
Fractal Image Coding-Based Image
Compression Using Multithreaded
Parallelization

Ranjita Asati, M. M. Raghuwanshi, and Kavita R. Singh

Abstract Fractal image coding-based image compression is characterized by its
high compression ratio, high-resolution, and lower decompression time. In spite of
these advantages, it is not being widely adopted because of its high computation
time. Attempts made to reduce the computation duration in fractal image compres-
sion (FIC) fall into two categories like heuristics-based search time reduction and
parallelism-based reduction. In this work, we have proposed a multithreading-based
parallelism technique on the multi-core processors to minimize the compression
duration. The compression duration of the suggested multithreading process is tested
upon the images having different resolutions. It is observed that the proposed solution
has reduced the compression time by almost 2.51 times as compared to sequential
method.

Keywords Fractal image compression · Encoding · Fractal image coding · Data
parallelism ·Multithreading

1 Introduction

Image compression is the technique of encoding an image to lessen the image size
which results into efficient storage and transmission. Compression schemes exploit
the irrelevant and redundant information in the images [1]. Existing compression
techniques are of two types: lossless and lossy. There is no information loss and the
compressed image retains its quality in case of lossless methods. There is a bear-
able information loss in lossy compression methods to achieve higher compression
ratio. Fractal image coding is a lossy compression scheme and aimed on reducing
the redundancy in the self-similar images [2]. It achieves higher compression ratio

R. Asati (B) · K. R. Singh
Department of Computer Technology, Yeshwantrao Chavan College of Engineering, Nagpur, India
e-mail: ranjita.asati@gmail.com

M. M. Raghuwanshi
Department of Data Science, G.H. Raisoni College of Engineering and Management, Pune, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
A. Joshi et al. (eds.), Information and Communication Technology for Competitive
Strategies (ICTCS 2021), Lecture Notes in Networks and Systems 400,
https://doi.org/10.1007/978-981-19-0095-2_53

559

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-0095-2_53&domain=pdf
mailto:ranjita.asati@gmail.com
https://doi.org/10.1007/978-981-19-0095-2_53


560 R. Asati et al.

by losing some information in the compressed image. FIC permits an improbable
volume of data to be kept in greatly encoded records. A fundamental feature of
FIC is to convert images into fractal codes. This is identified as fractal scaling,
ceasing original pixel structure. An image is converted forming a group of contrac-
tive similar transformations exploiting the self-affinity of the image. The parameters
of these transformations are stored as compressed file [3]. FIC is able to provide
higher compression ratio [4]. Higher the compression ratio, higher the computation
complexity in the fractal coding schemes due to search of matching blocks [5].

Numerous efforts are made to decrease the intricacy of the fractal image compres-
sion (FIC). The attempts are divided into two categories; in first category, efforts are
made to reduce the search time for matching blocks (algorithm-based approach), and
the second category is focused on the use of modern computer architecture for speed
up (hardware-based approach). The proposed work falls into second category that
uses multithreading parallelism onmulticore processors to decrease the compression
time of an image. In this work, we make use multithreading-based parallelization on
multicore processors to diminish the encoding duration. The search time for local-
ization of approximate range block for each domain block can be reduced, and local-
ization process can be done with least error due to this multithreading parallelization.
Remainder of this paper is structured as follows: Sect. 2 put forward literature review
on the fractal image coding techniques. Section 3 presents the suggested approach
with its algorithm. Section 4 discourses the result part. In the end, some conclusions
are presented in Sect. 5.

2 Related Work

FIC is a lossy compression technique developed by Barnsley [BH86] and Jacquin [2]
to compress an image by encoding it as a transformation. Firstly, it divides the original
image into domain blocks (they can be any size or shape). Then, a collection of
possible range blocks is defined. For each domain block, the algorithm then examines
for a suitable range region that, when applied with an proper affine transformation,
very closely look like the domain block. Later, a Fractal Image Format (FIF) file
is generated for the image. This file contains information on the choice of domain
regions, and the list of affine coefficients (i.e., the entries of the transformationmatrix)
of all allied affine transformations. This process is very time-consuming, especially
during the search for the proper range regions. But once the compression is done,
the FIF file can be decompressed very rapidly. The literature survey on existing
works is studied in two categories of heuristics-based search time reduction and
parallelism-based reduction.



Fractal Image Coding-Based Image Compression … 561

2.1 Heuristics-Based Search Time Reduction

Ismail et al. [6] proposed a hybrid technique using variable range block and optimum
domain block to decrease the compression duration in FIC. The solution is based on
hexagonal structure of spiral architecture. The reduction in encoding time is achieved
by reducing the number of matching operations and substituting its equivalent results
with lower mean square error. Borkar et al. [7] reduce the encoding time in FIC using
wavelet transform. In addition to reduction in time, use of wavelet also helps to
enhance the visual appearance. Nadia et al. (2017) suggested a novel approach using
fractal dimension to reduce the search process for each range block. This approach
makes a small compromise in image quality to decrease the compression time.Wang
et al. [8] presented a practice to accelerate FIC using Pearson’s correlation coefficient.
Sparse searching is implemented to find the matching domain region; due to this,
encoding time is reduced at a cost of minor compromise in the quality of image.
Hsu et al. [9] proposed a repetition-free FIC. A domain pool constitutes the mean
image for both encoding and decoding process. This domain pool is able to avoid
the iteration process. The method has lower encoding and decoding time, but it
compromises the PSNR. Cao et al. [10] proposed a novel orthogonal sparse FIC to
improve compression time. This method takes into account image texture feature.
Most of these works achieved reduction in compression time by compromising the
PSNR.

2.2 Parallelism-Based Reduction

Parallel computing is a computing where the tasks are fragmented into distinct parts
that can be accomplished simultaneously. Every part is again fragmented into a series
of instructions. These instructions are then carried out simultaneously on different
processors. Parallel systems make simultaneous use of multiple computer resources
that can employ a single computer with multiple processors, a computer network
forming a parallel processing cluster or a combination of both. The heart of parallel
processing are CPUs. Flynn’s taxonomy is a peculiar arrangement of computer archi-
tectures dependent on the number of parallel instruction (single or multiple) and data
streams (single or multiple) available in the architecture.

Min et al. [11] achieved speed up of FIC using a massively parallel implementa-
tion on a pyramid machine. Authors could diminish the computation intricacy from
O

(
n4

)
to O

(
n2

)
for an n × n image using the parallel architecture. Erra et al. [12]

proposed a parallel FIC using programmable graphics hardware. The solution used
SIMD architecture to speed up the base line approach of fractal encoding. Palazzari
et al. [13] exploited the massively parallel processing on SIMD machines to solve
the problem of higher encoding time in FIC. Lee et al. [14] suggested a parallel quad
tree-based FIC. It performs the fractal image coding based on quad tree partitioning.
Hufnagl et al. [15] proposed a parallel version of FIC over massively parallel SIMD



562 R. Asati et al.

arrays. The speed up is achieved in encoding time based on load balancing over
2D SIMD arrays. Bodo et al. [16] proposed a quad tree-based FIC scheme. The
encoding time is reduced in this parallel architecture by maximizing the processor
utilization. Haque et al. [17] carried out sequential as well as parallel FIC in Compute
UnifiedDevice Architecture (CUDA) platform.Medical images were used for exper-
imentation achieving 3.5 times more speed up compared to CPU. Saad et al. (2016)
proposed a parallel architecture using FPGA for implementing a full search FIC. A
near optimal performance is achieved using low-cost FPGA hardware. Malik et al.
[18] proposed FIC algorithm employing deep data pipelining for high-resolution
images. By limiting the search in neighboring blocks, reduced further encoding
time. The solution can compress large size images in less time.

Though these parallelism-based solution are able to achieve significant speed up,
but they require expensive hardware’s.

3 Proposed Solution

The proposed solution for achieving speed up in FIC based on the concept of adding
multithreading feature to the original FIC encoding and decoding process so that
it becomes more suitable for the data level parallelism without much inter thread
communication. The serial version of FIC is modified to incorporate multithread
parallelism. In the serial FIC, the initial image of dimension M * M is split to m
non-overlapping range blocks of size r * r where m = M/r2 and n overlapping
domain blocks of size 2r * 2r where n = (M − 2r + 1)2.

Fractal coding follows Iterated Function System. In first step image is partitioned
into non-overlapping blocks called range blocks and overlapping sub-blocks called
domain blocks. Each range block is mapped with one of the available domain blocks.
To locate most suitable matching domain block, a range block has to be compared
with each domain block to record the minimum distortion. Eight affine transforma-
tions do not change pixel values; they simply shuffle pixels within a range block, in
a deterministic way. For every range block, search is done on the domain pool for
a block which can be mapped linearly to the range block with smallest error. As a
result, an approximate domain block and a suitable contractive affine transformation
is selected according to the minimization function below

d(Ri , wik(Dk)) = min d
(
Ri , wi j

(
Dj

))
(1)

where wik is the contractive affine transformation from Dk to Ri . This is done in
such a way that mean square error distance (represented as d(Ri , wi j

(
Dj

)
from

range block Ri and the transformed domain block wi j (Dj ))) is minimized.
Each thread processes a range block in the range block pool. The thread does

transformation on domain blocks, finds the most suitable transformed blocks based
on least mean square error between the transformed domain block and range block.



Fractal Image Coding-Based Image Compression … 563

Range Block 
1

Range Block 
2

Range Block 
n

Transform 
domain block

Find Matching 
transformed 

block

Write output of 
transformed 

parameters to 
corresponding 
matrix position

Range block pool

Threads

Core 1 Core 2

Core k

Transformed 
matrix 

(compressed file)

Fig. 1 Proposed architecture

The threads are scheduled for executionon the any cores of themulti core processor by
the OS. Since there is no inter thread communication, the usual pitfalls of multithread
communication like resource contention, racing, deadlocks etc. are totally avoided.
Each thread generates the transformed parameters for it range block which is written
to thematrix and returned as a compressedfile. In the proposedwork,multiple threads
are assigned to lookup for domain block for each range block. Each read takes the
range block as input. For the range block it iterates through the domain block pool
and select the domain block which on transformation can be approximated to a range
block with minimum distortion. Each searching for domain block is done in parallel,
it reduces the encoding time. Each thread will execute in parallel on different cores.
Since processing steps for each range block use same instructions but different data,
a data level parallelism can be achieved without much inter thread cooperation. Only
when returning the final compressed file in terms of transformation parameters, a
wait must be done to collect the results from all threads. The parallelism architecture
of the proposed solution is given in Fig. 1. Both the encoding and decoding process
are parallelized to achieve speed up. The steps in the parallelized encoding process
are given below.



564 R. Asati et al.

Fig. 2 Serial and parallel FIC encoding time

Algorithm: Parallel FIC Encoding

Step 1. Input image is divided into non-overlapping range regions and overlapping
domain regions.

Step 2. For every range region start a thread.
In each thread for the domain region, find the approximate range region by

selecting the range block with lowest MSE distance of range region and transformed
domain regions.

Step 3. Wait for all thread to complete.

Step 4. Return all the transformations.
The decoding process is parallelized by splitting the compressed file into portions

and doing decoding process on each portion. Due to parallel reconstruction, the time
of reconstruction is reduced. The steps in decoding algorithm are given below.

Algorithm: Parallel FIC Decoding

Step 1. Generate range blocks from the encoding result file.

Step 2. Chose a starting image, which should be of same dimension as that of the
initial image.

Step 3. Split range block matrix to K partition and start K thread.

Step 4. In each thread do following.
Apply the transformation parameters derived from the transformed block for each

range block.
Substitute the range block pixels with the pixels which are obtained from the

transformed block.



Fractal Image Coding-Based Image Compression … 565

Table 1 Image used for experimentation

Image

Both transformations and mappings are enforced on the initial image repetitively
until the image is restored.

Step 5. Wait for all thread to complete.

Step 6. Return the reconstructed image.
Though only concern in FIC is encoding time, in this work, decoding process is

also parallelized just to increase the resource utilization of multiple cores (Table 1).

4 Results

The performance of the proposed solution was conducted in 10th generation Intel
core i5 10300H, 2.5 GHZ, 4 cores, 8 threads, 8 GB RAM. Performance was tested
with 40 images in different resolutions of 64 * 64, 200 * 200, 225 * 225, and 512



566 R. Asati et al.

Table 2 Comparison of encoding and decoding time

Size Serial FIC Serial FIC Parallel FIC Parallel FIC

Encoding time (s) Decoding time (s) Encoding time (s) Decoding time (s)

64 * 64 36.49 0.94 7.59 0.94

200 * 200 155.3 3.24 29.63 1.88

225 * 225 228.3 4.36 93.40 2.77

512 * 512 4058.1 18.84 1824.4 11.00

* 512. The dataset image for performance testing is obtained by taking 10 different
images in resolution of 512 * 512 and rescaling them to dimensions of 64 * 64, 200
* 200, and 225 * 255. By this way, dataset of 40 images was created with different
scales. By this way of testing the FIC against these recalled images, the robustness
of the proposed FIC algorithm against different scales can be tested. These images
were then used for FIC testing. Since there were no standard dataset for testing
fractal image compression, we used the same set of images used for testing block
complexity-based FIC proposed in [19].

The proposed solution was compared with serial version of FIC implementation
with both encoding and decoding process realized as a single process. The encoding
and decoding time are measured for different images, and the result is summarized
in Table 2. The results for encoding time are as below in Fig. 2.

From this result, it is evident that as the resolution of the image increases, the
encoding time increases, but the increment is lower in the proposed solution compared
to Serial FIC. The average encoding time in Serial FIC is 1145 s, but the in the
proposed solution, the average encoding time is 455 s. Thus, the proposed solution
has an average speed up of 2.51 compared to Serial FIC. The average decoding time
in Serial FIC is 7.14 s, but in the proposed solution, it is only 3.67. The proposed
solution has a 1.95 times speed up in decoding time compared to Serial FIC. The
speed up in encoding process in the proposed solution is due to parallelization in the
steps of calculation of transformations and matching to every transformation to find
best match with least error.

The reduction in the decoding time is due to parallelization in the step of replacing
the pixels of range block from the transformed block of each range block (Fig. 3).

The box-whisker plot of encoding time for different images in four different scales
of 64 * 64, 200 * 200, 225 * 225, and 512 * 512 is given in Fig. 4.

Though earlier many solutions have been proposed for FIC, they did not fully
exploit the processing capability of the underlying hardware. Due to this, hardware
was underutilized and it took long time for compression. Parallelization was the
solution to increase the hardware utilization and reduce the time for compression.
There were two options for parallelization, process level and thread level. In case of
FIC, thread level parallelization was suited more than process level as the processing
overhead of inter-process communicationwould be high for FIC, and itwould ruin the
advantages of parallelization. Due to this, thread-level parallelization was adopted.



Fractal Image Coding-Based Image Compression … 567

The results proved that compression time is reduced by increasing the utilization of
underlying hardware using threads.

Fig. 3 Serial and parallel FIC decoding time

Fig. 4 Box-whisker plot of encoding time



568 R. Asati et al.

5 Conclusions

In this work, a multi thread-based parallelization using multi-core processors is
implemented to speed up the execution of FIC. FIC is generally resource and time-
consuming algorithm, and the computation complexity is exponentially increasing
with increase in size of the image. Though many algorithms have been proposed
for FIC, they have two issues of underutilization of hardware and large time for
encoding. In this work, thread-level parallelism is introduced to FIC to solve the
two issues of underutilization and larger encoding time. The performance of the
proposed solution was tested for different images at different scales, and results
show an average 2.51-time reduction in encoding time. The reduction in encoding
time was achieved at the cost of increasing the hardware utilization through thread-
level parallelism. A limitation in this approach is that for self-similar blocks, the
computation effort is repeated. This limitation can be solved by further paralleliza-
tion by splitting the image to high-level blocks and clustering them based on entropy
or structural similarity and applying parallel FIC for a representative block in each
cluster and approximating other blocks in cluster based on it. This will further reduce
the encoding time.

References

1. Hussain A, Al-Fayadh A, Radi N (2018) Image compression techniques: a survey in lossless
and lossy algorithms

2. Jacquin A (1989) A fractal theory of iterated Markov operators with applications to digital
image coding

3. Asati R, Raghuwanshi MM (2020) Fractal image compression: a review. Int J Future Gener
Commun Network 13(1s):66–75

4. Wohlberg B, de Jager G (1999) A review of the fractal image coding literature. IEEE Trans
Image Process 8

5. Fisher Y (1995) Fractal image compression: theory and application. Springer, New York
6. Ismail M, Reddy BTB (2016) Spiral architecture based hybrid fractal image compression. In:

International conference on electrical, electronics, communication, computer and optimization
techniques (ICEECCOT)

7. Borkar E, Gokhale A (2017) Wavelet based fast fractal image compression. In: International
conference on innovations in information embedded and communication systems (ICIIECS)

8. Wang JJ, Chen P, Xi B et al (2017) Fast sparse fractal image compression. PLOS ONE 12(9)
9. Hsu C-C (2018) Iteration-free fractal mating coding for mutual image compression. In:

International symposium on computer, consumer and control (IS3C)
10. Cao J, Zhang A, Shi L (2019) Orthogonal sparse fractal coding algorithm based on image

texture feature. IET Image Process 13(11):1872–1879
11. Min X, Hanson T, Merigot A (1994) A massively parallel implementation of fractal image

compression. In: IEEE international conference on image processing
12. Erra U (2005) Toward real time fractal image compression using graphics hardware. Adv Vis

Comput Proc Lect Notes Comput Sci 3804:723–728
13. Palazzari P, Coli M, Guglielmo L (1999) Massively parallel processing approach to fractal

image compression with near-optimal coefficient quantization. J Syst Archit 45:765–779



Fractal Image Coding-Based Image Compression … 569

14. Lee S, Omachi S, AsoH (2000) A parallel architecture for quadtree-based fractal image coding.
In: Proceedings of 2000 international conference on parallel processing, pp 15–22

15. Hufnagl C, Uhl A (2000) Algorithms for fractal image compression on massively parallel
SIMD arrays. Real-Time Imag 6:267–281

16. Bodo ZP (2004) Maximal processor utilization in parallel quadtree-based fractal image
compression on MIMD Architectures. Informatica XLIX(2)

17. Haque ME, Al Kaisan A, Saniat MR (2014) GPU accelerated fractal image compression for
medical imaging in parallel computing platform

18. Abdul-Malik HYS, AbdullahMZ (2018) High-speed fractal image compression featuring deep
data pipelining strategy. IEEE Access 6

19. AlSaidi NMG, Ali A (2017) Towards enhancing of fractal image compression performance
via block complexity. In: Annual conference on new trends in information & communications
technology applications-(NTICT’2017) 7–9 Mar 2017


	 Fractal Image Coding-Based Image Compression Using Multithreaded Parallelization
	1 Introduction
	2 Related Work
	2.1 Heuristics-Based Search Time Reduction
	2.2 Parallelism-Based Reduction

	3 Proposed Solution
	4 Results
	5 Conclusions
	References




