHP. The multi-criteria model for suitability assessment used eight criteria:
LULC, rainfall, distance from rivers, slope angle, elevation level, soil type, distance
from roads, and NDVI. From these criteria, we found that priority criteria, such as
the soil type, LULC, and NDVI, influenced the sustainability of cassava production.
All of the criteria were processed through a weighted overlay using AHP to calculate
the weights of each criterion. To cut on the bias of AHP, the results also confirmed
with the ANP. The land suitability assessment for cassava production indicated that
41.6 and 44.6% of the study area were highly suitable using AHP and ANP,
respectively. Furthermore, the sustainability of cassava production was analyzed
using several indicators classified into four categories: availability, accessibility,
affordability, and profitability. The results show that the land use for cassava
cultivation areas declined annually 3.38% between 2010 and 2015. The results
obtained from this research are very significant in the decision-making processes
to increase the production of cassava in suitable areas of Serang city. The production
scenario is one of the most important points for the suitability understanding for
increasing regional production of cassava in Indonesia. The model can be further
expanded spatially by including a fuzzy approach with AHP and ANP to overcome
the limitation of the multi-criteria model.
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Chapter 5
Drought Estimation from Vegetation
Phenology Analysis of Maize in Indonesia
Using Deep Learning Algorithm

Muhammad Iqbal Habibie, Ryozo Noguchi, and Tofael Ahamed

Abstract The goal of this research was to collect visual information at the crop
production that can be used for drought estimation. The study was completed to
create an automated detection system of drought with high accuracy, low computing
cost, and a lightweight deep learning model. Considering the advantages of
YOLOv3, it was proposed to detect and localize vegetation phenology analysis
under conditions of season in Indonesia. The study was planned to analyze the
vegetation phenology to forecast drought during maize production at the central East
Java areas of Indonesia. In the study, the vegetation index was utilized to produce the
normalized difference vegetation index (NDVI) and normalized difference water
index (NDWI) derived from Sentinel-2 to estimate water stress due to drought.
According to the NDVI trajectory, the maize planting season was in April 2018,
and the harvest was concluded in late August 2018. This study presents a
convolutional neural network (CNN)-based you only look once (YOLO) model
for detecting drought at the maize growth phases. The drought estimation was
validated from the vegetation phenology analysis based on the growing season.
The accuracy assessment of the deep learning model reported Intersection of Union
(IoU) 83.4%, precision 98%, recall 99%, F1-Score 98%, and mean average precision
96% for the drought-prone areas. The deep learning analysis suggested that the
proposed YOLOv3 model can perform robust and accurate detection of drought
estimation from vegetation phenology.
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5.1 Introduction

The future environment would depend on global warming caused by man-made
pollution of the past and future and natural environment (IPCC 2015). Climate
variability can cause severe dry precipitation and droughts in the affected areas,
resulting in natural, economic, and social impacts. Several reports predict that
drought is one of the most destructive natural hazards and is becoming more extreme
and common due to climate change and variability. Precipitation is a major factor in
the cycle of water and energy cycle, and is also an important factor (Gottschalck
et al. 2005). Drought was defined for many months or even several years by
subaverage rainfall (Dai 2011). Due to the limitations of ground observation with
respect to spatial coverage, satellite precipitation data have been developed over the
last two decades (Kidd et al. 2003; Joyce et al. 2004; Aonashi et al. 2009). The global
satellite mapping of precipitation (GSMaP) was created in 2002 to produce global
precipitation high-resolution and high-precision global precipitation products (Ushio
et al. 2009). However, there are further uncertainties in the data with unrelated
patterns over diverse regions due to the indirect nature of satellite measurements,
influenced by inaccuracies in cloud top reflectance, thermal radiation, and infrequent
satellite overpasses (AghaKouchak et al. 2009). Patterns of change in vegetation
phenology can be defined through a multi-scale study of environmental drivers using
two parameters, the first being basic environmental drivers that consistently drive
vegetation dynamics from year to year in a given area and phenological used as
landscape predictors of variability in vegetation response over time (Kariyeva and
van Leeuwen 2011).

Drought and human activities contribute to environmental changes like deserti-
fication in semiarid and dry subhumid zones when soil quality deteriorates and
bio-productive resources dwindle or disappear (Trenberth 2018). In Indonesia, for
example, three harvests per year might be planned in both flooded and perfect
rainfed conditions. Indonesia has two seasons: wet and dry, which are the country’s
irrigation water supplies and drought causes, respectively. Drought is a widespread
absence of available or available water, resulting in a scarcity of surface and
groundwater for crop production, notably maize. The Central East Java has one of
the largest maize crops, which has also been affected by the drought. Drought is
caused by a gradual decrease in the amount of rainfall over a long period of time,
usually one season or more, but certain climate influences (such as extreme temper-
atures, strong winds, and comparatively low humidity) also apply to other parts of
the world and can greatly exacerbate the extent of the phenomenon (Chang et al.
2018). Drought warnings for farms were issued in one of the examined regencies.
There are six types of droughts: meteorological, climatological, atmospheric, agri-
cultural, hydrologic, and water-management droughts (Wilhite and Glantz 1985).
According to the weather monitoring system, Central East Java had the greatest
impact on drought-prone areas. The vegetation phenology was used to monitor
drought regions with Google Earth Engine (GEE) (Venkatappa et al. 2020).
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The GEE carriers out remote sensing for the big data analysis and it is a cloud
platform that allows the parallel processing of geospatial data at a global scale
(Gorelick et al. 2017). The GEE includes climate, weather, and geophysical facilities
and ready products like Enhanced Vegetation Index (EVI) and the Normalized
Difference Vegetation Index (NDVI) (Tamiminia et al. 2020). GEE is a code editor
that is available on the web for data exploration, visualization, and catalogue in
Integrated Developed Environment (IDE) platform (Kumar and Mutanga 2018).
Thus, the objective of this research was to conduct the drought estimation from
vegetation phenology analysis of Maize in Central East Java Indonesia using Deep
Learning algorithm. Therefore, the vegetation phenology was utilized and weather
for drought periods was predicted during the maize growth season in Indonesia.
Then, the vegetation phenology was validated with the assessment of the precipita-
tion data. The validated location was used for the objective of this research.

5.2 Methodology

5.2.1 Study Area

The study was conducted in the Central East Java, which consists of 12 regencies,
namely, Gresik, Lamongan, Malang, Mojokerto, Pasuruan, Sidoarjo, Tuban, Batu
City, Malang City, Mojokerto City, Pasuruan City, and Surabaya City (Fig. 5.1). The
important crops are rice, maize, cassava, and different types of vegetables. The
potential markets on the Indonesian island of Java make maize a crop with a bright
future. Lands in Indonesia are suitable for intercropping with soybean cultivars and
maize production on dryland-upland in East Java, Indonesia (Harsono et al. 2020).
Using secondary data, recent research on maize commodities has focused more on
the expenses of agricultural income, demand, or supply of maize (Barokah et al.

Fig. 5.1 True color view of the study area

5 Drought Estimation from Vegetation Phenology Analysis of Maize in. . . 135



2019). Given the importance of maize, considerable measures are required to secure
its long-term availability. The supply of water for irrigation was supported from the
flow of rivers, which flows from the northern part also traversed by the Surabaya
River in the Southern region.

5.2.2 Methodology

The satellite imageries were collected from the Sentinel 2 satellite source and the
vegetation phenology Normalized Difference Vegetation Index (NDVI), the Nor-
malized Difference Water Index (NDWI), and land surface temperature (LST) was
calculated from the related bands. It was processed with ArcGIS 10.4.1®. The
images were evaluated and validated with precipitation datasets. We utilized precip-
itation datasets to validate for Global Rainfall map (GSMaP, JAXA) with the local
rainfall station (Indonesia Meteorology and Climate Agency, BMKG). The drought
was reported in 2018, statistics and precipitation datasets were utilized for further
analysis of this year (Fig. 5.2).

5.2.3 Vegetation Phenology

Phenology is important to study the vegetative growth cycles. In addition, phenology
refers the sensitiveness to climate variability and provides basic information for
analyzing trends in ecological processes or climatology, which can detect the impact
of climate at the multiple scales regionally. NDVI and NDWI of vegetation indices
were separated into two seasons: dry and wet seasons. The wet seasons occur from
January to April. On the other hand, the dry seasons occur from June to October
2021. Furthermore, the LST was used as the important factor that is susceptible to
climatic fluctuation.

Satellite RS (Multispectral 

Data)

Vegetation Phenology

Precipitation

(Near real time)

GSMap Local Station

SPI

(Standard Precipitation Index)

Drought

(Forecasting 

Fig. 5.2 Conceptual framework for forecasting the drought areas in Central East Java
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Normalized Difference Vegetation Index (NDVI)

NDVI can be used to examine various aspects of vegetation, such as plant charac-
teristics, production, and the impact of temperature on the plant, visualizing vertical
spatial and temporal distributions and horizontal structures such as vegetative
cultivation and vegetation biomass (Xue and Su 2017). Vegetation phenology was
processed with high computing using Google Earth Engine (GEE). NDVI can be
expressed as:

NDVI ¼ NIR� RED
NIRþ RED

ð5:1Þ

Because of the index’s normalization technique, the range of NDVI values is
between 0 and 1, with a sensitive responsiveness to green vegetation even in low
vegetation covered locations.

Normalized Difference Water Index (NDWI)

NDWI are widely and effectively used in the detection and mapping of surface water
bodies (Özelkan 2020; Sarp and Ozcelik 2017). The index uses remote sensing
imagery from the green and Short Wave Infrared (SWIR) bands. It is susceptible to
land construction and leads to overestimated water bodies. In combination with the
NDVI, the NDVI served to determine the change in the NDWI. NDWI can be
formulated as follows (Mcfeeters 2007):

NDWI ¼ Green� NIR
Greenþ NIR

ð5:2Þ

Land Surface Temperature (LST)

Climate data produced from satellite imaging of land surface temperature (LST) is
critical for monitoring and comprehending the consequences of climate change at
both the small and big scales (Wongsai et al. 2017). Temperature variation may be
explained by evaluating LST, which can be impacted by factors such as elevation,
land cover, and the NDVI can be formulated as follows (De Jesus and Santana
2017).

LST ¼ BT
1þ λBT

PV
�
ln LSE

� � ð5:3Þ
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where BT is the satellite brightness temperature (Celsius), λ is the Top of Atmo-
sphere (ToA) spectral radiance at the sensor’s aperture, PV is the proportion
vegetation (PV), and LSE is the land surface emissivity.

5.2.4 Assessment of Precipitation Data

Two forms of precipitation data were used in this research: first Global Rainfall Map
(GSMaP, JAXA) and second, local station precipitation data (Indonesia Meteorol-
ogy and Climate Agency, BMKG).

Precipitation Datasets

GSMaP is a microwave radiometer technique that can be used with a precipitation
radar algorithm to generate a detail precipitation map with high temporal and
geographic precise location (Fig. 5.3).

Regional Precipitation Datasets

Precipitation observation data were collected from the Tuban Regency station. The
datasets were accessible and received from the rain gauges to observe the rainfall
information from 2016 for precipitation monitoring. In 2018, the Tuban Regency
was reported as dry, with the lowest precipitation in May and the highest was in
February. During the baseline period, the average trend of precipitation at the Tuban
Regency was 13 mm/month. Precipitation in the study region tends to drop from
April to September and rises from October to February. The local station rainfall was
compared with the worldwide precipitation databases. To validate the data, we use
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Fig. 5.3 Precipitation on May 2018 using GSMaP, JAXA, Japan
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two precipitations data, GSMaP and local station. GSMaP was developed by the
JAXA Japan and local station was obtained from the Indonesia Meteorological and
Climate agency.

Both precipitations were computed using the Standard Precipitation Index (SPI).
The SPI was expressed in the cumulative distribution using gamma function. The
gamma distribution (McKee et al. 1993) may be expressed as:

G xið Þ ¼
Zxi
0

g Xið Þdxi ¼ 1
βαГ αð Þ

Zxi
0

tα�1e�xi=βdxi ð5:4Þ

The symbols α and β denote shape and scale parameters (Alam et al. 2013). Both
factors have a value larger than zero, whereas x is the precipitation in millimeters
during consecutive months i (selected time scale). The gamma function is denoted by
Г(α). If xi ¼ 0 and the cumulative probability encounters this condition, the cumu-
lative gamma distribution is unknown. For each station, the SPI calculation addi-
tionally includes a matching density function of the gamma probability to the rainfall
frequency distribution.

α ¼ 1
4A

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r !
ð5:5Þ

β ¼ x
α

ð5:6Þ

A ¼ ln xð Þ �
P

ln xð Þ
n

ð5:7Þ

Due to the undefined gamma function, when xi ¼ 0, the value of G(xi) is as
follows:

H xið Þ ¼ qþ 1� qð Þ � G xið Þ ð5:8Þ

where q represents the probability of zero. The SPI is then calculated by
transforming the cumulative probability H(xi) into the standard normal distribution.
To calculate the SPI, the cumulative probability distribution is converted into a
normal distribution using the following approximation:

z ¼ SPI ¼ � t � c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

� �
, t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

H xð Þð Þ2
 !vuut ð5:9Þ

when 0 < H(x) < 0.5, the following is true:
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z ¼ SPI ¼ þ t � c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

� �
, t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

1� H xð Þð Þ2
 !vuut ð5:10Þ

when 0.5 < H(x) < 1.0 and c0 ¼ 2.515517, c1 ¼ 0.802853, c2 ¼ 0.010328,
d1 ¼ 1.432788, d2 ¼ 0.189269, d3 ¼ 0.001308.

According to World Meteorological Organization (WMO), 3-month SPI is more
effective in highlighting the humidity in agricultural areas (World Meteorological
Organization 2012). SPI based on 3 months provides a comparison of precipitation
in 3-month period with a total precipitation in 1 year including in long-term
historical data. We utilized a 3-month SPI for this analysis to compare with the
vegetation phenology for the drought-prone areas.

5.2.5 Deep Learning

The creation of artificial neural networks using machine learning was further
extended in the sample areas sufficiently to apply the deep learning training,
validation, and testing of sampling areas (Fig. 5.4).

Training Dataset with Labels

The availability of using high resolution imagery is an opportunity to characterize
and identify the water objects used as indices of drought stress. Therefore, the NDWI
indices were utilized as the training dataset. The training dataset due to the precision
led to a need of new image analysis methods using region-based (or object-based)
approaches. The training dataset were labeled using LabelImg®. It is developed in

Fig. 5.4 Deep learning process to categorize drought severity using vegetation indices
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Python and use Qt for its graphical user interface. ImageNet stores annotations in
XML files in the Pascal VOC format, and it also supports the YOLO format in text
files.

You Only Look Once (YOLO)

The YOLO series algorithms are originally target recognition methods based on
regression proposed by Redmon and Farhadi (2017). By 2018, YOLO has evolved
into its third version, YOLOv3, which has a fast speed detection and good detection
precision for small and dense objects. YOLOv3 is now the state of the art for one
stage object detection (Redmon and Farhadi 2018). On a standard computer with a
graphics processing unit (GPU), YOLOv3 can effectively achieve real-time perfor-
mance (Fig. 5.5).

5.3 Results and Discussion

5.3.1 Vegetation Phenology Analysis

The vegetation indices are referred to inform the status of maize during the growing
seasons. For NDVI, the growing season was scheduled for April and late August
2018 (Figs. 5.6 and 5.7). Other indices, NDWI, discovered in April 2018, indicated
that planting time for maize and growing season was dry (Fig. 5.8). As well, LST
was high in the mid and southern part of the Central East Java, Indonesia (Fig. 5.9).

Fig. 5.5 Schematic of YOLOv3 Network Architecture

5 Drought Estimation from Vegetation Phenology Analysis of Maize in. . . 141



Fig. 5.6 NDVI during growing season in Central East Java, left to right (a) Planting, (b) Wet,
(c) Reproductive stage, (d) Harvest stage
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Fig. 5.8 NDWI during growing season in Central East Java, left to right (a) Planting, (b) Wet,
(c) Reproductive stage, (d) Harvest stage
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5.3.2 Validation Data

The drought indicator SPI was calculated from the precipitation information of the
global rainfall map (GSMaP, JAXA) and local stations from the study area
(Fig. 5.10). From the precipitation record of 2018, the SPI data was referred as
SPI-1 for the short term to analyze drought information. The data from six local
stations were analyzed to understand the drought indicators. Based on SPI results,
drought occurred between April and October 2018. The value of SPI was between
�1.21 and �1.34 during this period. The SPI index declined in September and
expanded increase in October.

Fig. 5.9 LST during growing season in Central East Java, left to right (a) Planting, (b) Wet,
(c) Reproductive stage, (d) Harvest stage
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Fig. 5.10 One of the reference station in Tuban regency was compared using GSMaP, Jaxa, and
local station (BMKG)
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5.3.3 Deep Learning

Metric to Measure YOLO Performance

YOLOv3 were trained using the images of two datasets based on NDVI and NDWI.
Extreme drought, moderate drought, and marginal drought were the three categories
of satellite images. The information from the categorized classes was then recovered
using feature extraction with Darknet 53 in convolutional layers and turned into
YOLO for object detection (Table 5.1). Table 5.1 shows the performance metrics
obtained with the YOLOv3 model, which trained using the two different datasets
and both compared with each other. It can be noticed that the extreme drought was
less than the other classes, and by the object detection, it shows that this region had
moderate drought about 62%.

Perfomance Metrics in YOLO

The validation detection can represent an overfitting, such that a different collection
of 160 annotated images were used for testing. The testing was processed in a high-
performance and produced the performance metrics affirm that overfit was reduced
at iteration 6000 (Table 5.2).

Precision and recall has a high value of 0.98 and 0.99, which means that the total
positive detections are true positive detections and ground truth objects. The drought
object detection may be obtained.

Table 5.1 Metric to Measure YOLO Performance NDWI

Class ID Name AP TP FP Average IoU mAP

0 Extreme drought 60.5% 59% 54% 50% 52%

1 Moderate drought 62% 58% 56% 51% 54%

2 Marginal drought 61.7% 58% 57% 53% 53%

Table 5.2 Testing from the
trained network with itera-
tion ¼ 6000, network resolu-
tion of 416 � 416

Performance metrics Values

Average IoU 83.40

Precision 0.98

Recall 0.99

F1-score 0.98

mAP @ 50 0.96
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Detecting Objects Deep Learning

In the validation process, the object detection showed the drought areas of the whole
images. The images show the drought classes: extreme drought, moderate drought,
and marginal drought. The detection performance was defined by the color of NDVI
and NDWI. The extreme drought shows a large amount and cumulative in red, the
moderate drought shows few red and yellow, and marginal drought shows in yellow
and blue. The object detection was able to define the growing stage of maize during
2018 from the planting stage until the post-harvest stage (Fig. 5.11). In Fig. 5.11. the

Fig. 5.11 (a) Planting; (b) Reproductive stage; (c) Harvest stage; (d) Post-harvest stage (Habibie
et al. 2020)
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top left image shows the planting stage has a few drought indicator; the top right
image shows the reproductive stage until the post-harvest where the drought shows
extreme drought in the central East Java, Indonesia.

5.4 Conclusion

We studied the performance of two approaches for detecting vegetation in this
research. Two of these approaches were based on deep learning, while the third
was computed utilizing high-performance NDVI, NDWI, and LST techniques with
GEE. The experimental findings demonstrated that the YOLOv3 model, utilizing
vegetation phenology, performed quite well. This research was done provincially to
classify drought-prone areas based on vegetation phenology for maize production.
The vegetation phenology was processed based on the vegetation indices. Among
the vegetation indices, the NDVI was used the vegetation profile and to find the
growing season for plants. For agricultural circumstances, NDWI was utilized to
detect water scarcity in the region and was connected to temperature using LST.
NDWI and LST were used for vegetation phenology and SPI for the severity index.
The results showed that drought severity and vegetation phenology were compared
at the same time and occurred during the maize growing season from April to
October 2018. This study can be used to determine drought using the YOLOv3
and GEE works rapidly and is useful to define the location of drought-prone areas.
To validate the yield model, a more in-depth examination of vegetation phenology
will be used. Moreover, forecasting the severity of drought and vegetation phenol-
ogy ensures that yield declines are avoided, and that regional food security can be
verified.

NDVI and NDWI were utilized to identify drought-prone regions using a deep
learning algorithm based on Sentinel 2 datasets. Deep learning identification accu-
racy was determined to be 83.4%, 98%, 99%, 98%, and 96% in drought-prone
locations using IoU, precision, recall, F1-Score, and mean average precision (mAP),
respectively.

The large-scale computing efficiency was required for the raster datasets. Further
research will be conducted to increase the accuracy of dataset training and testing in
drought-prone locations, as well as to offer improvements to other deep learning
algorithms. Furthermore, this study, which is carried out in high computational and
real-time monitoring by researchers who can foresee catastrophe management in a
simple and shortest way, frequently assists farmers in protecting their land from the
impact of disasters.
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Chapter 6
Land Suitability Analysis for Grape (Vitis
vinifera L.) Production Using Satellite
Remote Sensing, GIS, and Analytical
Hierarchy Process

Sara Tokhi Arab, Tariq Salari, Ryozo Noguchi, and Tofael Ahamed

Abstract Land suitability analysis is essential for a vineyard to increase its produc-
tion and productivity under the dry conditions due to climate change. In this context,
the purpose of this chapter is to determine the suitable locations for vineyards based
on satellite remote sensing and GIS (geographical information system) to assess the
suitability of land and least suitable land to support the vineyard growers for subsidy
allocation. In this regard, the Landsat 8 operational land imager (OLI) and thermal
infrared sensor (TIRS) and digital elevation (DM) shuttle radar topography mission
(SRTM) images were processed to obtain the normalized difference vegetation index
(NDVI), normalized difference moisture index (NDMI), land surface temperature
(LST), and topographic maps (elevation, aspect, and slope). Moreover, JAXA
rainfall information (mm per hour) and soil properties were used to incorporate
climatic and soil conditions. Besides, socioeconomic information was collected
through field surveys in Kabul Province in order to develop the vineyard suitability
map. Finally, the suitable classes were determined using a weighted overly method
based on the analytical hierarchy overlay process (AHP). The combined (physical
and socioeconomic) suitability results indicated that highly suitable (12.9%), mod-
erately suitable (25.5%), marginally suitable (28.5%), and not suitable lands (32.9%)
were reported for grapes production in Kabul Province. The suitability models also
indicated that 175.46 ha of vineyards out of 10599.96 ha of vineyards were located
in marginal and not suitable areas. This research can support decision-makers,
stakeholders, and growers with precise land assessments by identifying the main
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limiting criterion for producing table grape management. Furthermore, GIS analysis
determined the vineyard growers from marginal and not suitable areas for providing
support of subsidy to improve their livelihoods.

Keywords Vineyards · Physical criteria · Socioeconomic · AHP · Land suitability

6.1 Introduction

Determining the best location for vineyard cultivation is essential for growers to
increase table grape production and reduce the cost of production (Schmidt et al.
2014). Furthermore, it also depends on plant requirements, soil properties, and
environmental criteria that refer to the use of land on a sustainable basis (Bramley
et al. 2011). Land suitability comprises the qualitative and quantitative assessment of
land. Criterion such as climate, hydrology, topography, vegetation, and soil proper-
ties are considered in the qualitative assessment of land. However, in the quantitative
assessment of land criteria such as yield, motivation of farmers, cultivation patterns,
capital, investment capacity, cost-benefits ratio, location of vineyards and other
criterion are considered (Taghizadeh-Mehrjardi et al. 2020). The qualitative and
quantitative land assessment classification based on the Food and Agriculture
Organization (FAO 1976) refers to highly suitable (S1), moderately suitable (S2),
marginally suitable (S3), and not suitable (N). Like other crops and fruits, climate
change, pests, and diseases have a significant impact on grape production and quality
of yield (Table 6.1).

Grapes (Vitis vinifera L.) have become an important crop in the world that has a
significant role in the global economy. According to the US Department of Agri-
culture’s Foreign Agricultural Service, global table grape production in the years
2020–2021 was estimated about 24.7 million metric tons (USDA 2021). China is the
world’s largest producer of grapes, followed by European countries (EU), Turkey,
Uzbekistan, and the USA. These countries are also the top countries in terms of
quantity of production. However, in the Asian countries, China has the first position
in production of grapes with 24.28 million tons, India is second with 3.04 million

Table 6.1 Land suitability classes and descriptions based on FAO

Suitability classes Description

S1 (highly
suitable)

These types of land have no significant limitations for production

S2 (moderately
suitable)

These types of land have moderate limitations for production. It will reduce
productivity; by increasing the input into a certain amount can change it to
S1

S3 (marginally
suitable)

These types of lands have marginal limitations. These limitations reduce the
productivity; by increasing the input the expenditure of land will increase

N (not suitable) These types of lands having severe limitations with the use of technique and
technology cannot make it suitable
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tons, and Afghanistan has the third position with production of 1.12 million tons in
2019 (FAO 2020).

In Afghanistan, table grapes are also one of the most economically important
horticultural crops. Afghanistan has a history of grape production, and it is a major
horticultural product and the main export agricultural product. The grape production
was significantly higher in last 15 years (Fig. 6.1). The highest production was
15 tons/ha in 2009. The highest production indicated that climate change and
internal war had a significant impact on grape production in Afghanistan. However,
the productivity of table grapes is much lower in Afghanistan than in developed
countries due to climate change and limited knowledge of production systems, soil
quality, and postharvest losses. The postharvest losses are higher due to lack of
storage facilities of table grapes. Furthermore, strict regulation of winery from
grapes, makes more dependency of table grapes consumption and benefit to the
farmers.

In 2020, the COVID-19 pandemic, in addition to climate variability, had an
impact on grape production, and the global trader faced significant challenges such
as labor shortages and transportation. Moreover, other criteria such as temperature,
rainfall, elevation, slope, soil pH, and soil properties have a significant impact on
grape yield. The small-scale farmers faced challenges in production, and income
from grape production. Therefore, it is required to analyze the physical and socio-
economic criteria that greatly influence grape production and bring support to the
farmers. One of the potentials for analyzing the physical criteria is through geo-
graphical information systems (GIS) combined with satellite remote sensing datasets
and multi-criteria decision analysis tools. The multi-criteria-based suitability analy-
sis can help the growers in deciding the suitable production lands for increasing
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production and alternate support system for marginals and not suitable lands. The
main benefit of multi-criteria decision analysis as an analytical hierarchy process
(AHP) can be incorporated with experts’ opinions in land suitability analysis (Ridley
and Devadoss 2021). This method was developed by Saaty. The criterion importance
of two or more than two at a time was evaluated with pairwise comparisons in
suitability analysis (Saaty 1980) (Table 6.1).

Very few studies have been done for vineyard land suitability analysis. Land
suitability for vineyards was performed in China using five evaluation criteria such
as agricultural land, climate conditions, water policies, irrigation status, and prox-
imity to waste water treatment (Paul et al. 2020). Another study done in the USA
used soil properties, soil pH, and elevation. Similarly in Italy, soil pH, soil proper-
ties, elevation, aspect, slope, and heat index have been considered in land suitability
analysis, (Modica et al. 2014; Cardell et al. 2019). However, in Afghanistan, there
has been no research regarding land suitability for vineyards using satellite remote
sensing datasets and multi-criteria decision-making. In land suitability performance,
we used several parameters such as climate, vegetation, topography, soil, and
socioeconomic parameters to detect both less productive areas and potential growing
zones for grape production. In this regard, temperature and rainfall are the main
climatic parameters that affect the grape growth rate (Lorenzo et al. 2013; Hatfield
and Prueger 2015). Land slope and aspect are topographic parameters that are
essential for soil, water drainage, air movement, and total heat balance. Soil prop-
erties such as soil structure, soil pH, soil salinity, and soil organic matter influence on
vine growth and grape quality (Gattullo et al. 2020). Socioeconomic parameters such
as population density, benefit–cost ratio, distance from roads and markets are
important for marketing purposes and access to inputs. These two criteria have a
significant impact on grape production. Climate change effect on preharvest stages
of production and postharvest losses of grapes are the main causes for reducing the
production of grapes by farmers. Government incentives are required to support the
growers to increase the most important agricultural commodities.

Most governments around the world have introduced a series of subsidies to
encourage farmers to increase production and adopt sustainable production. As an
instance, the Indian government provides farmers the input, price infrastructure, and
export subsidies to support agricultural development (Fan et al. 2008). China’s
agricultural policy has undergone a fundamental transformation over the past
40 years (Lopez et al. 2017) and a series of agricultural subsidy policies have been
introduced (Qian et al. 2015). In this regard, it is very important for government to
know about the land suitability using physical and socioeconomic criteria to provide
subsidies to farmers.

Therefore, the main objective of this chapter was to integrate geographical
information systems (GIS) and satellite remote sensing methods for physical and
socioeconomic criteria using AHP to assess the suitability of lands for increasing
grape production. Furthermore, recommend a subsidy allocation system for the least
suitable land for grape production.
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6.2 Materials and Methods

6.2.1 Description of the Study Area

The study was carried out in a densely populated Province of Afghanistan, Kabul,
located between latitudes 34.53330 N and Longitudes 69.16670E (Fig. 6.2). It
consists of 14 districts and 689 villages with a total population of 5.26 million,
which made up 16% of the total population in Afghanistan (ACSO 2020). This
province is located at a very high elevation of about 4654 m above sea level
including a dry, continental climate with four seasons and annual rainfall of
400 mm. The total arable land in the province comprises a mix of rainfed and a
small area of irrigated land. Kabul Province is dominated by wheat, rice, maize, and
different types of vegetables and fruits. Among them, fruit trees are 4000 ha and
vines 10,600 ha, which makes up about 3.2% of arable land in 2020 (Walt 2018).
Therefore, grape is one of the strategic fruits that can be produced up to 115,450 tons
(ACSO 2020). Unfortunately, due to climate change and traditional cultivation
patterns, the productivity of grapes is very low.

6.2.2 Data Collection and Criteria Selection for Table Grapes
Land Suitability Analysis

The agricultural, metrological, soil, and socioeconomic data were collected from
primary and secondary sources. The criteria for physical suitability were considered
NDVI, NDMI, LST, JAXA rainfall, digital elevation model (DEM), slope, aspect,
soil component, soil pH, soil organic matter, and soil salinity. Likewise, the socio-
economic parameters such as distance from roads, distance from water bodies, and
population density were collected from the secondary data sources. However, the
distance from national and local markets and the benefit–cost ratio of each vineyard
were developed from the primary dataset collected during the field survey conducted
between November and December 2020 in Kabul Province (Fig. 6.3).

A geographic position system (GPS) Coordinate® was used to collect the geo-
graphical location for each of the vineyards. All the datasets and the sources were
explained in Table 6.2 and the methods were followed in this research explained in
the flowchart (Fig. 6.3).

Normalized Difference Vegetation Index (NDVI)

NDVI can be used for real-time plant growth monitoring and estimating the density
of greenness (Li et al. 2019). In this study, Landsat 8 multispectral images were used
to develop NDVI maps. To ensure an appropriate representation of vegetation
evaluation in the study, the images were acquired corresponding to active growing
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Fig. 6.2 Geographical location of the study area: (a) Afghanistan administrative map, and (b)
Kabul Province elevation map
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stages of table grapes (April to October) (Anyamba and Tucker 2012; Hadri et al.
2021; Islam et al. 2021) from 2016 to 2020. NDVI can be expressed as:

NDVI ¼ NIR� Red
NIRþ Red

ð6:1Þ
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where NDVI is the normalized difference vegetation index and NIR is the near-
infrared reflectance, ranging from 0.85 to 0.88 μm, and Red is the wavelength
reflectance ranging from 0.64 to 0.67 μm in Landsat 8 OLI scenes.

Table 6.2 List of data and source of datasets for table grapes land suitability analysis

No Data Description Data source

1 Land use map Derived from Spot (10 m color), Google Earth
(2.5 m 1 m, /0.6 m color), and Arial Photographs
(1 m color/0.5 m B and W)

FAO 2016

2 Slope map DEM SRTM
USGS 2014 &
2015

3 Elevation map DEM SRTM
USGS 2014 &
2015

4 Aspect map DEM SRTM
USGS 2014 &
2015

5 Rainfall map
(SPI)

Resample to 30 m resolution JAXA Rainfall
GSMAP 2016–
2020

6 Land surface
temperature
map

Derived from 30 m (band10 and band11) Lansat 8 Scenes
USGS 2016–2020

7 NDVI map Derived from 30 m resolution (band 4 and band 5) Lansat 8 USGS
2016–20208 NDMI

9 Soil pH Afghanistan soil atls, scale 1:50000 FAO 2020

10 Topsoil texture FAO 2020

11 Topsoil types FAO 2020

12 Topsoil depth FAO 2020

13 Soil texture FAO 2020

14 Soil organic
matter (OM)

FAO 2020

15 Topsoil salinity FAO 2020

16 Road map 1:250,000 AIMS, OSM,
OCHA 2019

17 River map Scale 1:50,000 AIMS OSM
OCHA 2019

18 Population
density

Spatial resolution 0.000833333 decimal degrees
(approximate 100 m at the equator)

World Bank
Group 2017

19 Distance from
national market

GPS point Field survey 2020

20 Distance from
local market

GPS point Field survey 2020

21 Vineyard’s
locations

Polygon FAO 2016

22 Benefit–cost
ratio

GPS points Field survey2020
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Normalized Difference Moisture Index (NDMI)

This parameter is very important for vineyards because any variation in the moisture
of plants can affect the mesophyll in plants, which interact with solar radiation
(Bhattacharya et al. 2021). The NDMI was calculated from Landsat 8 OLI images
over 5 years from April to October. The NDMI can be expressed as follows:

NDMI ¼ NIR� SWIR
NIRþ SWIR

ð6:2Þ

where NDMI is the normalized difference moisture index and NIR is the near-
infrared wavelength, SWIR is the shortwave infrared reflectance ranging from
1.57 to 1.65 μm in Landsat 8 OLI scenes.

Land Surface Temperature (LST)

LST is the temperature of the surface of the Earth using the Kelvin (K) scale and is an
essential criterion for monitoring temperature for crop growth (USGS website and
Karnieli et al. 2010). Temperature during the growing season directly impacts the
production of sugar in grapes and this element also influences the type and quality of
the grapes produced. The fluctuation of daily temperatures during midwinter is
usually more harmful for grapevines than steady cool temperatures (Wolf and
Boyer 2005). Grape vines can be injured or killed by winter cold. Temperatures
greater than 30 �C can reduce the vine’s ability to photosynthetically convert carbon
dioxide into sugars and other carbohydrates. Nighttime temperatures greater than
about 18 �C tend to increase the vine’s respiration of this energy. In fact, respiration
can consume up to 60% of the energy generated by photosynthesis (Iacono et al.
2000) decreasing the productivity of vines. The LST was calculated from Landsat
8 thermal bands with 30 m resolution in different steps from 2016 to 2020
(Shamsuzzoha et al. 2021). Landsat 8 Thermal Infra-Red Scanner (TIRS) has two
bands in the TIR region (Band 10 and Band 11). These thermal bands have a 100 m
native spatial resolution but are resampled with cubic convolution at 30 m before
distribution by United States Geological Survey (USGS) (Loveland and Irons 2016;
Gemitzi et al. 2021). The steps can be explained as following:

The first step of the LST calculation is the top of the atmosphere reflectance
(TOA)

TOA ¼ ML � Qcal þ AL ð6:3Þ

where ML represents the band-specific multiplicative rescaling criterion from the
metadata, Qcal corresponds to band 10 or 11 Landsat 8 thermal bands, and AL is the
band-specific additive rescaling criterion from the metadata.

The second step of this process is the conversion of radiance to sensor temper-
ature. In this, the digital numbers (DNs) are converted to reflection. The TIRS band
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data should be converted from spectral radiance to brightness temperature (BT). BT
can be expressed as follows:

BT ¼ K2

ln K1
L þ 1
� �

 !
� 273:15 ð6:4Þ

where K1 and K2 are the band-specific thermal conversion constants from the
metadata, and L is the top of atmospheric spectral radiance.

The third step is the calculation of the proportion of vegetation needed to
calculate and Pv is required to calculate the emissivity. Pv is determined from
NDVI. Therefore, the calculation of the proportion of vegetation is as follows:

Pv ¼ NDVI� NDVImin

NDVImax � NDVImin

� �2

ð6:5Þ

where Pv is the proportion of vegetation, NDVI is the normalized difference
vegetation index and max and min is the minimum and maximum NDVI values.
Emissivity can be expressed as follow:

ε ¼ 0:004þ Pv � 0:986 ð6:6Þ

where ε is the emissivity and Pv is the proposition vegetation.
The final step retrieving the LST is computed as follows:

Ts ¼ BT

1þ λ�BT
Pv

� �
� ln ε

� 273:15 ð6:7Þ

where Ts is the land surface temperature in Celsius, BT is the brightness temperature
at the sensor, λ is the average wavelength of band 10 or 11, and ελ is the emissivity.

The satellite datasets were downloaded from the USGS website. Following that,
the NDVI, NDMI, and LST from 5 years of datasets (2016–2020) were calculated
using ArcGIS pro®. Finally, an average of 5 years of datasets was used for the final
suitability analysis.

Rainfall

Rainfall is one of the essential parameters for the production of grapes and lack of
rainfall has a severe impact on table grapes productivity. The minimum level of
recommended rainfall for vineyards is about 500 mm (Ted 2018). Therefore, the
total water requirement is met through stored winter rainfall, irrigation, and
in-season rainfall. Since the area is arid and semiarid, the historical average annual
rainfall is about 473 mm. In this research, hourly rainfall dataset mm per hour from
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the global rainfall map (GSMap, JAXA) for each month and districts for 5 years
from 2016 to 2020 were downloaded. After processing the data, the sum of the
cumulative rainfall was calculated for all districts and imported to GIS file. Then, the
vector images were converted to raster, and resampling was done for 30 m spatial
resolution. Finally, an average of 5 years was used for the final suitability analysis.

Elevation

According to previous research, high-elevation regions are more vulnerable to
climate change than low-altitude regions (Xu et al. 2016). The highest elevation in
Kabul Province is about 4654.4 m above sea level. Furthermore, elevation deter-
mined the micro-climate and air temperature variation in a particular area and had a
direct influence on the phenology of a vine (Acharya and Yang 2015). Usually,
lower elevations are good for high latitudes, and higher elevations are more desirable
at lower latitudes. Increased water stress can reduce the vineyard yield and fruit
composition.

Slope

The slope has an influence on practicability of agricultural activities, especially
referring to the mechanization of vineyards. Vineyards with steep slopes hinder
the practical use of machinery, while topography also affects the movement of air
and particularly cold air drainage. Therefore, moderate slopes (5–15%) are regarded
as optimum (Jones et al. 2009). Besides, the soil water holding capacity can change a
slope (Casanova et al. 2000; Bonfante et al. 2015) and that up-slope vines are more
prone to water stress, as soils there commonly have lower water holding capacity
than down-slope soils (Basile et al. 2020). Kabul Province slopes ranges are from
0–75� and the range between 0–10� are optimal slope for vineyard cultivation.

Aspect

This criterion directly influences the amount of solar radiation to the soil surface
during the growing season. Therefore, this criterion plays a crucial role for high
sugar content (Modica et al. 2014). It will also affect the angle that sunlight hits the
vineyard and thus its total heat balance. This criterion directly influences the amount
of solar radiation to the soil surface during the growing season. Therefore, this
criterion plays a crucial role for vineyards, which requires very high sugar content
for its enological transformation (Wolf and Boyer 2005). In the southern part of
Afghanistan, the intensity of the sun’s rays is high, and the heat may have a negative
effect on the vine. Therefore, north south is the best location for the vineyard’s
direction (Ghulam Rasoul Samadi. Interview. Conducted by Sara Tokhi Arab,
24 July 2021).
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In this study, all topographical parameters such as elevation, slope and aspect
were developed from the USGS EROS archive of digital elevation-shuttle radar
topography mission (SRTM). The study area had two different paths therefore, two
images were mosaicked using ArcGIS Pro®. Further mask operations were
conducted to find the study area.

Distance from River

Different rivers and water channels flow in Kabul Province. Most of these rivers in
all districts feed by snowmelt runoffs from the Paghman mountains in the west; the
Qorugh Mountain in the southwest; the Shir Darvazeh, Asmayee, and Aliabad
mountains in the center; the Safi Mountain in the northeast; and the southeastern
Bagrami, Shina, Lathaband, and Tang Gharo dynasties (Serries or chain of moun-
tain). The most popular river is the Kabul River that flows from the Paghman
Mountain toward South Pass about 70 km west of Kabul. It flows in an easterly
direction, past Kabul, and through Jalalabad city, and then on to Dakka where it
enters Pakistan territory and finally runs into the Indus at the Attock region. The river
distance was calculated from the polyline and then changed to raster. After changing
to raster, the Euclidean distance was calculated from the nearest river to each
vineyard (Purnamasari et al. 2019). This criterion is important for accessing water
for irrigation purposes. According to the expert suggestion, proximity from river or
water bodies more than 1 km is the ideal distance. The closer to the river, the more
humidity will cause fungal disease for the vineyard (Ghulam Rasoul Samadi.
Interview. Conducted by Sara Tokhi Arab, 24 July 2021).

Soil Components

Soil affects vine productivity and wine quality; soil, like the climate, comprises
many components. Soil can be described in terms of its depth, parent rock origin, soil
types, organic matter content, texture, chemical properties, hydrology, and in terms
of its microbial and other invertebrate fauna density and diversity. All these variables
may ultimately affect vine growth and grape quality, but precise relationships are not
well characterized for all such variables (Stanchi et al. 2013). The soil datasets were
collected from the FAO office branch in Kabul, Afghanistan, then resampled to 30 m
resolution and reclassified based on references to four suitability classes (Appendix
Table 6.10).

Soil pH

Soil pH values between 6.0 and 6.8 provide the optimum availability of nutrients in
vineyard soils. Soil pH of less than 5.0 increases the aluminum solubility within the
root zone and precipitates essential micronutrients such as iron out of the soil
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solution. However, some grape cultivars prefer low soil pH, preferably pH value less
than 5.5 (Kurtural 2007). When the soil alkaline increases, it causes shortage of
micronutrients, such zinc, iron, and copper, and decreases yields and creates vine
problem. Soil pH datasets were collected from the FAO office branch located in the
Kabul Province of Afghanistan.

Soil Salinity

This parameter is very important for the vineyard assessment. Soil salinity is mostly
caused by poor irrigation practices in most underdeveloping countries. Subse-
quently, the accumulation of the salt in the root zone of grapevines happens. Soil
salinity can have drastic effects on their growth and yield. If the salt concentration is
very high in the soil, it kills the vine. Afghanistan is a dry area; therefore, the soil
salinity increases during the dry periods since the absence of flushing out salts
from the soil causes the soil to become salinized (De Clercq et al. 2009; Aragüés
et al. 2014). The soil salinity dataset was collected by the FAO office in Kabul,
Afghanistan.

Soil Organic Matter

Organic matter improves soil structure, moisture retention, and fertility. Three
percent organic matter is considered ideal for grapes. It also balances various
chemical and biological processes and helps to maintain soil quality parameters at
an ideal level in the vineyards (Goldammer 2018). The organic matter mostly
influences soil aggregation and is related to pore space distribution and has the
same effect as clay on water holding capacity (Saxton and Rawls 2006) (Table 6.2).
The dataset was collected from the FAO office in Kabul.

Land Use Map

A land use map was used to identify the locations of all vineyards in Kabul Province.
Land use map was obtained from FAO geospatial local office. The land use classes
were aggregated into 11 generalized and self-explicative classes. Similar land use
classes were merged to the same class based on ability of land to change to vineyards
in the future. There were 11 classes reclassified to 4 categories based on suitability
classes (Worqlul et al. 2017).

Distance from Road

This criterion is important to access the market to sell the product or buy inputs for
vineyard management. Different types of roads exist in Kabul Province, such as
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expressways, major roads, minor roads, and nonstandard roads, which include the
urban and rural roads (Kabul Province master plan). Previous research proved that
the proximity of vineyards to roads and industrial areas causes metal accumulation in
the soil and causes soil pollution (Deluisa et al. 1996). Therefore, suggestions from
experts were considered to select more than 1000 m location of vineyards from main
roads considered as suitable areas (Ghulam Rasoul Samadi. Interview. Conducted
by Sara Tokhi Arab, 24 July 2021). The road distance was calculated from the
polyline and then changed to raster. After changing to raster, the Euclidean distance
is used to calculate the proximity of the nearest paved road to each vineyard
(Purnamasari et al. 2019).

Population Density

The number of people per unit area is called population density. When the popula-
tion density increases in a region, there is a chance of land use conversion, from
agricultural and forest areas to settlements and other services. Population density has
a direct relationship with water scarcity and climate change. Several studies have
found that density increases across the continent should lead to a significant increase
in the extent of water-stressed zones, especially in overpopulated regions (Le Blanc
and Perez 2008; Gong et al. 2012). The population density map was developed by
the World Bank group to estimate the number of people per grid square with the
national total adjusted to match the united nation (UN) population division estima-
tion (Worqlul et al. 2017).

Benefit–Cost Ratio (BCR)

The benefit–cost ratio is a measure of efficiency that compares a vineyard’s benefit to
its cost. A higher benefit–cost ratio value means a grape grower can produce more
benefit using fewer costs (Wali et al. 2016). The benefit and cost of all the vineyards
were collected through field survey in December 2020. Subsequently, the BCR was
calculated through the below expression:

Benefit� Cost Ratio ¼ Total benefit earned from vineyard
Total cost of production required in vineyard

ð6:8Þ

The benefit–cost ratio was added to a separate sheet in a tabular form for all
100 vineyards. After that, the waypoints (x, y coordinate) of benefit–cost ratio were
generated. The higher benefit -cost ratio value showed the higher suitability, and the
lower value showed the less suitable vineyards. More than 1.2 was considered as
suitable and less than 1.2 was considered not suitable vineyards.
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Distance from Market

Access to the market is a very important criterion for vineyard site selection specially
for underdeveloping countries, which mostly does not have access to modern storage
and packing systems. Since table grapes are very perishable therefore access to
regional, national, and local markets is very essential. Access to the markets offers
opportunities for higher returns to the growers. Vineyard distance to the market was
collected through the field survey in December 2020. The tabular form of
100 vineyards was prepared in Microsoft Excel® then market distance was inserted
to the location of each vineyard in ArcGIS Pro® (Worqlul et al. 2017).

All the further criteria descriptions and sources are described in Table 6.2 and the
criteria classification thresholds are explained in Appendix Table 6.10.

6.2.3 Criteria Reclassification and Weighted Linear
Combintion

Reclassification was done in ArcGIS Pro® in order to create a new single classified
raster map from the main raster. The raster maps of each criterion were classified
based on reference to four classes: highly suitable, moderately suitable, marginally
suitable, and not suitable. Each class is explained on Appendix Table 6.10.

6.2.4 Analytical Hierarchy Process (AHP)

AHP was developed by Saaty (1985) to provide a framework for solving multi-
criteria decision problems based on relative importance assigned to each criterion. In
this research, the criteria were chosen based on their importance for physical and
socioeconomic suitability for vineyards under the dry condition of Afghanistan. We
selected a total of 20 sub-criteria from two main criteria. The AHP has three main
steps as the development of pairwise comparison matrix, computation of weight
criterion, and estimation of consistency ratio (CR) (Table 6.5). Therefore, as the first
step, the pairwise comparison matrix development from the 14 criteria for physical
and 6 criteria for socioeconomic were chosen. Subsequently, three questionnaires
were developed to obtain the expert’s opinions relative to the importance of each
criterion. Two AHP questionnaires were designed to collect the expert’s opinions
regarding the physical and socioeconomic criterion of vineyards in Kabul Province.
The thrid one was used to know the influence of each in total. The intensity of the
importance of each criterion was scaled from 1 to 9. In the scale, 1 is showed equal to
importance and 9 is referred to the extreme importance of the criteria. On the
contraray, the opposite is 1/9, which means extremely less important. The
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consistency index (CI) showed the level of deviation from consistency and was
computed using the following expression (Saaty and Kearns 2014) (Tables 6.3 and
6.4):

CI ¼ λmax � n
n� 1

ð6:9Þ

where λmax is the maximum eigen value and n is the number of criteria or sub-criteria
in the matrix of pairwise comparison (Tables 6.2 and 6.3).

CR is the ratio of CI to the average Random Consistency Index (RI) for the same
order matrix and was computed using the following expression:

CR ¼ CI
RI

ð6:10Þ

where CI is the consistency index and RI is the Random Index (Table 6.5). When the
CR value was less than 10% the matrices were consistent and AHP could be
continued. If the CR is higher than 10%, the assesment required revision because
the materix is not consistent.

Si ¼
Xn
i¼1

Ci �Wn ð6:11Þ

where Ci is the criterion i that was reclassified andWn is the number of criteria n that
were wieghted.

The score (weight) of each criterion was calculated in excel from the AHP
(Tables 6.2, 6.3, and 6.4). Finally, the ArcGIS Pro® was used to combine the spatial
data with Si in order to generate a land suitability map.

6.3 Results

6.3.1 Reclassification of Criteria

The raster and vector layers were reclassified based on suitability classes into highly
suitable, moderately suitable, marginally suitable, and not suitable categories
(Table 6.6). The reclassification of all the citeria were done based on references
(Appendix Table 6.10). In the reclassification of criteria, vegetation indices, NDVI
reported that 6.4% of lands (30,489 ha) were highly suitable. However, in climatic
varibles, rainfall had the highest percentage for area coverage for the highly suitable
areas during the study periods (Fig. 6.4a–c and Table 6.6).

Moreover, the reclassification of topographic criterion reported that 52.7% of
land were located in the highly suitable category (Fig. 6.4d–g and Table 6.6). Again,
soil texture covered 98% (6601.7 ha) and soil types 82.7% (381497.9 ha) located in
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highly suitable category (Fig. 6.4i–o). However, in the case of the socioeconomic
criterion, there were six parameters considered for reclassification. Among them,
population density referred to the highest percentage (94.9%) of lands that belonged
to highly suitable areas (Fig. 6.4p–t and Table 6.6). The results indicated that
population density was the important criterion because the average population is
important for proper agricultural intensification in vineyard operations.

6.3.2 Analytical Hierarchy Process Wieghts (AHP)

In this study, the suitable area was monitored in the vineyards of Kabul Province
using the weighted overlay method. First, each parameter was reclassified referring
to the perivous research, and then the AHP weight was assigned based on the
expert’s opinions (Tables 6.7 and 6.8). The AHP results for physical criterion
were indicated that soil texture (13.2%) was the most influenced, followed by
organic matter (11.9%), soil pH (11%), soil depth (10.6), soil salinity (8.2%), rainfall
(7.6%), NDVI (5.6%), soil type (5.6%), LST (5.1%), NDMI (4.8%), aspect (4.8%),
land cover (4.7%), elevation (3.4%) and with the least influenced by the slope
(3.2%). Moreover, the AHP determined weight for the socioeconomic parameters

Table 6.4 Normalized matrix of the criteria for grapes based on socioeconomic criterion under the
dry condition

Criteria

Distance
from
road

Distance
from
river

Population
density

Benefit–
cost
ratio

Distance
from local
market

Distance from
national
market

Distance from
road

1 2 1/2 3 8 8

Distance from
river

1/2 1 1 1 6 2

Population
density

2 1 1 6 9 6

Benefit–cost
ratio

1/3 1 1/6 1 1 2

Distance from
local market

1/8 1/6 1/9 1 1 1

Distance from
national
market

1/8 1/2 1/6 1/2 1 1

Sum 4.0833 5.6667 2.9444 12 1/2 26 20

CI ¼ λmax�nð Þ
n�1ð Þ

RI ¼ 1.24

Maximum Eigen value ¼ 6.44

n ¼ 6

CR ¼ 0.071
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Fig. 6.4 Reclassification of criteria (a–o) for physical criterion and from (p–t) for socioeconomic
criterion for vineyards suitability analysis
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Fig. 6.4 (continued)
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Fig. 6.4 (continued)
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and the highest weight was observed for the distance from the road (22.4%),
followed by distance from the national market (18.8%), distance from river
(17.1%), population density (16.4%), the distance from local market (13.3%), and
the benefit–cost ratio (12%). The integrated average weights were assigned from the
expert’s opinions and reported that the physical criterion had an influnce of 58%, and
the socioeconomics criterion had 42% for table grape production (Tables 6.7 and
6.8).

6.3.3 Land Suitability Analysis

Suitable conditions were determined and reclassification was done for suitability
analysis according to Appendix Table 6.10. First, the physical criterion map was
developed using an AHP-based weighted overlay in the ArcGIS® environment. The
results indicated that 11.1% of lands (739.17 ha) were highly, 24.8% (1654.5 ha)
moderately, 35.7% (2376.4 ha) marginally, and 28.4% (1892.8 ha) lands were not
suitable for grape production in the Kabul Province (Fig. 6.5). According to the
physical criterion, the highly suitable lands were located in the north and east regions
of Kabul Province. Furthermore, the socioeconomic criterion also considered
AHP-based weights for developing the suitability map based on the socioeconomic
criteria. The findings revealed that 15.7% (764.6 ha) of lands were highly suitable for
grape production, 17.6% (861.7 ha) were moderately suitable, 28.4% (1385.3 ha)
were marginally suitable, and 38.3% (1870.7 ha) were not suitable for grape
production in Kabul Province (Fig. 6.6). The socioeconomic criterion is not directly

Fig. 6.4 (continued)
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Table 6.7 AHP weights according the expert’s opinions for physical criterion

No Criteria
A
(35)

B
(16) C (9) D (8)

E
(12) Mean Weight

1 Soil type 0.090 0.013 0.048 0.073 0.015 0.06 5.6

2 Soil pH 0.145 0.022 0.132 0.143 0.061 0.11 11.0

3 Soil depth 0.131 0.027 0.145 0.123 0.145 0.11 10.6

4 Soil texture 0.134 0.090 0.159 0.145 0.020 0.13 13.2

5 Soil organic matter 0.144 0.039 0.134 0.160 0.080 0.12 11.9

6 Soil salinity 0.088 0.014 0.126 0.101 0.172 0.08 8.2

7 Normalized difference
vegetation index (NDVI)

0.043 0.081 0.065 0.040 0.161 0.06 5.7

8 Normalized difference
water index in plant leaf
(NDMI)

0.040 0.065 0.046 0.043 0.078 0.05 4.8

9 Rainfall 0.091 0.066 0.058 0.087 0.127 0.08 7.6

10 Slope 0.024 0.067 0.018 0.020 0.041 0.03 3.2

11 Elevation 0.021 0.080 0.015 0.019 0.026 0.03 3.4

12 Land surface temperature
(LST)

0.023 0.132 0.031 0.020 0.019 0.05 5.1

13 Land cover 0.013 0.149 0.011 0.014 0.031 0.05 4.7

14 Aspect 0.012 0.155 0.011 0.013 0.023 0.05 4.8

Sum 1.00 100

Overall
weight

0.8 0.6 0.6 0.5 0.4 0.58

*A–E indicated the expert numbers and number in parenthesis indicated the years of working
experiences in the Agriculture sector for each of the experts, respectively

Table 6.8 AHP weights according the expert’s opinions for socioeconomic criteria

No Criteria
A
(35)

B
(16) C (9) D (8)

E
(12) Mean Weight

1 Distance from road 0.286 0.386 0.227 0.087 0.133 0.22 22.4

2 Distance from river 0.175 0.283 0.330 0.026 0.040 0.17 17.1

3 Population density 0.355 0.063 0.329 0.037 0.037 0.16 16.4

4 Benefit–cost ratio 0.089 0.144 0.039 0.192 0.136 0.12 12.0

5 Distance from local market 0.044 0.074 0.038 0.131 0.380 0.13 13.3

6 Distance from national
market

0.051 0.049 0.037 0.528 0.275 0.19 18.8

Sum 1.00 100

Overall weight 0.20 0.40 0.40 0.50 0.60 0.42
*A–E indicated the expert numbers and number in parenthesis indicated the years of working
experiences in the Agricutlure sector for each of the experts, respectively
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related to grape production, however, it has an important role in limiting table grape
production.

Furthermore, the combined suitability map was developed from the physical and
socioeconomic maps by considering average weights from the experts opionions.
Both maps were overlaid based on the overall percentage of influence. According to
the land suitability results, the most suitable areas were 12.9% (6993 ha) highly,
25.6% (1240.83 ha) moderately, 28.5% (1384.2 ha) marginally, and 32.9%
(1600.9 ha) not suitable for grape production in the Kabul Province of Afghanistan
(Fig. 6.7 and Table 6.9). Lastly, not suitable and marginal lands were identified from
the combined land suitability map to support the growers by providing subsidies
specially marginal and not suitable lands for production. According to the final
suitability map, out of 1759 survey vineyards in the study area 1112 vineyards were
located in highly suitable areas and 549 vineyards were located in moderately
suitable areas. Therefore, the land suitabaility analysis based on phyiscal and
socioeconomic criteria has a good scope to support the grapes growers to improve
their livelihoods in the Kabul Province of Afghanistan.

Fig. 6.5 (a) Land suitability analysis for grape production based on physical criterion in Kabul
Province of Afghanistan and (b) pie chart showing the percentage of land for each of the four
suitability classes
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6.4 Discussion

Synthesizing Landsat 8 OLI and TIRS scenes, metrological, topographic, soil, and
socioeconomic datasets were used to develop a land suitability map for grape
production in the Kabul Province of Afghanistan. The expert’s judgment indicated
that the soil texture and soil pH were the most important criteria for producing the
grapes (13% and 11%). In the socioeconomic criteria, the distance from the road and
distance from the national market were observed as the most essential criteria (22%
and 18%). Previous studies also implied that the physical properties of vineyards,
such as soil, are critically important for the grape’s quality and productivity (Zdruli
et al. 2014). These two socioeconomic indicators mentioned above were significant
because of carrying the inputs to vineyards and transporting fresh grapes to the
market in the study areas. On the other hand, field management practices, vineyard
site selection based on topographic criterion, genotype, cultivar selection, soil
texture, soil pH, fertilizer application, irrigation, and pest control play essential
roles in determining quality, size, color, flavor, texture, and nutritional values of
table grapes. Vineyards are in remote areas and it is difficult for farmers to carry fresh
grapes to local and national markets. The infrastructure of a region is also most
important for grape transportation. It causes the table grapes loses and waste due to

Fig. 6.6 (a) Land suitability map for grape production based on socioeconomic criterion in Kabul
Province of Afghanistan and (b) pie chart showing the percentage of land for each of the four
suitability classes
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lack of storage and poor transportation facilities. Therefore, a huge number of
postharvest losses occur for fresh grapes each year in Afghanistan.

To promote grape production and improve grape grower household’s income and
livelihood, implementing a national subsidy program is very important for grape
production based on land suitability and access to facilities and infrastructure. In

Table 6.9 Vineyards suitability classes based in Kabul Province of Afghanistan

Classes Pixels Area (ha) Area% Surveyed vineyards Vineyards area (ha)

S1 6993 629.37 12.96248 1112 8223.90

S2 13,787 1240.83 25.55609 549 2200.59

S3 15,380 1384.2 28.50893 75 152.69

N 17,788 1600.92 32.97249 23 22.766

Total 1759 10599.96

Fig. 6.7 Land suitability analysis combining physical and socioeconomic for grape production in
Kabul Province
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most countries, especially underdeveloped countries, the government has tried to
reduce production costs, increase the welfare of farmers and their competitive power
in global markets by providing a proper subsidy scheme to them. Currently, in
Afghanistan, there is no specific subsidy scheme for grape growers, although
agricultural subsidies are an essential aspect of agricultural production and play an
important role in international trade. Therefore, a subsidy program can be introduced
to increase grape production regionally by considering land suitability based on
physical and socioeconomic criteria that influence production very much.

6.5 Conclusions

Appropriate selection of physical and socioeconomic criteria is important in land
suitability analysis for increasing table grape production and productivity. The
socioeconomic criteria significantly influence the livelihoods of vineyard growers
and their decisions on whether to grow table grapes. Therefore, this study carried out
the selection of multiple criteria to develop a land suitability model on a provincial
scale to find out the suitable areas for table grape production. The multi-criteria
decision analysis was performed for suitability assessment using 20 criteria,
14 focusing on the physical criterion and six for the socio-economic criterion. The
physical criteria were elevation, slope, aspect, LST, rainfall vegetation indices
(NDVI and NDMI), soil types, soil texture, soil structure, soil pH and soil organic
matter. In the case of socioeconomic criteria, distance from road and river, distance
from national market, distance from local market, population density, and benefit–
cost ratio were taken into account in the suitability analysis. The suitability model
used the FAO land use/land cover layer and masked the restricted zones for selecting
the vineyard area. Through this research, we found that only 11% physically, 15%
socioeconomically, and 13% of lands in a combination of both physical and socio-
economic criteria were highly suitable for grape production in the Kabul Province of
Afghanistan. This research has the potential to be applied toward determining the
suitable areas on a regional scale with similar environmental conditions. Further-
more, inclusion of socioeconomic criteria in regional land suitability analysis can
support the vineyard growers with the allocation of subsidies to increase the total
production of table grapes and the livelihoods of growers.
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Appendix

Table 6.10 Criteria classification for vineyard suitability analysis based on physical and socio-
economics criterion

Criteria
Suitability
classes Threshold value References

NDVI S1 0.2–0.5 Hashim et al.
(2019)S2 0.5–0.8

S3 0.8–0.9

N >0.199

NDMI S1 0.6–0.8 Zhang et al.
(2016)S2 0.4–0.6

S3 0.4–0.2

N >0.2

LST S1 25–30 �C Stanchi et al.
(2013) and
USAID (2016)

S2 30–36

S3 36–43

N <20

Rainfall S1 500 mm Ted (2018)

S2 –

S3 –

N <800 mm

Elevation S1 800–2000 m Stanchi et al.
(2013)S2 2000–2500

S3 2500–3000

N >3000

Slope S1 0–10� Stanchi et al.
(2013)S2 10–25�

S3 25–35�

N 35–44�

Aspect S1 North, Northeast, East Modica et al.
(2014)S2 South, Southeast, Southwest

S3 West, Northwest

N North

Soil PH S1 5.5–6.5 Brown (2013)

S2 4–8.5

S3 6.5–8.0

N <5.0 and <8.0

Topsoil
texture

S1 Sandy loam, loam very fine sandy loam, loam
very fine sand, coarse sandy loam

Badr et al. (2018)

S2 Silt loam, loamy sand, loamy fine sand,
loamy coarse sand

S3 Silt, silty clay loam, silty clay, clay loam,
Sandy clay loam

N Clay

(continued)
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Criteria
Suitability
classes Threshold value References

Topsoil types S1 CMe (Eutric CAMBISOLS), CMg (Gleyic
CAMBISOLS) CMu (Humic CAMBISOLS),
CMx (Chromic CAMBISOLS), LVx (Chro-
mic LUVISOLS).

Acharya and
Yang (2015)

S2 CMo (Ferralic CAMBISOLS),GLe (Eutric
GLEYSOLS), PHc (Calcaric
PHAEOZEMS), PHh (Haplic
PHAEOZEMS RGd).

S3 RGd (Dystric REGOSOLS), RGi (Gelic
REGOSOLS), FLc (Calcaric FLUVISOLS),
LPi (Gelic LEPTOSOLS), RGe (Eutric
REGOSOLS)

N Rock outcrop Glacier, inland ice Lake,
inland water

Topsoil depth S1 >50 cm Rameshkumar
et al. (2006)S2 20–50

S3 –

N <20

Soil organic
matter (OM)

S1 Rich soil organic matter Goldammer
(2015)S2 –

S3 –

N Poor soil organic matter

Soil salinity S1 Slight saline Park et al. (2011)

S2 Moderately saline

S3 N/A

N Strongly saline

Distance
from road

S1 1000 m Purnamasari et al.
(2019)S2 1000–2000

S3 2000–3000

Distance
from river

N >3000

S1 1000

S2 1000–15,000

S3 <500

N >1000

Population
density

S1 Medium Steiner et al.
(2000)S2 Low

S3 –

N High

Distance
from local
market

S1 <2 km Hossain and Das
(2010)S2 2–4

S3 4–5

N >5

(continued)
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Criteria
Suitability
classes Threshold value References

Distance
from national
market

S1 0–5 km Nguyen et al.
(2020)S2 5–10 km

S3 >10

N –

Benefit–cost
ratio

S1 Above 1.2 Wali et al. (2016)

S2 –

S3 –

N Below 1.2
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Chapter 7
GIS-Based MCA Modeling to Locate
Suitable Industrial Sites in Suburb Areas of
Bangladesh for Sustainability
of Agricultural Lands

Nazia Muhsin, Ryozo Noguchi, and Tofael Ahamed

Abstract Land use changes significantly affect the sustainability of food security,
ecological balance, and environmental protections in developing countries.
Bangladesh is such a country that faces challenges from limited arable land
resources, including the urbanization of agricultural lands and urban developments
in suburban areas. Therefore, the aim of this chapter was to determine the land use
changes over time in suburban areas that have potential for industrial growth. This
chapter also assesses potential locations and the further growth of industries by land
suitability analysis (LSA) to emphasize both agriculture and industries in terms of
sustainable growth. A geographical information system (GIS)-based multi-criteria
analysis (MCA) model was developed for the LSA to distinguish compact lands that
were suitable for the economic zones of industries. Nine criteria, including seven
constraints and 23 factors, are evaluated by the spatial analysis tools of ArcGIS®. An
analytical hierarchy process (AHP) was applied to prioritize the criteria based on
experts’ opinions for the decision-making process of LSA. The study finds that
densely located industrial areas have decreased agricultural lands by greater than
10% in the last two decades. Furthermore, the results of the LSA showed that only
4% of the lands were most suitable for industrial sites, whereas four compact lands
had 16–10 ha of land, which was suitable for small industrial zones. Thus, the
integrated GIS-MCA model could serve as a policy-planning tool to locate the
economic zones of industries with sustaining agricultural lands and environmental
protections.
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7.1 Introduction

Land use changes significantly affect the sustainability of food security, ecological
balance, and environmental protection in developing countries. Bangladesh is the
ninth most densely populated country in the world with 1265 people per sq. km of
land area (World Bank 2020), faces similar challenges from limited arable land
resources. Thus, agricultural land use has become an important domain for sustain-
able development to feed an increasing population. However, studies have noted that
the agricultural lands of Bangladesh have decreased over time (Rahman et al. 2019;
Islam et al. 2010). Aerial photographs and Landsat imageries were analyzed by
Bangladesh’s Soil Resource Development Institute (SRDI) to determine this land
transformation (Hasan et al. 2013). Approximately, 0.13% of agricultural land was
transformed to nonagricultural land per year from 1963 to 1983 (Rahman and Hasan
2003). The Rio + 20: National Report on Sustainable Development also mentioned
that Bangladesh had been losing 1% of its agricultural land per annum to
nonagricultural purposes during 1990–2010 (Bangladesh Ministry of Environment
and Forests (BMEF) 2012). Further study reported that Bangladesh had lost
23,391 ha of agricultural land per year from 1976 to 2000 (Hasan et al. 2013).
This annual loss of agricultural land increased drastically to 33,140 ha during the
period of 2000–2010, resulting in a total of 8% of agricultural land losses from 1976
to 2010 (Hasan et al. 2013). Conversely, the settlement area had been rapidly
increased, 1.1% in 2014 (Reddy et al. 2016).

The loss of agricultural land and increasing land area for urbanization and
industrialization are causing unsustainable land use practices (Rahman et al. 2018;
Mahfuza et al. 2019). Industries had been expanded from city areas to suburban
areas and occupied agricultural lands, creating a major challenge for food production
in the long run (Rezvi 2018). Thus, National Strategy for Accelerated Poverty
Reduction II (NSAPR II) emphasized developing efficient land markets and modern
economic zones to improve land use management and to achieve environmentally
and socially compliant industrialization (Planning Commission 2009). Furthermore,
referring to the Bangladesh Economic Zones Act (No. 42, 2010), Bangladesh
Economic Zones Authority (BEZA) aims to establish economic zones in all potential
areas of Bangladesh including backward and underdevelopment regions. In addition,
according to this act, the government could notify the official gazette, to select any
specific land area and could declare it as an economic zone. Since the economy is in
the growing stage, there is a high possibility of land encroachment across the country
to establish industrial and manufacturing sectors. However, priority should be given
to protect existing agricultural lands and environmental issues while identifying any
suitable land sites. In this regard, land suitability analysis (LSA) could be the most
appropriate approach to evaluate and fulfill the required criteria for these facilities.
Therefore, the hypothesis of this empirical research is that the suitable site location
of the industry for economic growth could reduce the pressure of transformation of
agricultural lands to scatted expansion of industries throughout the suburb areas.
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The LSA tool is used to identify the most suitable places for a specific land use
type (Collins et al. 2001). It has identified the most appropriate spatial patterns for
future land uses according to specific requirements, preferences, or predictors of
some activities (Malczewski 2004). In other words, LSA is a spatial decision-making
process where a number of elements are evaluated to follow the requirements of
stakeholders and environmental issues (Jankowski and Richard 1994).

Thus, this study uses multi-criteria decision analysis (MCDA) with spatial solu-
tions in a geographic information system (GIS) to conduct LSA. Multi-criteria
analysis with GIS has the advantages to support decision-making process by a
systematic way and reflect a transparent decision by the use of thematic maps
(Ferretti and Pomarico 2013). The GIS-based MCDA method is described as a
procedure that accumulates and transforms spatial and nonspatial data (input) into
a resultant decision (Malczewski 2004). The MCDA method builds a connection
between the input map and output map by utilizing geographical data and the
judgment values of decision makers according to the facts and correlates the
specified decision rules (Malczewski 2004; Rahman et al. 2012). The MCDA
methods can be used in a GIS environment, such as Boolean overlays, Weighted
Linear Combinations (WLC), Ordered Weighted Averaging (OWA), the Analytical
Hierarchy Process (AHP), and Multiple-objective land allocation (MOLA)
(Rikalovic et al. 2014). The integration of multi-criteria methods for land suitability
analysis with a GIS system has broadened the spatial proficiencies of GIS and
explored this system’s analytical power as a decision-support tool.

This multidisciplinary approach has diverse applications in spatial analysis such
as it has been widely used for the land suitability analysis for different agricultural
crops (Joshua et al. 2013; Bera et al. 2017; Habibie et al. 2021). Further, this
approach used for evaluating land use and land cover change (Hassan and Nazem
2016), siting waste incinerator plant (Ferretti and Pomarico 2012), development of
urban aquaculture (Hossain et al. 2009), ecotourism (Mansour et al. 2020), landfill
site selection (Rahmat et al. 2017), locating wind and solar power plants (Anwarzai
and Nagasaka 2017). A group of researchers (Chandio et al. 2013) had listed peer-
reviewed papers published during 1980–2011 using MCA in various spatial analysis
on his review paper. Researchers had stated the MCA approach as a powerful
integrated method for land suitability analysis of complex land use scenario (Saleh
et al. 2015). In spite of having feasible application of this spatial approach for
selecting land sites for sustainable urbanization and industrialization, few attempts
were made in the past and require developing a robust system to practice in different
land use scenarios.

Past studies of industrial site selection process showed there is a scope to develop
the technique. For example, a macro-level-based study for the industrial site selec-
tion used GIS based fuzzy inference systems (FIS) and AHP to establish the weights
for the different criteria, and the final aggregation conducted in MCDA4ArcMap
(Rikalovic et al. 2015). This system is useful only when the spatial analysis is done
on vector-based GIS system, a system deal with point, lines and polygons which is
not suitable for a mixed land use type. An attempt was done to use the GIS-based
AHP approach for the industrial site selection where seven criteria were selected for
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evaluation (Edrahim et al. 2015). Here, AHP was conducted taking one expertise’s
evaluation, which had the possibility of having a bias judgment. In addition, the
scoring of the individual criterion was not explained properly. Furthermore, Eldin
and Sui (2003) used Component Object Model (COM) for designing a decision
support system for industrial site selection. The study suggested two phases, where
first phase was used for site screening which was done by the expert system (ES) and
the GIS. In the second phase, AHP was used to evaluate nonspatial criteria. How-
ever, a prototype approach was applied as it was unable to deal with complexities of
GIS and can deal with a limited range of industrial facilities and criteria. In addition,
the COM Technology was applied for integrating loose coupling and tight coupling
for industrial site selection (Eldrandaly et al. 2005). The research was the initial
attempt to provide a user-friendly approach where the only candidate sites were
taken to evaluate the approach and among those sites four final sites where chosen by
the AHP method. Considering the limitations of the past research, the present study
has introduced a model of land suitability analysis for industrial site selection using
GIS and AHP. The latitude of flexibility of LSA model must have the applicability
from the local level to national level for industrial site selection.

Therefore, the objective of this study is to perform LSA to locate the most suitable
economic zone of industries without affecting existing agricultural land uses. Fur-
thermore, land use changes that exhibit greater influence on industrialization in
suburban areas are considered for spatial analysis to determine sustainable uses of
agricultural lands and the growth of industries. In search of the potential regions to
complement Bangladesh Economic Zones Act 2010, the study selected Savar, an
adjacent subdistrict of the capital city Dhaka as a case study. However, the research
approach also focuses the application in the larger spatial scale, especially micro- to
macro-level geographical extents.

7.2 Materials and Methods

7.2.1 Conceptual Framework

This research was conducted in two phases. During the first phase, an analysis was
conducted to assess agricultural land use changes in terms of the effects of industrial
growth on agricultural land use (Fig. 7.1). The study area was mostly reported rapid
growth from urbanization and industrialization over the last three decades (Rashid
2003; Sharif and Esa 2014). Thus, statistical data of agricultural land use was
collected from the local agricultural office named Office of the Upazila Agriculture
Officer, Savar, Dhaka, Bangladesh. A map was prepared in ArcGIS 10.3® based on
statistical agricultural land use data from 2002 to 2011. On the other hand, the
geographical positions of 420 factories were collected with a Garmin eTrex 30®

during the field surveys. The geographical positions of the factories were mapped
over the study area and observed the industrial growth over the agricultural land use
during 2002–2011.
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In the second phase, LSA was performed to locate suitable sites for expanding
industries. Studies have mentioned that 80% of the data used by the decision makers
and managers are related to geographical matters (Worall 1991). Thus, a widely used
combination for spatial decisions, GIS and AHP as an MCA technique, was adopted
for the LSA. The MCA was conducted with 23 factors and 7 constraints under
9 criteria, which were selected based on field surveys, previous research, and
discussions with experts. The AHP approach was used to incorporate experts’
preferences to prioritize the criteria’s weights. On the other hand, GIS was applied
to manage the thematic spatial data set of the criteria and to prepare the factors and
constraint layer maps by spatial analysis tools. A decision rule was applied to
integrate the GIS and AHP to extract a suitability map.

7.2.2 MCA Procedure for LSA

LSA is a difficult task since there are different domains such as socioeconomic
situations, environmental aspects, topographic elements involved. In addition, it also
relates to the local legislation and availability of lands. The complexity increases
while dealing with mixed land use and densely populated areas (Morales and de
Vries 2021). Hence, this study used MCA in seven steps in spatial environment
(Fig. 7.2). The study selected nine criteria to conduct the MCA following the
research goal and objectives. Beinat and Nijkamp (1998) defined criteria as a basis
for decisions that could be measured and evaluated. While selecting criteria for
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Fig. 7.1 Conceptual framework for the agricultural land use assessment and land suitability
analysis
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industries location, Eugene and Prasanta (2005) stated that environmental and social
factors are the most important aspects for sustainable development of industries.
Ensuring these factors for site selection helps in maintaining high level of produc-
tivity throughout the project’s life. Thus, selected criteria for the current study
mostly focused on the environmental and social aspects.

The criteria of this study were the proximity to major roads, proximity to local
roads, distance from rivers, distance from water bodies, distance from settlements,
flood flow zones, distance from agricultural lands, slope, and elevation. These
criteria were further classified into factors and constraints for assessment. According
to Beinat and Nijkamp (1998), a factor is a criterion that enhances or detracts from
suitable alternatives for the activity under consideration, and a constraint serves to
limit any alternatives. Furthermore, expert opinions were taken based on a question-
naire for the AHP technique to evaluate the priority weights of the criteria. A score
was assigned to each factor on a scale of “1–10” and constraints stated as

Step 6: Decision Rule 

Step 1: Define the Goal and Objectives

Step 2: Selection of the Criteria  

Step 3: Selection of the Factors and Constraints  

Step 4: Weights of the Criteria

Step 5: Score for factors and constraints

Step 7: Verification

Goal: Land suitability assessment for industries

Objective: Sustainable development of both agricultural land 

use and industrial growth

Nine Criteria

23 Factors and 7 Constraints

Applied AHP Model  

Constraints=0, Factors=1 to 10 scale

Weighted Linear Combination (WLC)

Overlay was created with Google Earth® Pro®

Fig. 7.2 Multi-criteria
analysis for land suitability
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“restrictions.” To aggregate the weights of the criteria and the scores of
corresponding factors and constraints under each criterion, a decision rule called
weighted linear combinations (WLC) was applied to determine suitable locations for
industries. The resulting map was further analyzed to distinguish compact lands that
could be suggested for industrial zones. The result was then projected in Google
Earth Pro® to evaluate the results.

7.2.3 Study Area

The study was conducted in Savar, 25 km from the capital city of Dhaka, a part of
Rajdhani Unnayan Kartripakkha (RAJUK), the Capital Development Authority of
the Government of Bangladesh. According to the Savar Agricultural Department
data of 2011, Savar had 63.75% agricultural lands. The interface between rural and
urban areas is significant in the northwestern and southeastern areas of Savar. The
geographical position of Savar is located between 23�44015.5100N and 24�1029.1900N
and between 90�11022.7800E and 90�21031.1700E (geographical coordinates in
degrees-minutes-seconds, WGS84). The total area of Savar is 280.13 km2 and the
neighbor subdistricts are Kaliakair and Gazipur Sadar to the north; the Keraniganj to
the south; Mirpur, Mohammadpur, Pallabi and Uttara Thanas of the Dhaka City
Corporation to the east; and the Dhamrai and Singair subdistricts to the west
(Fig. 7.3). The land height gradually increases from east to west, and the area is
bounded by the Bangshi, Turag, Buriganga, and Karnatali rivers. The population
density of Savar was 4948 per km2 in 2011, an increase of 8.84% per year from the
previous census in 2001. Around 78.6% of the population was distributed in rural
areas and the rest in urban areas (Bangladesh Bureau of Statistics (BBS) 2011).

The study area has several land types, including highland, medium highland,
medium high- to medium lowland, lowland and very lowland, based on their
drainage, elevation, and pedological properties (Rashid 2003). The highlands are
flood free and are mostly used for growing vegetables throughout the year. These
lands are relatively less productive for rice. Highlands are the most suitable for
permanent infrastructural development. The medium high to medium lowlands are
used for single crops, such as High Yielding Variety (HYV) and Boro rice, because
these areas are fertile lands. The lowlands and very lowlands are very suitable for
agricultural purposes because these lands receive prolonged flood waters from the
Dhaleshwari, Bansi, and Turag Rivers. As per the 2011–2012 data from the Savar
Agricultural Office, Savar provides rice (Boro, T-aman, Aus), wheat, maize, mus-
tard, nuts, pluses, vegetables, fruits, spices, etc. According to the employment status
of the dwellers of Savar, 14.54% people were engaged in agriculture, 42.57% in
industry, and rest 42.89% in Service sector (BBS 2011). The agricultural industries
in Savar include combined fisheries, dairies, poultries, and hatcheries. On the other
hand, Savar is mostly known as industrial hubs due to the number of manufacturing
industries such as ceramics, beverages, garments, footwear, jute mills, textile mills,
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automobiles, pharmaceuticals, brick fields, etc. The second largest export processing
zone, Dhaka EPZ of Bangladesh was established in 1993 in Savar.

7.2.4 Field Survey

Statistical data of agricultural land in 2002 and 2011 were collected from the local
agricultural office during a field survey in Savar. A list of cloth industries in Savar
was received from the Bangladesh Garment Manufacturers and Exporters Associa-
tion (BGMEA). A global positioning system (GPS) (GARMIN eTrex 30®) was used
to collect the geographical positions of 420 factories. Nine criteria were selected
based on field observations and discussions with stakeholders. A questionnaire
based on the AHP method was used to record experts’ opinions for the pairwise
comparison of criteria. In addition, spatial maps of the criteria were received from
different organizations for GIS analysis (Table 7.1).

Fig. 7.3 Location map of the study area
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7.2.5 Criteria, Factors, and Constraints

One of the major steps in locating suitable sites is to form a set of dominant factors
that are applicable to site selection (Rikalovic et al. 2014). Thus, combined knowl-
edge from local stakeholders, discussion with experts, field observations, and pre-
vious studies can be applied to select and score the factors and constraints of criteria
(Table 7.2).

Proximity to Major Roads

Road communication media was the most important criterion when selecting a
factory site. Import of the raw materials and exports of the final goods are conducted
though the main port. National highways, regional highways, and district roads are
the main routes to the Chittagong port, which is located in the southeastern part of
the country, 308 km from Savar. Chittagong city is the second largest city in the
country. The national highway N1 or Dhaka Chittagong National route connects the
two largest cities of Bangladesh by 250 km road taking approximately 7–8 h travel
time. Emphasizing on the efficiency of the road communication network, in 2016,
the N1 national highway has developed with four lanes highway to reduce the travel
time. Thus, assessing the distances of the factory locations to national highways is
very important. A higher distance affects the transportation costs and production lead
time. The closer the factory’s location, the lower the transportation costs and

Table 7.1 List of feature maps that were analyzed in GIS

No. Maps Source Scale

1 Savar Administrative
Boundary Map, 2010

LGEDa, Bangladesh 1:50,000

2 Savar Main Roads Map,
2013

LGED, Bangladesh 1:50,000

3 Savar Local roads Map,
2013

LGED, Bangladesh 1:50,000

4 Savar Settlement Boundary
Map, 2010

LGED, Bangladesh 1:50,000

5 Savar Rivers Map, 2010 LGED, Bangladesh 1:50,000

6 Savar Water Bodies Map,
2010

LGED, Bangladesh 1:50,000

7 Savar Agricultural land
Map, 2013

RAJUKa, Bangladesh 1:50,000

8 Savar Flood Zone Map,
2013

RAJUK, Bangladesh 1:50,000

9 Digital Elevation Map
(DEM)

Shuttle Radar Topography
Mission (SRTM)

1 arc-second for global
coverage (~30 m)

aLGED Local Government Engineering Department, RAJUK Rajdhani Unnayan Kartripakkha
(Capital Development Authority)
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production lead time. In addition, considering the existing distribution of factories,
which are mostly located near the local and major roads, the buffer zones distances
were taken. Distance beyond 100 m, namely, 100–500 m, were scored “10” for
“most suitable”; 500–1000 m were scored “8” for “moderately suitable”;
1000–1500 m were scored “6” for “less suitable”; 1500–2000 m were scored “4”
for “least suitable”; and greater than 2000 m were scored “2” for “suitable but
avoided.” However, 100 m buffer zones from major roads are not suitable for any
industrial site to maintain a safe distance from major roads; thus, the 100 m buffer

Table 7.2 Scores and suitability classifications of factors and constraints

No. Name of the criteria
Factors/
constraints Classified Scorea Suitability

1 Proximity to major
roads

0–100 m Constraints 0 Not suitable

100–500 m Factors 10 Most suitable

500–1000 m Factors 8 Moderately suitable

1000–1500 m Factors 6 Less suitable

1500–2000 m Factors 4 Least suitable

>2000 m Factors 2 Suitable but avoided

2 Proximity to local roads 0–50 m Constraints 0 Not suitable

50–200 m Factors 10 Most suitable

200–400 m Factors 6 Less suitable

>400 m Factors 2 Suitable but avoided

3 Distance from rivers 0–500 m Constraints 0 Not suitable

500–750 m Factors 4 Least suitable

750–1000 m Factors 8 Moderately suitable

>1000 m Factors 10 Most suitable

4 Distance from water
bodies

0–100 m Constraints 0 Not suitable

>100 Factors 10 Most suitable

5 Distance from
settlements

0–50 m Constraints 0 Not suitable

>50 m Factors 10 Most suitable

6 Flood flow zones Flood flow zone Factors 2 Suitable but avoided

Non-flood flow
zone

Factors 10 Most suitable

7 Distance from
agricultural lands

0–50 m Factors 2 Suitable but avoided

>50 m Factors 10 Most suitable

8 Slope 0–5% Factors 10 Most suitable

6–10% Factors 8 Moderately suitable

11–15% Factors 6 Less suitable

>15% Constraints 0 Not suitable

9 Elevation 0–5 m Constraints 0 Not suitable

6–10 m Factors 6 Less suitable

11–15 m Factors 8 Moderately suitable

>15 m Factors 10 Most suitable
aScores are given based on field observations, discussion with experts, and previous studies
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area around major roads were considered as constraints of the criterion and scored
“0,” i.e., “not suitable” (Ohri et al. 2010).

Proximity to Local Roads

Most of the factories were connected to major roads via local roads. Therefore,
50–200 m buffer zones around the roads were scored “10” for “most suitable”;
200–400 m were scored “6” for “less suitable”; and greater than 400 m were scored
“2” for “suitable but avoided.” A 50 m buffer zone around the roads was taken as a
constraint and scored “0,” i.e., “not suitable,” for any industrial operation to maintain
a safe distance (Ohri et al. 2010).

Distance from Rivers

The study area is surrounded by rivers. During the last few decades, due to drain, the
untreated industrial waste of the existing textile industries, the quality of the river
water has degraded extensively (Arefin and Rahman 2016). The Department of
Environment (DoE) of Bangladesh, in 2009, declared that Turag and Buriganga
rivers of the study area are in ecologically critical state (River Quality Report 2015).
Considering the environmental protections and hazard risks, the “most suitable”
industrial sites were considered to be 1000 m from the rivers, which were scored
“10.” In addition, a 500-m buffer zone around the rivers was considered “not
suitable” for any industrial site and thus was considered a constraint and scored
“0.” Beyond this constraint, a 500–750-m buffer zone was scored “4,” i.e., “least
suitable,” and a 750–1000-m zone was scored “8,” i.e., “moderately suitable.”

Distance from Water Bodies

Water bodies are also a concern because of environmental hazard issues. Industrial
wastewater and solid waste can affect water bodies and the agricultural lands. Thus,
a 100-m buffer zone around water bodies was treated as a restriction, i.e., “not
suitable”, and scored “0”. Areas beyond this restriction zone were considered “most
suitable” and scored “10” (Ohri et al. 2010).

Distance from Settlements

Settlements were the most significant criteria. The rapid transformation of land use
and the growth of urbanization and industrialization have a complex land cover of
Savar. Industries are scattered from city areas to suburban areas and influence rural
settlements. However, industrial sites must maintain a certain distance from the
settlements to prevent environmental hazards. Eugene and Prasanta (2005)
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suggested 100 m distance between residential area and limestone quarry operations
for cement industry. However, the current study focused on searching suitable sites
for compact zones, which will be separated from the other urban settlements. In
addition, considering the vacant land crisis in Bangladesh, a 50 m buffer zone around
the settlement area was chosen as restrictions, i.e., “not suitable,” and scored “0.”
Other locations were considered “most suitable” and scored “10.”

Flood Flow Zone

Flood flow zones are mostly located in the eastern and western areas of Savar.
Floods occur mostly during the monsoon season (Jakobsen et al. 2005). Once flood
water starts to decrease, the land become usable for agriculture. Thus, flood flow
zones were scored “2” for “suitable but avoided”, and non-flood zones were con-
sidered the “most suitable” places under this criterion and scored “10”.

Distance from Agricultural Lands

Agricultural lands are located mostly in the middle of Savar. As mentioned above,
the flood risk areas are also used for agricultural purposes when the water level
decreases. In Bangladesh, the agricultural lands are mostly owned by the small-scale
farmers and thus it is comparatively less expensive and easy to transform for
nonagricultural purposes (Add reference). The study also stated that the land own-
ership and the nonagricultural occupation of household heads were the two prime
reasons for agricultural land transformation, resulting in degradation of the agrarian
income and productivity (Quasem 2011). On the other hand, there was lack of
impact and implementation of the land-use policies reported in the 1950 State
Acquisition and Tenancy Act and the 2001 National Land Use Policy of
Bangladesh (Alam et al. 2016). Although these historical land policies emphasized
on the conservation of the agricultural lands and confined transformation to
nonfarming purposes, there was room for flexibility, which caused the policies
ineffective (Quasem 2011). The most recent initiative from the ministry of land is
the draft of “Agricultural Land Protection and Land Use Act 2015,” which is in the
pipeline to be finalized (Karim 2015). However, it is undoubtful by existing policies
that agricultural lands should not be used for nonagricultural uses. Thus, a buffer
zone of 50 m around the agricultural lands was considered as “suitable but avoided”
and scored “2” and beyond 50 m was taken as “most suitable.”

Slope

Higher slope increases the cost of the facility’s construction and the inconvenience
of the transportation of goods. The study area has no sloped areas, but the slope is
considered a basic criterion for land suitability analysis. Thus, a 0–5% slope rise was
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considered “most suitable” and scored “10,” and 6–10%, 11–15%, and greater than
15% were considered “moderately suitable,” “less suitable,” and “not suitable” and
scored “8,” “6,” and “0,” respectively.

Elevation

Elevation is another important criterion for any industrial site. Highlands are always
the first choice for infrastructures. The elevation of the central administrative area of
Savar is 15 m. However, flood zones also exist in the eastern and western areas.
Thus, greater than 15 m was considered “most suitable” and scored “10”; 11–15 m
was scored “8,” i.e., “moderately suitable”; 6–10 m was considered “less suitable”
and scored “6”; and less than 5 m was taken as a constraint and scored “0.”

7.2.6 AHP

The most difficult task in the land suitability analysis approach for a particular land
use type is to assign the relative weights of individual criteria. AHP is a technique,
which allows to calculate and evaluate the relative weights (Duc 2006). In addition,
one of the most benefits of using AHP is that experts from different backgrounds can
give their judgment to evaluate the diverse dimensions of the problem (Oguztimur
2011).

However, there were many studies on the validity of the AHP specially when
Belton and Gear (Belton and Gear 1982) first introduced the phenomenon of rank
reversal. Rank reversal is an occurrence when adding or removing an alternative for
the AHP changes the relative rankings of the existing alternatives. To deal with this
rank reversal problem, studies and discussions were conducted and new mathemat-
ical approaches were introduced (Shin et al. 2013; Wang and Elhag 2006). On the
other hand, there were also debates on the legitimacy of rank reversal (Saaty and
Vargas 1984; Saaty 1987a). In addition, researchers also proved that the rank
reversal also appears in other multiple- criteria decision-making (MCDM)
approaches like Borda-Kendall (BK), Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS), and the simple additive weighting (SAW) (Shin et al.
2013; Wang and Luo 2009). Nevertheless, researchers believe that AHP has reached
beyond the academic boundary and the use of AHP in real world will be continued
by the practitioners (Ishizaka and Labib 2011; Chandio et al. 2013).

Following the footsteps of the successful applications of AHP in LSA, this study
applied the technique to prioritize the weights of the criteria. A questionnaire was
designed according to the AHP model for a pairwise comparison of each criterion to
another criterion based on a nine-point scale (Table 7.3). Saaty (1990) stated that the
number of elements for the comparison must be less than or equal to nine to improve
consistency and the corresponding accuracy of the measurement. Saaty (1987a, b)
also mentioned that if the number of the elements is large then their relative priorities
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would be small, and error could affect the judgment. Thus, the study limited the
criteria within nine most important aspects.

The judgments from the experts were used to prepare a pairwise matrix followed
by normalization, i.e., each column in the matrix was summarized individually, and
then each cell in the column was divided by the respective column’s sum. The
column sum of the resultant matrix was equal to 1. The pairwise matrix can be
expressed as follows:

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75 ð7:1Þ

where C11 is the value of the row i (first row) and column j (first column) in the
pairwise comparison matrix. The column sum of the pairwise matrix can be
expressed as follows:

Cij ¼
Xn
i¼1

Cij ð7:2Þ

Therefore, the normalization for each column value can be expressed by the
following equations:

Table 7.3 Nine-point scale (Saaty 1990)

Intensity of
importance on an
absolute scale Definition Explanation

1 Equal importance Two activities contribute equally to the
objective

3 Moderate importance of
one over another

Experience and judgment slightly favor one
activity over another

5 Essential or strong
importance

Experience and judgment strongly favor one
activity over another

7 Very strong importance An activity is strongly favored, and its
dominance is demonstrated in practice

9 Extreme importance Evidence that favors one activity over
another is of the highest possible order of
affirmation

2, 4, 6, 8 Intermediate values
between two adjacent
judgments

When compromise is needed

Reciprocals If activity i is assigned one of the above numbers compared to activity j,
then j has the reciprocal value compared to i

Rational Ratios that arise from the
scale

If consistency were to be forced by obtaining
n numerical values to span the matrix
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Xij ¼ Cij

Pn
i¼1

Cij

¼
X11 X12 X13

X21 X22 X23

X31 X32 X33

2
64

3
75 ð7:3Þ

After normalization, the row sum in the new matrix was divided by the total
number of criteria. The resultant matrix represents the weighted matrix and can be
expressed as follows:

Wij ¼

Pn
j¼1

Xij

n
¼

W11

W12

W13

2
64

3
75 ð7:4Þ

This weight matrix can only be used after calculating the consistency ratio as it
evaluates the credibility of the judgments of individual respondents. Pairwise matri-
ces are considered consistent when the CR is less than 0.1 (10%). These matrices are
considered inconsistent, and the resultant weight matrix of the criteria is not accept-
able when the CR is greater than 0.1 (Saaty 1980).

At first, a consistency vector was derived by multiplying the pairwise matrix by
the weights vector:

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75 �

W11

W12

W13

2
64

3
75 ¼

C11W11 þ C12W21 þ C13W31

C21W11 þ C22W21 þ C23W31

C31W11 þ C32W21 þ C33W31

2
64

3
75 ð7:5Þ

The principal eigenvector (λmax) was then calculated by averaging the value of the
consistency vector:

λmax ¼
Xn
i

CVij ð7:6Þ

The consistency index (CI) was measured by

C ¼ λmax � n
n� 1

ð7:7Þ

Here, n is the total number of criteria. The consistency ratio (CR) was calculated
by

CR ¼ CI
RI

ð7:8Þ

where RI is the random index from Table 7.4.
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7.2.7 GIS Application for LSA

The GIS analysis was designed to conduct in ArcGIS 10.3® using vector and raster
layers. Initially seven thematic vector layers, major roads, local roads, rivers, water
bodies, settlements, flood flow zones, and agricultural lands were taken in a base
geographical coordinate system, WGS 1984. These vector layers were projected in
WGS 1984 UTM Zone 45N to obtain the same geographic extent. The thematic
layers were then converted to raster layers to conduct the spatial analysis. Here, the
polyline feature layers of major roads and local roads were converted to raster layers
by using the conversion tool “Polyline to Raster.” The polygon feature layers of
rivers and water bodies were converted to raster layers by the “Polygon to Raster”
conversion tool, and the three remaining polygon layers, which included settlements,
flood flow zones, and agricultural lands, were converted by the “Feature to Raster”
tool (Fig. 7.4).

Table 7.4 Random inconsistency indices for n ¼ 10 (Saaty 1987a, b)

n 1 2 3 4 5 6 7 8 9 10

Random inconsistency index
(RI)

0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Fig. 7.4 Model diagram for land suitability analysis
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The Digital Elevation Model (DEM) of the study place of 30 m resolution was
extracted from the Shuttle Radar Topography Mission (SRTM) data set. However,
before the extraction, spatial analysis tool “Mosaic” was used to get a seamless data
from the two tiles of SRTM data for the study area. The slope layer was obtained
from the DEM layer using the spatial analysis tool “Slope” in percent-rise unit and
classified according to the factors and constraint intervals. The SRTM elevation map
was also used as a reference layer to synchronize the raster layers in terms of cell size
and processing extent. Thus, the vector thematic layers were generated in 30� 30 m
cell size while converting to raster layers.

The spatial analysis tool “Euclidean distance”was used for the proximity analysis
of major roads and local roads and for the distance analysis of rivers, water bodies,
and settlements. The Euclidean distance tool measured the distance from each cell to
the closest source of features. Further, the range of distance was classified according
to the factors and constraints of each criterion.

Further the “Reclassify” tool was used to reclassify the raster layers according to
the score rankings of the factors and constraints. Here, the constraints were given the
number “1” and the factors were assigned using numerical numbers from “2”
according to the ranking order of their scores. The output raster layer of individual
criterion was generated showing the suitability ranking in color gradient.

7.2.8 Land Suitability for Industry

To aggregate the factors and constraints with the weights of the criteria, spatial
analysis tool “Weighted Overlay” was used. The tool worked as a decision rule to
integrate the AHP and GIS for the land suitability analysis. The weighted–overlay
procedure followed the principle of WLC, where the weights of the criteria was
combined with the scores of the factors and constraints to produce a suitability index
for each cell of the output map (Eastman et al. 1995). The following expression
shows the suitability index:

Si ¼
Xn
i¼1

Wi � Xið Þ ð7:9Þ

Here “Wi” is the weight of each criterion “i,” which is calculated from the AHP
technique of the MCDA, and “Xi” is the score of each factor and constraint. The scale
for the weighted overlay tool was set for 1–10. The constraints, which were given
ranking as “1” in the reclassification stage, were stated as “restrictions” while
applying weighted overlay function. The factors were assigned scores between
1 and 10 according to Table 7.2. The resultant map was a land suitability map for
industries, where each cell of the raster layer was scored with a suitability index on a
0–10 scale, “0” was assigned for the “restriction” cells. The map was further
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reclassified into four clusters, the rank “0” for “not suitable,” “1–5” for “less
suitable,” “5–7” for “moderately suitable,” and “8–10” for “most suitable.”

7.2.9 Industrial Zone Selection

Once the LSA was done for the industrial sites, GIS was further utilized to select the
compact areas for industrial zones. Spatial analysis tool “Set Null” was used to
segregate the cells of “most suitable.” The Structured Query Language (SQL) was
set for values less than 8, i.e., cells with values between 8 and 10 would be the true
values for the most suitable places. Further, the raster layer was converted from
raster to feature by the conversion tool “raster to polygon.” The raster cells for the
“most suitable” areas were transformed into individual polygons, and the areas of
each polygon were calculated. A spatial analysis tool for the feature class “select”
was applied to distinguish polygons from the most suitable places with at least 10 ha
of land to build industrial zones. The SQL was set to a value that was less than or
equal to 100,000 m2.

7.3 Results

7.3.1 Agricultural Land Use Changes Versus Industries
Growth

The statistical data from the local agricultural office showed that Savar lost an
average of 6% of its agricultural lands from 2002 to 2011 from each administrative
unit. In total, 1064 ha of agricultural land was lost during 2002–2011. However, four
administrative units in Savar, namely, “Yearpur,” “Ashulia,” “Tetuljhora,” and
“Dhamsona,” exhibited higher losses of agricultural land, namely, 15%, 9%, 8%,
and 7%, respectively (Fig. 7.5a).

The visual interpretation of the agricultural land use changes was reflected in GIS,
where the color gradient shows the locations of the highest agricultural land losses
(Fig. 7.5b). According to the BGMEA database of 2013, approximately 577 cloth
factories are in Savar and were scattered in the urban, suburban, and rural areas. The
study succeeded to collect 420 factories geographical locations during the field
survey, and these were mapped through GIS. The map shows that the density of
the factory locations was higher in areas where the agricultural land decreased the
most from 2002 to 2011 (Fig. 7.5b).
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7.3.2 Experts Judgment

An AHP-based pairwise matrix was developed from the experts’ responses. After
normalizing the matrix, the weights of each criterion were calculated for individual
judgment, followed by the consistency measures, consistency indices, and consis-
tency ratios. The CR of the five-expert’s judgment was less than 0.1, i.e., the
judgments for the pairwise comparison proved to be consistent. The average of
each criteria weight of individual judgment was used for the LSA. Based on the
judgments, the priority was given to proximity to major roads, which is 22%,
followed by proximity to local roads (14%), elevation (14%), and distance from
agricultural lands (13%) (Table 7.5).

7.3.3 GIS Spatial Analysis

The reclassify tool of ArcGIS categorized the study area based on the ranking order
of the factors and constraints of each criterion. The first map (Fig. 7.6a) shows the
proximity to major roads, where 13% of the area was found “most suitable,” i.e., the
lands were located between 100 m and 500 m from the major roads. Under this
criterion, the moderate, less, and least suitable areas were found, 15%, 13%, and
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Fig. 7.5 (a) Statistical representation of agricultural land use changes in 2002 and 2011; (b)
interpretation of the agricultural land use changes in GIS
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12%, respectively. However, maximum area, i.e., 44%, was found in the zones of
“suitable but avoided.” The proximity to major roads was selected as the first priority
for the LSA of industries by the Experts. Therefore, 13% of most suitable lands
under the proximity to major roads limited the possibility to obtain considerable
lands for the industries. The reclassification resultant map of the second priority
criteria, proximity to local roads, found 15% of land under the factor “most suitable”
followed by 19% “less suitable” and 6% “not suitable” and 60% of land was found
under “suitable but avoided” (Fig. 7.6b).

Approximately 54% of land was found located beyond 1000 m away from rivers,
i.e., “most suitable.” Since most of the rivers are situated around the administrative
boundary of the study place, only 29% land was found as “not suitable” (Fig. 7.6c).
In addition, due to the few numbers of water bodies, 95% of the study area was found
beyond 100 m, i.e., “most suitable” (Fig. 7.6d).

Settlement, which was an important criterion to find out the open spaces, showed
54% land was located 50 m away from the settlements, mentioned as “most suitable”
(Fig. 7.6e). To evaluate only the hazard-free lands, 22% land was detected as flood
zones and the rest 78% land was found as most suitable (Fig. 7.6f).

In addition, the spatial analysis found 69% of the land of the study was at 50 m
from the agricultural lands, i.e., “most suitable.” Whereas the rest, i.e., 31% land,
was within 50 m of the agricultural lands (Fig. 7.6g). This result carried an important
role on the final LSA output since the study aimed to secure the existing agricultural
lands.

Furthermore, under the criteria of slope, 66% land was found “most suitable” and
29% “moderately suitable” (Fig. 7.6h). Whereas, considering elevation, 19% land
was found on an elevation of more than 15 m height, i.e., “most suitable” (Fig. 7.6g).
The details of the land suitability classification on individual criterion are given in
Table 7.6.

Table 7.5 Experts’ judgments when prioritizing the weights of the criteria (A: Author, B-E experts
from different fields)

Criteria A B C D E Mean

Proximity to major roads 0.23 0.30 0.09 0.26 0.25 0.22

Proximity to local roads 0.18 0.19 0.08 0.18 0.06 0.14

Distance from rivers 0.07 0.02 0.09 0.07 0.10 0.07

Distance from water bodies 0.11 0.06 0.11 0.06 0.06 0.08

Distance from settlements 0.09 0.10 0.14 0.05 0.05 0.09

Distance from flood flow zones 0.05 0.06 0.15 0.05 0.06 0.08

Distance from agricultural lands 0.11 0.15 0.24 0.14 0.03 0.13

Slope 0.04 0.03 0.06 0.02 0.11 0.05

Elevation 0.13 0.09 0.06 0.17 0.28 0.14

CR 0.08 0.06 0.06 0.09 0.09
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Fig. 7.6 Reclassification layers of criteria according to factors and constraints: (a) proximity to
major; (b) Proximity to local roads; (c) Distance from rivers; (d) Distance from water bodies; (e)
Distance from settlements; (f) Flood flow zone; (g) Distance from agricultural lands; (h) Slope; (i)
Elevation
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7.3.4 Industrial Zone Selection

The resultant map of the weighted overlay shows the land suitability raster layer,
where the cells with identical score values of “0,” “1–5,” “6–7,” and “8–10” were
clustered into four groups: “not suitable,” “less suitable,” “moderately suitable,” and
“most suitable” (Fig. 7.7). Based on the calculated areas of the polygons, 93% of the
land in the study area was found “not suitable” for industrial sites. On the other hand,
only 4% of the land in the study area was “most suitable” (Table 7.7). The results
showed that the spatial analysis worked based on the priority weights of the criteria
that were incorporated into GIS by the multi-criteria analysis technique, AHP. The

Fig. 7.6 (continued)
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lands that were classified as “most suitable” for industries were converted from raster
layers into vector polygons. According to the measured areas for each polygon, only
four compact zones were found, which had minimum 10 ha of lands, marked in red
in Fig. 7.7.

Table 7.6 Scores and suitability classifications of factors and constraints

Name of the criteria
Factors/
constraints Classified Suitability

Area in
percentage (%)

Proximity to major
roads

0–100 m Constraints Not suitable 4%

100–500 m Factors Most suitable 13%

500–1000 m Factors Moderately suitable 15%

1000–1500 m Factors Less suitable 13%

1500–2000 m Factors Least suitable 12%

>2000 m Factors Suitable but
avoided

44%

Proximity to local
roads

0–50 m Constraints Not suitable 6%

50–200 m Factors Most suitable 15%

200–400 m Factors Less suitable 19%

>400 m Factors Suitable but
avoided

60%

Distance from rivers 0–500 m Constraints Not suitable 29%

500–750 m Factors Least suitable 9%

750–1000 m Factors Moderately suitable 8%

>1000 m Factors Most suitable 54%

Distance from water
bodies

0–100 m Constraints Not suitable 5%

>100 Factors Most suitable 95%

Distance from
settlements

0–50 m Constraints Not suitable 46%

>50 m Factors Most suitable 54%

Flood flow zones Flood flow
zone

Factors Suitable but
avoided

22%

Non-flood
flow zone

Factors Most suitable 78%

Distance from agricul-
tural lands

0–50 m Factors Suitable but
avoided

31%

>50 m Factors Most suitable 69%

Slope 0–5% Factors Most suitable 66%

6–10% Factors Moderately suitable 29%

11–15% Factors Less suitable 4%

>15% Constraints Not suitable 1%

Elevation 0–5 m Constraints Not suitable 15%

6–10 m Factors Less suitable 36%

11–15 m Factors Moderately suitable 30%

>15 m Factors Most suitable 19%
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7.3.5 Verification of the LSA

The feature map of the potential industrial zones of the study area was exported to
the Google Earth Pro® to verify with the current satellite image. The four most
suitable locations were recommended as potential sites for industrial zones. The
individual locations contained of 15.17 ha, 10.28 ha, 10.11 ha, and 16.50 ha of lands

Fig. 7.7 Land suitability
analysis for industrial sites

Table 7.7 Area under each classification of the land suitability map for industries

Ranking value Recommendation Hectares (ha) Proportion (%)

0 Not suitable 26052.09 93%

1–5 Less suitable 0 0%

6–7 Moderately suitable 840.39 3%

8–10 Most suitable 1120.52 4%
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(Fig. 7.8a–d). These lands were mostly vacant and situated adjacent to major and
local roads but not in flood zones and agricultural lands. However, the images
showing water bodies and settlements in the most suitable sites reflect some error
in the accuracy of the result. The reason for such deviance is due to the base vector
layers of the settlements and water bodies, which were not updated after 2010.
During this course land use changed to settlements and water bodies.

7.4 Discussion

The study focused first on the statistical data of agricultural lands of Savar, which
showed that Savar lost average 6% of land within 10 years. However, four admin-
istrative areas of Savar lost agricultural lands more than 6%, the highest was 10% in
Yearpur. On the other hand, the geographical locations of 420 cloth factories, which
were collected during the field survey, showed the growth of the industries was
denser on those four areas. The industries were expanded in Savar for the last three
decades, which were mostly cloth industries. In addition, according to the BGMEA

Fig. 7.8 Four most suitable areas: (a) 15.17 ha, (b) 10.28 ha, (c) 10.11 ha and (d) 16.50 ha (Google
Earth Pro®, 2016/08/08)
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data, 77% of the cloth factories were established after 2000. Bangladesh is the
second largest exporters of readymade cloth industries of the world and comprises
about 84% of the export earnings of the country (ILO 2020). The economic growth
of the nation through expanding manufacturing units influenced the transformation
of agricultural lands of the suburban areas to industrialization. Therefore, industri-
alization had been an important domain for degrading agricultural lands in study
area. Savar has always been very promising to establish industries as it is near the
capital city, Dhaka, and is well connected with the Chittagong port area. In addition,
the Dhaka Export Processing Zone is also located in Savar.

The novel approach of the study was to conduct the LSA for industries to find out
whether there are any suitable lands exists for future industrial zones. The spatial
analysis of GIS was proved the most efficient tool to find out suitable lands over the
mixed land use of vast areas while evaluating multi-criteria for the industries. AHP, a
widely used multi-criteria method, enable the study to evaluate the criteria on
priority ranking and weighting. The result of the AHP showed that the proximity
to major roads was the most preferred criteria for the industrial site selection,
weighted 22% among the nine criteria followed by the proximity to local roads
and elevation, each weighted 14%. The fourth highest preferred criterion was
distance from the agricultural lands (13%). Since Bangladesh is an agricultural
land, it is hard to avoid the agricultural lands for the infrastructure development.
However, research succeeds to protect the core agricultural lands using spatial
dataset in the GIS environment. Considering the agricultural lands as an individual
criterion helped to protect the existing agricultural lands.

Finally, combing the factors and constraints by the decision rule, weighted
overlay, the LSA found only 4% of land that could be used to expand for industries
in the future. The result certainly showed the most significant aspect of the land use
of Savar. It is evident that complying the designed LSA with referred criteria and
factors, the study area would not be suitable for further expansion of industries. The
area is already occupied with build-up areas without any proper land use manage-
ment. In addition, the study also tried to find out compact zones for industrial areas,
which could be more effective for practicing sustainable land use. The present
research found only one economic zone with 16 ha of land.

However, LSA mostly depends on the spatial data set, which must be upgraded
with recent changes. In particular, land use maps with settlements are the most
important elements that could be changed frequently. Nevertheless, open-source
satellite images have made land use management easier and more relevant for policy
planners and researchers. The research approach has the potential to acquire credi-
bility of practical implementation in Bangladesh. However, such research needs to
have collaborations of Government organizations to draw the attention of policy
makers and researchers. Furthermore, apart from searching new land areas for
economic zones, abandoned property or old industries could be utilized to facilitate
efficiency of land use management. One example could be mentioned here: Adamjee
Jute Mill, which was established in 1951 in the Narayanganj district of Bangladesh
and eventually became the largest jute mill in the world (World Bank 1980).
However, in the 1970s the polypropylene products replaced the traditional jute
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products and the mill faced heavy losses from the 1990s. Finally, in 2002 the mill
was shut down and handed over to Bangladesh Export Processing Zones Authority
(BEPZA) to transform it into an export-processing zone. The Adamjee Export
Processing zone started in 2006. The process of transforming old or abandoned
industrial sites into new industrial site is a long-term planning process, which need
large investments to move out the industrial buildings and reform process. In that
case, the economic and environmental assessments are also necessary. Thus,
Bangladesh government encourages private sectors and foreign investors to trans-
form old industries or abandon unproductive lands into economic zones. This micro
research approach has the scope to consider several districts surrounding Dhaka
where the new and abandoned properties or old export-processing zone can be
included for analysis as an alternative of most suitable location of economic zones.

7.5 Conclusions

Unplanned growth of industries in the suburban areas has significant impacts on the
land use changes, which eventually could affect the national food security. Thus, it is
important for a nation to have a sustainable land use management balancing the food
security, environmental protections, and economic development. In this regard, site
suitability analysis for any urban development, especially for industrial growth,
carries a significant domain of land use. The geographical position of the industrial
sites needs to comply with the social, environmental, and economic legislations of
the nation as well as the stakeholders and experts’ involvement. GIS is the most
useful tool to support the spatial decision-making process and AHP facilitate to
involve experts’ decision. The study focused to solve the most difficult crisis in
Bangladesh. Unlike most developing countries, Bangladesh has huge population
compared to land. In addition, due to lack of land use policy planning and proper
monitoring of existing legislation, the land use management has become inactive.
Under these circumstances, the presented GIS-based MCA model for industrial site
selection would help the policy makers and government to practice better land use
management.
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Chapter 8
Change Detection and Land Suitability
Analysis for Extension of Potential Forest
Areas in Indonesia Using Satellite Remote
Sensing and GIS

Nety Nurda, Ryozo Noguchi, and Tofael Ahamed

Abstract The objective of this research was to detect changes in forest areas and,
subsequently, the potential forest area that can be extended in the South Sumatra
province of Indonesia, according to the Indonesian forest resilience classification
zones. At first, multispectral satellite remote sensing datasets from Landsat 7 ETM+
and Landsat 8 OLI were classified into four classes, namely, urban, vegetation,
forest, and waterbody to develop Land Use/Land Cover (LULC) maps for the year
2003 and 2018. Secondly, criteria, namely, distance from rivers, distance from roads,
elevation, LULC, and settlements were selected, and the reclassified maps were
produced from each of the criteria for the land suitability analysis for forest exten-
sion. Thirdly, the Analytical Hierarchy Process (AHP) was incorporated to add
expert opinions to prioritize the criteria referring to potential areas for forest exten-
sion. In the change detection analysis, Tourism Recreation Forest (TRF), Convert-
ible Protection Forest (CPF), and Permanent Production Forest (PPF) forest zones
had a decrease of 20%, 13%, and 40% in area, respectively, in the forest class from
2003 to 2018. The Limited Production Forest (LPF) zone had large changes and
decreased by 72% according to the LULC map. In the AHP method, the influential
criteria had higher weights and ranked as settlements, elevation, distance from roads,
and distance from rivers. CPF, PPF, and LPF have an opportunity for extension in
the highly suitable classification (30%) and moderately suitable classification (41%)
areas, to increase coverage of production forests. Wildlife Reserve Forests (WRFs)
have potential for expansion in the highly suitable classification (30%) and moder-
ately suitable classification (52%) areas, to keep biodiversity and ecosystems for
wildlife resources. Nature Reserve Forests (NRFs) have an opportunity for extension
in the highly suitable classification (39%) and moderately suitable classification
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(48%) areas, to keep the forests for nature and biodiversity. In case of TRF, there is
limited scope to propose a further extension and is required to be managed with
collaboration between the government and the community.

Keywords Change detection · Land use/Land cover · Forest classification · Land
suitability analysis · GIS · Remote sensing

8.1 Introduction

Indonesia has been losing up to two million hectares of land annually, mainly due to
illegal cutting and land conversion (World Bank 2006). Due to a faster growing
population, the land conversion takes place to support the infrastructure expansion
investment in agriculture and the establishment of cash-crop plantations (United
Nations 2017). Indonesia’s urbanization and growth are covered for economic
security through conversion of millions of hectares of forest to palm oil plantations
(United Nations 2009). Deforestation rates have increased throughout Indonesia due
to urbanization and palm oil plantations covering 5,418,413 ha (Ministry of Forestry
2015). In addition, forest fires, poor forest management practices and an increasing
demand for forest products and agriculture contribute to the damage of forests,
which are more severe in the South Sumatra province of Indonesia. Many forests
in South Sumatra have recently experienced high rates of deforestation due to human
migration and the expansion of agriculture or industry. Land-use planning has not
taken place over time to align the changes in forest resources according to the
Indonesian forest resilience classification. It is also necessary to increase the growth
of the economy and, on the other hand, the sustainability of forests through improv-
ing the resilience of forest coverage. Forest coverage must be estimated periodically
to detect these changes. The change detection analysis has the advantage to visualize
the dynamics of changes in forest and deforestation processes. Though the forest is a
gift of nature, to maintain the carbon cycle, stocking, and sequestration processes in
vulnerable areas, further expansion of forest areas needs to be extended by locating
such potential areas in time. Production and convertible type forests have the
opportunity to expand into these potential areas, which can support the Indonesian
forest management system through community support (Santika et al. 2017). In
Indonesia, there are six types of forest classification zones, defined by the Indonesian
forest resilience system: Tourism Recreation Forest (TRF), Convertible Protection
Forest (CPF), Permanent Production Forest (PPF), Limited Production Forest (LPF),
Wildlife Reserve Forest (WRF), and Nature Reserve Forest (NRF) (Ministry of
Forestry 2016). A TRF is a forest used for tourism, research, education, and cultural
activities. CPFs are spatially reserved for use in the development of transmigration,
agricultural and plantation settlements. A PPF is a forest exploited for the treatment
of selective logging or by clear-cutting. An LPF is allocated to produce wood on a
small scale and is located in mountainous areas. A WRF is the natural reserve zone
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for wild animals and other natural ecosystems. In turn, an NRF consists of natural
forest and has the function of protecting the forest, controlling soil erosion,
preventing seawater intrusion, and maintaining soil fertility. In each type of forest,
change detection could help to project the changes in the ecosystem, carbon stock-
ing, and sequestration.

The change detection analysis can be mapped using satellite remote sensing
datasets for the coverage and changes in the spatial and time scales. Remote sensing
techniques provide a source of data that updates land-cover information to monitor
ecosystem changes over time (Houghton 1991; Potter et al. 2007; Yelwa 2005). The
change detection analysis has the advantages of determining the nature, biodiversity,
extent, and rate of land-cover changes, as well as aiding future planning and land
management, such as plantation, urbanization, water management, and extending the
land (Rogan and Miller 2006; Mancino et al. 2014; Rawat and Kumar 2015).
Monitoring and analysis for change detection is the most adopted application of
the satellite data (Mickelson et al. 1998; Yuan et al. 2005; Li et al. 2017). Among
them, Landsat satellite datasets have been used for change detection analysis (Yuan
et al. 2005; Brown et al. 2006; Mancino et al. 2014; Tarantino et al. 2015). Change
detection analysis can enhance the land-use planning within a framework of laws
and policies to guide forest zone allocation. The change detection assessment has
become central to diverse facets of the natural environment (Foody 2002; Diallo
et al. 2009; Hegazy and Kaloop 2015). The changed information is highly needed to
encourage forest management and to inform appropriate expansion. It is thus
important to detect when, where, and why change occurs, as well as study the
patterns of the changes for the future (Brown et al. 2000).

In the change detection analysis, remote sensing and GIS help to drive and
integrate the present land-use planning criteria, including important factors such as
elevation, settlements, distance from roads, and distance from rivers. These factors
govern the possibility of expansion. However, land encroachment for forest expan-
sion is a critical problem in many countries. Land encroachment and conversion
need the opinions of the government and local stakeholders (Sawathvong 2004). In
the stakeholder opinion, the population and settlement factors are very much signif-
icant when considering the potential expansion of production forests. Both expert
opinion and government policy maker participation are very important to enable
successful forest expansion. Analytical Hierarchy Process (AHP) has the potential to
include expert opinion into GIS and remote sensing datasets (Escobar and Moreno-
Jiménez 2000; Huang 2002; Chen and Kocaoglu 2008). Expert opinion and stake-
holder participation are required to minimize the adverse effect due to deforestation,
and to confirm the change detection for the classified forest areas. Once the classified
forest changes are largely identified, it is necessary to propose further extended areas
that have the potential to extend new plantations as production forest. Therefore, the
objective of this research is to perform a change detection analysis for the classified
forest zones and a suitability analysis to locate potential areas for extension.
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8.2 Materials and Methods

8.2.1 Geographical Extent and Forest Coverage
in Study Area

The study area is located in South Sumatra covered with TRF, CPF, PPF, LPF,
WRF, and NRF declared by the local government in the forest management system
(Fig. 8.1). The six forest zones located in the four different locations were taken

Fig. 8.1 Geographical extent and forest zones in the South Sumatra province of Indonesia. (a)
Indonesia, (b) South Sumatra, and (c) the forest zones: Tourism Recreation Forest (TRF), Convert-
ible Protection Forest (CPF), Permanent Production Forest (PPF), Limited Production Forest (LPF),
Wildlife Reserve Forest (WRF), and Nature Reserve Forest (NRF)
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spatially to analyze the changes in those zones. Three types of forest zones are
located in the same area of South Sumatra (Fig. 8.1c). TRF is located in the
Palembang city, the capital of the province of South Sumatra with an area of
40 ha, inside the city area of 3,585,500 ha. CPF, PPF, and LPF are located in the
agricultural area covered with 81,581,400 ha in the middle of South Sumatra. CPF
covers only 819.84 ha of land, which is used for the production of forest products
and reserved for the development of transmigration, agriculture, and plantations.
PPF has an area of 172.75 ha and can be used through selective logging or
clear-cutting of wood products. LPF covers 312.33 ha of forest land that is allocated
for the production of wood on a small scale. WRF covers 989 ha with a total area of
407,600 ha as a reserve zone for wild animals and other natural ecosystems. NRF
covers 305 ha with a total area of 22,565,100 ha (Forest Area 2016). NRF has the
function of protecting the forest, controlling soil erosion, preventing seawater
intrusion, and maintaining soil fertility (Fig. 8.1).

8.2.2 Change Detection Analysis

Change detection of forest land is important to understand the trends of changes in
the past, currently, and projections for the future. This study considered the time
scale of 2003–2018 to assess the trend of changes over the last 15 years. The post-
classification method was employed for change detection to provide the matrix table
of “from–to” change for the two date images on the base pixel comparison
(Badamasi and Yelwa 2010). The change area is the area of the target vegetation
cover type at the beginning (2003) and the end (2018) of the study period, respec-
tively. Since it is a large forest area, the continuing years of change may not have as
much of a significant difference compared to the highly urbanized areas where land-
use changes are very frequent and yearly reporting is very important.

Data Acquisition and Sources

The change detection analysis was conducted using 2-year series of multispectral
datasets for South Sumatra, using Landsat 7 for 2003 and Landsat 8 OLI for 2018.
Data were collected from the USGS satellite remote sensing datasets resources and
Indonesia Geospatial Agency (BIG). Selected criteria were taken into account in the
GIS analysis to map the potential areas for further extension of forests (Table 8.1).

Image Processing for Land Use/Land Cover (LULC)

Satellite datasets from Landsat 7 ETM+(2003) and Landsat 8 OLI (2018) were used
to develop the LULCs. The imagery was visually interpreted to prepare the change
detection maps using a knowledge-based supervised and maximum likelihood
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classification in the ArcMap environment. The maximum-likelihood classifier was
adopted from a parametric classification algorithm (Stehman and Czaplewski 1998;
Liu et al. 2002; Currit 2005; Bailly et al. 2007) and divided into four classes: urban,
vegetation, forest, and waterbodies (Table 8.2). The classes that were involved in the
selection of the training sites were used as a reference in the user-guided approach
(Wright et al. 1980; Campbell 1987; Olmo and Abarca-Hernández 2000; Jensen
2007; Tarantino et al. 2015). For each of the predetermined change detection types,
training samples were selected by delimiting the polygons in the study area. Spectral
signatures from the satellite imagery were chosen by pixels. A satisfactory spectral
signature was ensured for the land-cover map (Gao and Liu 2010) (Fig. 8.2a).

Accuracy Assessment

The accuracy assessment was conducted using reference data points from the base
map used to validate the LULC. A stratified random sampling method was employed
for selecting 200 points on the map with each class of 50 points (Fig. 8.2a). The
accuracy was evaluated using the Producer’s Accuracy (PA), User’s Accuracy (UA),
and Overall Accuracy (OA) (Thomlinson et al. 1999; Congalton 1991; Teodoro and
Araújo 2016) for consideration of the nearest results to accept as true. PA is the map
accuracy from the point of the mapmaker (the producer) to represent how well the
reference pixels of the ground cover type are classified. The PA refers to the number
of correctly classified pixels in each category (on the major diagonal) by the number
of reference pixels “known” to be of that category (the column total), while the UA
was computed by dividing the number of correctly classified pixels in each category
by the total number of pixels that were classified in that category (the row total). The

Table 8.2 Selected features for supervised classification in Land Use/Land Cover (LULC) analysis

Class name Description

Urban Areas designated as urban zone

Waterbodies River, lakes, waterlogged, and swamp areas

Vegetation Areas covered by trees, both agriculture and planted

Forest Areas covered by forest

Table 8.1 Satellite and GIS datasets for land suitability analysis for extension of potential forest
areas

No Data and map Description Source

1 LULC Extracted from 30 m resolution 2018, Landsat 8 OLI, Landsat 7 ETM+

2 River Scale 1:25,000 2005, Indonesia Geospatial Agency

3 Road Scale 1:25,000 2005, Indonesia Geospatial Agency

4 Elevation Extracted 90 m from Data
Elevation Model National SRTM

2015, USGS

5 Settlements Extracted from 30 m resolution 2018, Landsat 8

220 N. Nurda et al.



UA represents the probability that a pixel classified into a given category actually
represents that category on the ground, referred to as reliability. In addition, to
measure the agreement, we used the Kappa coefficient (Fig. 8.2a). Kappa measures
the percentage of data values in the main diagonal of the table and then adjusts these
values for the amount of agreement that could be expected due to chance alone. The
Kappa needs to calculate the observed level of agreement and then compares it to the
value that is expected. The value of Kappa is defined as

bK ¼
N
Pr
i¼1

Xii �
Pr
i¼1

Xij � Xji

� �

N2 �Pr
i¼1

Xij � Xji

� � ð8:1Þ

where bK is the Kappa coefficient; r is the number of rows in error matrix; N is the
total number of observations (pixels) in the matrix; Xii is the number of observations
in row i, column i; Xij is the total number of observations in row I; and Xji is the total
number of observations in column I. To interpret the Kappa coefficient following the
formula is more useful:

bK ¼ po � pe
1� pe

ð8:2Þ

Satellite Images
Landsat 7 & Landsat 8

Google Earth
Pro, Indonesia

Geospatial
Agency2003 2018

Image Pre-
processing

Pre-processing
(Geo rectification)

Training Signature
of Land Use

Classes

Training Sample
Reference Points

Central
Bureau of
Statistics

Supervised and
Unsupervised
Classification

(Maximm Likelihood)

LULC
2003

LULC
2018

Satellite Remote
Sensing

Change Detection

Reference Points
Selection

(LULC 2003 & 2018)

Accuracy Assessment
LULC 2003 & 2018

Kappa Coefficient
LULC 2003 & 2018

Criteria

ElevationLULCSettlements Distance
from Roads

Distance
From Rivers

Reclassification

Weighted
Overlay

Forest Potential
Extension Area

GIS

Criteria
(Experts Opinion)

Settlements LULC Elevation Distance
from roads

Distance
from rivers

AlternativesS3 S2 S1 N

Goal

Criteria

AHP

a

b

c

Fig. 8.2 Research framework for land suitability analysis to propose the extension of potential
forest area. (a) Land use and land cover for change detection analysis from Landsat 7 and Landsat
8 OLI datasets; (b) Analytical Hierarchy Process (AHP) to integrate the expert opinion’s weight in
the suitability analysis; and (c) the land suitability analysis

8 Change Detection and Land Suitability Analysis for Extension of Potential. . . 221



where po is the accuracy of the observed agreement,
P

Xij

N ; and pe is the estimate of

chance agreement,
PPr

i¼1
Xij�Xjið Þ

N2 . The coefficient of agreement Kappa is�1� k� 1.
Interpretation of Kappa is referred to as a poor agreement if it is less than 0.20; a fair
agreement is from 0.20 to 0.40; a moderate agreement ranges between 0.40 and 0.60;
a good agreement ranges from 0.60 to 0.80; and a very good agreement ranges from
0.80 to 1.00. An accuracy assessment provides the information for estimating the
uncertainty of map classes and the construction of confidence intervals. Accuracy
assessment is performed by comparing the map created by remote sensing analysis
to a reference map based on a different information source. Both of the maps were
evaluated and registered geometrically to each other.

8.2.3 Suitability Analysis for Extension of Potential
Forest Area

The suitable potential area refers to the lands that have the opportunity for conver-
sion of forest with economic return over a period of time. In the forest extension
planning process, it is important to understand the problem of finding suitable
locations for the potential areas. The vegetation land was considered with the
timeframe for coverage. Basic land-use change focuses on the land use covered by
humans and their habitats (such as agriculture, settlements, industry, etc.), apart from
natural disaster factors. The suitable areas for forest potential extension were com-
puted using the weighted overlay procedure in ArcGIS® (ESRI, Redlands, NY,
USA). In this research, five criteria were selected: settlements, LULC, elevation,
rivers, and roads. The description of the criteria and reclassification are described in
the following section.

Criteria for Suitability Analysis

The criteria for suitability analysis were settlements, LULC, elevation, distance from
rivers, and distance from roads (Table 8.3 and Fig. 8.3).

Settlements

Settlements include buildings for residences or for industrial activity that has that
land-use component (Strand 1993; Chaudhary et al. 2008). Settlements are areas of
human habitation with buildings, civil facilities (hospitals, schools, places of wor-
ship, and sports areas). The forest loss corresponded with an increase in human
settlement. Settlements are driven to overexploit natural resources in forest areas and
accelerate land degradation (Nayak et al. 2014). A settlements map was produced

222 N. Nurda et al.



from Landsat 8 OLI satellite images that were verified using Google Earth Pro and
confirmed with an overlay process using Indonesian geospatial datasets (Fig. 8.3a).

LULC

LULC was built using satellite remote sensing from Landsat 7 ETM+ and Landsat
8 OLI. Landsat 7 was used to develop the classifier for the study area in 2003 and
Landsat 8 OLI was used for the classifier in 2018. Both Landsat images were
processed using supervised maximum likelihood classification. Land-cover classes
were defined by a string of classifiers with the aim of achieving a logical and
functional hierarchical arrangement of the classifiers; certain criteria were applied.
The four categories urban, waterbody, vegetation, and forest were used in the LULC
for 2018 (Fig. 8.3b).

Elevation

The study area is comprised of lowlands, although there were no peatlands in the
forest zones. However, South Sumatra had deforestation due to plantation potential
and agriculture. In addition, this area has a tropical rainforest heritage. Tropical

Table 8.3 Criteria of the land suitability analysis for the extension of forest areas

Criteria Suitability class Sub-criteria Reference

Settlements S1 <214 Strand (1993)

S2 264–365 Strand (1993)

S3 365–414 Strand (1993)

N >414 Strand (1993)

LULC S1 Forest Demissie et al. (2017)

S2 Vegetation Demissie et al. (2017)

S3 Urban Demissie et al. (2017)

N Waterbodies Demissie et al. (2017)

Elevation S1 <350 m Li et al. (2017)

S2 350–900 m Li et al. (2017)

S3 900–1600 m Li et al. (2017)

N >1600 m Li et al. (2017)

Distance from roads S1 <10 m Gigovic et al. (2019)

S2 10–23 m Gigovic et al. (2019)

S3 23–45 m Gigovic et al. (2019)

N >45 m Gigovic et al. (2019)

Distance from rivers S1 <6 m Nigussie et al. (2019)

S2 6–13 m Nigussie et al. (2019)

S3 13–21 m Nigussie et al. (2019)

N >29 m Nigussie et al. (2019)
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Fig. 8.3 Criteria for the land suitability analysis for extension of potential forest areas. (a)
Settlements, (b) LULC, (c) elevation, (d) distance from rivers, and (e) distance from roads
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elevation areas have high biodiversity and rich ecosystem services (Gradstein et al.
2010; Spracklen and Righelato 2014) (Fig. 8.3c).

Distance from Rivers

The unavailability of water strongly constrains the distribution of plants on the
Earth’s surface (Holdridge and Hubbert 1947; Major 1963), ecosystems, and forests
(Churkina and Running 1998; Law et al. 2002; Schuur 2003; Berner and Law 2015).
Therefore, rivers are a source of water to get potential area for extensions. The data
for distance from rivers were collected from the Indonesian geospatial agency
(Fig. 8.3d). It is worth mentioning that the rivers are important in supporting regional
biodiversity and provides important services for people, such as food, fodder,
shelter, construction materials, and medicine (Johnson and Omland 2004). The
ecology in forests refers to the relationships that living organisms have with each
other and with their environment. In that case, access to water sources (rivers) is
required for new forestation. Consider supporting potential forest areas: The distance
to a river has a direct impact on the importance of the relationship between forests
and water; the location of the rivers needs to be close to the vegetation and the
dependent animal life. To protect a variety of forest ecological processes, distance
from rivers is one of the factors. There are several types of forest ecological
processes that depend on dry areas (distance from rivers is far) or wet areas (distance
from rivers is close) (Kirchmair 2017). The rivers have been highlighted as a priority
for scientists, policymakers, and managers (Datry et al. 2014).

Distance from Roads

The availability of roads in forest areas was considered in order to increase the forest
plantation area to facilitate the extension of some plantation forest. The potential
extension might be difficult when the road is unavailable in forest zones (except, of
course, the roads that were built for the plantation system) (Fig. 8.3e). Furthermore,
the masking of areas in each forest type was done to understand the changes that
occurred in each forest (Fig. 8.4).

Reclassification of Criteria

The selected criteria were reclassified to understand the importance of each of the
criteria and their suitability assessment. The reclassification was performed using the
criteria to classify the vector and raster data by replacing a new value in the four
classifications based on FAO recommendations. The classification was suggested
based on the following levels of suitability: highly suitable (S1), moderately suitable
(S2), marginally suitable (S3), and not suitable (N). The classification of the spatial
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data, such as vector datasets, were translated into raster layers and were processed
using ArcGIS® 10.4 (Table 8.4).

8.2.4 AHP

AHP is a mathematical method that uses several criteria to analyze complex deci-
sions (Saaty 1980, 1990). This method has been successfully applied to forestry
applications (Mendoza and Sprouse 1989; Saaty 1990; Kangas 1991, 1992;
Schmoldt et al. 1994; Tarp and Helles 1995). In this AHP analysis, weighting of
several criteria was used to conduct the pairwise comparison of two criteria at a time.
Each weight was determined by experts to choose for the pairwise comparison
matrix. In our research framework, the top class was to determine the potential
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Fig. 8.4 LULC for each type of forest: (a) TRF; (b) CPF, PPF and LPF; (c) WRF; and (d) NRF
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forest extension areas (goal), the middle class being the criteria and bottom class the
alternative. The middle class of the hierarchy was considered the rules or criteria of
the goal. The bottom class was considered alternative decisions (Fig. 8.5). Ques-
tionnaires were used to gather expert opinions on the relative importance of the
criteria and factors. Comparative results (for each factor pair) were described as
integer values of 1 (equal value) to 9 (extremely different), where a higher number
indicated that the chosen factor was more important than the other factors to which it
was compared (Table 8.5). In the AHP analysis, first, five criteria were selected

Table 8.4 Reclassification of the criteria of land suitability for forest extension areas

Criteria Suitability class Suitability range Percentage area (%) Area (ha)

Settlements S1 <214 57.47 1310

S2 264–365 23.48 535

S3 365–414 13.72 313

N >414 5.33 121

LULC S1 Forest 57.6 790,712

S2 Vegetation 24.2 333,020

S3 Urban 13.2 180,615

N Waterbodies 5 68,806

Elevation S1 <350 53.28 495,989

S2 350–900 25.56 237,940

S3 900–1600 15.82 147,314

N >1600 5.34 49,681

Distance from roads S1 <10 85.77 1,163,759

S2 10–23 9.77 132,494

S3 23–45 3.73 50,577

N >45 0.74 9985

Distance from rivers S1 <6 97.96 1,339,701

S2 6–13 1.38 18,856

S3 13–21 0.44 6032

N >29 0.22 2994

Criteria
(Experts Opinion)

Settlements LULC Elevation Distance from Roads Distance from Rivers

Goal

Criteria

AlternativesNS1S2S3

Fig. 8.5 The AHP framework to incorporate expert opinion into the land suitability analysis for
extension of potential forest areas
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based on a literature review and expert opinion. All scores were assembled in a
pairwise comparison matrix, with diagonal and reciprocal scores located in the lower
left-hand triangle. Reciprocal values (1/3, 1/5, 1/7, and 1/9) were used where the row
criterion was found to be less important than the column criterion. Secondly, scoring
was involved in the criteria via pairwise comparisons and scales of relative impor-
tance. The random indices of Saaty (1977) are listed for the observation from 3 to
9 (Table 8.6). Thirdly, the matrix was calculated and ensured the consistency of the
pairwise comparison criteria. The pairwise matrix was calculated with the compar-
ison results, creating a matrix form C with dimensions of m � n by the following
expression:

C11 C12 C13 ⋯ C1n

C21 C22 C23 ⋯ C2n

⋮ ⋮ ⋮ ⋯ ⋮
⋮ ⋮ ⋮ ⋯ ⋮
Cm1 Cm2 Cm3 ⋯ Cmn

2
6666664

3
7777775

ð8:3Þ

The sum of each column of the pairwise matrix was denoted as follows:

Cij ¼
Xn
i¼1

Cij ð8:4Þ

Then the element of the matrix was divided by its column total to generate a
normalized pairwise matrix:

Table 8.5 Saaty scale for pairwise comparison between the criteria in the AHP

Index Definition Index Definition

1 Equally important 1/1 Equally important

2 Equally or slightly more important 1/2 Equally or slightly less important

3 Slightly more important 1/3 Slightly less important

4 Slightly to much more important 1/4 Slightly to way less important

5 Much more important 1/5 Way less important

6 Much too far more important 1/6 Way to far less important

7 Far more important 1/7 Far less important

8 Far more important to extremely more
important

1/8 Far less important to extremely less
important

9 Extremely more important 1/9 Extremely less important

Table 8.6 Random indices in
the AHP

n 3 4 5 6 7 8 9 10

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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Xij ¼ CijPn
i¼1

Cij

¼

X11 X12 X13 ⋯ X1n

X21 X22 X23 ⋯ X2n

⋮ ⋮ ⋮ ⋯ ⋮
⋮ ⋮ ⋮ ⋯ ⋮
Xm1 Xm2 Xm3 ⋯ Xmn

2
6666664

3
7777775

ð8:5Þ

The AHP generates a weight for each evaluation criterion according to the
expert’s pairwise comparisons of the criteria. The higher weight is more important
than the corresponding criteria. Then the AHP combines the weights and the scores
to determine the total score for each option and a consequent ranking was used (n) to
generate the weighted matrix of the priority criteria (W ):

Wij ¼

Pn
j¼1

Xij

n

W11

W12

⋮
W1n

2
66664

3
77775 ð8:6Þ

To compute an estimate of the eigenvector for a pairwise comparison matrix, we
multiplied the normalized matrix with the priorities vector (principal eigenvector of
the matrix). Then we divided the elements in the resulting vector of priorities and
took the average. The initial consistency vectors were derived by multiplying the
pairwise matrix by the vector of weights:

C11 C12 C13 ⋯ C1n

C21 C22 C23 ⋯ C2n

⋮ ⋮ ⋮ ⋯ ⋮
⋮ ⋮ ⋮ ⋯ ⋮
Cm1 Cm2 Cm3 ⋯ Cmn

2
6666664

3
7777775
�

W11

W12

⋮
W1n

2
66664

3
77775

¼

C11W11 C12W12 . . . C1nW1n

C21W21 C22W22 . . . C2nW2n

⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

Cm1Wm1 Cm2Wm2 . . . CmnWmn

2
6666664

3
7777775
¼

V11

V12

⋮
V1n

2
66664

3
77775 ð8:7Þ

The number of objectives and alternatives should not exceed seven, respectively,
to make the decision process manageable. The principal eigenvector (λmax) was
calculated by averaging the values of the consistency vector:
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λmax ¼
Xn
i

CVij ð8:8Þ

Eigenvalues were calculated by averaging the rows of each matrix. Eigenvalues
were also referred to as relative weights. The largest eigenvalue was equal to the
number of criteria, and when λmax ¼ n, judgments were consistent. Normalized
eigenvalues were generated as the weights of the priority criteria. The consistency
index (CI) was calculated following Saaty (1980), where the deviation λmax from n is
a measure of inconsistency:

CI ¼ λmax � n
n� 1

ð8:9Þ

The evaluation is considered acceptable if the consistency ratio (CR)< 0.1 (Saaty
1980). The evaluation is considered as moderately consistent and acceptable if
0.1 < CR < 0.2 (Wedley 1993) or CR < 0.2 (Lakiãeviã and Srðeviã 2012). CR is
calculated as follows:

CR ¼ CI
RI

ð8:10Þ

8.2.5 Land Suitability for Forest Extension Areas

The land suitability analysis for potential forest extension areas was carried out using
various classification categories suggested by the FAO. The reclassified criteria were
selected to perform the weighted overlay to develop the land suitability map for
forest extension. In the weighted overlay, the AHP weights were used and can be
expressed as

WeightedOverlay ¼
Xn
i¼1

Ci �Wn ð8:11Þ

where Ci is the criteria (i) that was reclassified, and Wn is the amount of weighted
data (n). The classes are noted as highly suitable (S1), moderately suitable (S2),
marginally suitable (S3), or not suitable (N) within the FAO land assessment
framework. Then these suitability classes can be subdivided further as needed.
These three classes, S1, S2, and S3, were used to identify highly suitable, moderately
suitable, and marginally suitable lands for potential forest extension areas. In the GIS
environment, suitability analysis was conducted to find the potential areas for
extension of forests.
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8.3 Results

8.3.1 Change Detection Analysis

Based on the landscape of the study area, change detection analysis was done in four
categories: urban, waterbody, vegetation, and forest for six types of forest zones
(Fig. 8.6 and Table 8.7). A negative value is presented to show a decrease in change
detection while a positive value indicates an increase in the change detection class. In
the study area, TRF was observed as an increasing trend in the urban class by
37.03% (14.78 ha). A decreasing trend was observed in the vegetation and forest
classes by 21.47% (8.61 ha) and 20.09% (8.06 ha), respectively. CPF, PPF, and LPF
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Fig. 8.6 Change detection in the LULC for classified forest areas in South Sumatra. (a) LULC,
2003; and (b) LULC, 2018

Table 8.7 Change detection of forest classes from 2003 until 2018

Forest zone

Changing area
(urban class)

Changing area
(vegetation class)

Changing area
(forest class)

Changing area
(waterbody
class)

(%) (ha) (%) (ha) (%) (ha) (%) (ha)

TRF 37.03 14.78 �21.47 �8.61 �20.09 �8.06 – –

NRF �19.78 �55.22 – – 33.05 92.26 �0.99 �2.75

WRF 3 29.56 – – 33.44 329.7 �6.2 �61.15

CPF 4.56 372.16 10.09 823.49 �13.56 �1105.72 �1.09 �88.66

PPF 9.52 163.72 31.16 535.7 �40.21 �691.12 – –

LPF 48.75 1514.34 23.63 733.92 �72 �2236.62 �0.37 �11.65
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had an increased rate in the urban land-use class. The highest percentage of increased
area was observed in the LPF area of 48.75% (1514.34 ha). The CPF and PPF were
4.56% (372.16 ha) and 9.52% (163.72 ha). An increasing trend was observed in the
vegetation class with the highest percentage in the PPF area of 31.16% (535.7 ha). In
the case of the LPF and CPF, vegetation class was increased by 23.63% (733.92 ha)
and 10.09% (823.49 ha), respectively. CPF, PPF, and LPF had a decreasing trend in
the percentage of forest classes by 72% (2236.62 ha), 40.21% (691.12 ha), and
13.56% (1105.72 ha). Waterbodies were decreased by 1.09% (88.66 ha) for CPF and
0.37% (11.65 ha) for LPF. WRF was increased in urban and forest classes by 3%
(29.56 ha) and 33.44% (329.7 ha). Waterbody classes were decreased by 6.2%
(61.15 ha). NRF had an increasing trend in the forest class by 33.05% (92.26 ha).
However, the declining trend was also observed in urban and waterbody classes by
19.78% (55.22 ha) and 0.99% (2.75 ha), respectively (Table 8.7).

8.3.2 Accuracy Assessment

The accuracy assessment was referred to by the producer’s accuracy of 86% and
96% for the urban class in 2003 and 2018 in the six types of forest zones. The
vegetation class had a producer’s accuracy of 86% and 100% for both the years in
2003 and 2018. The forest class also had a producer’s accuracy of 90% and 96% in
2003 and 2018. The waterbody class had a producer’s accuracy of 80–96%. The
Kappa coefficient of agreement was more than 0.60 (Table 8.8). The interpretation of
Kappa showed a good agreement for all types of forests.

Table 8.8 Accuracy assessments for LULC in 2003 and 2018

Accuracy
assessment Class

TRF
CPF, PPF,
and LPF WRF NRF

(%) (%) (%) (%)

2003 2018 2003 2018 2003 2018 2003 2018

Producers accuracy Urban 96 90 92 92 88 94 92 86

Vegetation 90 96 88 100 94 96 86 86

Forest 92 96 92 90 96 94 96 96

Waterbody 92 80 88 84 96 96 96 90

User accuracy Urban 96 82 92 85 100 98 90 86

Vegetation 90 96 88 85 87 87 91 86

Forest 92 100 92 100 89 96 96 96

Waterbody 92 85 88 100 100 100 92 90

Overall accuracy 93 91 90 92 94 95 93 90

Kappa coefficient 0.84 0.79 0.80 0.82 0.86 0.89 0.83 0.78
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8.3.3 Land Suitability Analysis for Extension of Potential
Forest Area

Reclassification of Criteria

The reclassifications of criteria were categorized into four classifications, namely,
highly suitable, moderately suitable, marginally suitable, and not suitable, according
to a land suitability analysis (FAO 1979). The settlements criteria showed that
57.47% of the areas were highly suitable (1310 ha) and 23.48% of the areas were
moderately suitable (535 ha). In the case of the LULC reclassification, 57.6% of the
areas had forest and were highly suitable (790,712 ha). On the other hand, 24.2% of
the areas were observed as vegetation and were reported as moderately suitable
(333,020 ha). From the reclassification of elevation criteria, 53.28% of the areas
were noted as highly suitable (495,989 ha) and 25.56% were moderately suitable
(237,940 ha). The roads were measured using the Euclidean distance and a
reclassification of this criteria showed that 85.77% of the areas were highly suitable
(1,163,759 ha) and 9.77% were moderately suitable (132,494 ha). Evaluating the
distance from rivers in a similar way, the reclassification referred that 97.96% of the
areas were highly suitable (1,339,701 ha) and 1.38% were moderately suitable
(18,856 ha) (Table 8.4, Fig. 8.7).

8.3.4 AHP

In the AHP, the expert’s opinions were considered using a comparison of the scale
matrix for each criterion, whose expert judgment for the ranking of the criteria
affected the area of land suitability. A pairwise matrix was used in the AHP for
the expert opinion using five criteria. The AHP weight results indicated that the
settlements weight was scored first, LULC second, elevation third, distance from
road fourth, and distance from a river fifth (Table 8.9). In ArcGIS®, the criteria were
reclassified as raster-based data layers and integrated with a weighted overlay
according to the weight rank given by the experts. The rank was given to prioritize
the influence of the criteria for the extension of potential areas of forest in the land
suitability analysis.

8.3.5 Land Suitability Analysis for Extension of Potential
Forest Area

Change detection analysis was performed not only to detect changes that occurred in
the forest but also to identify the potential areas for further extension of production
forest. In the land suitability analysis, five criteria were used in the TRF, CPF, LPF,
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Fig. 8.7 Reclassification of the criteria for the land suitability analysis to propose extension of
potential forest areas. (a) Settlements, (b) LULC, (c) elevation, (d) distance from rivers, and (e)
distance from roads
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PPF, WRF, and NRF zones to find out the potential areas for forest extension
(Fig. 8.8). In these types of forest zones, a highly suitable classification had the
highest preferences followed by the moderately suitable classification. In the TRF,
forest extension could be possible in 7% and 8% of the limited areas belonging to the
highly suitable class and moderately suitable class (Table 8.10). There were highly
and moderately suitable classes in the CPF, LPF, and PPF areas of 30%
(81,663.91 ha) and 41% (112,191.20 ha), respectively. In the case of a WRF, there
is the possibility of extension in 30% (98,133.18 ha) in highly suitable areas and
52% in areas (167,012.93 ha) in the moderately suitable class. The potential areas for
an NRF forest zone were 39% (79,798.61 ha) in the highly suitable class and 48% of
areas (99,498.03 ha) in the moderately suitable class (Table 8.10).

8.4 Discussion

South Sumatra is one of the most important provinces for conservation of biodiver-
sity and forest resources in Indonesia. The stewardship and use of forest land must be
managed for their biological diversity, productivity, regeneration capacity, vitality,
and potential to fulfill the current and future needs relevant to ecological, economic,
and social functions at the local, national, and global levels (FAO 2000). Potential
forests area extension strategies can be targeted with creating sustainable forestry
market opportunities, such as oil palm plantations and agricultural lands (Fitzherbert
et al. 2008; Lawson 2014; Martin et al. 2016). In this research, CPF, PPF, and LPF
are referred to as community forestry. Potential land can be set up for new forest
generation to promote plantations that bring benefits to the environment and sur-
rounding communities (Cossalter and Pye-Smith 2003; Kanowski et al. 2005; Weber
2005; Martin et al. 2016). Protecting and restoring forests could provide the best
decision with the local communities to get the benefit and restore the environmental
and economic functions of the forests (Sanchirico and Siikamaki 2007). The chal-
lenges in achieving sustainable forest management and forest conservation need to
develop with collaborative solutions between stakeholders and communities (Sheil
et al. 2002; Gunningham 2009). CPF, PPF, and LPF entail forest production,
providing support and opportunities for enhancing the economic benefits through
wood and palm oil. In the demographic shift, TRF can play an important role in

Table 8.9 Expert opinion weights for prioritizing the criteria in AHP

Criteria
Expert
A

Expert
B

Expert
C

Expert
D

Expert
E

Average
weight

Weight
(%)

Settlements 0.190 0.354 0.160 0.245 0.102 0.210 29

LULC 0.214 0.222 0.102 0.143 0.379 0.212 29

Elevation 0.086 0.066 0.379 0.119 0.160 0.162 23

Distance from roads 0.092 0.097 0.065 0.100 0.065 0.084 12

Distance from rivers 0.074 0.049 0.043 0.033 0.043 0.048 7
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Fig. 8.8 Land suitability analysis for the extension of potential areas in NRF, CPF, LPF, PPF,
WRF, and TRF forest zones

Table 8.10 Land suitability analysis for extension of potential forest areas in the forest zones

Land suitability
classes

TRF CPF, PPF, and LPF WRF NRF

(%) (ha) (%) (ha) (%) (ha) (%) (ha)

N 45 3730.61 16 44,994.77 1 2638.72 2 4913.48

S3 40 3275.66 13 37,215.08 17 54,503.27 11 22,793.10

S2 8 682.43 41 112,191.20 52 167,012.93 48 99,498.03

S1 7 591.44 30 81,663.91 30 98,133.18 39 79,798.61

Total 100 8280.13 100 276,064.96 100 322,288.09 100 207,003.22
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supporting efforts of urban forestry and urban landscapes to provide ecosystem and
natural infrastructure (Costanza et al. 1997; Landell-Mills 2002) and NRF have an
important role in maintaining and protecting the biodiversity of wildlife habitat and
natural land (Sheil et al. 2002; Balmford et al. 2002). The proposed potential areas
can be extended by forest classifications to balance the deforestation with production
forests, such as plantations. Therefore, the change detection analysis and periodic
determination of potential forest extension areas could help to create a new policy
space for plantation forests and ecosystems to be present in designing national and
subnational policies.

8.5 Conclusions

In this research, remotely sensed data were used to monitor the changes in the LULC
and quantify the differences in the forest classes in the South Sumatra province of
Indonesia from 2003 to 2018. In the LULC analysis, six types of forest zones: CPF,
PPF, LPF, WRF, TRF, and NRF were focused upon to find out their changes and
locate potential areas for extension of forest. In the change detection analysis, we
have observed that the TRF, CPF, and PPF forest zones had a decrease of their forest
class by 20%, 13%, and 40%, respectively, from 2003 to 2018. LPF regions had
large changes and decreased by 72% in LULC for its forest class. Palm oil planta-
tions had a significant impact on the LPF forest classification areas. For the extension
of forest types that decreased over the time period, the AHP analysis incorporated
selected criteria using weights from experts. The weights were used in the GIS
analysis to propose the potential areas for extension. The influential criteria had
higher weights and ranked as settlements, elevation, distance from roads and rivers.
We found CPF, PPF, and LPF had an opportunity of extension in the highly suitable
classification (30%) and moderately suitable classification (41%) areas, in order to
increase coverage of production forests. WRF had a forest potential area in the
highly suitable classification of 30% and moderately suitable classification of 52% to
keep biodiversity ecosystems for wildlife resources. The potential areas for NRF
were 39% (79,798.61 ha) in the highly suitable class and 48% of areas
(99,498.03 ha) in the moderately suitable class, to keep the natural ecosystem.
TRFs had a very limited scope to propose a further extension and are required to
be managed with collaboration between the government and the community.
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Chapter 9
Estimating Productivity and Carbon Stock
Using Phonological Indices from Satellite
Remote Sensing in Indonesia

Nety Nurda, Ryozo Noguchi, and Tofael Ahamed

Abstract Indonesia has the highest forest density in the world, and the productivity
of its forests can potentially be maximized to minimize CO2 emissions. However,
due to anthropogenic activities, phenological properties are subject to risk to ensure
productivity and carbon exchange in the different forest ecosystems in Indonesia.
Early prediction of carbon values could indicate a declining trend of forest quality
with reference to vegetation levels. Thus, the purpose of this research is to evaluate
forest productivity and carbon stock using phonological properties for different
forests. The vegetation phenology was used to assess the level of forest productivity
with different classifications to estimate carbon stock in six types of forest in south
Sumatra using gross primary productivity (GPP) approaches. The vegetation pho-
nologies were analyzed to develop a system dynamics model under two scenarios:
first, a changing trend of normalized difference vegetation index (NDVI), and
second, a changing trend of area, considering either increasing or decreasing solar
radiation in both scenarios. This system was run through the geographic information
system (GIS) environment to develop a database and to simulate results for future
predictions. Verification was performed to test the simulation model by comparing
the results with the Intergovernmental Panel on Climate Change (IPCC) reference.
NDVI showed good correlations with GPP using MODIS MOD13Q1 for convert-
ible production forest (CPF R2 ¼ 0.97), permanent production forest, PPF
(R2 ¼ 0.99), limited production forest (LPF, R2 ¼ 0.98), tourism recreation forest
(TRF, R2¼ 0.95), and wildlife reserve forest (WRF, R2¼ 0.95), nature reserve forest
(NRF, R2¼ 0.99). The explicit differential function was used to estimate net primary
productivity (NPP), which was related to the changes in area and productivity over
time. Productivity and carbon stock analysis was performed via the proposal of five
levels referring to Indonesian forest policy planning, considering resilience classified
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as high forest productivity (V1), moderate forest productivity (V2), marginal forest
productivity (V3), very low forest productivity (N1), and no forest productive (N2).
TRF was found to fall below the IPCC levels from 2015 to 2017, and NRF fall below
the IPCC standards from 2015 to 2018. Therefore, the satellite-based remote sens-
ing, system dynamics model can be implemented in the Indonesian forest policy
system for assessing forest productivity and carbon stocks.

Keywords Forest productivity · Carbon stock · Satellite remote sensing and GIS ·
System dynamics

9.1 Introduction

Forests play an important role as efficient carbon sinks in tropical areas (IPCC 1997).
Concerning the carbon content of forest biomass, 50% of forest vegetation is
composed of carbon elements (Brown 1997). The estimation of forest biomass is
useful for assessing forest productivity (Návar 2009; Thiffault et al. 2011; Fleming
et al. 2014). Accurate biomass information obtained using remote sensing is neces-
sary (Ahamed et al. 2011; Romijn et al. 2015; Sung et al. 2016) to describe the
conditions of deep forest ecosystems for sustainable forest resource management
(Wang et al. 2005). Deforestation and degradation are reported along with carbon
mapping and monitoring data, which are used to adapt policies for reducing emis-
sions (Defries et al. 2002; Mollicone et al. 2007; Houghton 2005; Gibbs et al. 2007).
The release of CO2 in the air due to deforestation has led to global warming in
Indonesia. By measuring the amount of carbon stored in a living plant, we can
describe the amount of CO2 in the atmosphere absorbed by plants. Therefore, the
estimation of carbon is very important for understanding forest ecosystems, espe-
cially in Indonesia, where they play a significant role in absorbing CO2 from the air.

In Indonesia, anthropogenic activities are mainly responsible for decreasing forest
productivity due to illegal logging, the preparation of new land for oil palm planta-
tions, and frequent forest fires. Efficient planning is required to address the problems
of anthropogenic activities. It is not wise to stop these activities altogether; however,
forest classification measures and policies can be proposed for Indonesia that match
the government targets. In large-scale planning and adaptation, satellite remote
sensing datasets for the assessment of forest vegetation phenology can provide an
indication of changes (Ruimy et al. 1994). For vegetation phenology, indices
developed from Satellite Pour l’Observation de la Terre (SPOT), Landsat, and
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery are
often evaluated over time series (Foody et al. 2003; Goward et al. 1985; Sonawane
and Bhagat 2016; Turner et al. 2006; Rasib et al. 2007). Researchers developed gross
primary productivity (GPP) data from the MODIS GPP/net primary productivity
(NPP) (MOD17) product based on the radiation use efficiency of vegetation (Zhao
et al. 2005, 2006; Zhang et al. 2008; Zhao and Running 2010; Tian et al. 2010). The
normalized difference vegetation index (NDVI) is one of the indices that can be used
to estimate forest productivity. In productivity estimations, GPP or NPP is
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considered a performance indicator of forest health. GPP and NPP are fundamental
indicators of ecosystem health and productivity (IPCC 2001). Furthermore, NPP
reflects the amount of carbon stored by plants through photosynthesis and autotro-
phic respiration after assimilation (Clark et al. 2001). The productivity of a forest is
vulnerable to anthropogenic activities (Zhang et al. 2009a, b) and perpetual devel-
opmental pressures. NPP is often correlated with NDVI in various geographical
areas and ecosystems (Box et al. 1989; Burke et al. 1990; Hobbs 1995). In addition,
NDVI serves as an alternate estimator of NPP (Schloss et al. 1999; Jobbágy et al.
2002; Wessels et al. 2008; Irisarri et al. 2012).

Furthermore, in large areas with different forest classifications, it is difficult to
understand the changes in phenological properties due to geospatial variability in a
forest. A GIS approach can help to visualize the dynamic changes in NPP over a
period of time, which will support forest management in Indonesia. As carbon
sequestration is a long process, datasets over consecutive years are needed for
regular monitoring, which is essential for productivity and carbon inventory plan-
ning necessary for the government to propose forest strategies. The projection of
productivity in a given time frame can be performed on the basis of system dynamics
under different scenarios. Through system dynamic modeling, forecasting of pro-
ductivity can be achieved as early as possible by increasing vegetation or expanding
the area in accordance with the expected productivity values via a simulation
process.

To the best of our knowledge, no research has previously been undertaken to
outline the associations between vegetation phenology, system dynamics, and forest
productivity assessments. However, satellites have the potential to measure forest
productivity. Understanding the ability of forests to absorb carbon over a long period
of time provides an opportunity for Indonesia to engage in emissions trading
activities, which is a new paradigm in the forestry sector. A net positive carbon
sink due to the growth of forests (trees) can be effectively utilized for cancelling CO2

emissions from fossil fuels. In this context, depending on whether the forest is native
or artificial, the product of the density and the area is important as well as scheduled
tree trimming and wood utilization. In this regard, it is very important to determine
the site-specific vegetation status of a forest. Mapping such productivity data will
provide insight into the ecosystem and can be used to establish sites a carbon
resource in the environment (Ulsig et al. 2017); then, legislation for countermeasures
can be proposed to ensure sustainable forest conservation and utilization of forests
with different classifications (Yu and Chen 2016). Therefore, the purpose of this
research is to develop a decision support system to assess productivity approaches
for different forest classifications in Indonesia. Furthermore, WebGIS is proposed to
determine the current productivity value along with a system dynamics model to
estimate productivity over a long period of time.
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9.2 Methods

9.2.1 Study Areas and Classification of Forests

The research was conducted in South Sumatra of Indonesia (Fig. 9.1a), which is an
area vulnerable to increased deforestation rates due to the development of oil palm
plantations and land use planning. The classified forest areas cover 361,760 km2 in
the 13 districts of South Sumatra. The involvement of the government in establishing
regulations governing the use of wood forest products is critical for forest sustain-
ability. Forest utilization takes into account the needs of the surrounding people as
well as the preservation of the forest. As a result, the government categorizes forest
types based on their intended utilization. The forest areas are located in the Empat
Lawang, Muara Enim, Lahat, and Palembang districts (Fig. 9.1b). The locations of
the forest areas form four clusters. However, three of the clusters are located in the
northeastern part of South Sumatra (Fig. 9.1c). The following section introduces the
six types of classified forests and their locations in the study area. The forest
classification was confirmed by the central government (Ministry of Forestry
2015) to conduct vegetation phenology analysis for productivity assessment.

Fig. 9.1 Study area: (a) Indonesia, (b) South Sumatra, and (c) forest locations in South Sumatra of
Indonesia
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9.2.2 Convertible Production Forest (CPF)

It is a type of forest area that is spatially reserved for the development of transmi-
gration, agricultural uses, and plantation settlements. Furthermore, CPF is reserved
for developments other than forestry and can be converted to non-forestry manage-
ment areas. CPF is also used to produce forest products to benefit the community
consumption, industry, and exports. The CPF area is in northeastern South Sumatra
and has an area of 819.84 ha (Fig. 9.2). CPF rain is growing increasingly popular in
Indonesia as the country’s population grows. Land is necessary for both shelter and

Fig. 9.2 Administrative boundaries of the locations of classified forests and reference points in
each type of forest in South Sumatra (CPF, PPF, LPF, TRF, WRF, and NRF) to be carried out
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increasing production of forest products. CPF forest types are most numerous in the
Indonesian provinces of Sumatra, Kalimantan, and Sulawesi.

9.2.3 Permanent Production Forest (PPF)

It refers to forest that can be exploited through selective logging or clear-cutting. PPF
areas are fully monitored by the government and the private sector that manages
them and are used by the surrounding community as a source of employment. In
permanent production forests, the cutting limit of trees with diameters of 50 cm is set
by the forestry regulation. Forest products and commodities were rated second in
terms of foreign exchange profits after oil and gas. The PPF areas are in South
Sumatra, covering 172.75 ha (Fig. 9.2).

9.2.4 Limited Production Forest (LPF)

It is allocated to produce wood on a small scale. The LPF areas are in mountainous
areas with steep slopes that do not allow large-scale timber production.

The LPF areas are fully monitored by the government and the private sector and
provide employment to the surrounding communities. A limited production forest is
designed for soil erosion mitigation as well as wood production. The LPF areas are
also located in South Sumatra, covering 312.33 ha.

9.2.5 Tourism Recreation Forest (TRF)

The areas are designated for tourism and maintained for recreation research; educa-
tion and cultural activities are also encouraged in TRF regions. Forest tourism is the
most effective strategy to boost local revenue. Furthermore, tourist forest manage-
ment can assist in offsetting the expenses of sustainable wood production while also
promoting biodiversity conservation. Furthermore, there is a tourism forest in the
heart of the city, which encourages the formation of healthy and pure air. TRF areas
are in the central region of Palembang city with an area of 40 ha (Fig. 9.2).

9.2.6 Wildlife Reserve Forest (WRF)

It is the natural reserve zone with the primary function of a preservation area to
ensure the diversity of ecosystems. As the rate of deforestation rises, it appears
difficult to achieve zero deforestation. However, conservation of animals and
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ecosystems, as well as reduction of greenhouse gas emissions, is still required. The
WRF presents limited forest functions for wild animals and other natural ecosys-
tems. The WRF is located in Lahat, with an area of 989 ha (Fig. 9.2).

9.2.7 Nature Reserve Forest (NRF)

It is administered by the government and has the function of protecting the forest,
regulating water systems, preventing flooding, controlling soil erosion, preventing
seawater intrusion, and maintaining soil fertility. The NRF is located in Empat
Lawang, with an area of 305 ha (Fig. 9.2).

9.3 Phenological Properties

9.3.1 NDVI

Phenological properties were analyzed for the six different forest types. Among the
vegetation indices, NDVI is an index that describes the greenness of a plant
according to a combination of the red band and near-infrared (NIR) bands and can
be expressed as follows (Rouse et al. 1973):

NDVI ¼ NIR� Red
NIRþ Red

ð9:1Þ

Vegetation, as indicated by the NDVI, depends on solar radiation. Absorbed
photosynthetically active radiation (fAPAR) is the fraction of photosynthetically
active radiation (PAR) absorbed by vegetation over the growing season (Ochi and
Shibasaki 1999a, b). PAR is assimilated during the process of photosynthesis in
plants, which requires sunlight, and only half of the light is intercepted. The main
factor in determining vegetation surface productivity is how much solar radiation is
intercepted by biomass. NDVI and fAPAR have been shown to present a strong
relationship in theoretical and experimental analyses (Myneni and Williams 1994;
Hooda and Dye 1996; Inoue et al. 2008; Dadhwal et al. 2012) and can be used as
spatial determinants of the variation in land cover. This formula is applied in Asian
countries to estimate NPP-based agricultural production and is used to calculate the
fAPAR for the six types of forests. fAPAR is often represented using a nonlinear or
linear function of a vegetation index within satellite-based production efficiency
models (Ruimy et al. 1996; Running et al. 2004).

The NDVI is the most commonly used remote sensing index and is considered a
surrogate measure for primary production (Box et al. 1989). Many studies have
indicated the positive relationship between NDVI and annual aboveground NPP for
different geographical areas and ecosystems (Goward et al. 1985; Box et al. 1989;
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Burke et al. 1991; Hobbs 1995; Paruelo et al. 1997). Such data-based approaches to
remote sensing have provided useful insight into the dynamics of short-term vege-
tation, including changes in NPP and GPP (Tucker et al. 1981; Tucker and Sellers
1986; Fung et al. 1987). We acquired two sets of image data in each month (16 days
intervals) from MOD13Q1 to present the solar radiation, and these data were used to
calculate PAR. fAPAR and PAR can be expressed as follows:

fAPAR ¼ �0:08þ 1:075NDVI ð9:2Þ

PAR ¼ 0:5 � Incoming Solar Radiation ð9:3Þ

Equation (9.2) is commonly used to measure the NPP, especially in forest areas in
Asian countries, as first introduced by Ochi and Shibasaki (1999a, b) at the 20th
Asian Conference on Remote Sensing. Other NPP researchers in Indonesia (Ochi
et al. 2000; As-syakur et al. 2011; Supeni 2006, Setyono et al. 2020) and India
(Mariappan 2010) then widely used this equation, and this method is presented in a
book entitled Stability of Tropical Rainforest Margins: Linking Ecological, Eco-
nomic, and Social Constraints of Land Use and Conservation (Tscharntke et al.
2007). PAR absorption by the plant canopy is an instantaneous process that changes
during the day and periodically throughout the year. To determine exactly how much
light is absorbed by a plant canopy over time, it appears required to continually
measure instantaneous fAPAR. Many satellite sensors do not obtain information
continuously over the same place; measurements from the same locations are taken
every few (or more) days by the satellite.

The average daily fAPAR value may be estimated from a single instantaneous
measurement by determining the systematic fluctuation of instantaneous fAPAR
throughout the day for a certain canopy. A daily integration (sum) of the PAR
incident at the canopy’s top may be combined with an instantaneous fAPAR
measurement to obtain an estimate of the amount of PAR absorbed (APAR) by
the canopy on a daily basis. An estimate of the amount of PAR absorbed (APAR) by
the canopy on a daily basis may be obtained by combining a daily integration (sum)
of the PAR incident at the top of the canopy with a measurement of instantaneous
fAPAR.

9.3.2 GPP

GPP is the amount of carbon converted during photosynthesis and is used to measure
the global carbon cycle. Using remote sensing MODIS MOD13Q1, GPP is referred
to as the light use efficiency (LUE) for estimating the changes in carbon between
vegetation and the atmosphere in an ecosystem. Photosynthetic assimilation of
vegetation is represented in all light use efficiency models as a function of the
quantity of photosynthetically active radiation absorbed by plants (aPAR) (Monteith
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1972; Running et al. 2000). All environmental and biophysical restrictions on photo
energy conversion of plant biomass are summed up in the term light use efficiency in
these models (LUE). GPP is defined as follows:

GPP ¼ LUE � aPAR ð9:4Þ
GPP ¼ faPAR � PAR ð9:5Þ

where faPAR is the percentage of photosynthetically active radiation absorbed,
which requires little auxiliary data, these models are based on remote sensing
products and meteorological fields (Hilker et al. 2008; McCallum et al. 2009).
faPAR and incident PAR are calculated using various methods and might differ
significantly (McCallum et al. 2010). The following formula would be used to
calculate GPP:

GPP ¼ LUE � fAPAR � PAR ð9:6Þ

LUE is defined as the amount of carbon produced by absorbed photosynthetically
active radiation (APAR) and GPP and is directly related to APAR through the LUE
(Running et al. 2004; Tian et al. 2010; Obi Reddy and Singh 2018). The LUE
approach links GPP to a linear combination of remotely sensed variables, such as
NDVI and PAR. LUE influences how much vegetative biomass accumulates. The
LUE model is seen to have the best chance of properly addressing the spatial and
temporal GPP dynamics. LUE is a direct variable that correlates biological produc-
tion with the amount of PAR absorbed by the plant canopy (APAR) (Xiao et al.
2005; Zhang et al. 2009a, b, 2017). LUE models refer to carbon exchange as a
function of the amount of light energy absorbed by vegetation and the efficiency of
light energy used to transform carbon.

These methods are one of the most frequently used for estimating GPP (Wu et al.
2009; Sjöström et al. 2011; Croft et al. 2015; Joiner et al. 2018). Vi’s are applied to
determine the leaf and canopy biophysical characteristics for the estimation of LUE
and fAPAR (Xiao et al. 2004; Gitelson et al. 2005; Inoue et al. 2008; Wu et al. 2009).
GPP estimations from LUE, fAPAR, and PAR may be affected by the uncertainty of
the VIs or fAPAR relationship (Running et al. 2000; Gitelson et al. 2006). As a
tropical country, Indonesia is covered by evergreen broadleaf forest (EBF) with
tropical rainforest, tropical monsoon and tropical savanna climates. The monthly
LUE of EBF is 1.82 � 0.26 g C m�2 MJ�1 APAR on average (Wei et al. 2017).

9.3.3 NPP

The GPP calculation is basically the first step. Net primary production (NPP) is the
output of stand growth models that are used to estimate forest productivity or
calculate carbon balances. Global processes for NPP models based on the NDVI
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have been developed for regional forest productivity analysis (Potter et al. 1993;
Prince 1991; Ruimy et al. 1994; Running and Hunt 1993; Running et al. 1994). NPP
is measured based on the NDVI values in different types of forests at different
vegetation growth levels. The factor influencing NPP is solar radiation (Garbulsky
et al. 2010; Zhao and Running 2010). The NPP/GPP ratio is relatively stable and
independent of ecosystem type (Gifford 1995; Landsberg and Waring 1997; Dewar
et al. 1998). NPP is determined using NDVI as a primary input, with the area and
solar radiation as supporting inputs. A better understanding of NPP can help to
develop and maintain plans for addressing human needs and managing climate
change (Smith et al. 2012). The biological processes contributing to GPP are the
sum of respiration and NPP. NPP can be expressed as follows:

NPP ¼ GPP� Respiration ð9:7Þ

In this regard, NPP is the difference between total vegetation photosynthesis and
the total respiration of vegetation in an ecosystem where respiration is used for
maintenance and growth. The findings of this research assume that the NPP/GPP
ratio is consistent regardless of ecosystem type (Zhang et al. 2009a, b). Stand growth
and maintenance respiration are both included in respiration. The uncertainty
involved with respiration estimation makes using Eq. (9.7) as a foundation for
calculating NPP in the field problematic. NPP was obtained from the percentage
of the GPP lost through respiration, which was approximately 70% of the forest
(Ruimy et al. 1996; Gunin et al. 1999; Schwarz et al. 2004; Luyssaert et al. 2007).
NPP can be expressed in terms of GPP as follows:

NPP ¼ 0:3 � GPP � Forest Area ð9:8Þ

Through system dynamic modeling, forecasted forest resilience can be predicted
as early as possible by increasing vegetation coverage or expanding the area in
accordance with the expected productivity simulations. The simulation consists of
designing a model of a real system and conducting experiments to understand the
behavior of the system and/or evaluate various strategies for the operating system
(Pedgen et al. 1995). Furthermore, simulation refers to the modeling process to
mimic the response of an event in an actual system that takes place over time
(Schriber 1987). As a consequence of increased market demands, the possible
impact of climate change (IPCC 2007), and the growing concern for environmental
preservation, forest productivity has lately become more essential (IPCC 2007). The
Food and Agriculture Organization of the United Nations (FAO) published a report
in 2016, as a result, an accurate estimate of forest productivity appears to be essential
in determining long-term forest management decisions.

Some models have predicted that NPP respiration occurs faster under global
warming during the overall photosynthesis process (Ryan 1991; Ciais et al. 2013;
Huntingford et al. 2017). NPP may change over time due to changes in the area over
time. The rate of the change in organic matter can be modeled by the explicit
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differential function between forest area and NPP. The rate of change can be
expressed as follows:

dQð Þ
dt

¼ A
dP
dt

þ dA
dt

NPPð Þ ð9:9Þ

Q is the total organic matter produced in the forest, which is related to productivity;
A is the forest area; and NPP represents productivity. This equation is used to predict
the productivity for the following year based on this and the preceding year’s
productivity. The forest structure has a considerable impact on productivity and
biomass. This is an essential factor to consider when estimating current carbon
budgets or calculating climate change scenarios for the different amount of forest
in south Sumatra. To identify forest areas, the minimum and maximum NDVI values
were identified. The productivity level can be further subdivided into five levels
based on the NDVI, which was proposed in line with Indonesian forest resilience
planning (Fig. 9.3).

9.3.4 High Forest Productivity

Areas that exhibit a very high abundance of vegetation and potential for high
productivity are referred to as showing high forest productivity (V1). V1 areas are
overgrown with high density trees, so the function of this type of forest supports the
ecosystem of the surrounding living organisms. These forest areas can support land
use indefinitely and provide benefits to forest functioning.

9.3.5 Moderate Forest Productivity

Forest areas with limited vegetation and less productivity and a lower forest density
than V1 are referred to as showing moderate forest productivity (V2). These forest
areas are not pristine; however, the area presents the potential to exhibit high
productivity.

9.3.6 Marginal Forest Productivity

In this type of forest productivity classification, forest areas show limitations in the
aggregate and can be referred to as showing marginal forest productivity (V3). This
type of forest area presents a lower forest density than V2.
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9.3.7 Very Low Forest Productivity

In the type of forest areas referred to as showing very low forest productivity (N1),
the vegetated area is very limited, and productivity is lacking. The functions of these
forests are poor, and the changes lead to their transformation into non-forest land
(grass, small trees, and garden land). These forest areas are not expected to be able to
support an increase in productivity.

9.3.8 No Forest Productivity

In this classification, the land is not forested. The land includes non-vegetated land,
rocky land, bare soil, and almost no canopy cover and can be referred to as showing
an absence of forest productivity (N2). This land requires further development for
planting if possible.

9.3.9 WebGIS Application

In this research, MODIS MOD13Q1 satellite datasets were obtained to perform the
analysis of phenological indices. The datasets were mapped using forest inventory
classes based on the NDVI using 20 random points in each type of forest determined
from Google Earth Pro® and MODIS raster datasets. In the 6 types of forest,
120 sampling points were selected to observe the changes in the vegetation phenol-
ogy from 2015 to 2018. The maximum NDVI indicates dense vegetation, and the
minimum represents limited vegetation or an absence of vegetation. The pixel values
corresponding to the NDVI were calculated and broadly grouped into five classes. In
the classification, we distinguished the highly vegetated, moderately vegetated,
marginally vegetated, very low vegetated, and non-vegetated categories. The GIS
analysis and WebGIS application were performed using ArcGIS®10.6 (ESRI Envi-
ronment Science and Research Institute, California, USA) (Fig. 9.3).

The web application was designed to respond to user requests through a client
application (web browser), and the results can be returned to the user. From the
results, users can directly choose a forest location. The development of GIS-based
web applications was carried out based on the research site. This web application
references the database and reference information for each forest type to monitor
forest productivity. The productivity data (NPP) were obtained using a client-to-
server communication system, as data were provided through a web protocol such as
hypertext transfer protocol (HTTP) using hypertext preprocessor (PHP). The web
application could respond to every request made by the users through a client
application (web browser). In the web applications, the pages that appear on the
web browser screen were designed to be dynamic. This graphical interface was run
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through ArcGIS web services to visualize the locations of the forests for monitoring
productivity (Fig. 9.3).

9.4 System Dynamics Modeling for Simulation

System dynamics (SD) is a technique for assessing the interconnectivity, complex-
ity, and change of a system through time. When utilizing system dynamics, a
modeler must consider the system to be modeled as a collection of interacting
feedback loops, stocks, and relevant flows that influence them. Long-term strategy
models often employ system dynamics, which imply a high degree of object
aggregation. Expressions, function calls, statements, classes, interfaces, inheritance,
and polymorphism are not necessary in system dynamics, as they are in software
development. When changes in the stock impact the inflow or outflow of the stock, a
feedback loop is established. There are two sorts of feedback loops: the first is
balancing feedback loops, which seeks to keep the stock at a specific level or range.
Second, when a system element has the potential to replicate itself or expand at a
constant percentage of its original size, it amplifies the feedback loop.

In this research, a system dynamics model was developed for productivity
analysis (Fig. 9.4), in which NDVI, area and solar radiation were used as inputs to
the simulation to quantitatively investigate indicators such as NDVI, forest areas,
and trends in solar radiation. Causal loops were generated to identify related values
using Powersim Studio 10® (Powersim Software AS, Norway). The causal loop for
the problem of productivity was included in a positive causal loop (Richardson
1997), where two nodes changed in the same direction and presented exponential
values. NPP was affected by NDVI because when NDVI increased, the overall value
increased. Regarding the area, the changes in productivity were dependent on the
extent of forest or loss of forest. To increase productivity, a scenario was developed
by changing the NDVI and areas. Logically, the productivity increases if the NDVI
increases and when the forest area increases. However, it is necessary to estimate the
quantified value over a period of time using the system dynamic approach. The
results were optimized using two input scenarios: Scenario I: NDVI input and
Scenario II: forest area input (Fig. 9.5). This system can be used to calculate the
values for six types of forest that exist in the study areas. In both scenarios, the solar
radiation trend was considered to increase and decrease.

9.5 Land Use Land Cover (LULC) Analysis

The LULC change in a forest is important to help track changes in aboveground
biomass (AGB) to calculate carbon estimations using the IPCC approach. Changes
in land use and management affect the amount of carbon in plant biomass and soils.
The impacts of future land use on terrestrial biosphere–atmosphere exchanges have
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the potential to modify atmospheric CO2 concentrations on this timescale (IPCC
2018). Forest carbon accounting is required to establish the extent of the accounting
area, both spatially and temporally, offering details for land use planning with low
carbon impacts (Watson 2009). The MOD13Q1 satellite products were visually
interpreted to prepare the change detection maps using a knowledge-based super-
vised and maximum likelihood classification (Fig. 9.3). The classification algorithms
were divided into four classes: urban, vegetation, forest, and water bodies in the GIS
environment. Each of the classes was chosen by pixels with spectral signatures and
ensured for the land cover map (Fig. 9.12a–d).

The accuracy assessment was carried out using reference data points from the
base map used to validate the LULC. An uncertainty matrix (or error matrix) was
used as the quantitative method for characterizing the accuracy in the classification
of images. A stratified random sampling approach was used to select 400 points on
the map with 100 points from each class. The accuracy assessment was performed
using the producer’s accuracy (PA), user’s accuracy (UA) and overall accuracy
(OA) to consider the closest results to be accepted as true (Congalton 1991;
Thomlinson et al. 1999). PA is the accuracy of the map from the map maker’s
point of view. PA considers how many actual features on the ground are correctly
observed on the classified map. UA is the accuracy from a map user’s point of view,

Fig. 9.4 The causal loop for productivity analysis in system dynamics modeling
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not the map’s maker. The accuracy of the user effectively informs how much of the
ground that is actually covered by each class on the map (reliability). OA is generally
measured as a percentage, with 100% accuracy being a flawless measurement in
which all reference sources have been correctly categorized. OA basically informs
what proportion was correctly mapped out of all the reference locations. In this
regard, Cohen’s Kappa is used to compensate for the possibility of some variance.
Kappa essentially tests how well the classification worked compared to simply
allocating random values. To assess the accuracy of classification, the kappa coef-
ficient was calculated from a statistical test. The Kappa coefficient is computed as
follows:

K ¼ N
Pn

i¼1mii �
Pn

i¼1 AiBið Þ
N2 �Pn

i¼1 AiBið Þ ð9:10Þ

A Kappa of 1 indicates complete agreement. With a Kappa of �1, there is less
agreement than you would anticipate by chance (very rare). Ordinal or nominal
categories can be used. Where K is the kappa coefficient; i is the class number; N is
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Fig. 9.5 System dynamics simulation process for each classified forest type with three variable
parameters: NDVI, forest area, and solar radiation
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the total number of classified values compared to true values; mii is the number of
values belonging to the true class i that have also been classified as class i; Bi is the
total number of predicted values belonging to class i; and Ai is the total number of
true values belonging to class i.

By definition, kappa values are considered a weak agreement if they are less than
0.20; fair agreement ranges between 0.20 and 0.40; moderate agreement ranges from
0.40 to 0.60; good agreement ranges from 0.60 to 0.80, and very good agreement
ranges from 0.80 to 1.00.

9.6 Carbon Estimation

The IPCC approach was used to estimate the carbon stock for various forest classes
with a hierarchy of tiers (IPCC 2006). The IPCC has established a three-tier carbon
accounting system based on the available data and capacity. Tier 1: No new data
have been collected. Default emission factor values from the IPCC database are
used. Activity data are usually a rough estimate and are considered “the global
defaults.” Tier 2: No new data have been collected. Defined emission factors for each
country are used. High-resolution activity data are used, and the “local defaults” are
used for specific regions and land use categories. Finally, Tier 3: Models, inventory
management systems, and high-resolution data customized to reflect national fea-
tures are used including national and subnational inventories of carbon and repeated
measurements in areas with land use changes. The models are tested by field
measurements and optimized. The assurance is very high, but the method is expen-
sive, and a high degree of technical competence is needed. IPCC refereed data were
used under the available conditions using Tier 1. The area belonging to each forest
class in South Sumatra was referred for the AGB, and carbon fraction values were
used to estimate the carbon stock referring to the global defaults from the IPCC. The
emission factors from deforestation were calculated based on the AGB and an
estimated carbon density of 47%. The carbon value in terms of forest area and
AGB can be expressed as follows:

CarbontC=ha ¼ Forest area � 47% � AGB ð9:11Þ

At the global level, 19% of the carbon in the Earth’s biosphere is stored in plants,
and 81% is stored in the soil. In all forests, tropical, temperate and boreal together,
approximately 31% of the carbon is stored in the biomass and 69% is stored in the
soil. In tropical forests, approximately 50% of the carbon is stored in the biomass and
50% is stored in the soil. Carbon accounts for approximately 47% of all biomasses of
living vegetation, both woody and herbaceous, above the soil, including stems,
stumps, branches, bark, seeds, and foliage (IPCC 2007). Several studies have
reported on results for woodland vegetation (Abetu and Bekele 2019), tropical
lowland dipterocarp forestland, arid and semiarid forestland (Bastin et al. 2017),
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mangrove species (Rodrigues et al. 2015), Bornean logged-over dipterocarp forests
(Mbaabu 2012), tropical regions in Latin America (Saatchi et al. 2011), the Miombo
woodland, and other parts of the tropical rainforest mesocosm in Australia (Lin et al.
1998).

9.7 Results

9.7.1 Forest Phenological Properties

The NDVI maps show the result of the variability and explain the moving average of
pixel values from 2015 to 2018 (Fig. 9.6a–d). After NDVI was determined, fAPAR
and GPP were obtained. GPP provided a projection of the vegetation status and was
strongly influenced by NDVI. The correlation between NDVI and GPP presented a
strong association, indicating that increases in NDVI mean that the GPP value also
increases (Fig. 9.7).

The NDVI maps show the result of the variability and explain the moving average
of pixel values from 2015 to 2018 (Fig. 9.6a–d). After NDVI was determined,
fAPAR and GPP were obtained. GPP provided a projection of the vegetation status
and was strongly influenced by NDVI. The correlation between NDVI and GPP
presented a strong association, indicating that increases in NDVI mean that the GPP
value also increases (Fig. 9.7). The NDVI is an activity of photosynthesis (Myneni
et al. 1995) and is related to the composition of evergreen and deciduous vegetation
(DeFries et al. 1995). In our research, TRF is a type of forest that presents less
vegetation than the other forest types (Fig. 9.8). The length of the NDVI growing
season was related to phenological changes (Tucker 1979) and NPP changes
(Fig. 9.9). Thus, annual changes in NDVI presented recent changes to refer the
level of productivity for different forest classes.

9.7.2 Forest Productivity Analysis

In the assessment process, CPF exhibited an increasing trend (0.20%) for all levels of
forest productivity. The changes in the different forest productivity classes in PPF
increased as follows: high forest productivity (0.22%) and moderate forest produc-
tivity (0.20%); decreased marginal forest productivity and very low forest produc-
tivity (0.19%); and no forest productivity (0.18%). The forest productivity in the
LPF was predicted, and all forest productivity levels showed a decreasing trend. The
following results were obtained for the different productivity levels: decreasing high
forest productivity (0.22%); moderate forest productivity (0.25%); marginal forest
productivity (0.19%); very low forest productivity (0.16%); and no forest produc-
tivity (0.18%). The productivity of TRF was predicted, and an increasing trend was
observed: high forest productivity (0.20%); moderate forest productivity (0.21%);
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Fig. 9.6 NDVI distribution for (a) CPF, PPF, and LPF, (b) TRF, (c) WRF, and (d) NRF (moving
average of pixel values from 2015 to 2018)
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marginal forest productivity and very low forest productivity (0.20%); and no forest
productivity increased (0.19%). The productivity assessment of WRF showed a
decreasing trend, with high and moderate forest productivity (0.20%), marginal
forest productivity (0.21%), very low forest productivity (0.20%), and no forest
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Fig. 9.7 Correlation between the NDVI and GPP (a) CPF, (b) PPF, (c) LPF, (d) TRF, (e) WRF,
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productivity (0.19%). NRF also experienced decreasing productivity: high forest
productivity (0.27%); moderate forest productivity (0.35%); marginal forest produc-
tivity (0.29%); very low forest productivity (0.06%); and no forest productivity
(0.03%) (Appendix).

Fig. 9.8 Annual changes in NDVI for the different forest classifications from 2015 to 2018
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Fig. 9.9 Annual changes in NPP for the different forest classifications from 2015 to 2018

9 Estimating Productivity and Carbon Stock Using Phonological Indices from. . . 263



9.7.3 GIS Application

GIS was used to add NDVI values to estimate GPP and NPP in each forest type. The
results for the average NDVI for each type of forest indicated a different level of
vegetation. Through inputting NDVI values and selecting forest types in GIS,
estimation of GPP and NPP values can be shown. From the results of the NDVI
range, we concluded that TRF presented the lowest vegetation cover compared to the
other forest types, while the highest vegetation cover was observed in NRF. The
result was visualized for the current estimation and did not indicate an increase or
decrease in forest vegetation from the previous stage. For this reason, the system
approach was used to estimate productivity under different scenarios.

9.7.4 Simulation Model for Scenario Assessment

The simulation model was developed to determine forest changes using vegetation
phenological parameters. The scenario was divided into two phases: Scenario I
involved a moving average of NDVI considering a solar radiation increase (SR+)
or decrease (SR�). This model was valid if the basic structure and pattern were
accurate. In Scenario I, the NDVI changed with increasing or decreasing solar
radiation (Fig. 9.10). On the other hand, Scenario II was simulated based on the
changes in forest area. Scenario II was calculated for the changes in area where an
increasing or decreasing trend was associated with solar radiation changes
(Fig. 9.11). According to the State of the World’s Forest’s 2018, the world forest
areas decreased by 30.6% between 1990 and 2015. It is assumed that there was a
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decrease in the forest area of approximately 1.23% every year (FAO 2018). When
the trend of solar radiation was positive, the productivity exhibited an increasing
trend every year; however, when solar radiation decreased overall, the productivity
also showed a decreasing trend every year.

9.7.5 Land Use Change Analysis for Forest Class

The LULC map was developed to identify only forest classes consisting of all types
of forests for carbon estimation (Fig. 9.12a–d). An accuracy assessment for LULC
was conducted to ensure the performance according to the PA, UA, and OA. The
average accuracy was more than 80% for the 6 types of forests. The kappa coefficient
was greater than 0.80 (Table 9.1). The interpretation of Kappa showed very good
agreement for all types of forests. The results of the carbon estimation were obtained
using the IPCC standard. In the LULC analysis, PPF was found to be 135.23 ha, LPF
253.02 ha, CPF 599.99 ha, TRF 12.81 ha, WRF 661.11 ha, and NRF 254.36 ha with
tropical rainforest or tropical dry forest covered by plantation or natural vegetation
(Table 9.2).

9.7.6 Carbon Stock Estimation Based on the Biomass

The IPCC standard was used for carbon stock estimations according to the area of
the forest based on the AGB. Tropical rainforest and tropical dry forest were
determined based on the types of vegetation formation (Faber-langendoen et al.
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2016). Planting forests and natural forests were determined based on their respective
forest types. AGB was taken as 130 t/ha for tropical dry forest, while it was naturally
referenced for WRF. TRF, CPF, PPF, and LPF had an average AGB of 150 t/ha for
tropical rainforests and plantations (Table 9.2, IPCC 2006). In the case of NRF, the

Fig. 9.12 LULC for the forest class (a) CPF, PPF, and LPF; (b) TRF; (c) WRF; and (d) NRF
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AGB was 300 t/ha with a natural distribution. WRF and CPF had larger forest areas
than the others and had an average carbon stock of 40,000 tC/ha. NRF had a carbon
stock of 35,000 tC/ha, and LPF and PPF had average carbon stocks of 17,000
and 9000 tC/ha, respectively. TRF had a very small carbon stock of 900 tC/ha
(Table 9.2).

9.8 Discussion

This study describes how to composite MODIS data to track vegetation variability
and productivity considering the classified resilience of a forest, and productivity is
estimated using a system dynamics model, which can be used for future predictions.
Mapping such productivity data provides insight into the ecosystem and can be used
to establish sites as carbon resources in the environment (Ulsig et al. 2017). The
results of this study also pointed to the need for more robust calculations of the solar

Table 9.2 Carbon stock estimation based on the IPCC standard for the six types of forest

Forest
type

AGB type AGB (ha)
LULC on forest
(ha) Carbon

fraction

Carbon

(t/ha) (t/ha) 2019 tC/ha

WRF Tropical dry forest (natural) 130 661.11 0.47 40,393.82

TRF Tropical rainforest (plantation) 150 12.81 0.47 903.11

CPF Tropical rainforest (plantation) 150 599.99 0.47 42,299.30

PPF Tropical rainforest (plantation) 150 135.23 0.47 9533.72

LPF Tropical rainforest (plantation) 150 253.02 0.47 17,837.91

NRF Tropical rainforest (natural) 300 254.36 0.47 35,864.76

Table 9.1 Accuracy assessments for the LULC for the six types of forests

Accuracy
assessment Class

CPF
(%)

PPF
(%)

LPF
(%)

TRF
(%)

WRF
(%)

NRF
(%)

Producer’s accuracy Urban 89 90 99 88 100 89

Vegetation 88 90 99 88 94 99

Forest 88 87 81 90 79 78

Water body 88 100 100 100 100 100

User’s accuracy Urban 89 90 88 88 100 77

Vegetation 89 90 88 89 99 84

Forest 88 87 99 89 94 100

Water body 88 87 100 100 77 100

Overall accuracy 89 89 94 92 93 90

Kappa 0.86 0.86 0.93 0.90 0.91 0.88
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radiation effects on climate change in the GIS environment using a system dynamics
approach. The MODIS-based models developed in this study can serve as a baseline
to take advantage of satellite-based models of NDVI of the six types of forest.
Therefore, the investigation of NDVI dynamics and its influencing factors is the
foundation to ensure forest ecosystem health. Empirical relations between NPP and
remotely sensed data have been extensively investigated (Cheng and Zhao 1990;
Jiang et al. 1999; Zheng et al. 2003). The results of this study showed a strong
statistical relationship between the NDVI and GPP, which were positively correlated
(Huang et al. 2019; Cai et al. 2017; Ulsig et al. 2017) in the six types of forest.

Given the accuracy of these estimates, the developed system dynamics models
successfully estimated the future GPP for different forest types. Moreover, the
factors affecting the reflectance of this area should be studied more in the future,
including the effect of the aboveground and belowground vegetation, forest age,
disturbance, site quality, soil type, tree height, and canopy type. This study does not
allow for the comparison of the strength of the relationship between other factors,
such as forest age, disturbance, site quality, soil type, and ecosystem type, because
regression techniques are sensitive to restricted variations. The challenge of the
vegetation productivity level is to move toward a more accurate method for gather-
ing vegetation data and reliably linking these observations to direct observation data
in the field. Therefore, a system dynamics model was developed to understand the
sensitivity and dynamic changes to predict productivity using two scenarios. First,
Scenario I included a moving average of NDVI from 2015 to 2018 to show the
productive changes when solar radiation presented either an increasing trend or
decreasing trend. Second, Scenario II was used to describe the increasing or decreas-
ing forest areas when solar radiation presented either increasing or decreasing trends.
This satellite-based cost-effective approach would be very advantageous for coun-
tries with large forest areas for quick assessment of forest productivity.

According to a vegetation index, the forest can be recognized as healthy or
unhealthy, and forest productivity levels can be estimated. This classification of
forests based on the average range of vegetation yields refers to a forest index of 1–5
following the range of forests established by the Indonesian government. Thus, the
government requires long-term forest policy planning when there are changes in
forest functions, forest fires, indiscriminate logging or massive exploitation of
forests without planning for industrial development, settlement, or encroachment.
To achieve the carbon target indicated by the IPCC, we propose to increase the forest
area. Furthermore, GIS can be utilized to refer to the forest NDVI and projected NPP
levels for forest productivity over a long period of time. From this point of view,
other vegetation phenology research needs to extend further to understand the effects
of LULC changes in forest ecosystems in the six forest classifications. A more
detailed study in this line can lead to improved environmental management of forests
in the future.
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9.9 Conclusion

In this research, the NDVI was used to investigate vegetation responses to estimate
productivity in South Sumatra, Indonesia. Vegetation phenology-based methods
were employed to assess productivity according to the categories defined by forest
classes. The results indicated that the customized NDVI approach achieved superior
performance for determining the productivity level and that the government can use
the analysis for the management of forests. The government can use WebGIS to
quickly determine the value of productivity and performance indicator for different
types of forests. Therefore, decisions about forest conditions can be made immedi-
ately. This application is based on a database of NPP calculations from 2015 to 2018.
This application will allow sufficient input for further extension of NDVI, GPP, and
NPP for monitoring forest productivity. The forest vegetation mapping and carbon
assessment under different forest classifications can be further adapted. The system
dynamics approach predicted that solar radiation is an important parameter for
increasing productivity when the area does not change or when the area increases
with the same value of solar radiation. The current status and optimum options for
land resource use and management approaches could be based on the satellite remote
sensing spatial scales to project the LULC changes from the forest zones of PPF,
LPF, CPF and WRF, TRF, and NRF. Furthermore, information on the productivity
of different types of forests provides justification for the protection and management
of forests on different timescales.
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Appendix (Table 9.3)

Table 9.3 Productivity (NPP) estimation for the six classified forests

Forest 

type

(Total 

area, ha)

Vegeta�on level

2017 2018

(P) 

Produc�vit

y (g/m2)
Change of 

area (m2)

(2017–

2018)

Produc�

vity 

(t/m2)

next 

year

Percentage 

of changing 

(%) 

(increase/d

ecrease)
Area 

(ha)

NPP range 

(t/m2)

Area 

(ha)

NPP range 

(t/m2)

Change of 

produc�vit

y (2017–

2018)

(t/m2)

CPF

(819.84)

No forest 

vegeta�on (N2) 87.13

−14 to

71.64 8.69

79.77–

175.58

221

10.57

−871,291 10.34
0.20 

(Increase)

Very low forest 

vegeta�on (N1) 116.05

71.65–

143.24

52.8

4

175.59–

210.13
−1,160,447 10.26

0.20 

(Increase)

Marginal forest 

vegeta�on (V3) 190.32

143.25–

203.61

88.9

3

210.14–

236.83
−1,903,111 10.06

0.20 

(Increase)

Moderate forest 

vegeta�on (V2) 257.53

203.62–

251.34

249.

38

236.84–

254.89
−2,575,051 9.88

0.20 

(Increase)

High forest 

vegeta�on (V1) 168.81

251.35–

344.00 420

254.90–

280.02
−1,687,680 10.12

0.20 

(Increase)

PPF

(172.75)

No forest 

vegeta�on (N2) 3.84

6.59–

106.90 0

126.42–

193.37

253.12

−7.51

−38,400 −7.57
0.18 

(Decrease)

Very low forest 

vegeta�on (N1) 7.86

106.91–

181.82 3.97

193.38–

216.89
−78,596 −7.63

0.19 

(Decrease)

Marginal forest 

vegeta�on (V3) 17.68

181.83–

237.70

30.1

1

216.90–

236.80
−176,770 −7.77

0.19 

(Decrease)

Moderate forest 

vegeta�on (V2) 50.22

237.71–

273.25

67.4

6

236.81–

254.89
−502,133 −8.25

0.20 

(Decrease)

High forest 

vegeta�on (V1) 93.15

273.26–

330.39

71.2

1

254.90–

280.23
−931,429 −8.87

0.22 

(Decrease)

LPF

(312.33)

No forest 

vegeta�on (N2) 9.3

−4.05 to 

94.19 4.37

99.52–

177.11

251.51

−74.34

−92,996 −74.41
0.18 

(Decrease)

Very low forest 

vegeta�on (N1) 18.51

94.20–

169.24 1.85

177.12–

215.54
−185,098 −74.49

0.16 

(Decrease)

Marginal forest 41.85
169.25– 35.1 215.55–

−418,465 −74.68
0.19 

(continued)
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Table 9.3 (continued)

vegeta�on (V3) 223.82 5 237.61 (Decrease)

Moderate forest 

vegeta�on (V2) 86.83

223.83–

263.39

129.

81

237.62–

255.40
−868,170 −75.04

0.25 

(Decrease)

High forest 

vegeta�on (V1) 155.84

263.40–

343.90

141.

15

255.41–

281.03
−1,558,259 −75.59

0.22 

(Decrease)

TRF

(40)

No forest 

vegeta�on (N2) 3

−197.70 to 

36.09 3.02

−107.96 to

32.23

181.13

25.15

20 25.15
0.19 

(Increase)

Very low forest 

vegeta�on (N1) 4.72

36.10–

68.36 4.75

32.24–

111.28
30 25.15

0.20 

(Increase)

Marginal forest 

vegeta�on (V3) 10.47

68.37–

131.43

10.5

7

111.29–

157.51
100 25.15

0.20 

(Increase)

Moderate forest 

vegeta�on (V2) 10.83

131.44–

188.58

10.8

6

157.52–

203.74
30 25.15

0.21 

(Increase)

High forest 

vegeta�on (V1) 10.76

188.59–

304.86 10.8

203.75–

272.35
40 25.15

0.20 

(Increase)

WRF

(989)

No forest 

vegeta�on (N2) 5.76

−29.9 to-

111.68 8.05

−54.98–

91.92

209.98

−8.32

22,900
−8.27

0.19 

(Decrease)

Very low forest 

vegeta�on (N1) 25.51

111.69–

192.98

15.4

8

91.93–

171.62 −100,300
−8.53

0.20 

(Decrease)

Marginal forest 

vegeta�on (V3) 37.02

192.99–

243.45

54.1

2

171.63–

229.44 171,000
−7.96

0.20 

(Decrease)

Moderate forest 

vegeta�on (V2) 242.39

243.45–

270.08

240.

65

229.44–

268.51 −17,400
−8.36

0.21 

(Decrease)

High forest 

vegeta�on (V1) 678.32

270.09–

327.55

670.

7

268.52–

343.52 −76,200
−8.48

0.20 

(Decrease)

NRF

(305)

No forest 

vegeta�on (N2) 5.12

−3.72 to

179.2 4.15

10.73–

171.29

291.63

−4.71

−51,195.85
−9.68

0.03 

(Decrease)

Very low forest 

vegeta�on (N1)
12.51

179.21–

212.46
9.89

171.30–

209.74

−125,090.1

1
−16.85

0.06 

(Decrease)

Marginal forest 

vegeta�on (V3)
92.12

212.47–

238.59

106.

45

209.75–

239.14

−921,093.5

5
−94.10

0.29 

(Decrease)

Moderate forest 

vegeta�on (V2)
111.13

238.60–

261.16

109.

13

239.15–

262.89

−1,111,190.

87
−112.54

0.35 

(Decrease)

High forest 

vegeta�on (V1)
84.12

261.17–

299.17

75.3

8

262.90–

299.07

−841,124.6

2
−86.33

0.27 

(Decrease)
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Chapter 10
GEE-Based Spatiotemporal Evolution
of Deforestation Monitoring in Malaysia
and Its Drivers

Ling Hu, Abdul Rashid Bin Mohamed Shariff, Hamdan Omar,
Dan-Xia Song, and Hao Wu

Abstract Despite recognizing the importance of tropical forest systems, deforesta-
tion in Malaysia has increased rapidly over the past 15 years. Since the first civilian
earth observation satellite launched in 1972, remote sensing techniques and image
processing analysis have been extensively used for long-term and continuous forest
monitoring. This chapter selected the Google Earth Engine (GEE) platform to
monitor deforestation in Malaysia from 2000 to 2020. GEE is a cloud-based
platform that works with substantial geospatial datasets using high-performance
computing resources. This chapter quantified trends of deforestation in Malaysia
through the statistical approach based on GEE and used the quantitative data as a
basis for analyzing the drivers of deforestation. The deforestation statistics for
Malaysia from 2000 to 2020 was 86,893 km2, with the highest deforestation in
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2014. Overall, the statistical results demonstrated a high level of accuracy, and the
GEE platform was confirmed to be suitable for forest monitoring on a national scale.
Based on the statistical data of states in Malaysia, we further elaborated on the main
drivers of deforestation. There is no single driver of tropical deforestation in
Malaysia; the palm oil industry, forest fires, and illegal logging are attributed to
the loss. The GEE monitoring tool was found appropriate for monitoring deforesta-
tion and has potential in guiding Malaysia’s management and conservation of forest
resources.

Keywords Tropical forest systems · Remote sensing · Google Earth Engine ·
Statistical approach · Drivers of deforestation

10.1 Introduction

Tropical forest ecosystems provide essential ecosystem services, primarily climate
regulation and stabilization, carbon sequestration for global warming mitigation,
biodiversity, and water supply, and 25% of terrestrial biosphere carbon comes from
tropical forests (Bonan 2008). Tropical forests can absorb large amounts of green-
house gases and counteract rising carbon dioxide levels. It is one of the most
effective defenses against the greenhouse effect (Pennisi 2020). It absorbs 95% of
the carbon dioxide from trees worldwide, and more than 50% of the biomass in
tropical trees has a carbon sequestration effect. Therefore, tropical forests have a
significant role in mitigating global warming and the occurrence of climate extremes
(Mackey et al. 2020). At the same time, tropical forests provide an excellent living
environment for wildlife. Tropical forests account for 72% of biodiversity hotspots
in the world (Myers et al. 2000). Tropical forests cover only 7% of the land area but
contain more than 65% of the world’s biodiversity (Giam 2017).

However, by the early twentieth century, the world had lost 50% of its tropical
forest area (FAO 2000), and it equals losing one big football field in the forest every
6 years (Mikaela Weisse 2020). Tropical forests dominate three essential regions:
North America, West and Central Africa, Southeast Asia and Oceania. In developing
countries, higher rates of deforestation turn forests into agricultural and pastoral
lands (FAO 2015). In the 1990s, nearly 46 billion tons of carbon dioxide were
extracted, compared to 25 billion tons in the 2010s (Gov 2009). Overall, tropical
forests in the 1990s decreased 17% of human-made CO2, compared to just 6% in the
2010s (Hubau et al. 2020). In addition to the surge in global CO2 emissions, the most
important reason is the 19% reduction in the area of intact tropical forests (Hubau
et al. 2020). Concurrent anthropogenic impacts threaten tropical forests, including
primary deforestation, overexploitation, ecological damage, and species invasions
that are synergistic. For example, deforestation and climate change both exacerbate
fires, thus threatening tropical forests (Barlow and Peres 2008). Since the first
satellite launch in 1972, remote sensing data processing analysis has been widely
needed in monitoring large forest areas consistently and repeatedly (Song et al.
2015). The forest research and operations agencies use several remote sensing data
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types, including aerial photography, optical multispectral images, synthetic aperture
radar (SAR), light detection and ranging (LiDAR), and video imaging data, to track,
locate, classify, analyze, and quantify different types of forest cover and their
changes. Various forest features can be observed, marked, categorized, evaluated,
and measured by remote sensing techniques (Hussin and Bijker 2000).

Malaysia is one of the 12 megadiversity countries, but in the meantime is among
the top 50 countries in the world in terms of deforestation rates (Kadir et al. 2019).
Oil palm plantations expansion is responsible for 50% of this deforestation. Defor-
estation in Malaysia has shown a rising trend over the past 15 years, especially after
2009 (Butler 2013). The monitoring of forest areas in Malaysia is one of the
important activities for managing forest resources to ensure that the forests provide
goods and services sustainably and for the conservation of biodiversity in Malaysia.

However, deforestation in the tropics is a complex and long-term process that
requires repeated measurements of time, space, and reversibility (Lambin 1999).
Deforestation monitoring is a huge challenge, especially for larger forests (Reis
et al. 2019; Omar et al. 2020) processed a total of 580 Landsat imagery and measured
Malaysian forests at 5-year intervals. GEE is a cloud-based platform that makes
working with huge geospatial datasets using high-performance computing resources
possible (Amani et al. 2020). GEE can perform in a few days what would take a
computer 15 years to compute and identify changes in forest cover with high
resolution and short intervals (Dacosta et al. 2019). To this effect, the GEE platform
used in this study can easily monitor deforestation in Malaysia and benefit from its
capabilities.

In this study, we examined the status of forest cover and its changes in Malaysia
with the GEE. We demonstrated how the GEE could be used to monitor large areas
of deforestation. The specific objectives are: (a) to monitor the spatial and temporal
evolution of deforestation in Malaysia on the GEE platform for 2000–2020; (b) to
evaluate the feasibility of GEEs in analyzing the land cover change at a national
scale; (c) to quantify the deforestation in Malaysia and across states over the past
20 years to analyze the drivers of deforestation.

10.2 Materials and Methods

10.2.1 Study Area

Malaysia is a Southeast Asian country located between 1� and 7� North latitude, with
a typical tropical rainforest climate (Fig. 10.1). The country has a total land area of
330,524 km2, divided into Peninsular Malaysia and East Malaysia, which straddles
the South China Sea. Malaysia has a vibrant tropical ecosystem, with tropical
rainforests covering 59% of the country’s land area and 7616 km2 of mangrove
forests (Kanniah et al. 2015). Malaysia’s lowlands are covered with 2.76 million
hectares of peatland, an environmentally sensitive area (ESA) under the National
Physical Plan (NPA). As a result, Malaysia has a unique tropical peatland forest, a
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dual ecosystem of tropical rainforest and peatland (Melling 2015). Countries in
tropical regions such as Malaysia lack optical imagery data because high cloud
coverage limits valuable observations (Othman et al. 2018). Various noises such as
clouds, atmospheric clarity (water vapor, dust, chemical, etc.), satellite location, and
other noise can interrupt the data applications, decrease the values, and increase
application complexity (Menzel 2012). The study repeated monitoring over a vast
region of land and followed a set monitoring cycle. GEE appears to be the best
contender for meeting these requirements, and it’s a cloud-based platform for
working with large geographic datasets and high-performance computing resources.

Malaysia’s administrative boundary was obtained from the Large-Scale Interna-
tional Boundary (LSIB) dataset. This dataset was provided by the United States
Office of the Geographer. It is split into two parts: line vector data from the LSIB and
world vector coastline data from the National Geospatial-Intelligence Agency. The
code for LSIB’s boundary vector data collection and the interactive development
environment on the GEE platform in this study are shown in Fig. 10.2. The border
vector data for the states of Malaysia on the GEE platform in this study were
obtained from the Humanitarian Data Exchange (HDX) tool.

10.2.2 Datasets Description

This study is based on satellite forest cover data—the Hansen et al. (2013) Global
Forest Change dataset, developed by Hansen et al. in 2013 based on Landsat satellite
data to map global forest cover, deforestation, and forest gain from 2000 to 2012.
Since then, annual increases have been made. For the selection of underlying data,

Fig. 10.1 Study area (Please note this map is not an authority on boundaries)
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Landsat data is the best choice for global analysis. A global analysis of Landsat data
was already done, which converts the digital number (DN) to the top of the
atmospheric radiation values. However, the atmospheric radiance values do not
accurately reflect the surface conditions due to the influence of the atmosphere.
Therefore, Hansen et al. (2013) eventually performed atmospheric corrections to
produce surface reflection images. After generating the surface reflection images,
orthorectification techniques are applied to the data processing to reduce the effect of
topography on the global forest cover images. A key reason for the appearance of
false information about the land cover is the variation in solar zenith and azimuth
angles in rugged terrain. The following Eq. (10.1) normalizes the illumination factor
(IL), which can be calculated as the actual amount of solar radiation incident at any
slope:

IL ¼ cos Z � cos Sþ sin Z � sin Z � cos Φz �Φsð Þ ð10:1Þ

where Z is the solar zenith angle, S is the inclination angle, Φz is the solar azimuth
angle, and Φs is the longitudinal and transverse angle of the inclined plane.

10.2.3 Methodology

In this study, four main steps were undertaken: (a) data processing;
(b) implementation of statistical methods; (c) charting yearly deforestation; and
(d) data validation. The processing is based on Google Earth Engine with JavaScript

Fig. 10.2 The Large-Scale International Boundary (LSIB) dataset on GEE
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API, and all processing was done based on GEE to assess its applicability further.
JavaScript is a ready-to-compile programming language for web development.
CamelCase is used in JavaScript, and Google has published its own authoritative
JavaScript style as Google’s source code standard. Data in this study had already
been trained by Hansen et al. (2013), and validation data was from the Global Forest
Watch (GFW) real-time data under the World Resources Institute (WRI) initiative.
The study’s goal is to use the GEE platform to monitor deforestation’s spatial and
temporal dynamics in Malaysia. In addition to the national scale, the study looks at
deforestation in 13 states and 3 federal territories in Malaysia. The disparities in
deforestation by the state were analyzed based on the geographical and temporal
evolution data for further research of the drivers of deforestation and verification of
the Google Earth platform’s capability.

The methodology used in this study is illustrated in the methodological flowchart
shown in Fig. 10.3, which illustrates the general methodological procedures for
accomplishing the study’s objectives. GEE allows coverage of huge areas, enabling
regional surveys on various themes and identification of extensive features. Forests
are generally over a relatively large area, so GEE can save the cost of field surveys
when detecting forest changes. Landsat data makes it possible to evaluate ecosys-
tems that can evaluate the health and integrity of ecosystems with the help of spectral
indices. The parameterization of the annual curve of spectral vegetation indices
allows deriving indices or attributes of three factors key to the functioning of
ecosystems (productivity, seasonality, and phenology) to establish the reference
conditions and evaluate the changes that occur. Therefore, through the analysis of
a long-term series, it is possible to identify directional change trends which are useful
in global change.

Fig. 10.3 The flowchart of methodology
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10.2.4 Image Processing

To better quantify the area of deforestation in Malaysia and for further analysis, the
Global Forest Change dataset is processed on the GEE platform in this study. The
processing is divided into two steps: (a) image visualization; (b) palettes and masking.

Image Visualization

The global forest change dataset shows the extent of forests in 2000 and forest
increase and decrease after 2000. However, as shown in Fig. 10.4, for the dataset
provided by Hansen et al. (2013), the loss and gain bands are not clearly visible on
the image. Therefore, the first step in processing is to set the visualization parameters
to stretch the image data. The forest cover for 2020 was displayed as an RGB (red,
green, and blue) composite image, and bands 5, 4, and 3 (False Color) were selected.
The visual parameter “max” was used to set the stretching range for each band.

Palettes and Masking

Cascading Style Sheets (CSS) is a syntax used in web programming, with multiple
keywords to specify styles’ names. In this study, the CSS color under the palette
function defines the forest overlay layer as “00FF00” green, the loss layer as
“FF0000” red, and the gain layer as “0000FF” blue. Areas that had no forest cover
and areas outside the territory of Malaysia were masked off.

Fig. 10.4 Image visualization based on the dataset of Hansen et al. (2013) on GEE
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10.2.5 Statistical Methods

Reducers in Earth Engine are methods/functions for aggregating data in time, space,
bands, arrays, and other data structures. There are some reducer functions in GEE, as
shown in Table 10.1. Statistical Methods in GEE to calculate annual deforestation in
Malaysia.

The Reduce Region Grouped Reductions (Zonal Statistics) reducer methods were
used to calculate the pixel area of the study area: (a) the Reduce Region method was
used to calculate the total forest area lost in Malaysia and each state. All pixels in the
study region are reduced to a statistic or a histogram representation of the pixel data
in the area to provide a statistic of the pixel values of a region in Malaysia.
Figure 10.5 shows how the region is represented as geometry, and the output is a
statistic obtained from the pixels in the area.

(b) The ultimate goal of this study is to calculate annual losses. Therefore, once
the pixel area of the target area had been calculated, using the “zonal statistics”
method, the study area was designated as a grouping zone. Zonal statistics is one of
the primary spatial analysis methods. The pixel values determine the results in the
input value raster that fall into the specified input area data set. In zonal statistics, the
role of the value raster is to evaluate the values of the specified area (Singla and
Eldawy 2018). Deforestation was grouped by year. As shown in Fig. 10.6, the Zone
layer shows the input raster data in the target area, such as shape, value, position, etc.
The Value layer defines the statistics of the target area.

In this study, integer pixel values are used to identify the input values for the
target region. The loss year band is added to the image, with values between 0 and
20 in each pixel in the band, indicating the years from 2000 to 2020 when

Table 10.1 The functions of reducer on GEE

Reducers Example Mode of Operation

Simple Count, distinct, first, etc.

Context-dependent

Mathematical Min, max, sum, product, etc.

Logical Logical, etc.

Statistical Mode, percentile, mean,

median, etc.

Correlation Kendall, Spearman, etc.

Regression Linear regression, etc.

Fig. 10.5 Reduce region
function on GEE
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deforestation occurred. Using a grouped reducer (Fig. 10.6), the grouped band 1 was
specified as the band index to find the pixel area sum of the target area. After
counting the pixels by zonal statistics, the format conversion can be made in GEE.

10.2.6 Charting Yearly Deforestation

GEE can create scatter, line, bar, pie, and bar charts, among other chart styles.
Google Visualization is a JavaScript-based framework for creating various interac-
tive charts on websites. Set the chart type with the ui.Chart.setChartType() method,
the chart type as shown in Fig. 10.7. The ui.Chart.array.values() method was used in
this study to chart the yearly deforestation of Malaysia and its states.

Fig. 10.6 Zonal statistics

Fig. 10.7 Examples of
chart types on GEE
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10.2.7 Drivers of Deforestation Elaborating

Curbing forest loss is very difficult for a rapidly developing economy like Malaysia.
In general, commodity crops are the main driver of forest loss in Malaysia, with the
oil palm industry being the main cause (Shevade and Loboda 2019). Remote sensing
has a wide variety of forest change applications, including cover measurements,
plant composition, chemistry, and moisture of vegetation, biodiversity, and soil
properties (Lechner et al. 2020). These variables produce forest inventories to
measure the number of trees per acre, base area, and timber value. This study
completed data collection, image processing, application of statistical methods,
and output of statistical results. Based on the statistical results and other works on
deforestation, an analysis of the tropical forest drive in Malaysia was conducted.

10.2.8 Data Validation

The validation data for this study comes from Global Forest Watch (GFW), a
platform that has expanded from providing assessments on the state of forests in a
few nations to offering global data on forests (Fig. 10.8). As for the validation data,
the overall accuracy of the DFW dataset was higher than other remote sensing
products (Zhang et al. 2020), and the study of Tyukavina et al. (2015) showed that
DFW data performed well in assessing forest loss in tropical areas.

Fig. 10.8 Validation through GFW
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10.3 Results

The experimental results of the GEE platform are presented, analyzed, and further
discussed in the following four subsections: (a) processing output; (b) results of the
numerical study; (c) drivers of deforestation in Malaysia, and (d) results of the
validation. The quantitative data on deforestation in Malaysia and its states is
explored. The quantitative data summarizes further the drivers of deforestation and
the feasibility of the GEE platform.

10.3.1 Processing Output

The main goal of image processing was to collect, synthesize, and visualize the
images. After collecting images of global forest change from 2000 to 2020, the RGB
composite image was created as shown in Figs. 10.9 and 10.10 shows the land
outside the forest being masked. Subsequently the setting up of a color palette,
designing parameters to stretch the images, and cropping the administrative bound-
aries of Malaysia was done (Fig. 10.11). The processing results are shown in
Fig. 10.11 for Malaysia’s 2000 forest cover, 2020 deforestation, and 2020 forest
gain. The green legend shows forest cover in 2000, red shows deforestation from
2000 to 2020, and blue shows forest gain from 2000 to 2020.

Fig. 10.9 RGB composite image (False color) with bands 5, 4, and 3
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Fig. 10.10 Masking the land outside the forest

Fig. 10.11 Forest cover, loss, and gain map created after processing dataset
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10.3.2 Results of Numerical Study

This study defines forest coverage as vegetation above 5 m in height, so it does not
distinguish between artificial forests and natural forests. Forest cover was visualized
on GEE in layers based on the Hansen et al. (2013) Global Forest Change dataset.
With a land area of 330,524 km2, Malaysia has lost approximately 86,893 km2 of
forest in the last 20 years, with deforestation accounting for 26% of the total area.
The largest deforestation was in 2014, at 6804.67 km2, or 2.06% of the total area.
Malaysia had the lowest deforestation in 2003 with 1855.71 km2 of deforestation or
0.56% of the total area (Figs. 10.12 and 10.13). There are many factors that influence
deforestation, whether it is plantation expansion, logging, or urban sprawl, all of
which are tied to human activity (Didenko et al. 2017). In 2002, the Malaysian
government promulgated the Environmental Impact Assessment (EIA) Guidelines

Fig. 10.12 Yearly deforestation in Malaysia

Fig. 10.13 Yearly rate of deforestation in Malaysia
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for Logging and Forest Clearance Activities (Foo and Yusoff 2002). In the year
following the promulgation of the guidelines, deforestation was at its lowest.
Compared to 2014, the year with the highest deforestation, the amount of defores-
tation in 2003 was about 1/4 of the former. The largest deforestation of 6046.66 km2

was in 2016. After 2016 the deforestation decreased every year until 2020 when the
deforestation was 3090.67 km2. As a percentage of the total area, deforestation also
decreases from 1.83% to 0.94% (Figs. 10.12 and 10.13). And the deforestation
decrease is also closely related to the 2015 Malaysian Sustainable Palm Oil Certi-
fication Program (Yap et al. 2021).

Overall, Sarawak has the largest area of deforestation, about 36% of Malaysia’s
deforestation over the past 20 years, ranking first among the 13 states and 3 federal
territories. This was followed by Sabah and Pahang, which accounted for 20% and
14% of the total area of lost forestry in Malaysia (Fig. 10.14). The land in these three
states is covered by large areas of tropical rainforest with a great variety of life. At
the same time, the agricultural sector accounts for a large share of GDP in these three
states, at 13.5%, 19.1%, and 23.4%, respectively (Department of Statistics Malaysia
Official Portal 2018). Negeri Sembilan, Johor, and Malacca had the highest rates of
deforestation (ratio of the area of forest lost to land area), with Negeri Sembilan
losing 41% of its forest, Johor 39%, and Malacca 38% (Fig. 10.15). The relatively
low rate of deforestation in Labuan, Penang, Perlis, and Kuala Lumpur is related to
their land areas and their primary industries (Ngu et al. 2020). Tourism, services and

Fig. 10.14 Contribution of deforestation by state
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manufacturing are their main pillar industries and contribute a high share of GDP
(Kuala Lumpur Travel | All Malaysia 2009).

10.3.3 Drivers of Deforestation in Malaysia

Except for Kedah, Perlis, and Penang, most states in Malaysia have essentially
returned to the lower deforestation levels of 2000 (Figs. 10.13, 10.14 and 10.15).
For continuous changes in deforestation at national scales and states, it is valuable to
quantify deforestation at high resolution over a short interval. After outputting the
quantified forest results for 2000–2020 in this study, the drivers of deforestation in
Malaysia are defined based on data characteristics, graphical trends, and human
activity correlations.

Palm Oil Industry

Malaysia is the world’s second largest exporter of palm oil (Malaysia - Agricultural
Sector 2021). Seventeen million metric tons of palm oil was exported from Malaysia
in 2020, accounting for 34% of global palm oil exports. The study shows that the
area under oil palm cultivation in Malaysia has increased significantly with a growth
rate of 83.5% during 2000–2018 (Malaysian Palm Oil Industry – MPOC 2020). By
2020, Malaysia has 42,000 km2 of oil palm plantations, accounting for 12.7% of its
land area. Table 10.2 (Danylo et al. 2021) provides the area of oil palm expansion in
Malaysia in 2017 and the share of oil palm cultivation in three different periods
(pre-2000, 2000–2009, and 2010–2017). As shown in Malaysia’s annual deforesta-
tion in Fig. 10.16, the red dividing line positioned at the year 2016 shows

Fig. 10.15 Deforestation rates of Malaysia’s states
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deforestation in Malaysia has decreased significantly after 2016. The greater practice
of sustainability in oil palm cultivation could be a contributing factor. According to
the Malaysian Palm Oil Board (MPOB), the Malaysian Sustainable Palm Oil
Certification Scheme (MSPO) is the Malaysian government’s certification scheme
for palm cultivation and palm oil processing, which started in 2015 and aimed to
improve palm oil sustainability (Yap et al. 2021). As shown in Fig. 10.17, the oil
palm expansion in Malaysia began to moderate significantly in 2015, particularly in
Sarawak. Moreover, the oil palm expansion became negative, which means that no
new oil palm area was opened but existing oil palm area decreased. The slowdown in
the expansion of oil palm could be one of the factors to explain the trend in
deforestation in Malaysia while the approach of not opening up new lands but
focusing on replanting shows positive results.

Wildfire

From 2000 to 2020, the cumulative area burned is 8771km2 in Malaysia (Fig. 10.18).
Malaysia has a vibrant tropical ecosystem, with tropical rainforests covering 59% of
the country’s land area and 7616 km2 of mangrove forests (Kanniah et al. 2015).
Malaysia’s lowlands are covered with 2.76 million hectares of peatland, an ESA
under the NPA. As a result, Malaysia has a unique tropical peatland forest, a dual
ecosystem of tropical rainforest and peatland (Melling 2015). The threat of forest
fires to biodiversity is enormous. In tropical humid rainforests, organisms lack
targeted adaptation to forest fires. Thus, forest fires are a greater threat to tropical
ecosystems, with more than 90% of the tropics under threat from forest fires.
Tropical rainforest ecosystems in Southeast Asia are typically fire-sensitive systems,
with most organisms lacking the ability to recover rapidly after burning (WWF
Deutschland 2017).

Illegal Logging

In 2019, the export share of timber and its products from Malaysia was USD 5369
million (WWF Deutschland 2017). In the 1990s, 30% of Malaysia’s log exports
were illegal. Illegal logging accounted for more than 20% of Malaysia’s timber
exports before 2003 (Hashiramoto et al. 2003). Although the rate of illegal logging

Table 10.2 Extent of oil palm plantations in Malaysia (Danylo et al. 2021)

Region
Extent in 2017
(million ha)

Planted before
2000 (%)

Planted 2000–
2009 (%)

Planted 2010–
2017 (%)

Peninsular
Malaysia

2.41 17.31 39.04 43.66

Sabah and Sara-
wak states

1.72 22.34 31.35 46.30
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has declined after 2003, it remains one of Malaysia’s challenges. Malaysia is ranked
in the middle of Transparency International’s 2013 Corruption Perceptions Index,
with forestry being the sector most affected by corruption. As Malaysia’s 13 states
and 3 federal municipalities have the power to set their land and forest use, there
needs to be greater coordination in the implementation of the relevant policies. This
may help to lower the rate of illegal logging in the Malaysian states on Borneo
Island.

As shown in Fig. 10.14, Sarawak and Sabah states in the Malaysian Borneo have
contributed 36% and 20%, respectively, of the total deforestation over the last
20 years, ranking first and second out of 13 states and 3 federal territories. Sarawak

Fig. 10.17 Oil palm expansion in Malaysia (hectares). (Source: Malaysian Palm Oil Board)

Fig. 10.18 Burned area in Malaysia. (Source: Global Forest Watch)
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is rich in natural resources, and the state has a single industry heavily dependent on
primary industries. Agriculture and mining account for 34.7% of GDP, and Sarawak
is one of the largest exporters, accounting for 65% of Malaysia’s log exports in 2000
according to UN statistics for 2001. Likewise, Sabah’s industry is based on the
export of primary products, and there is a massive demand for raw materials such as
timber and oil. Illegal logging is more significant in Sabah, with more than
30,000 m3 logged illegally per year (Hoare 2015). Although there are fines and
arrest warrants for illegal logging, the market value of the timber seized is much
higher than the fine, and it is often impossible to identify the illegal logger. However,
the reported illegal logging activities have been reduced since the year 2005 after a
few revisions of forest policies, strengthening of enforcement at the fields, and
improvement of forest management structure. Forestry Department Peninsular
Malaysia (FDPM), States Forestry Departments, Forest Department Sarawak
(FDS), and Sabah Forestry Department (SFD) have always been putting the greatest
efforts to ensure our forest resources are managed sustainably for both production
and protection purposes within the remaining forests.

10.3.4 Results of Validation

This study validates the results with data from the GFW platform and thus evaluates
the feasibility of the GEE for analyzing forest areas at a national scale.

The validation results in Table 10.3 show that the results of this study based on
the GEE showed high accuracy, which is closely related to the deforestation data and
the study method. The Hansen et al. (2013) global forest change dataset defined trees
as vegetation above 5 m. As a result, some planted forests, agricultural land, and
smallholder economic land were incorrectly classified as forests when classifying the
land use data. In addition, the zonal statistics in this study counted and calculated the
discrete pixels, which do not precisely represent forests in real life. As a result, these
data can overestimate forest cover to some extent. Although the results based on the
GEE and data result in some overestimation, the data results in this study still
maintain a high level of accuracy. In some years, the accuracy of the results was
above 99%. The average accuracy reached 96.43%. The high accuracy performance
demonstrates the high feasibility of GEE for large-scale land monitoring.

10.4 Discussion

Over the past 20 years, Malaysia has lost 86,893 km2 of forests, accounting for 26%
of the total land area. The rate of deforestation declined for the fourth consecutive
year since 2016. In 2020, most states in Malaysia had essentially returned to the
lower deforestation levels of 2000. However, the area of deforestation in Malaysia in
2020 was 3090 km2. Sarawak lost the most forest area, contributing 36% of
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Malaysia’s total deforestation. This was followed by Sabah and Pahang, which
contributed 20% and 14% of Malaysia’s total deforestation, respectively. Negeri
Sembilan, Johor, and Malacca had the highest deforestation rates. In contrast, the
lowest deforestation rates were in Labuan, Penang, Perlis, and Kuala Lumpur, which
have much less land, with the land use in Penang and Kuala Lumpur being mostly
commercial, residential, and industrial.

This study uses data from the GFW platform to validate the results and thus assess
the feasibility of the GEE for quantitative analysis of forests at the national scale. The
validation results based on the graph above reveal that the study’s GEE results are
often higher than the validation data related to the deforestation statistics and the
study’s methodology. Trees were considered vegetation if their height was over 5 m
in the Hansen et al. (2013) global forest change dataset. As a result, while classifying
land use data, some planted forests, agricultural land, and smallholder economic land
were wrongly classified as forests. Furthermore, marginalized pixels are considered
in this study’s zonal statistics-based pixel computation and categorization. As a
result, these data may overestimate forest cover. The accuracy of the results was
above 99% in several years of data, with the average accuracy being 96.43%. This
high level of accuracy illustrates GEE’s suitability for large-scale land monitoring.

Table 10.3 Results of validation

Yearly
Results of deforestation computed in this
study (km2)

Validation data from
GFW (km2)

Accuracy
(%)

2001 3399.94 3324.97 97.75

2002 3164.64 3125.54 98.75

2003 1855.71 1839.11 99.10

2004 3546.55 3518.02 99.19

2005 3778.59 3754.20 99.35

2006 3356.2 3339.01 99.49

2007 4063.81 4051.59 99.70

2008 3692.71 3679.72 99.65

2009 6243.22 6227.80 99.75

2010 4313.75 4306.07 99.82

2011 4646.91 4630.78 99.65

2012 6358.66 6281.71 98.78

2013 3465.97 3332.21 95.99

2014 6804.67 6457.79 94.63

2015 4789.08 4543.45 94.59

2016 6046.66 5652.49 93.03

2017 5185.88 4834.16 92.72

2018 4737.19 4379.85 91.84

2019 4352.03 3953.67 89.92

2020 3090.67 2687.21 84.99

Average
value

4344.64 4195.97 96.43
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Curbing deforestation is very difficult for a rapidly developing economy like
Malaysia. In general, commodity crops are the main driver of deforestation in
Malaysia, with the oil palm industry being the main cause. The palm oil industry
is significant in Malaysia, with palm oil constituting 1/3 of Malaysia’s agricultural
output. Compared to other drivers of deforestation, deforestation from commodity
crops is permanent and irreversible. In addition, wildfires and illegal logging also
constitute drivers of deforestation in Malaysia. In the last decade, Sarawak and
Sabah are the states that contributed to the highest rates of illegal logging. However,
the policies have continued to improve, and enforcements have been strengthened.
Most states in Malaysia rely heavily on agriculture for economic development,
which has resulted in deforestation due to the over-representation of agriculture
commodities such as oil palm. The states that have contributed the most to total
deforestation over the last 20 years are Sarawak, Sabah, and Pahang, where the
agricultural sector accounts for a substantial share of GDP at 13.5%, 19.1%, and
23.4%, respectively. For states with lower rates of deforestation, such as Labuan,
Penang, and Kuala Lumpur, tourism and services are undoubtedly the mainstays of
their industries while these are already well built-up areas. There are some limita-
tions in this study, especially in terms of data to be further improved. In the Hansen
et al. (2013) global forest change dataset, tree cover was defined as vegetation with a
height above 5 m, so there would be neglect for young canopy forest cover. In
addition, the adhesion of the relationship between the forest gain, drivers analyzing
deforestation and the effects of other human activities was not high enough, and the
network of relationships between variables should be strengthened and explored in
future studies.

10.5 Conclusions

This study’s objective was to model the spatial and temporal evolution of defores-
tation in Malaysia based on the GEE platform. In addition to the national scale, the
study analyzed deforestation in Malaysia covering the 13 states and 3 federal
territories. Based on the spatial and temporal evolution results, the differences in
deforestation by states were compared for further analysis of the drivers of defores-
tation and verification of the feasibility of the Google Earth platform. Overall, the
statistical results in this study still maintain a high level of accuracy and demonstrate
the suitability of the GEE platform for national-scale forest monitoring. Based on the
statistical results, this study elaborates on the main drivers of deforestation in
Malaysia. The palm oil industry, forest fires, and illegal logging all contribute to
deforestation in Malaysia. Quantifying Malaysia’s past deforestation can effectively
engage in forest management, climate protection, ecological resource conservation,
and sustainable ecosystem services.
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Chapter 11
Climate-Resilient Agriculture Assessment,
Targeting and Prioritization
for the Adaptation, andMitigation Initiative
in Agriculture (AMIA) in the Cordillera
Administrative Region, Philippines

Elizabeth E. Supangco, Janet P. Pablo, Roscinto Ian C. Lumbres,
Charis Mae Tolentino-Neric, Levi Ezekiel O. Daipan,
Gillian Katherine Inciong, and Ralphael Gonzales

Abstract The research project, “Climate-Resilient Agri-fisheries (CRA) Assessment,
Targeting & Prioritization for the Adaptation and Mitigation Initiative in Agriculture
(AMIA)” in Cordillera Administrative Region (CAR) contributes to the national
government’s agenda of addressing climate change threats in the country’s agriculture
sector. The major outputs include the Climate-Resilient Agri-fisheries (CRA) for the
assessment of traditional and CRA cropping practices used by the farmers through
cost-benefit analysis (CBA); and climate risk vulnerability assessment (CRVA) to
determine the sensitivity and vulnerability assessment of crops of the province of
Benguet. The CRVA assessment result showed that most of the municipalities in
Benguet were classified as high to very high in terms of vulnerability to climate
change based on their adaptive capacity, sensitivity of crops to the different climatic
variables (temperature and precipitation) and hazards. Technologies identified for
adaptation includes improving rainwater harvesting practice of the farmers to increase
the yield and income of farmers especially during periods of drought and irregular
rainfall. The use of blight-resistant variety Igorota (PO3) can result in higher yield,
cash returns, total returns, returns above cash costs, and returns above total costs. By
planting PO3, farmers significantly reduced their operational costs by about 50%.
Effort is also thus needed to integrate the use of PO3 with the water-saving practices to
determine any synergies that could benefit the farmers in the vulnerable sites.
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11.1 Introduction

The Adaptation and Mitigation Initiative in Agriculture (AMIA) is the Department
of Agriculture’s (DA) chief integrated effort to contribute to the national govern-
ment’s agenda of addressing climate change threats in the country’s agriculture
sector. It seeks to enable the Department of Agriculture (DA) to plan and implement
strategies to support local communities in managing climate risks—from extreme
weather events to long-term climatic shifts. Under the leadership of the DA System-
wide Climate Change Office (SWCCO), this project titled “Climate-Resilient Agri-
fisheries (CRA) Assessment, Targeting & Prioritization for the Adaptation and
Mitigation Initiative in Agriculture (AMIA) in CAR” supports the AMIA 2 in
assessment, targeting, and prioritization of climate resilient agri-fisheries technolo-
gies and practices in CAR. The major outputs include the Climate-Resilient Agri-
fisheries (CRA)—an assessment of traditional and CRA cropping practices used by
the farmers through Cost-Benefit Analysis (CBA); and Climate Risk Vulnerability
Assessment (CRVA)—sensitivity and vulnerability assessment of crops of the
region as well as adaptive capacity of the provinces’ agricultural sector in the effects
of climate change in the Philippines.

The Cordillera Administrative Region or CAR is composed of six provinces,
namely, Abra, Apayao, Benguet, Kalinga, Ifugao, Mountain Province, and two
cities, Baguio City and the City of Tabuk. It is bounded by Ilocos Norte and Cagayan
in the North, Pangasinan and Nueva Ecija in the south, Cagayan Valley in the east,
and the Ilocos Region in the west. Located at the northern part of Luzon, CAR boasts
a mountainous topography and rugged terrain, which significantly contributes to the
low climate temperature in the region. Having said that, this region experiences Type
II and III climate conditions. CAR has abundant natural resources and contributes
highly in terms of agriculture and mining in the Philippines. It has an agricultural
land area of 177,839 ha which is largely shared by crop lands. Among its major crops
are palay, corn, potato, and cabbage. In 2013, the region was the top cabbage
producer in the country.

The Cordillera Administration Region, however, also faces the threats of climate
change. According to UNDP (2012), CAR is one of the areas in the country that are
most vulnerable to climate change. The natural disasters have been continuously
affecting the agriculture sector of the region. Recurring intense calamities often
result to frequent erosions, landslides, and even crop susceptibility to diseases,
which pose a huge impact on the crop production in CAR. Benguet experiences
problems on vulnerability to landslides, soil nutrient depletion, and crop failure due
to extreme temperatures. Realizing the impact of climate change in the Cordillera
region’s agriculture sector, climate change adaptation (CCA) measures in agriculture
were developed in the provinces of Benguet and Ifugao using the participatory action
research approach. The local stakeholders were capacitated to identify and enhance
their own sustainable agricultural practices and combine these with knowledge-
based technologies that are adaptive to climate change. Expanding and
mainstreaming these CCA agricultural measures would help improve the capacity
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of the country’s farmers in facing the threats of climate change (Sandoval and Baas
2014).

This chapter describes the climate risks vulnerabilities of the agricultural areas
and priority crops in Benguet Province as well as the economic benefits of the
identified technologies used by the farmers to adapt to the climatic hazards.

11.2 Methodology

11.2.1 Description of the Study Site

This study covers the 13 municipalities of the province of Benguet (Fig. 11.1).
Benguet is characterized by mountainous terrains, ridge, and canyons with a tem-
perate and generally pleasant climate. Climate hazards such as persistent strong
heavy rains, typhoons, flooding, and frost are experienced by farmers in this
municipality. Records of the Philippine Atmospheric, Geophysical and Astronom-
ical Services Administration (PAGASA) Agro-meteorological Station in La Trini-
dad from 1976 to 2009, show higher temperatures, warmer middays and colder
afternoons, longer drought periods, and irregular rainfall (Calora et al. 2011).

Fig. 11.1 Geographical Location Map of Benguet
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11.2.2 Climate Risk Vulnerability Assessment of the Five
Major Agricultural Crops in Benguet

The International Center for Tropical Agriculture (CIAT) created a framework in
conducting CRVA for different crops in the various provinces of the Philippines as
shown in Fig. 11.2. In this framework, three key dimensions are needed to assess the
overall vulnerability of a specific crop for the different municipalities, and these are:
sensitivity, exposure, and adaptive capacity. The IPCC (2014) definitions for these
three concepts are used in this study.
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Fig. 11.2 Climate risk vulnerability framework. (Source: Jurgilevich et al. 2017)
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All maps were developed by CIAT using the values for hazard, sensitivity, and
adaptive capacity provided by the research team. The values for each hazard were
normalized to give uniform weights and classifications. This was also done for the
sensitivity and adaptive capacity values.

Hazard Assessment

Based on a consultation with relevant stakeholders, Palao et al. (2017) identified
eight climate-related hazards that affect crop production in the Philippines, namely,
tropical cyclone, flood, drought, erosion, landslide, storm surge, saltwater intrusion,
and sea level rise. For Benguet however, representatives of the DA CAR Regional
Field Office (RFO) stressed that frost must be included as one of the hazards.
Because each hazard varies in degree, intensity, and frequency, the potential damage
also varies, especially across the three main islands of the Philippines (Luzon,
Visayas, and Mindanao). Thus, each hazard was weighted differently for each island
group based on occurrence and impact.

New hazard weights for Benguet were developed with the inclusion of frost as
shown on Table 11.1. CIAT provided the hazard maps in raster format and the
hazard for each municipality was summarized using the zonal statistics of QGIS
(Fig. 11.3). These values were normalized for each hazard using the equation shown
below:

hazidx norm ¼ x� xmin

xmax � xmin
ð11:1Þ

where: hazidx_norm is the normalized value of the hazard index and x is the value of
a particular hazard, min is minimum value and max is maximum value.

To determine the overall hazard index for each municipality, the normalized
value of each hazard for each municipality was multiplied with the corresponding
hazard weight and were summed up.

Table 11.1 Hazard scores in the island groups and in Benguet province based on experts’
consensus

Hazards Benguet

Island group

Luzon (%) Visayas (%) Mindanao (%)

Typhoon 19.38 20.00 18.21 16.95

Flood 16.00 19.05 16.40 15.25

Drought 12.92 14.25 16.17 16.95

Erosion 12.92 11.43 12.57 12.71

Landslide 13.37 8.57 10.72 14.41

Storm surge 4.46 9.52 10.39 8.47

Sea level rise 4.46 5.71 8.33 5.08

Saltwater intrusion 4.46 11.43 7.21 10.17

Frost 12.03 – – –
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Analysis of Adaptive Capacity

CIAT invited various participants to a workshop to identify the different capitals for
the determination of adaptive capacity. Participants came from the Department of
Agriculture (DA) agencies, National Economic Development Authority (NEDA),
United Nations Food and Agriculture Organization (UN-FAO), Non-Government
Organizations (NGOs), and the academe. The capitals include economic, natural,
human, physical, anticipatory, and institutional. Data were collected from the dif-
ferent agencies such as LGUs, Philippine Statistics Authority (PSA), and others
(Table 11.2).

Each indicator for the capitals was normalized and the normalized values were
summed up for each capital. Furthermore, the normalized values for each capital of
the different municipalities were integrated in the Benguet shapefile that contains
municipal boundaries. Five equal breaks were used to classify the adaptive capacity
of each municipality: 0–0.20 (Very Low), 0.20–0.40 (Low), 0.40–0.60 (Moderate),
0.60–0.80 (High), and 0.80–1.00 (Very High).

Sensitivity Analysis

The Regional Field Office of the Department of Agriculture in CAR identifies five
major crops in Benguet province and these were cabbage, carrot, snap bean, sweet
potato, and white potato. Using participatory mapping, the researchers and the
representatives from the Municipal Agriculture Office (MAO) of the

Fig. 11.3 Zonal statistics for the different hazards
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Table 11.2 List of capitals with their indicators

Capital Indicator Source

Economic Income level Benguet-LGU

– Municipality class

Access to credit Cities and
Municipalities
Competitive Index
(CMCI) (2015)

– Total number of financial institutions

– Number of finance cooperatives

Commodity price fluctuation CMCI (2015)

– Average inflation rate

Agriculture minimum wage (plantation/nonplantation) CMCI (2015)

Agriculture minimum wage (finance institutions) Benguet-LGU

Number of Micro Finance Institutions CMCI (2015)

Total Number of Banks and Finance Institutions CMCI (2015)

Average Diesel Price CMCI (2015)

Natural Supporting ecosystems and their health (e.g., man-
groves, forests, lakes, coral reefs)

CMCI (2015)

– Forest cover

Human – Number of Public Transport Vehicles Benguet LGU

– Ratio of schoolteachers to students CMCI (2015)

– Number of private secondary schools CMCI (2015)

– Number of secondary schools CMCI (2015)

– Number of public tertiary schools CMCI (2015)

– Number of public technical vocational schools CMCI (2015)

– Public health services CMCI (2015)

– Private doctors CMCI (2015)

– Private health service CMCI (2015)

– Health services manpower CMCI (2015)

– Public doctors CMCI (2015)

– Local citizen with Phil Health CMCI (2015)

– Total Public Health Facilities CMCI (2015)

Physical Access to irrigation infrastructure (total irrigated area in
hectares)

CMCI (2015)

– % of crops irrigated

Percent of Households (HH) with water services CMCI (2015)

Percent of HH with electricity services CMCI (2015)

Electricity Firms and customers (average) CMCI (2015)

Total Road Network CMCI (2015)

Road Density CMCI (2015)

Infra investment CMCI (2015)

Percent Infra to LGU Budget CMCI (2015)

Anticipatory Telephone companies and mobile services CMCI (2015)

Presence of DRRMO CMCI (2015)

Presence of Early Warning Systems CMCI (2015)

DRRM Budget Allocation CMCI (2015)

(continued)
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13 municipalities of Benguet located the production areas of the 5 major crops. The
mapping workshop enabled the rapid location of the production areas. Each partic-
ipant worked with a 1 km by 1 km grid map, barangay boundary map, Google earth
satellite image, and digital elevation model map. The participants then pointed out if
a particular crop occurs in a specific grid.

In order to determine the sensitivity of a crop to climate change, Maximum
entropy (MaxEnt) were used. MaxEnt model is a crop distribution model commonly
used to estimate most suitable areas for a species or crop based on probability in
geographic areas where the distribution of crops is scarce (Elith and Burgman 2002).
This model makes use of the climatic conditions that meet the crop’s environmental
requirements and predicts the relative suitability of location (Davis et al. 2012).
These requirements are represented by bioclimatic variables, which are combined to
determine areas most suitable for the crop.

Using the MaxEnt program, researchers were able to determine the best location
for the 5 major crops using 19 bioclimatic variables to assess the suitability of the
selected crops in Benguet province (Table 11.3). For current conditions, datasets
(available at WorldClim.org) were used. The described bioclimatic factors are
relevant to understand species responses to climate change (O’Donell and Ignizio
2012). Eleven of the bioclimatic variables are temperature related and the eight are
precipitation related.

Furthermore, this program also determined the best location of the five major
crops based on future climatic projections. Representative concentration pathway
(RCP) 8.5 scenario was used to project future climatic variables in the year 2050.
RCP 8.5 is the worst-case scenario among the four scenarios (RCP 2.6, RCP 4.5,
RCP 6, and RCP 8.5) developed by the IPCC. These scenarios are based on the
projected amount of carbon dioxide (CO2) emission.

To determine the sensitivity of each crop for the different municipalities, the
equation suggested by CIAT was used in this study and this is shown below (Palao
et al. 2017):

Projected Conditions� Current Conditions
Current conditions

� 100 ð11:2Þ

An index was developed from �1.0 to 1.0 for the CRVA where the range from
0.25 to 1.0 indicates a loss in suitability, while �0.25 to �1.0 indicates a gain in
suitability to climate change (Table 11.4).

Table 11.2 (continued)

Capital Indicator Source

Institutional Presence of Office Implementing CLUP CMCI (2015)

Presence of Executive Order and Ordinance CMCI (2015)

Presence of DRRMP CMCI (2015)
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Climate Risk Vulnerability Assessment (CRVA)

To determine the vulnerability of each crop for the different municipalities, hazard,
sensitivity, and adaptive capacity were summed up based on their weights. For the
Adaptive capacity, it was 70% while it was 15% for hazard and sensitivity. Different

Table 11.3 Bioclimatic variables used in sensitivity modeling

Parameters Description

Bio 1—Annual mean
temperature

Annual mean temperature derived from the average monthly
temperature

Bio 2—Mean diurnal range The mean of the monthly temperature ranges (monthly
maximum minus monthly minimum)

Bio 3—Isothermality Oscillation in day-to-night temperatures

Bio 4—Temperature
seasonality

The amount of temperature variation over a given year based
on standard deviation of monthly temperature averages

Bio 5—Maximum temperature
of warmest month

The maximum monthly temperature occurrence over a given
year (time-series) or averaged span of years (normal)

Bio 6—Minimum temperature
of coldest month

The minimum monthly temperature occurrence over a given
year (time-series) or averaged span of years (normal).
Variation over a given period

Bio 7—Temperature annual
range

A measure of temperature

Bio 8—Mean temperature of
wettest quarter

This quarterly index approximates mean temperatures that
prevail during the wettest season

Bio 9—Mean temperature of
driest quarter

This quarterly index approximates mean temperatures that
prevail during the driest quarter

Bio 10—Mean temperature of
warmest quarter

This quarterly index approximates mean temperatures that
prevail during the warmest quarter

Bio 11—Mean temperature of
coldest quarter

This quarterly index approximates mean temperatures that
prevail during the coldest quarter

Bio 12—Annual precipitation This is the sum of all total monthly precipitation values

Bio 13—Precipitation of wettest
month

This index identifies the total precipitation that prevails during
the wettest month

Bio 14—Precipitation of driest
month

This index identifies the total precipitation that prevails during
the driest month

Bio 15—Precipitation
seasonality

This is a measure of the variation in monthly precipitation
totals over the course of the year. This index is the ratio of the
standard deviation of the monthly total precipitation to the
mean monthly total precipitation and is expressed as
percentage

Bio 16—Precipitation of the
wettest quarter

This quarterly index approximates total precipitation that
prevails during the wettest quarter

Bio 17—Precipitation of driest
quarter

This quarterly index approximates total precipitation that
prevails during the driest quarter

Bio 18—Precipitation of
warmest quarter

This quarterly index approximates total precipitation that
prevails during the warmest quarter

Bio 19—Precipitation of coldest
quarter

This quarterly index approximates total precipitation that
prevails during the coldest quarter

Source: http://www.WorldClim.org
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scenarios were also created using different weights for adaptive capacity, hazard, and
sensitivity (Table 11.5).

The equation used is shown below:

f Haz, Sens, ACð Þ ¼
Xn

n¼i
Haz whð Þ þ Sens wsð Þ
� �þ 1� ACwa

� � ð11:3Þ

where: Haz ¼ hazard index, Sens ¼ sensitivity index (i ¼ crop), and AC ¼ adaptive
capacity index. wh ¼ weight given for hazard, ws ¼ weight given for sensitivity, and
wa ¼ weight given for adaptive capacity.

11.2.3 Climate-Resilient Agri-fisheries (CRA) Assessment,
Targeting and Prioritization

To assess the CRA, researchers had a series of meetings with the Municipal
Agricultural Office and the Department of Agriculture-Regional Field Unit to gather
preliminary data and information regarding the identification of study sites and the
adaptation strategies employed by farmers. A community meeting in Atok, Benguet
and focus group discussion in Buguias, Benguet enabled the identification of climate
hazard exposure and technological adaptation or CRA. Structured questionnaires
were used to gather data from CRA and non-CRA practitioners in both

Table 11.4 Sensitivity index based on percent change in crop suitability from baseline to future
condition

Percent change in suitability (range in %) Index Description

��50 (Very high loss) 1.0 Loss

>�50 and ��25 (High loss) 0.5

>�25 and ��5 (Moderate loss) 0.25

>�5 and �5 (No change) 0 No change

>5 and �25 (Moderate gain) �0.25 Gain

>25 and �50 (High gain) �0.5

>50 (Very high gain) �1.0

Source: Palao et al. (2017)

Table 11.5 Scenarios with different weights for adaptive capacity, sensitivity, and hazard

Scenario Adaptive capacity (%) Sensitivity (%) Hazards (%)

1 (reference) 70 15 15

RCP 2.6 33 33 33

RCP 4.5 50 25 25

RCP 6 60 20 20

RCP 8.5 40 30 30
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municipalities. Profitability of engaging in CRA was determined using cost and
return analysis. The online Cost-Benefit Analysis tool (CBA) was used to determine
the NPV, IRR, and payback period of the technologies used. Comparison of means
using t-test was done in order to separate the CRA and non-CRA users.

The crops chosen for the study were those identified as priority crops by the
Department of Agriculture—Regional Field Office of the Cordillera Region based
on the volume and area of production. During the inception meeting, potato,
cabbage, rice, and camote (sweet potato) were identified as the priority crops;
however, potato and cabbage were prioritized for the CRA identification. Cabbage
and white potato are popular vegetable cash crops grown in Benguet by small-,
medium-, and large-scale farmers because they produce a very lucrative return on
investment. The CRA practices of the farmers for both crops were validated during
the FGD with the farmer stakeholders and the Municipal Agriculture Office Staff.

11.3 Results and Discussion

11.3.1 Climate Risk Vulnerability Assessment of the Five
Major Agricultural Crops in Benguet

Hazard Assessment

This section describes the results of the VA based on six hazards to come up with the
hazard index. These include tropical cyclone, flood, drought, erosion, landslide, and
frost. Storm surge, saltwater intrusion, and sea level rise were not included in the
analysis because Benguet is a landlocked province and therefore does not experience
these hazards. Each hazard map was provided by CIAT. The values for each hazard
were normalized to give uniform weights and classifications. Table 11.6 summarizes
the hazard indices of the six hazards measured for sites in Benguet. The sites are
listed in the table based on their location in the province from north to south. This
was done in an attempt to determine if there is a pattern to the hazards measured
based on geography. There is a pattern that can be seen but as there were no statistics
involved, the pattern is only indicative.

Half of the sites are vulnerable to tropical cyclones, although flooding (which
may result from the cyclones) is of importance in only two of the southern sites, La
Trinidad and Itogon, which are generally of lower elevation than the rest. Drought is
not a major concern except in Tuba. On the other hand, the dangers from frost are
high to very high in the northern sites, especially Bakun, Buguias, Kabayan, and
Bokod. There is also a clustering evident for the northern sites involving higher
vulnerability to erosion, landslide, and frost. On the other hand, the southern sites of
Tuba, Baguio City, and Itogon show medium to very high vulnerability for both
erosion and landslide but not to frost.
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Tropical Cyclone

An average of 20 tropical cyclones enters the Philippine Area of Responsibility
(PAR) from January to November (PAGASA 2009). Thus, has the highest weight
among all hazards and it is most prominent in Northern Luzon (Palao et al. 2017).
Tropical cyclones are classified as tropical depressions, tropical storms, and
typhoons. Typically, within a year, there are about four (4) to six (6) tropical
depressions, three (3) to five (5) tropical storms, and six (6) to nine (9) typhoons
that develop within the PAR. Results (Fig. 11.4) show that Benguet is divided
lengthwise, i.e., north to south, when it comes to exposure to tropical cyclones.
The eastern municipalities of Tuba, Bakun, Kapangan, Mankayan, Kibungan,
Sablan, and Atok have the least exposure (low to very low) to tropical cyclones.
On the west side, Baguio City, and the municipalities of Buguias, Kabayan, and
Itogon have moderate exposures while the municipalities of La Trinidad, Tublay,
and Bokod have the highest exposures.

Flood

Flood is one of the major problems in the country, primarily during the monsoon
season, and it is caused by either typhoons or enhanced southwest monsoons. An

Table 11.6 Summary of hazard indices of the six hazards measured for sites in Benguet Province,
Philippines

SITE Tropical 
Cyclone

Flood Drought Erosion Landslide Frost

Mankayan

Bakun

Buguias

Kibungan

Kabayan

Kapangan

Atok

Bokod

Sablan

Tublay

La Trinidad

Tuba

Baguio City

Itogon

LEGEND Very High High Moderate Low Very Low
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Fig. 11.4 Normalized (a) tropical cyclone, (b) flood, (c) drought, (d) erosion, (e) landslide, (f) frost
index of the different municipalities in Benguet

11 Climate-Resilient Agriculture Assessment, Targeting and Prioritization for. . . 315



enhanced southwest monsoon is a weather system where a typhoon or low pressure
area located outside the PAR enhances the southwest monsoon winds that brings
heavy rainfall in Luzon and parts of the Visayas. Flood dataset was acquired from the
multihazard AMIA dataset in raster format (Palao et al. 2017). Figure 11.4 shows
that La Trinidad and Itogon are the most prone to flooding. The municipalities of
Bakun have low exposure, while Mankayan, Buguias, Sablan, Kapangan, Tublay,
Kabayan, Atok, Kibungan, and Tuba have very low exposure.

Drought

Drought is one of the most challenging hazards to monitor because of the slow onset
of its effects, and it is also difficult to observe and forecast quite well. Based on the
results, the municipality of Tuba has the highest exposure to drought, followed by
the municipality of Itogon (moderate), and Kapangan (low). All other municipalities,
have the least exposure to drought as shown in Fig. 11.4. Knowledge of the
possibility that drought can occur in a site will enable the farmer to act accordingly.
They can choose either to avoid planting during those times that drought is likely to
occur in the site or to choose varieties of crops with high tolerance to drought
(Tad-awan and Shagol 2016).

Erosion

Erosion is a natural occurring process attributed to different factors such as soil
properties, ground slope, vegetation/land cover, and the amount and intensity of
rainfall (Montgomery 2007). It is usually a slow and gradual process, which involves
movement of rocks and loosened soil on the Earth’s surface from one place to
another. In the coming years, the soil erosion rate is expected to increase due to
higher amount of rainfall and more frequent extreme events brought by climate
change. An increase in erosion rate may lead to poor soil productivity and acceler-
ated siltation of waterways and reservoirs (Lal 2010). Based on the results,
Mankayan and Tuba are the municipalities that are most prone to soil erosion.
These were followed by the municipality of Bakun. Kibungan, Itogon, and Bokod
are considered moderate. La Trinidad along with the six other municipalities have
the least exposure to soil erosion. Half of the sites are prone to erosion. This reflects
the reported vulnerability of Benguet (Benguet PENRO 2019) to erosion, as 81.03%
of its lands are classified as severe.

Landslides

Landslides, also known as landslip, is a geological phenomenon, which includes a
wide range of ground movements, such as rockfalls, deep failure of slopes, and
shallow debris flows, which can occur in offshore, coastal, and onshore
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environments. Landslides are caused when the force of gravity pulls rocks, debris, or
soil down a slope. Fundamentally, they are one of the forms of erosion called mass
wasting, defined as erosion involving gravity as the agent causing movement.
Gravity constantly acts on a slope. Consequently, landslides only occur when the
downslope weight or the driving force of the slide mass exceeds the strength of the
soil or the resisting force along a slip surface. This happens when the water from rain
sinks through the earth on top of a slope, seeps through cracks and pore spaces in
underlying sandstone, and encounters a layer of slippery material, such as shale or
clay, inclined toward the valley (Cruden and Arnes 1996).

In Benguet, the municipalities of Itogon, Kibungan, and Sablan are most exposed
to landslides. Kabayan, Atok, and Buguias are also highly exposed to landslides.
Furthermore, the municipalities of Bokod, Bakun, and Tuba are moderately exposed
and the municipalities of Kapangan, La Trinidad, Tublay, and Mankayan have the
least exposure to landslides. These results are not surprising as at least 60.16% of
Benguet has a very steep slope (>50%) (Benguet PENRO 2019). On the whole, 80%
of Benguet is steep to very steep and the remaining portion is distributed to level to
nearly level, rolling, and rolling to moderately steep. The areas with least exposure
represent less than 1% (0.99%) of the total land area of Benguet with slopes greater
than 50%.

Frost

Frost usually forms in low lying areas, like Buguias and Bakun. Frost is a hazard that
is unique to Benguet province. The municipalities of Buguias and Bakun were
classified as very high in terms of exposure to frost. Kabayan and Bokod were
classified as high while Kibungan had a moderate classification in frost hazard. As
cool air sinks usually at night, it collects in the valleys and forms frost. Thus, it is in
the higher altitude valleys that it is most experienced. When the frost melts in the
daytime, it also destroys the vegetables on which it formed.

Hazard Index

The nine hazards were combined for the different municipalities using the assigned
weights (Fig. 11.5). In Benguet, tropical cyclone, soil erosion, and landslide are
consistently rated high across the 13 municipalities and are considered the major
driving factors of high hazard exposure at the same time high hazard index. Based on
the results, the municipality of Itogon has a very high exposure to hazards and it was
followed by the Bokod municipality. While the municipalites of La Trinidad, Tuba,
Buguias, and Bakun were classified as moderately hazardous. On the other hand,
Mankayan, Kapangan, and Tublay municipalities are considered very low in hazard
exposure as compared to other municipalites in Benguet province.
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Adaptive Capacity Assessment

The adaptive capacity was based on a set of capitals including economic, natural,
social, human, physical, anticipatory, and institutional. Each capital has indicators
that were used as basis for each municipality’s adaptive capacity. These factors have
been previously defined as the factors that hold the key to adaptability and change
(Ellis 2000). The concept of adaptive capacity depends on the level of strength and
weakness and the balance between the capitals (Leonard 2010).

Anticipatory Capital

There are four (4) indicators used for the anticipatory capital: (a) presence of Disaster
Risk Reduction Management Office (DRRMO), (b) presence of early warning
systems, (c) number of telephone companies and mobile service providers, and
(d) DRRM budget. Based on the results (Fig. 11.6), the municipality of La Trinidad
has the highest adaptive capacity (very high) in terms of the anticipatory capital,
followed by Tuba (moderate). The municipalities of Tublay and Sablan have low

Fig. 11.5 Overall hazard
index map of Benguet
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Fig. 11.6 Normalized (a)
anticipatory, (b) economic,
(c) human, (d) natural, (e)
institutional, (f) physical,
and (g) social capital map of
Benguet
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adaptive capacity. All other municipalities including Kibungan, Kapangan,
Kabayan, Itogon, Buguias, Bokod, and Atok, have low adaptive capacity and the
municipalities of Mankayan and Bakun as well.

Economic Capital

The economic capital includes municipality class, total number of finance institution,
number of finance cooperatives, average inflation rate, agriculture minimum wage,
number of microfinance institutions, and average diesel price. These indicators
reflect the level, variability, and diversity of income sources, and access to other
financial resources such as credit and savings For this capital, the municipality of La
Trinidad has the highest adaptive capacity (moderate) as compared to all other
municipalities (Fig. 11.6). On the other hand, the municipality of Itogon, Tuba,
and Tublay have low economic adaptive capacity. All other municipalities have very
low economical adaptive capacity. La Trinidad is the capital town of Benguet. As
such, most of the financial institutions are located there. Thus, its residents have
much better access to financial institutions and most likely will also have relatively
higher wages than the other sites, except for the City of Baguio.

Human Capital

Capital has the highest number of indicators including the ratio of schoolteachers to
students, number of private secondary schools, number of secondary schools,
number of public tertiary schools, number of public technical vocational schools,
public health services, private doctors, private health service, health services man-
power, public doctors, local citizens with Phil Health, total public health facilities,
and total private health facilities. For the human capital, all municipalities have low
to very low adaptive capacity in terms of human capital including the capital town of
La Trinidad.

Institutional Capital

There are three indicators for the institutional capital: (a) presence of offices
implementing Comprehensive Land Use Plan (CLUP), (b) Presence of Executive
Orders and Ordinances, and (c) presence of Disaster Risk Reduction Management
Plan (DRRMP). The results show that almost all municipalities have high adaptive
capacity in terms of this capital except for the municipalities of Kibungan and
Mankayan, both with values of 0. The municipality of Bakun with a value of 0.67
has high institutional adaptive capacity and all other municipalities including
Tublay, Tuba, Sablan, La Trinidad, Kapangan, Kabayan, Itogon, Buguias, Bokod,
and Atok have very high institutional adaptive capacity, all with values of 1.
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Natural Capital

Forest cover is the only indicator for the natural capital. Among all other munici-
palities, Kibungan has the highest (very high) natural adaptive capacity in terms of
this capital followed by Bokod (moderate). The municipality of Itogon, and all other
municipalities, have very low adaptive capacity. Figure 11.6 shows the adaptive
capacity map of Benguet in terms of natural capital. This may reflect the fact that
Benguet has the smallest area of natural closed forest in the Region (PSA CAR
2020).

Physical Capital

Physical capital refers to the infrastructure, equipment, and improvements in genetic
resources such as for crops and livestock (Leonard 2010). For this capital, the
indicators include percent of crops irrigated, percent of households (HH) with
water services, percent of HH with electricity services, average number of electricity
firms and customers, total road network, road density, infrastructure investment, and
percent infrastructure to LGU Budget. Based on the map (Fig. 11.6), the municipal-
ities of Kibungan and Kabayan have the least physical adaptive capacity. This can be
explained by their relative distance from the capital or business center, as well as the
relative difficulty in reaching some of the communities in these places. The munic-
ipalities of Bokod, Kapangan, Itogon, and Atok have moderate physical adaptive
capacity. On the other hand, the municipalities including Bakun, Tuba, Mankayan,
La Trinidad, Sablan, and Buguias, have high physical adaptive capacity.

Social Capital

The number of public transport vehicles is the only indicator that contributes for the
social capital. The result (Fig. 11.6) shows that all of the 13 municipalities have low
to very low adaptive capacity in terms of public transportation. With values ranging
from 0 to 0.20, the municipalities of Bokod, Kibungan, Bakun, Atok, Kabayan,
Tuba, Kapangan, Tublay, Sablan, Mankayan, Buguias, and Itogon have very low
social adaptive capacity. On the other hand, the municipality of La Trinidad, with a
value of 0.22, has low social adaptive capacity.

Adaptive Capacity Index

The adaptive capacity inherent in a system represents the set of resources available
for adaptation, as well as the ability or capacity of that system to use these resources
effectively in the pursuit of adaptation. Such resources may be natural, financial,
institutional, or human, and might include access to ecosystems, information, exper-
tise, and social networks. There are many indicators that could form a strong

11 Climate-Resilient Agriculture Assessment, Targeting and Prioritization for. . . 321



adaptive capacity index, but data availability was a driving factor in establishing the
final index for the province of Benguet. The following presents the spatial analysis of
all seven capitals as well as the aggregated overall adaptive capacity index
(Fig. 11.7). It can be seen that almost all of the municialities have low adaptive
capacity with La Trinidad having moderate adaptive capacity.

Sensitivity Analysis

The municipalities of Buguias, Kabayan, and Tuba are expected to be the most
sensitive for cabbage, carrot, and white potato production using the Maxent program
and based on the different bioclimatic variables used in this study. Results also
showed that snap bean production will be more sensitive in La Trinidad and Tuba.
For the sweet potato, it is projected that the municipality of Tuba will have the
highest loss as compared to other municipalities (Table 11.7). On the other hand,
Bokod, Kibungan, and Kapangan are expected to gain production for the cabbage
(Fig. 11.8). For the carrot production, Atok, Bokod, Itogon, Kibungan, and
Kapangan are expected to have future gains. For snap bean, municipalities of
Atok, Bakun, Bokod, Kibungan, Kapangan, and Sablan are projected to have

Fig. 11.7 Normalized
adaptive capacity map of the
different municipalities of
Benguet province
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gains in the production based on the bioclimatic variables. The municipalities of
Atok, Bakun, Bokod, Itogon, Kibungan, and Tublay are projected to have gains for
sweet potato while the municipalities of Atok, Bokod, Itogon, Kibungan, Kapangan
for the white potato production.

Overall CRVA Assessment

The three key dimensions which are hazard (15%), adaptive capacity (70%), and
sensitivity (15%) were combined to determine the overall vulnerability of the
different municipalities in Benguet province for the various major crops
(Fig. 11.9). Furthermore, this assessment focused on the agricultural sector and
therefore Baguio City was excluded from the CRVA. For cabbage, snap bean, and
white potato, the municipalities of Bakun, Itogon, Kibungan, and Mankayan have
the highest vulnerability. Bakun, Kibungan, and Mankayan are classified as very
highly vulnerable for carrot and sweet potato production.

11.3.2 Climate-Resilient Agri-fisheries (CRA) Assessment,
Targeting and Prioritization

Climate Risk and Mitigation and Adaptation Strategies for Cabbage
Production

Assessment of Exposure and Sensitivity to Climatic Hazards

Farmers and local officials who participated in the focus group discussion identified
the occurrence of landslide, drought, hailstorm, frost, and strong winds as the major
climatic hazards. Landslide occurs due to continuous monsoon rain, heavy rain, and

Table 11.7 Sensitivity of the major crops in the different municipalities in Benguet province

Crop Loss No change Gain

Cabbage Buguias,
Kabayan, Tuba

Atok, Bakun, Itogon, La Trinidad,
Mankayan, Sablan, Tublay

Bokod, Kibungan,
Kapangan

Carrot Buguias,
Kabayan, Sablan,
Tuba

Bakun, La Trinidad, Mankayan,
Tublay

Atok, Bokod, Itogon,
Kibungan, Kapangan

Snap
bean

La Trinidad,
Tuba

Buguias, Itogon, Kabayan,
Mankayan, Tublay

Atok, Bakun, Bokod,
Kibungan, Kapangan,
Sablan

Sweet
potato

Tuba Buguias, Kabayan, Kapangan, La
Trinidad, Mankayan, Sablan

Atok, Bakun, Bokod,
Itogon, Kibungan, Tublay

White
potato

Buguias,
Kabayan, Tuba

Bakun, La Trinidad, Mankayan,
Sablan, Tublay

Atok, Bokod, Itogon,
Kibungan, Kapangan
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Fig. 11.8 Sensitivity map of (a) carrot, (b) cabbage, (c) sweet potato, (d) white potato, and (e) snap
bean in the different municipalities of Benguet province
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typhoon. This reduces the planting areas, especially if the area is sloping. Road
closures are also frequent during landslides due to the blocking of farm-to-market
roads. Undelivered harvest is a common problem faced by the farmers. During the
community meeting and FGD, the farmers estimated an average of 50% reduction in
the volume of leafy vegetables based on experience. This reduction is eventually
converted into losses in income. When the supply available in the market is affected,
prices of the commodities in the market are also affected.

Drought and a change in the usual pattern of dry and wet season are now
experienced in Atok. The dry season normally occurs in the month of April;
however, drought is now also experienced even in October, which used to be in
the wet season. Since vegetable cultivation is rainfed-dependent, production is
limited by the absence of rainfall. Farmers thus can cultivate a limited area only

Fig. 11.9 Climate risk vulnerability map of the five crops in the different municipalities of Benguet
province
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depending on the water harvested or available irrigation water in the locality. Others
would plant crops that require less water or crops that are tolerant to drought such as
camote (sweet potato), gabi (taro), and radish. Another hazard experienced is the
occurrence of hailstorm especially in the three barangays of Atok: Paoay, Abiang,
and Cattubo. Hailstorms normally occur in the locality from February to March but
in the last 2 years, farmers observed that hailstorms now occur in September, which
is the onset of rainy season. The magnitude of damage of hailstorm during the initial
heading stage of cabbage is about 90%. Cabbage does not head after having been hit
by a hailstorm.

Moreover, frost occurs for about 3 months from December to February in the
same barangays. The farmers also identified strong winds occurring during the
months from October to December to be damaging to crops. Two weeks of strong
winds is the most detrimental to plants and affects three barangays, which are major
growers of cabbage. Farmers report that frost occurrence reduces cabbage produc-
tion by about 5–30%, especially when around 1 mm of ice covers the leaves. The
effect is worse if the frost persists for about 3 days. Generally, plants are sensitive to
strong winds, which causes breakage in plants. Some are even uprooted especially
with continuous strong winds. Strong winds occurring during the vegetative stage of
the cabbage plants results in about 95% damage and if the occurrence is during the
heading stage, only about 80% of the plants can be salvaged.

All of the above climate-related hazards were claimed to be damaging to crop
production; however, farmers rated the absence of rain or prolonged drought as the
most damaging. Because the farmers rely on rainfall for their irrigation, planting can
be delayed or may not happen at all for that cropping season. The overall CRVA
showed that cabbage production is exposed to higher hazards in the Itogon Munic-
ipality while lower in the other municipalities. Sensitivity of cabbage production is
higher in Tuba, Buguias, and Kabayan municipalities, while higher adaptive capac-
ity is noted in Mankayan and Kibungan municipalities. For potato production, higher
exposure to climate hazards is recorded in Itogon and greater sensitivity in the
municipalities of Tuba, Buguias, and Kabayan. Similarly, the municipalities of
Mankayan Bakun, and Kibungan have more adaptive capacities (Fig. 11.10).

Assessment of Mitigation and Technological Adaptive Capacity

Benguet farmers employ several adaptation strategies in response to the adverse
effects of climate change. They establish drainage canals to direct water and prevent
soil erosion. For hailstorm and frost, the farmers’ most common adaptation is to
irrigate or spray the plants with water before the sun rises to thaw the ice deposits on
the leaves. The cabbage seedlings are protected from hailstorm by using black net as
cover. However, farmers mentioned that there is no adaptation strategy yet for strong
winds. The government’s intervention such as provision of few greenhouses for
common use is limited to seedling and nursery use, and only for cut flower
production.
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During the dry season, the farmers use an improvised rainwater harvester, called
“kwelo.” During the rainy season, farmers improvise catchment basins by digging
large pits lined with large plastic sheets or use tarpaulins for rainwater harvesting.
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Fig. 11.10 Overall CRVA of cabbage and white potato considering the weights for 15% for
hazard, 15% sensitivity, and 70% adaptive capacity
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Those who can afford it build concrete water tanks. Depending on the amount of
rainwater harvested, farmers are able to cultivate a limited area for vegetable
production. Improving the rainwater harvester to be the farmers’ source of irrigation
is expected to increase farmers’ yield and income even during longer drought
periods and irregular rainfall. Irrigation water is also needed not only during drought
but also when frost occurs, as mentioned earlier. The availability of the facility
enhances the resilience of the vegetable farmers as it was claimed to be an effective
strategy to cope with climate change in vegetable-producing areas.

Climate Risk and Mitigation and Adaptation Strategies for Potato
Production

Assessment of Exposure and Sensitivity to Climatic Hazards

One of the climate-related hazards identified by the respondents in Buguias munic-
ipality was the occurrence of strong typhoons, which is usually experienced during
November. For the last 3 years, however, strong typhoons are now observed to occur
at any month of the year in the municipality. The rains and wind brought about by
strong typhoons cause significant damage to crop. The resultant flooding leads to
rotting of standing crops. Although prolonged dry season was identified as the most
damaging climate hazard experienced by the farmers, increased incidence of pests
and diseases was also observed during the dry season, further aggravating the loss in
production. Higher population of leaf miner, thrips, aphids, and scab are affecting
the potato plants. Hence, farmers resort to increasing the frequency of pesticide
application, which further increases the input expenses of the farmers in both upland
and lowland areas of the municipality.

Assessment of Mitigating and Technological Adaptive Capacity

Several adaptation options were identified by the farmers in Buguias such as organic
farming, mixed farming, mulching, use of sacks or net screens for wind break, and
the use of resistant varieties. Farmers in the higher elevation areas of Buguias
adapted the use of resistant varieties to pest and diseases. Late blight is the most
devastating potato disease, where fungicide spraying is necessary especially during
the wet season cropping. Frequency of application is almost twice a week that adds
up to about 50% of the total cost of production. The Northern Philippine Rootcrops
Research and Training Center (NPRCRTC) of Benguet State University
recommended the use of late blight resistant potato varieties like BSU PO3 or
“Igorota.” Igorota is a locally bred potato variety, which is moderately resistant to
late blight and leaf miner. The farmers commonly call this variety LBR, which
stands for late blight resistant. This variety has a high dry matter content suited for
both table use and processing, matures in 110 days and has a potential yield of 25–35
tons per hectare. However, the variety is planted only in the higher elevation areas of
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the municipality, as farmers claim that the variety easily rots during transport, which
leads to higher postharvest losses.

Aside from Igorota, Solibao (PO4) is a variety that exhibits high levels of
resistance to late blight, showing a negligible infection of 1% as compared to
other potato varieties. The variety has a maturity of 90–120 days, with an actual
yield of 18–40 tons per hectare and a potential yield of 40 tons per hectare.

11.3.3 Cost Benefit Analysis of Cabbage Production Using
Rainwater Harvester

To determine the profitability of the CRA practice compared to the non-CRA
practice, cost and return analysis was performed. Further, comparison of means
using t test was done to analyze if significant differences between the CRA practice
and the non-CRA practice exist. Table 11.8 shows the comparison of the costs and
returns of cabbage production on a per hectare basis by type of practice in Atok,
Benguet. It also shows the mean difference, standard error, and whether the mean
difference is significantly different between traditional (without rainwater harvester)
and CRA practice (with rainwater harvester), for each cost and return item.

It is noticeable that for both CRA and non-CRA adapters, food is the major cash
cost item of the farmer-respondents. Food cost comprised 45% of the total cash costs
of farmers who do not use rainwater harvester, and 43% of the total cash costs of
those who use rainwater harvester. This means that these farmer-respondents exert
extra care and money for their laborers and are willing to spend money on their food.
Fertilizer expense comes in as the second biggest cash cost item, taking up 29% of
the total cash costs of non-CRA adopters, and 27% of the total cash costs of the CRA
users. The fertilizer expense of those who use rainwater harvester was significantly
higher than those who do not use rainwater harvester, with a mean difference of Php
7509.70. These two cost items together comprise about 70% of the total cash costs of
the farmer-respondents.

Among the labor cost items, the two groups of farmers spent the most on
harvesting, fertilizer application, and irrigation and drainage. Land rental and trans-
portation cost are the third and fourth largest cash cost items as reported by the
farmer-respondents. Meanwhile, the total cash costs incurred by the CRA users are
also significantly higher than the non-CRA users, with a mean difference of Php
7443.15. This means that those who use rainwater harvester spend more in produc-
ing cabbage than those who do not use rainwater harvester.

Field monitoring is the major non-cash cost item for both farmer-respondents
who practice rainwater harvesting and for those who do not, taking up 63% of the
total non-cash costs for the non-CRA users and 58% of the total non-cash costs for
the CRA users. Field monitoring, though commonly performed by the farmers
themselves almost on a day-to-day basis, is one of the most underestimated labor
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Table 11.8 Costs and returns of cabbage production by type of practice, Atok, Benguet

Item
Traditional
(n ¼ 15)

CRA
(n ¼ 22)

Mean
difference

Standard
error

COSTS

CASH COSTS

Seeds 5018.00 5680.76 662.07 1752.69

Fertilizer** 19,048.33 26,558.03 7509.70 3404.05

Pesticide 2665.39 2398.20 �267.19 1212.31

Labor

Land preparation 444.44 468.18 23.74 291.85

Seedbed preparation 340.00 431.82 91.82 295.53

Seed sowing 220.00 140.91 �79.09 172.95

Seedling care and
maintenance*

0.00 479.55 479.55 273.75

Irrigation 906.67 1163.64 256.97 1204.11

Fertilizer application 1088.52 967.05 �121.47 493.85

Pesticide application 403.33 272.73 �130.61 276.62

Weeding 0.00 281.82 281.82 199.09

Field monitoring 0.00 27.27 27.27 24.25

Harvesting 1544.44 2806.82 1262.37 1008.08

Other costs

Land rental 16,111.11 15,555.56 �555.56 8906.23

Food cost 29,423.61 31,029.41 1605.80 7775.71

Fuel cost 1952.78 2410.42 457.64 846.20

Transportation cost 14,333.33 25,666.67 11,333.33 8459.99

Total cash costs* 65,215.06 72,658.20 7443.15 12,040.23

NON-CASH COSTS

Labor

Land preparation 2434.07 2146.21 �287.86 719.84

Seedbed preparation** 250.37 592.61 342.24 134.04

Seed sowing 186.30 270.83 84.54 98.06

Seedling care and
maintenance

1635.56 1667.05 31.49 451.61

Irrigation** 722.96 2506.06 1783.10 864.78

Fertilizer application 2346.67 2010.23 �336.44 693.24

Pesticide application 2368.15 3303.03 934.88 1107.73

Weeding 280.00 903.03 623.03 394.34

Field monitoring 18,264.44 19,881.06 1616.62 6979.02

Harvesting 593.33 1197.92 604.58 430.45

Total non-cash costs 29,081.85 34,478.03 5396.18 9279.01

TOTAL COSTS 94,296.91 107,136.20 12,839.32 13,661.05

RETURNS

CASH RETURNS

Yield (kg)** 11,287.04 16,421.21 5134.18 2573.02

Price 16.00 14.86 �1.14 2.56

(continued)
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activities performed by the farmers. Farmers do not usually value this activity, but if
compared with the other expense items, it also costs a lot.

Similar to the cash costs, the total non-cash costs of the CRA users are also higher
than the total non-cash costs incurred by the non-CRA users. In terms of yield, those
who use rainwater harvester have significantly higher harvest compared to those who
do not use it; the mean difference is about 5132.18 kg. The cash returns of the CRA
users are also significantly higher than that of the non-CRA users, with an average
mean difference of Php 56,362.88. The total returns, returns above cash costs, and
returns above total costs of those who use rainwater harvester are also higher than the
returns of those who do not practice rainwater harvesting.

The cost benefit analysis shows the NPV, IRR, and payback period of investing in
rainwater harvester for cabbage production. The NPV (7596.32) means that the
project is profitable. Since it is greater than zero, it means that the additional benefits
of investing in rainwater harvesting are greater than the additional costs. The IRR of
80.84% indicates that investing in rainwater harvester is more profitable than leaving
money in the bank. It will take 3 years to be able to pay back the initial investment
for the rainwater harvester.

Cost Benefit Analysis of the Use of Blight-Resistant Variety for Potato
Production

The comparison of the costs and returns of cabbage production on a per hectare basis
by type of practice in Buguias, Benguet is presented in Table 11.9. It also shows the
mean difference, standard error, and whether the mean difference is significantly
different between traditional and CRA practice, for each cost and return item. The
CRA practice considered in this analysis is the use of blight-resistant potato variety,
while the traditional users are those who do not use this variety. Seeds take up the
bulk of the cash costs incurred by both CRA and traditional users. Around Php
67,700 or half of the cash costs paid by the CRA users can be accounted for by seeds
while around Php 80,235 or 41% of the total cash costs are incurred by the traditional

Table 11.8 (continued)

Item
Traditional
(n ¼ 15)

CRA
(n ¼ 22)

Mean
difference

Standard
error

Cash returns* 172,816.70 229,179.50 56,362.88 44,999.18

NON-CASH RETURNS

Home consumption (Php) 122.83 87.31 �35.52 35.42

Given away (Php) 96.10 91.73 �4.37 35.54

Total non-cash returns 218.93 179.04 �39.89 63.19

TOTAL RETURNS* 157,035.60 229,358.60 72,322.99 41,549.25

RETURNS ABOVE CASH
COSTS

91,820.54 156,700.40 64,879.84 41,012.41

Note: * significant at 10%, ** significant at 5%, *** significant at 1%
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Table 11.9 Costs and returns of potato production by type of practice, Buguias, Benguet

ITEM
Traditional
(n ¼ 20)

CRA
(n ¼ 13)

Mean
difference

Standard
error

COSTS
CASH COSTS

Seeds 80,235.00 67,700.00 �12,535.00 17,672.11

Fertilizer 28,484.00 19,981.54 �8502.46 5957.34

Pesticide 7515.93 9005.46 1489.53 2410.18

Labor

Land preparation 1264.38 850.96 �413.41 562.67

Planting 1040.00 1535.90 495.90 383.49

Irrigation* 0.00 355.13 355.13 195.84

Fertilizer
application***

0.00 210.98 210.98 75.79

Pesticide application 1076.66 1207.69 131.03 856.14

Weeding 895.00 328.21 �566.79 513.94

Harvesting 3769.02 4232.05 463.03 1290.57

Other costs

Land rental 20,000.00 0.00 �20,000.00 24,946.59

Food cost 17,700.00 21,666.67 3966.67 4287.51

Fuel cost 2732.50 0.00 �2732.50 1713.33

Transportation cost 10,700.00 13,333.20 2634.00 9793.16

Total cash costs 196,058.80 134,005.40 �62,053.36 42,010.75

NON-CASH COSTS

Labor

Land preparation** 1188.75 2256.41 1067.66 395.54

Planting 1280.00 1538.46 258.46 402.67

Fertilizer application 1308.75 1611.54 302.79 435.39

Pesticide application 1385.00 2015.39 630.38 535.05

Irrigation*** 0.00 4405.13 4405.13 874.48

Weeding 1015.00 574.36 �440.64 527.65

Field monitoring** 6727.50 16,984.62 10,257.12 4046.80

Harvesting 944.75 361.54 �583.21 360.99

Total non-cash costs** 13,849.75 25,342.31 11,492.56 4825.06

TOTAL COSTS 209,908.50 159,347.70 �50,560.80 41,964.21

RETURNS
CASH RETURNS

Quantity sold (kg) 16,335.00 18,897.44 2562.44 6033.87

Price 32.00 29.76 �2.24 1.68

Cash returns 517,350.00 576,733.30 59,383.33 184,989.50

NON-CASH RETURNS
(PhP)

Home consumption 705.56 372.15 �333.41 247.85

Given away 716.13 1481.16 765.03 785.20

Total non-cash returns 1421.69 1853.30 431.62 866.04

(continued)
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users for seeds alone. In potato production, the quality of seeds is very important as it
is linked to increased harvest. Wang (n.d.) noted that the use of good quality seeds
can increase yield by 30–50%, as compared to using farmers’ seeds.

For those who do not use blight-resistant variety in potato production, fertilizers,
land rental, and food cost are the next three biggest cash cost items contributing
14.5%, 10.2%, and 9.03%, respectively, to the total cash costs incurred by the
traditional users. On the other hand, the next three biggest cash cost items for
CRA users are food cost (16.2%), fertilizers (14.9%), and transportation cost (9.9%).

Among the labor costs paid for by the farmer-respondents, payment for
harvesting is the biggest cash cost item, accounting for almost half of the total
labor cash costs paid for by both CRA and traditional users. It can also be seen from
Table 11.9 that there exists a significant difference in the irrigation labor expense of
traditional and CRA users. This is mainly because traditional users rely on rain,
while CRA users have more access to small-scale irrigation systems, hence the need
to hire labor to irrigate their farms.

In terms of the total cash costs, those who do not use blight-resistant potato
variety spend more compared to the CRA users. The traditional users spend around
Php 196,058.8 as compared to the CRA users, who spend an average of Php
134,005.4.

Field monitoring is the biggest non-cash cost item for both traditional and CRA
users. This activity took up 49% of the total non-cash costs for the traditional users
and about two-thirds of the total non-cash costs for the CRA users. The mean
difference between the traditional and CRA users for this activity is Php
10,257.12, and it is significant at 5%. This can be explained by the fact that CRA
users spend more time monitoring their field compared to the traditional users
because extra care is needed by the blight-resistant variety. While the total cash
costs of the traditional users are higher than that of the CRA users, the case for the
total non-cash costs is the opposite. CRA users have higher total non-cash costs (Php
25,342.31) compared to the traditional users (Php 13,849.75), and this difference is
significant at 5%.

It is also observable that the cash returns of traditional users (Php 517,350) are
less than that of CRA users (Php 576,733.3). In terms of home consumption,
traditional users save more for their homes as compared to the CRA users, while
for the quantity of harvest given away, CRA users have more compared to the
traditional users. Finally, CRA users have a higher total return, returns above cash
costs, and returns above total costs than the traditional users, although the differences

Table 11.9 (continued)

ITEM
Traditional
(n ¼ 20)

CRA
(n ¼ 13)

Mean
difference

Standard
error

TOTAL RETURNS 518,771.70 578,586.60 59,814.95 184,854.90

RETURNS ABOVE CASH
COSTS

321,291.20 442,727.90 121,436.70 176,244.20

Note: * significant at 10%, ** significant at 5%, *** significant at 1%
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in these three items, is not statistically significant. Cost benefit analysis of investing
in blight-resistant potato variety showed that NPV of US$30,195.52 means that the
project is profitable. Since NPV is greater than zero, it means that the additional
benefits of investing in blight-resistant potato variety are higher than the additional
costs.

11.4 Conclusions and Policy Recommendations

Benguet province is very important in the food security of the Philippines. This
province is one of the highest producers of temperate and high valued crops.
However, climate change threatens this productivity and must be addressed. The
CRVA tool was essential for the prioritization of the various municipalities of
Benguet province for future climate change and agriculture-related projects such
as the “AMIA village.” Overall, most of the municipalities in Benguet were classi-
fied as very high and high in terms of vulnerability to climate change based on their
adaptive capacity, sensitivity of crops to the different climatic variables (temperature
and precipitation) and hazard. Improving rainwater harvesting practice of the
farmers would increase the yield and income of farmers especially during periods
of drought and irregular rainfall. Because those who use the kwelo have significantly
higher yield and returns than those who do not, efforts thus must be taken to this
practice and innovate on it to ensure that water is not lost unduly or that it is used
more efficiently especially in the dry season. Based on the cost and return analysis,
farmers in Buguias who use the blight-resistant variety Igorota (PO3) had higher
yield, cash returns, total returns, returns above cash costs, and returns above total
costs. By planting PO3, farmers significantly reduced their operational costs by about
50%. Effort is also thus needed to integrate the use of PO3 with the water-saving
practices to determine any synergies that could benefit the farmers in the vulnerable
sites.

Five major crops in Benguet province were selected for the CRVA that has three
key dimensions, which are adaptive capacity, sensitivity, and hazard. For cabbage
and carrots, the municipalities of Atok and Buguias must be prioritized in terms of
improving their resiliency in cabbage and carrots production. Although Atok and
Buguias were classified as highly vulnerable as compared to other municipalities
with very high classification, these two municipalities have the highest production
(yield per ha) of cabbage and carrots in the province of Benguet, thus these two
were recommended. For snap beans, Tuba and Buguias municipalities were
recommended for prioritization as they have high production (yield per ha) of snap
bean and were classified as highly vulnerable. Furthermore, Tuba was also selected
for the sweet potato while Atok, Buguias, and Kibungan for white potato due to their
vulnerability to climate change and high production for these crops. Overall, Atok
and Buguias were recommended based on their vulnerability, crop productions, and
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discussions during the consultation meeting with the Regional Field Office of the
Department of Agriculture—Cordillera Administrative Region. Another recommen-
dation is that the “AMIA village” must be conducted in the Benguet province to
improve its resiliency to climate change.

For the improvement of future CRVA studies, it is recommended that different
agencies from the national government and local government units develop an
enhanced database related to adaptive capacity of each municipality that can be
easily viewed and accessed. Mapping of the different high-valued crops for the
various municipalities must be also done. The use of water harvesting technology is
recommended in all vegetable production areas regardless of crops planted, espe-
cially in areas where water is a constraint for productivity as well as in areas where
there is frost occurrence. The government through its line agencies and SUCs should
expand the project on the distribution of small farm reservoirs or water tanks in
drought- and frost-prone areas in the different vegetable and other priority crop
production areas such as rice and corn. Aside from the use of rainwater harvesting
technology to collect water, other technologies such as fog harvesting is
recommended in Atok municipality since the relative humidity is high in some
areas. The use of blight tolerant potato variety is recommended in high elevation
areas especially during wet or rainy season planting time. Other potato varieties
should be evaluated for resistance to other pest and diseases aside from late blight
and determine yield potential during the wet season planting, where pest and
diseases are prevalent.

11.5 Challenges

Data availability is one of the major challenges in this study. Secondary data was
difficult to collect—some data can be accessed easily but some were not available or
not collected. The unavailability of the other Agricultural Technologists for the
participatory mapping due to their busy schedule was one of the challenges encoun-
tered. Thus, some workshops were cancelled. However, they accommodated our
request for them to participate the best they can especially in the mapping of the
vegetable crops.
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Chapter 12
A Review on Innovation of Remote Sensing
Technology Based on Unmanned Aerial
Vehicle for Sugarcane Production
in Tropical Region

Khwantri Saengprachatanarug, Chanreaksa Chea, Jetsada Posom,
and Kanda Saikaew

Abstract Sugarcane production data prior harvest are key information for optimiz-
ing harvest schedule and supply chain management, which contribute directly to the
increase of profitability for both growers and sugar factories. Due to its flexibility,
availability, and accessibility, unmanned aerial vehicle (UAV) imagery have been
using to canopy detection, disease detection, sugar content estimation, and yield
predictions of sugarcane. Vegetation index and machine learning technique were
used to process images from multispectral camera and RGB camera and transformed
into GIS data and validated with ground sampling data. Sugarcane canopy detection
using linear discriminant analysis (LDA) obtained the highest accuracy of 97%.
Normalized difference red edge index (NDREI) and green normalized difference
vegetation index (GNDVI) yielded the highest potential for white-leaf disease
detection for sugarcane. Chlorophyll Index-Red edge (ClRE) indicated good corre-
lation with Brix of sugarcane around 0.90. Excess green (ExG) value was used to
predict sugarcane yield with ordinary least square regression (OLSR) and obtained
higher accuracy (R2 ¼ 0.75).

Keywords Unmanned aerial vehicle (UAV) · Remote sensing · Sugarcane ·
Normalized difference red edge index · Green normalized difference vegetation
index · Chlorophyll Index-Red edge
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12.1 Introduction

To make crop management be efficient, timing of harvest schedule is crucial. So,
getting information regarding crop’s conditions at early stage of damages will help to
increase the efficiency of applied solutions resulting in reduction of yield loss. The
observation of crop’s condition can be done in many forms such as using manual
labor, and sensors attached on remote sensing platforms. Manual observation is only
appropriate for small farm area, but it is tedious, has accessible difficulties, and high
labor-cost when operating in large-scale farm area. So, the utilizations of sensors
attached on remote sensing platforms have been used to develop several applications
for facilitating activities in crop management and precision agriculture through
provided spectral reflectance from a variety of sensors attached on three main
platforms which are satellite, unmanned aerial vehicle or UAV-based platform,
and ground-based machines. Recently, various research studies have focused more
and more on using UAV-based platform to acquire data for calibrating many
agricultural applications due to many reasons.

Firstly, aerial platform or unmanned aerial vehicle (UAV) is the most flexible
among the three platforms for resolution adjustment as users can adjust flight attitude
to get their required spatial resolutions. Secondly, UAV-based platform has more
availability than satellite platform does because it can still operate the images
capturing mission even during season, which has cloudy sky while satellite can
only capture images in clear cloudless sky condition. Thirdly, if comparing with field
machine platform, UAV platform has more accessibility due to its smaller size,
lighter weight, and aerial operation. Thus, UAV platform can be operated in fields at
any stage of crop development, which crop height cannot be barrier for its access
while field machines have difficulties to access or cannot enter to operate in fields
due to higher crop’s height. Lastly, the technologies in UAV and camera sensors
have been continuously innovated, which improved the performance of UAV-based
platform by increasing the amount of covered area per single flight, for example,
eBee Ag drone (senseFly Ltd., Cheseaux-Lausanne, Switzerland) can fly at altitude
up to 900 m above ground and cover large area about 12 km2 with spatial resolution
0.10 m in a single flight mission. Therefore, remote sensing applications based on
UAV-based platform have potential to be adopted into commercial application for
real practices.

So far, various remote sensing applications based on UAV for sugarcane pro-
duction management have been developed such as detection of green canopy
(Patrignani and Ochsner 2015), crop’s skip mapping (Luna and Lobo 2016; Souza
et al. 2017), diseases (Sanseechan et al. 2019), biomass and leaf nitrogen (Shendryk
et al. 2020), and yield estimation (Sanches et al. 2018; Cholula et al. 2020; Xu et al.
2020; Yu et al. 2020; Sumesh et al. 2021; Tanut et al. 2021). The analytical methods
for detections and estimation varies from effortless methods, which use values of
single reflectance or vegetation indices to complicated methods, which involve
machine learning or deep learning and image segmentation, for example, object-
based image analysis (OBIA) approach.
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Therefore, the objectives of this chapter are to review and summarize these
advanced research and limitations to provide technical information for further
development of remote sensing application based on UAV platform for sugarcane
production, and to discuss the potential to be adopted into commercial services of the
current remote sensing application based on UAV for precision agriculture.

12.2 Sugarcane’s Canopy Detection

Remote sensing techniques mainly use spectral reflectance received from crop’s
canopies to calculate as various vegetation indices, for instance, normalized differ-
ence vegetation index, to make correlation with crop’s physiological parameters
such as nitrogen assessment (Lebourgeois et al. 2012), disease detections
(Sanseechan et al. 2019), yield estimation, and emergence rate of sugarcane (Luna
and Lobo 2016; Souza et al. 2017). Currently, there are many studies that have
developed the method to extract crop’s canopy, the simplest method being the use of
vegetation indices thresholding value, and the common known vegetation indices for
canopy detection are normalized difference vegetation index (NDVI) (Rouse et al.
1974) and Excess Green index (ExG) (Woebbecke et al. 1995). For NDVI, rock,
sand, and snow have NDVI value below 0.1, while grassland and shrubs have NDVI
value in range of 0.2–0.3, and the NDVI value from 0.5 to nearly 1.0 represent
abundant crops and tropical forests (Heege 2013). Figure 12.1 shows NDVI map of
sugarcane field, the canopy of which can be easily identified by color level.

However, in real-world practices, using vegetation indices thresholding value to
detect or extract canopy area can be complicated and limited because the NDVI
value of canopy can be varied by crop species and at different age, so the
thresholding value might also require adjustment, for example, NDVI value of
sugarcane canopy can range from 0.2 to 0.6 (Rahman et al. 2004), and according
to (Chea et al. 2019) thresholding NDVI value at 0.3 and 0.4 can detect sugarcane
canopy at age about 3 months old with quality percentage about 70%. Therefore, it
demonstrates that it is necessary to do assessment studies to determine the suitable
NDVI value for thresholding to detect canopy of the targeted crops. Meanwhile, the
results of sugarcane canopy classification using thresholding ExG value �43.50 and
�41.50 for KK3 variety and UT12 variety provided classification accuracy 88% and
84%, respectively (Som-ard et al. 2018).

These study results clearly demonstrate the requirements to determine the suitable
values of selected vegetation indices (NDVI and ExG) as thresholding values for
sugarcane canopy classification. Additionally, to detect canopy is not only about
differentiating the green vegetation from soil background, but also to extract all
canopy cover even some parts that are not green anymore. The causes are mentioned
in some studies to track the change in greenness of canopy (Chea et al. 2020), for
example, the changes of vegetation indices value and chlorophyll index related to
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red edge (CRE) acquired from sugarcane canopy to interpret the Brix (R2 0.91),
Pol (R2 0.77), and CCS (R2 0.68) in sugarcane fields.

In addition, there was a study (Chea et al. 2019) that used principal component
analysis (PCA) to divide soil pixels from sugarcane canopy pixels using combina-
tion spectral reflectance in five bands: Blue, Green, Red, NIR, and Red edge band
(Fig. 12.2). This calibrated model received quite high accuracy with quality per-
centage about 78% (Fig. 12.3). Despite good accuracy of classification, this method
essentially needs samples that cover the prediction scopes.

Machine learning algorithms are also used in sugarcane canopy classification
studies, for example, linear discriminant analysis (LDA) (Luna and Lobo 2016) and
K-nearest neighbor (Tanut and Riyamongkol 2020). Both studies randomly selected
hundreds of point sites in studied plots and labeled those points sites as sugarcane,
weed, and soil. Then, the samples were split into train and test dataset to train in

Fig. 12.1 (a) NDVI map of experiment sugarcane field in Khon Kaen, Thailand, (b) the NDVI
distribution of the field

340 K. Saengprachatanarug et al.



chosen machine learning algorithms. The sugarcane canopy classification using
LDA obtained model accuracy of 97% and cross-validation accuracy of 92.9%,
while using K-nearest neighbor algorithm provided model accuracy of 96.75% and
cross-validation of 95.01%.

Additionally, those methods and results are used to develop a ready-to-use
software, for instance, Canopeo (Patrignani and Ochsner 2015) is a free software
which uses the thresholding value of color value in the red-green-blue (RGB) system
to detect green cover and follows the criteria as shown below:

R=G < P1 and B=G < P2 and 2G� R� B > P3 ð12:1Þ

where P1 ¼ 0.95, P2 ¼ 0.95, and P3 ¼ 20.

Fig. 12.2 Flowchart of sugarcane canopy detection experiment (Chea et al. 2019)
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12.3 Disease Detection

Disease management plays an important role to ensure crop vigor and high yield, so
being able to detect disease symptoms as early as possible can significantly improve
the efficiency of disease control measurements. The changes in the color of leaves of
crops, for example, white or yellow rust, is one of the forms that crops respond to the
damages caused by diseases that make disease detection using UAV platform a
popular topic for research. The key predictors for developing the disease detection
models are vegetation indices and spectral reflectance acquired from crop’s canopy.
For instance, Sanseechan et al. (2019) used flight altitude at 117 m above ground in
their experiment to detect white leaf disease in sugarcane fields. This study calcu-
lated the percent difference of vegetation indices values between green leaves
(healthy stalk) and white leaves (infected stalk) to identify the most sensitive
vegetation indices to white leaves (Fig. 12.4).

The study results showed that normalized difference red edge index (NDREI) and
green normalized difference vegetation index (GNDVI) yielded the highest differ-
ence percentage of green and infected leaf about 45%. According to high percentage
difference of NDRE and GNDVI values between green leaves and white leaves,
these two promising vegetation indices can be used as an input for further model
developments using machine learning algorithm for classification such as Random
Forest classification. As this experiment was conducted at high altitude and achieved
high percent of difference between green leaves and white leaves, the results from
further studies have the potential to be adopted into commercial services for large-
scale farm areas. Table 12.1 shows the percent difference between green leaves and
white leaves of all vegetation indices studied by Sanseechan et al. (2019). Figure 12.5
shows the example of the detection map.

Fig. 12.3 The extracted canopies of sample n08 overlaid on reference canopy using method
thresholding by DSM (a), NDVI level 0.2, 0.3, 0.4, 0.5, 0.6 (b–f), thresholding by PCA (g), and
image in RGB (h). Light blue: TP, Black: FN, White: FP
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12.4 Sugar Content Estimation in Sugarcane Fields

Brix information has played a key role in providing the data about sugar content in
sugarcane fields to help with planning concerning harvest scheduling, production
processes, price, and marketing strategies. Recently, remote sensing technologies
using UAV has been adopted in many studies to estimate Brix content in sugarcane
fields, for instance, Chea et al. (2018) has used simple linear regression between
vegetation indices: GNDVI, CIG, ClRE, NDVI, and RVI, which are closely corre-
lated to the changes of canopy’s greenness to predict Brix content in sugarcane fields
at age 10 months and the model calibrated with GNDVI gave the highest accuracy
R2 0.86.

Fig. 12.4 Calculation of difference percentage between white leaf area and green leaf area in image
acquired (DPWG) (Sanseechan et al. 2019)
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Additionally, the continuous study (Chea et al. 2020) with extension range of age
of sugarcane fields from 8 to 12 months old also indicated good accuracy around
0.90 with model using ClRE calibrated by simple linear regression (SLR). However,
both the above studies have warned about the effect of variety because the change
condition of canopy’s greenness during sugar accumulation can be different by

Table 12.1 Detail information on the percent difference between green leaves and white leaves by
vegetation indices

Name Abbreviation Formula
Percent
difference

Vegetation indices calculated using NIR band

Normalized difference
red edge index

NDREI (N � RE)/(N + RE) 45.10

Green normalized dif-
ference vegetation
index

GNDVI (N � G)/(N + G) 44.05

Ratio vegetation index RVI N/R 41.45

Simplified canopy
ChlorophyII content
index

SCCCI NDRE/NDVI 37.61

Normalized difference
vegetation index

NDVI (N � R)/(N + R) 37.55

Optimized soil
adjusted vegetation
index

OSAVI 1.16(N � R)/(N + R + 0.16) 36.30

Triangular vegetation
index

TVI 0.5[120(N � G) � 200(N � G)] 36.04

Soil adjusted vegeta-
tion index

SAVI 1.5(N � R)/(N + R + 0.5) 34.80

Enhanced vegetation
index

EVI 2.5(N � R)/(N + 6R � 7.5B + 1) 33.31

Anthocyanin reflec-
tance index

ARI (1/G)/(1/RE) 25.21

Transformed
ChlorophyII ARI

TCARI 3[(RE � R) � 0.2 * (RE � G)(RE/R)] 19.70

ChlorophyII vegetation
index

CVI (N * R)/(G)2 18.69

ChlorophyII index-
green

CIG N/(G � 1) 16.88

ChlorophyII index-red
edge

ClRE N/(RE � 1) 14.66

Vegetation indices calculated using visible band

Greenness index GI G/R 26.04

Nitrogen reflectance
index

NRI (G � R)/(G + R) 24.04

Green leaf index GLI (2G � R � B)/(2G + R + B) 20.66

Triangular greenness
index

TGI �0.5 * 190 * (R � G) � (120) * (R � B) 14.96
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varieties, for example, flood-tolerant variety (UT84-12) have more concentration of
chlorophyll in canopies than drought-tolerant variety (K88-92 and Khon Kaen 3)
even during sugar accumulation period because this variety is normally grown in
irrigated areas, while Khon Kaen3 and K88-92 are planted in rain-fed area and
during their sugar accumulation stage, there are less or no rain which simulate
senescence of canopy (Fig.12.6).

To be acceptable to apply in real world as commercial application, a project
known as “Robotics platform and unmanned vehicle for precision agriculture to
create a virtual mega farm,” funded by Office of National Higher Education Science
Research and Innovation Policy Council, has continued to improve the accuracy and
practicability of Brix prediction models by collecting more data from sugarcane
fields grown under different crop management, soil types, and seasons. In addition,
the Brix models were developed using various machine learning regression such as
Bayesian Ridge, Decision tree, Lasso, Random Forest, Ridge, and support vector
machine (SVM) regression, and images captured from higher altitude about 117 m
above ground resulting in resolution of 0.08 cm per pixel. The results of the project
in the first year still showed the promising accuracy of Brix prediction models with
low RMSEP 1.54 oBx for drought-tolerant variety (Khon Kaen 3) and RMSEP 1.44

Fig. 12.5 The grids in red indicate the area that show white leaf disease symptom while blue grids
have only green leaves
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oBx for flood-tolerant variety (UT84-12). Figure 12.7 shows the sample of Brix
prediction map in sugarcane fields using developed Brix prediction model from
project “Robotics platform and unmanned vehicle for precision agriculture to create
a virtual mega farm.”

Fig. 12.7 Sample of RGB map (a) and Brix prediction map in sugarcane field (b)

Fig. 12.6 Flowchart of sugar content estimation experiment (Chea et al. 2020)
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12.5 Yield Predictions

Estimated yield data is an essential input for developing optimized harvest schedule
(Jiao et al. 2005; Piewthongngam et al. 2009; Thuankaewsing et al. 2015) to ensure
the steadiness of raw material supply throughout the harvest season, particularly
sugarcane, which is an annually harvested crop and harvest window lasts only a few
months. Thus, the earlier and frequent estimation of sugarcane yield is crucial for
planning effective harvest schedule, production chain, and market prices. There are
several studies about using UAV-based platform in developing sugarcane yield
prediction models using single vegetation indices and fusion of vegetation indices
with other parameters such as percent sugarcane canopy, height, planting distant, etc.

For using vegetation indices as predictor, Nodthaisong et al. (2019) used NDVI
and ClRE, and volume of sugarcane fields, which acquired by multiplying sugarcane
area with estimated height acquired from digital surface model or DSM to estimate
yield in sugarcane fields. The results of this study show that NDVI and ClRE
obtained accuracy R2 0.59 and 0.61, respectively, which are quite low accuracy if
compared with accuracy of model calibrated with volume of sugarcane fields, R2

0.87 and root mean square error of cross-validation (RMSECV) 16.31 tons/ha. This
high accuracy indicated that yield of sugarcane is strongly related to canopy area and
height. Another study by Sanches et al. (2018) used Green-Red Vegetation Index
(GRVI) and LAI from two period of sugarcane age, which are 230 days after
planting (DAP) and 271 DAP as predictors for estimating sugarcane yield. The
study results showed that GRVI and LAI value extracted from 271 DAP provided
the highest correlation with yield and using only GRVI, LAI in simple linear
regression provided the accuracy R2 0.69 and 0.34, respectively, while the fusion
of GRVI and LAI in multiple linear regression increase R2 to 0.79 (Fig. 12.8).

To increase the accuracy of yield model, more potential predictors and machine
learning algorithms are added in to model development process. Cholula et al.
(2020) employed the combination of NDVI, ExG, percent canopy, and height of
sugarcane from four periods: 273, 210, 153, and 118 DAP, to estimate yield of

Fig. 12.8 Photo of 4-month-old sugarcane and extracted sugarcane parts by ExG value
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energy sugarcane. The results of this study showed that the combination of percent
canopy, height, and ExG value extracted at 273 DAP using stepwise regression
provided the highest accuracy R2 0.88 while using only NDVI as predictor, the
NDVI value should be extracted at 153 DAP and the model gave R2 0.71. Besides
using vegetation indices values directly into the model, some studies used vegetation
indices to estimate other parameters, for instance, sugarcane density or number of
stalks per plot. The study by Sumesh et al. (2021) used ExG value to correlate with
density of sugarcane in plot using ordinary least square regression (OLSR) and
obtained accuracy R2 0.75. Then, estimated yield was calculated by multiplying the
density of sugarcane in plots with estimated weight of estimate millable stalk height
(MSH). This study provided good accuracy, which the estimated yield, 200.66 tons,
was close to the actual harvest yield, 192.1 tons. However, more experiment should
be done to confirm its reproducibility because this study used data from selected
small plots in only one field to make prediction models for density and weight of
millable stalk, and then, those models were applied to predict the total yield of those
same fields.

In conclusion, the best time to extract data for sugarcane yield prediction is at
9 months and above. Besides vegetation indices, sugarcane canopy area, percent of
sugarcane canopy, and height of sugarcane are promising predictors for further
improving yield model development.

12.6 Conclusion

Vegetation index and machine learning technique have shown high potential in
predicting in-field sugarcane production data. However, to achieve the goal of
adopting UAV-based technology into commercial services, accuracy is not only a
factor for consideration, but reproducibility of developed models and less resources
consumption are also important factors that encourage users to accept and utilize this
platform. Regarding reproducibility of models, more data from various possible
conditions should be collected and trained in models to update prediction models,
so that those models can still provide good accuracy, even encounter samples from
various conditions that can occur in real-world practices such as weather conditions
(rainfall and temperature), soil types, and crop management practices (planting
techniques, fertilizer application, weed management, and irrigation types).
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Chapter 13
Big Data Scheme from Remote Sensing
Applications: Concluding Notes
for Agriculture and Forestry Applications

Tofael Ahamed

Abstract This chapter discusses the application of remote sensing perspective and
how to develop the big data analytical platform for diversified land-use planning
towards food and nutrition security, crop growth monitoring, yield forecasting,
land suitability analysis, forest productivity and drought assessment for crops,
vegetables, and fruits. The geospatial, mathematical, and logical modeling including
multicriteria evaluation systems were conducted to determine the key outcomes of
each chapter in this book have been lucidly discussed. Remote sensing and
GIS-based systematic analysis are reported to indicate the biophysical and socio-
economic factors that bring sustainability in regional policy planning. The big data
scheme for regional planning requires the high-density levels of data that ensures
trustworthiness, authenticity, availability, and accountability of datasets. Further-
more, geospatial planning has the advantages of trustworthiness and authenticity in
the intervention process to support the livelihoods of farmers during damages due to
drought and flash floods. In regard to carbon stock analysis and forest loss assess-
ment, ecological resource conservation is discussed referring to vegetation signa-
tures derived from satellite imageries. Additionally, forest productivity assessment is
explained based on carbon stock analysis to establish resilience in forest ecosystems.

Keywords Big data scheme · Land-use planning · Yield forecasting · Drought
assessments · Forest productivity

13.1 Introduction

Remote sensing technology and GIS applications for monitoring crop and forest
conditions have been extensively studied during the past several decades, providing
a timely assessment of changes in the growth and development of crops and forests.
This chapter describes the summary notes from all the chapters and how this
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application contributes to the big data scheme in policy planning. As a spatiotem-
poral tool, remote sensing and GIS have been used to conduct spatial and temporal
analyses related to land suitability, change detection, plant phenology, economic
features, forest phenological changes, natural hazards, and land-use planning and
management. These applications are important and suggest that remote sensing
technology is suitable for monitoring agricultural and forest activities. This book
discusses remote sensing applications at various resolutions (from low to high)
through satellite image-based vegetation indices as a part of big data analysis. Big
data refers to large-scale datasets that have volume, veracity, and variety such that
the volume of data is connected to each other for decision-making and analysis. The
sustainable development goals (SDGs) are a framework for attaining a “better and
more sustainable future for all” according to the united nations (UN). The internet of
things (IoT), open data platforms, crowdsourced spatial data, and the advent of big
data technology have all contributed to an enormously vast quantity of data becom-
ing available that can assist countries in accomplishing the UN’s SDGs. With the
application of big data schemes in the fields of agriculture and forestry, relevant
researchers can process high volumes of low-density, unstructured, structured,
multifactor, and probabilistic datasets with high efficacy levels (Fig. 13.1).

In addition, this book highlights the applications of satellite remote sensing for
the suitability assessments of different crops (rice, maize, cassava, grapes) along
with climate adaptation and mitigation strategies for land-use planning in different
South Asian countries. For example, at regional scales of land suitability assessment,
satellite remote sensing allows phenological information about vegetation and can
help in the decision-making process. The data sizes, multifactors, near real-time
information, authenticity, and availability are discussed in light of the chapters
presented in this book.

• Terabytes
• Records
• Transactions
• Tables, Files

• Structured
• Unstructured
• Multi-factor
• Probabilistic

• Batch
• Real/near real
• Processes
• Streams

• Trustworthiness
• Authenticity
• Origin
• Availability
• Accountability

Volume Velocity

Variety Veracity

RS
Big Data

Fig. 13.1 Big Data and Remote Sensing (RS): geospatial data analytics in a GIS environment
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13.2 Diversified Land-Use Planning for Food and Nutrition
Security

A seasonal land-use planning model was discussed in this book that has diverse
crops for regional self-sufficiency of foods based on land suitability and calorie
demand. Using GIS and fuzzy membership functions, a multicriteria decision-
making analysis was conducted, and a set of multicrop land planning maps was
created. Land suitability maps for the Kharif-1, Kharif-2, and Rabi seasons were
developed using high-resolution vector and satellite remote sensing datasets that
accounted for the geographical expanse. Furthermore, a GIS platform was applied to
create seasonal land suitability maps with a balanced food demand ratio. The spatial
distributions of different crops were clearly exposed using remote sensing data to
evaluate biophysical soil factors. In the context of GIS, topographic data can be
helpful for crop management decisions such as intensification or diversification of
agricultural practices within a region. The integrated model provided herein could
manage land allocation for diverse crop production, providing policymakers with
additional decision-making information to ensure regional food security in the target
area and other South Asian countries.

13.3 Land Suitability Analysis and Yield Forecasting
for Rice

Satellite remote sensing technologies have high potential in applications for evalu-
ating land conditions and can facilitate to optimize planning for agricultural sectors.
However, misinformed land selection decisions limit crop yields and increase
production-related costs to farmers. In Chap. 3, the land suitability assessment and
yield forecasting model were discussed from satellite remote sensing-derived soil-
vegetation indicators. A multicriteria decision analysis was conducted by integrating
weighted linear combinations and fuzzy multicriteria analyses in a GIS platform for
suitability assessment using the following eight criteria: elevation, slope, and the
LST vegetation indices (SAVI, ARVI, SARVI, MSAVI, and OSAVI). In addition, a
yield estimation method was developed using indices representing influential fac-
tors. The yield estimation using SAVI (R2 ¼ 0.773), ARVI (R2 ¼ 0.689), SARVI
(R2 ¼ 0.711), MSAVI (R2 ¼ 0.745), and OSAVI (R2 ¼ 0.812) showed good
accuracy. Also, every combination of these five indices represented the best accu-
racy (R2 ¼ 0.839), which was used to develop the yield maps for the corresponding
years (2017–2020). The relative priorities of the indicators were identified using a
fuzzy expert system. Furthermore, the results of the land suitability assessment were
evaluated by ground truth yield data. In addition, a yield estimation method was
developed using indices representing influential factors. The results of the land
suitability evaluation for field crops will be very useful in the decision-making
process to increase production as well as for the sustainable management of
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agricultural lands. Thus, the influence of vegetation index evaluations, suitable
condition assessments, and yield prediction models are essential for understanding
future land use and production trends in the agricultural crop sector in Bangladesh,
as well as in other applications.

13.4 Land Suitability Analysis for Cassava Production

In Chap. 4, a spatial model was developed to assess the suitability of land for
supporting sustainable cassava production using a multicriteria model integrated
with GIS, remote sensing, and AHP. The multicriteria model for suitability assess-
ment used eight criteria: LULC, rainfall, distance from rivers, slope angle, elevation
level, soil type, distance from roads, and NDVI. From these criteria, the study found
that soil type, LULC, and NDVI influenced the sustainability of cassava production
much more than the other factors did. All the criteria were processed through a
weighted overlay using AHP to calculate the weights of each criterion. The results of
AHP were also confirmed and validated with the ANP approach. The land suitability
assessment for cassava production indicated that 41.6% and 44.6% of the study area
was highly suitable using AHP and ANP, respectively. Furthermore, the sustain-
ability of cassava production was analyzed using several indicators classified into
four categories: availability, accessibility, affordability, and profitability. The results
show that the land use for cassava cultivation areas declined annually by 3.38%
between 2010 and 2015. The results obtained from this research are very significant
in the decision-making processes to increase cassava production in suitable areas of
Serang city, Indonesia. The production scenario is one of the essential points for
understanding suitability to increase the regional production of cassava in Indonesia.
The model can be further expanded spatially by including a fuzzy approach with
AHP and ANP to overcome the limitation of the multicriteria model.

13.5 Drought Assessment Areas for Maize

Climate has affected primary crops on a global scale. Indonesia is a developing
nation that facing a great challenge for climate change. Therefore, the study in
Chap. 5 analyzed the vegetation phenology of maize to forecast the drought situation
in the Central East Java areas of Indonesia. Two potential vegetation indices were
used to determine the water stress level in the maize field through the NDVI and
NDWI derived from Sentinel 2 images. According to the NDVI trajectory, the maize
planting season was in April 2018, and the harvesting happened in late August. This
study presents a CNN-based YOLO model for detecting drought conditions at
different stages of maize production. Drought identification based on the growing
season was discovered, and validation was performed by IoU, precision, recall,
F1-score, and mean average precision (mAP) metrics that yielded 83.4%, 98%,
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99%, 98%, 96%, respectively, in drought-prone areas in Indonesia. The concept
enables the combination of remote sensing technologies to identify objects in real
time with acceptable precision. This study can be used by stakeholders and farmers
to identify drought-prone areas and can introduce interventions to support affected
farmers. A more in-depth analysis and vegetation phenology will be applied to verify
the yield model. Moreover, forecasting the severity of drought and vegetation
phenology ensures that yield declines are avoided and that regional food security
can be verified.

13.6 Land Suitability Analysis for Grapes

Appropriate land selection is a significant parameter for table grape production and
productivity. Therefore, selecting improper land not only can reduce table grape
quality and quantity but also increases production costs. In this regard, Chap. 6 is
carried out to develop a land suitability model on the regional scale to find the most
suitable areas for table grape production based on physical and socioeconomic
criteria in Kabul Province of Afghanistan. The multicriteria decision analysis was
performed for suitability assessment using 20 criteria, 14 for the physical factors and
6 for socioeconomic factors. The criteria considered for the physical factors were
elevation, slope, aspect, LST, rainfall vegetation indices (NDVI and NDMI), soil
types, soil texture, soil structure, soil pH, and soil organic matter. On the other hand,
socioeconomic and demographic criteria included distance from roads and rivers,
distance from national markets, distance from local markets, population density, and
revenue cost ratio. An FAO land use/land cover layer was also used to mask
restricted zones, and only the vineyard area was considered to derive a more accurate
result. Finally, the suitable classes were determined using a weighted overlay based
on a reclassification of each criterion based on AHP weights. The results showed that
only 11%, 15%, and 13%, respectively, are physically, socioeconomically, and
highly suitable for grape production in the study area. This research has the potential
to be applied to determine suitable areas in all of Afghanistan.

13.7 Land-Use Planning of Suburb Areas for Agriculture
and Industry

The unplanned growth of industries in suburban areas has significant impacts on
land-use changes, which eventually could affect national food security. Thus, a
nation needs to have a sustainable land-use management balancing food security,
environmental protection, and economic development. However, land-use changes
significantly affect food security, ecological balance, and environmental protections
in developing countries. Bangladesh is one such country that faces challenges from
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limited arable land resources, including the urbanization of agricultural lands and
urban developments in suburban areas. Therefore, Chap. 7 determined the land-use
changes over time in suburban areas with the potential for industrial growth. This
study also assessed potential locations and the further development of industries by
land suitability analysis to emphasize agriculture and sustainable growth. A
GIS-based multicriteria analysis model was developed for the LSA to distinguish
compact lands suitable for industries’ economic zones. Nine criteria, including seven
constraints and 23 factors, were evaluated by the spatial analysis tools of ArcGIS®.
An AHP was applied to prioritize the criteria based on experts’ opinions for the
decision-making process of LSA. This study found that dense industrial areas have
decreased agricultural lands by greater than 10% in the last two decades. Further-
more, the LSA results show that only 4% of the land was the most suitable for
industrial sites, whereas 4 compact lands have 16–10 ha of land, which is ideal for
small industrial zones. Thus, the integrated GIS-MCA model can serve as a policy-
planning tool to locate the economic zones of industries with sustained agricultural
lands and environmental protection.

13.8 Forest Classification for Change Detection

Due to a faster-growing population, land conversion supports infrastructure expan-
sion investment in agriculture and cash-crop plantations. In addition, forest fires,
poor forest management practices, and increasing demand for forest products and
agriculture contribute to the damage of forests. Many forests around the globe have
recently experienced high deforestation rates due to human migration and the
expansion of agriculture or industry. Proper forestland-use planning has not taken
place over time to align the changes in forest resources. In this relation, Chap. 8
explained how change detection occurred over the last 15 years and identified the
potential forest area that can be extended in the South Sumatra province of Indone-
sia. Remotely sensed data were used to monitor the changes in the LULC and
quantify the differences in the forest classes in the South Sumatra province of
Indonesia from 2003 to 2018. In the LULC analysis, six types of forest zones,
CPF, PPF, LPF, WRF, TRF, and NRF, were focused upon to determine their
changes and locate potential areas for extension of the forest. In the change detection
analysis, the study observed that the TRF, CPF, and PPF forest zones decreased by
20%, 13%, and 40%, respectively, from 2003 to 2018. LPF regions had significant
changes and decreased by 72% in LULC for its forest class. Palm oil plantations had
a substantial impact on the LPF forest classification areas. For the extension of forest
types that decreased over time, the AHP analysis incorporated with selected criteria
using weights from experts. Forest classifications can extend the proposed potential
areas to balance deforestation with production forests, such as plantations. There-
fore, the change detection analysis and periodic determination of potential forest
extension areas could help to create new policy space for plantation forests and
ecosystems in designing national and subnational policies.
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13.9 Forest Productivity and Carbon Stock Analysis

Indonesia has the highest forest density globally, and the productivity of its forests
can potentially be maximized to minimize CO2 emissions. However, due to anthro-
pogenic activities, phenological properties are subject to risk to ensure productivity
and carbon exchange in the different forest ecosystems in Indonesia. Early prediction
of carbon values could indicate a declining trend of forest quality regarding vege-
tation levels. Thus, the purpose of Chap. 9 was to evaluate forest productivity and
carbon stock using phenological properties for different forests. The results indicated
that the customized NDVI approach achieved superior performance for determining
the productivity level and that the government can use the analysis to manage
forests. The government can use the developed WebGIS to quickly assess the
level of productivity and performance indicators for different forests. Therefore,
decisions about forest conditions can be made immediately. This application is based
on a database of NPP calculations from 2015 to 2018. This application will allow
sufficient input for further extension of NDVI, GPP, and NPP for monitoring forest
productivity. Forest vegetation mapping and carbon assessment can be performed in
the future. The system dynamics approach predicts solar radiation as an essential
parameter for increasing productivity when the area does not change or increase with
the same solar radiation value. The status and optimum options for land resource use
and management approaches could be based on satellite remote sensing spatial
scales to project the LULC changes from the forest zones of PPF, LPF, CPF,
WRF, TRF, and NRF. Furthermore, information on the productivity of different
types of forests justifies the protection and management of forests on different time
scales. Therefore, the satellite-based remote sensing system dynamics model can be
implemented in forest policy systems to assess forest productivity and carbon stocks
globally.

13.10 Forest Loss Assessment for Ecological Resource
Conservation

Despite recognizing the importance of tropical forest systems, deforestation in
Malaysia has increased rapidly over the past 15 years. Since the first Earth observa-
tion satellite was launched in 1972, remote sensing techniques and image processing
analysis have been extensively used for long term and continuous forest monitoring
worldwide. Chapter 10 selects the Google Earth Engine (GEE) platform to monitor
deforestation in Malaysia over the past 20 years. GEE is a cloud-based platform that
works with substantial geospatial datasets using high-performance computing
resources. The study quantified trends of deforestation in Malaysia through a
statistical approach based on GEE and used quantitative data to analyze the drivers
of deforestation. Overall, the statistical results demonstrated a high level of accuracy,
and the GEE platform is suitable for forest monitoring on a national scale. According
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to the statistical outcomes, we further elaborated on the main drivers of deforestation
in Malaysia. There is no single driver of tropical deforestation in Malaysia; the palm
oil industry, forest fires, and illegal logging are attributed to the destruction of forest
areas in Malaysia. The GEE monitoring tool was found to be appropriate for
observing deforestation and guiding Malaysia’s management and conservation of
forest resources. Quantifying Malaysia’s past deforestation can effectively engage in
forest management, climate protection, ecological resource conservation, and sus-
tainable ecosystem services.

13.11 Climate-Resilient Agriculture for Adaptation
and Profitability

Chapter 11 describes the climate risk vulnerabilities of the agricultural areas and
priority crops in Benguet Province of the Philippines and the economic benefits of
the identified technologies used by the farmers to adapt to climatic hazards. The
Adaptation and Mitigation Initiative in Agriculture (AMIA) is the Department of
Agriculture’s (DA) chief integrated effort to contribute to the national government’s
agenda of addressing climate change threats in the agriculture sector of the Philip-
pines. This project seeks to identify the vulnerable crops and areas in Benguet
Province and potential adaptation technologies that will improve the resilience of
the farming communities. Overall, most of the municipalities in Benguet were
classified as very high and high in terms of vulnerability to climate change based
on their adaptive capacity, the sensitivity of crops to the different climatic variables
(temperature and precipitation), and hazards. Improving the rainwater harvesting
practice of farmers would increase the yield and income of farmers, especially during
periods of drought and irregular rainfall. Because those who use the rainwater
harvester named as kwelo have significantly higher yields and returns than those
who do not, thus, efforts must be made to address this practice and provide
innovations to ensure that water is not lost unduly or used more efficiently, espe-
cially in the dry season. Based on the cost and return analysis, farmers in Buguias
who use the blight-resistant variety Igorota (PO3) had higher yields, cash returns,
total returns, returns above cash costs, and returns above total costs. By planting
PO3, farmers significantly reduced their operational costs by approximately 50%.
Efforts are thus needed to integrate the use of PO3 with water-saving practices to
determine any synergies that could benefit farmers at vulnerable sites. To improve
future CRVA studies, it is recommended that different agencies from the national
government and local government units develop an enhanced database related to the
adaptive capacity of each municipality that can be easily viewed and accessed.
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13.12 Farm Area Assessment and Monitoring for Harvest
Scheduling

Remote sensing technology has provided spectral information on crop canopies for
building on numerous agricultural applications for precision farming. Unmanned
aerial vehicle (UAV) platforms have developed many agricultural applications
among the three main remote sensing platforms due to their flexibility, availability,
and accessibility. This review article highlights the applications of different remote
sensing technologies based on UAV platforms to implement tropical crop manage-
ment from planting to harvesting. Given the diverse applications of UAV-based
remote sensing for precision agriculture, it is promising for UAV-based platforms to
evolve into commercial applications that provide low-cost operations but high-
accuracy results. These applications also help users or farmers reduce hazardous
contact with chemical substances in pesticides, herbicides, and fertilizers. In the final
chapter, a review on the innovation of remote sensing technology based on UAVs
for sugarcane production in tropical regions was discussed. Sugarcane production
data before harvest are essential information for optimizing harvest schedules and
supply chain management, which contribute directly to the increase in profitability
for growers and sugar factories. Due to its flexibility, availability, and accessibility,
UAV imagery has been used to develop sugarcane canopy detection, disease detec-
tion, sugar content estimation, and yield predictions. The vegetation index and
machine learning technique were utilized to process images from the multispectral
camera and RGB camera and transformed into GIS data and validated with ground
sampling data. Sugarcane canopy detection using LDA obtained the highest accu-
racy of 97%. NDREI and GNDVI yielded the highest potential for white-leaf disease
detection for sugarcane. The CIRE indicated a good correlation with the Bix of
sugarcane, approximately 0.90. The ExG value was used to predict sugarcane yield
with OLSR and obtained accuracy (R2 ¼ 0.75).

13.13 Big Data Scheme for Remote Application
in Agriculture and Forestry

Agriculture and forestry meet the most basic human and animal requirements, such
as food, fiber, and shelter. However, rising food demand, a growing population, and
rising income levels are all projected to place further pressure on natural resources.
With a growing awareness of agriculture’s and forestry’s negative environmental
implications, new techniques and approaches should be able to meet future food
demands while maintaining or lowering agriculture’s and forestry’s environmental
footprint. Innovative technologies such as geospatial technologies, big data analysis,
and artificial intelligence (AI) can be used to make informed management decisions
and aimed for increasing crop yields through suitability analysis, drought stress
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assessment, forest change detection, land-use planning, UAV applications, and yield
predictions, among other things (Fig. 13.2).

13.14 Conclusions

During the last few decades, the use of remote sensing technologies for agriculture
and forest research has brought a number of challenges and opportunities together.
Crop monitoring, change detection, disease and pest management, yield prediction,
forest management, land-use planning, and precision agriculture (PA) applications
have benefited from the unprecedented availability of coarse- to high-resolution
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(spatial, spectral, and temporal) satellite images combined with UAVs. In this
regard, this book presented geospatial, mathematical, and logical modeling for a
multicriteria evaluation system using biophysical and socioeconomic factors. These
integrated models incorporate a large number of Earth observations, spaceborne and
airborne sensors from different sources, which fosters the leading position of data-
driven and interdisciplinary remote sensing applications in big data schemes related
to decision support systems for farmer unions, stakeholders, policy-makers, and
urban planners from regional perspectives.
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