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Abstract One of the most main perception challenges for autonomous vehicles
is cars detection. Classic vision-based cars identification approaches are insuffi-
ciently accurate, particularly for small objects, whereas sensors such as Lidars help
in detecting objects in all shapes and sizes but still limited in classifying and recog-
nizing detected obstacles. To fully exploit the benefits of Lidar’s depth information
and vision’s obstacle classification capabilities, this paper presents an object detec-
tion and distance estimation via Lidar and camera fusion. Both sensors have varied
different characteristics and must be aligned by performing a geometrical transfor-
mation and projection to fuse the sensor’s data. The main purpose of the conducted
research is to fuse sensor data to estimate the distance of objects detected using Tiny
YOLOv4. Finally, the results of the evaluations on the KITTI datasets show that the
proposed approach enables both object detection and distance estimation.

Keywords Autonomous driving · Vehicle perception · Sensor fusion · Distance
estimation · Object detection

1 Introduction

Improving the safety of road users has been a significant challenge for societies for
many decades. Researchers and engineers are undertaking several efforts to propose
innovative solutions for intelligent transportation systems, which will allow, through
control and optimization strategies, to improve the traffic safety.

Interest in self-driving vehicles has grown in recent years because they provide
comfort and safety for drivers by relying on three major technological components:
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sensing and perception—a system that collects information and understands the
surrounding environment—localization and mapping—allowing the vehicle to map
its environment and locate itself at any given time—and finally, a control system—
which is primarily responsible for decision making in various situations.

A key aspect of driving autonomous vehicles is the detection of obstacles and
other cars through data fusion of several sensors. Cameras, light detection and
ranging (LiDAR), and radar sensors aremainly developed for environment perception
allowing an excellent geometric and semanticmodeling of the vehicle’s environment.
Each sensormodality observes the environment in its way but is confined to detecting
object attribute information.

LiDAR sensor readings, for example, can generate a three-dimensional frame
of the surrounding environment. However, they are frequently impacted by severe
weather conditions and are limited in their object classification capacity, whereas
image sensing technologies are generally used for object detection and recognition
but unreliable when it comes to estimating distance or velocity.

Althoughmany researchworks outline a highly accurate object recognition system
based on camera sensors only, there are still substantial challenges to overcome in the
context of autonomous driving. Most research work has provided many approaches
and algorithms for road object identification and recognition depending on the
modality of each sensor, but only a few have addressed the issue of estimating the
object distance [1, 2].

In this paper, we present a method for object detection with Tiny YOLOv4 and
distance estimation relying on Lidar and camera data provided by theKITTI datasets.

The rest of this paper is structured as follows: Sect. 2 presents an overview of
related work of object distance estimation; Sect. 3 describes our suggested approach
for fusing data from a self-driving vehicle’s camera and LiDAR. Section 4 presents
evaluation results and discussions. Finally, in Sect. 5, a conclusion with some
suggestions for further research and perspectives.

2 Related Work

Nowadays, sensors are essential devices that are embedded in vehicles, equipped
with driver assistance technologies. For self-driving cars primarily, to observe their
surroundings, numerous cameras, radar sensors, LiDAR sensors, and ultrasonic
sensors are employed [3, 4]. As stated in [5] image processing is a critical component
of vision sensing technology since it makes use of an automatic system to compre-
hend complicated environmental scenes. While a laser radar sensor is used to detect,
track the target, a Lidar sensor can be classified based on function, line number, and
laser emission waveform. Finally, conventional ultrasonic radars are classified into
two types:

1. short-range ultrasonography, which helps detect impediments in the front and
back.
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2. long-distance ultrasonography, that measures the distance between the side
barrier and the vehicle.

Autonomous driving researchers employ various sensor combinations to compen-
sate the limits of each sensor as already indicated. Authors in [6] describe Sensor
data fusion as the process of manipulating data and information from heterogeneous
sensors to improve particular criteria and data elements for decision tasks. A normal
camera’s resolution, for example, is far greater than that of a detection and ranging
sensor, but the camera has a restricted field of view and cannot give correct or
precise distance and velocity information of detected objects in contrast to LiDAR,
which is also limited by its inability to recognize color and classify items. Therefore
sensor fusion approaches are unavoidably required for the safety and reliability of an
autonomous vehicle. Authors in [6] list the 3 most used schemes of sensor fusion as
illustrated in Fig. 1. Early fusion or raw data level, feature fusion (feature extraction
then halfway fusion across the network), and finally decision fusion or late fusion
which involves making final decisions. An overview of sensors and sensor fusion
technologies in self-driving cars is provided by [5–7].

The fusion approachmakes a correspondence between the 3D points fromLiDAR
and the RGB images of a camera. Authors in [8] reviewed environment percep-
tion algorithms for intelligent vehicles, with emphasis on lane and road, traffic sign
detection, recognition, and scene comprehension. Multi-sensor approaches and a
single fusion algorithm were conducted by [9, 10]. Paper [11] employed several
fully convolutional neural networks and three different fusion techniques to detect
roads using camera pictures and LiDAR point clouds. For advanced driver assistance
systems (ADAS), authors in [12] propose a high-level sensor data fusion architec-
ture. Reference [13] provides a hybrid multi-sensor fusion architecture that performs

Fig. 1 Three known levels of sensor data fusion [5]
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environment perception tasks such as road segmentation, obstacle identification, and
tracking. In [14] a fusion method is presented based on fuzzy logic to calculate the
object’s distance by separately parsing image and point cloud data.

Lidar and camera fusion should be seen as an extrinsic calibration process to
achieve low-level sensor fusion. This means that the geometrical properties of each
sensor, such as its location and orientation, should be taken into consideration [15].
Usually, an external object is used like a trihedral rig [16], a circle [17], or a checker-
board pattern that serves as a target to align the characteristics of the two sensors
[18, 19]. In [20], a black circular plane board is employed, to eliminate the checker-
board pattern’s numerous inaccuracies. Automatic calibration methods also exist as
described in reference [21]. Although many researchers have tried to conduct great
calibration and data fusion work with high accuracy detecting objects forms, by
putting sensors next to each other. Yet these methods are unsuitable for practical
vehicle experiments where the vehicle has to detect recognize and estimate object
distance in real-time. However, the authors in [1] make use of a 3D marker to fuse
data of a Lidar and Camera with high precision and detect remote regardless of their
position on the self-driving vehicle, with further work on distance estimation for
object detection by data fusion on real road.

In this paper, we propose a method of fusing data from Lidar and camera to
measure the distance of the detected object, relying on a robust and accurate detection
algorithm like TinyYOLOv4. Finally with the provided data from theKITTI datasets
we evaluate our algorithm on real-life driving scenarios.

3 Sensor Fusion for Autonomous Driving

3.1 Perception Sensors

We focus on two key sensors in this paper: camera and LiDAR. As previously stated,
both sensors have many limitations and shortcomings, combining the data provided
by these two sensors with the appropriate fusion approach enhances detection
robustness and performance.

• Camera: Equipping two lenses next to each other enables 3D vision, much like
in humans. This sort of sensor may give 3D information at a cheap cost, in a
small size, and with little power usage. Technologies (CCD, CMOS), resolutions
(HD, etc.), and frame rates (up to 100 frames/s) are being continually developed.
Furthermore, cameras enable the accurate extraction of geometric andphotometric
information, paving the way for higher level approaches of scene analysis and
interpretation. Obstacle detection, parking assistance, road detection, traffic light
and sign detection and identification are some examples.

Before using camera information, an intrinsic and extrinsic calibration should
be performed. Intrinsic parameters are concerned with the camera’s intrinsic
features (focal length, distortion, and picture center), they reflect a projective
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Fig. 2 Calibration with intrinsic and extrinsic parameters [22]

Table 1 Lidar parameters Parameter Value

Range length 40–100 m

Resolution accuracy 1.5–10 cm

Vertical angular resolution 0.35°–2°

Horizontal angular resolution 0.2°

Operating frequency 10–20 Hz

translation from the coordinates of the 3-D camera to the coordinates of the 2-D
image. While extrinsic parameters refer to a rigid transformation from 3-D world
coordinate system to the 3-D camera’s coordinate system. Figure 2 highlights the
calibration process.

• Lidar: Light (or Laser Imaging) Detection and Ranging is an abbreviation for the
detection andmeasuring of distance by light. It is a time-of-flight (ToF) technology
that analyzes the properties of an infrared laser (IR) returned by the target to
its transmitter. Knowing the speed of light, the Lidar sensor can determine the
distance to each object from the time between the laser pulse’s emission and return
pulse and provides angular resolution (horizontal and vertical). Every second, the
Lidar sensor collects millions of accurate distance measurement points, which
may be used to generate a 3D matrix of its surroundings. This detailed mapping
can offer information on an object’s position, shape, and behavior (Table 1).

3.2 The Proposed Sensor Fusion System Overview

This section describes the suggested raw sensor fusion approach for self-driving
automobiles. The approach observes its surroundings by employing LiDAR and
camera sensors to capture the many physical aspects of the environment (Fig. 3).
Our main contributions in this paper are explained as follows:

(a) The first step of the process involves performing a calibration of both sensors
using extrinsic and intrinsic matrices. Given the camera intrinsic matrices:
only projection matrix if the camera images are rectified, otherwise matrices
like S (1*2 size of the image before rectification), K-×× (3*3 calibration
of the camera before rectification), and D-×× (1 × 5 distortion coefficients
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Fig. 3 Flow of the proposed method’s process

of camera ×× before rectification) will be needed. Extrinsic parameters like
rotation (R: 3 × 3), translation (T: 3 × 1) to convert Velodyne coordinates
to camera coordinates. We can then project each 3D LiDAR point onto the
camera image plane.

(b) A compressed version of YOLOv4 called Tiny YOLOv4 is utilized in our
model to detect existing objects on RGB camera images that are provided
as input. The detection algorithms consist of CSPDarknet53 as a backbone,
spatial pyramid pooling additional module, PANet path-aggregation neck, and
YOLOv3 head. In our study, we use tiny YOLOv4 for faster training and
real-time object detection [23, 24].

(c) After calibrating both sensors and performing object detection, the LiDAR
points are then projected onto the 2D bounding box. Each detected object
is represented with bounding box coordinates (x, y, w, h) and 2D projected
LiDAR points [Lidar]_2D(x, y, id), every Lidar point with 2D coordinates is
presented as P_{2D}. Retrieved indices of 2D Lidar points that exist inside the
2D bounding Box, are calculated using Eq. (1):

Extracted id

= {
indexi ∈ [Lidar]_2D(x, y, id),

if P2D,i[Lidar]_2D(x, y, id)inside box(x, y,w, h)
}

(1)

(d) Finally, we measure the distance separating the self-driving vehicle and other
obstacles relying on the fusion of two perception sensors: camera and LiDAR.
We calculate the distance based on the minimum value of each 3D Lidar point
which index corresponds to the extracted id calculated in the previous section.
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Table 2 Tiny YOLOv4
parameters

Parameter Value

Batch size 64

Learning rate 0.001

Channels 3

Number of epochs 100

4 Experimental Results and Discussion

4.1 KITTI Datasets and Processing

In this work, a dataset derived from KITTI driving sequences is utilized to verify
the validity of our proposed fusion approach, highlighting the benefits of merging
LIDAR data with camera pictures for object recognition and distance calculation
[25].

For computer vision applications in an autonomous driving context such as percep-
tion and localization, the KITTI open-Source dataset provides a collected data by a
1.4 Megapixel color camera synced with a Velodyne Lidar HDL-64E from different
scenarios that include eight categories of obstacles: vehicles, vans, trucks, standing
and seated people, bicycles, trams, and others.

We generated the training and testing sets by relying on a random selection
approach to divide all 7481 photos into the training and testing sets in a 7:3 ratio.

The experiments were carried out using an Intel (R) Core (TM) i7-4600U 2.7 GHz
processor, NVIDIA-GPU Tesla K80 and 12G RAM. The size of input images is 416
× 416. Table 2 presents the training parameters of Tiny YOLOv4.

4.2 Results and Discussion

The KITTI supplied test set was used in the test section. Figures 4, 5 and 6 illustrate
some of the evaluation’s situations: 1-Object detection via TinyYOLOv4 (Fig. 4a–c),
2-Lidar point cloud projection onto the 2DBounding Boxes (Fig. 5a–c), 3-estimating
the distance separating the self-driving vehicle and detected Objects (Fig. 6a–c). We
chose three random scenarios containing obstacles such as vehicles, pedestrians,
cyclists.

Based on the results observed in each figure, it is clear that using the TinyYOLOv4
algorithm aided in the detection of obstacles surrounding the autonomous vehicle.
However, due to the extreme occlusion, notably in scenes 4(a) and 4(b), the model
was unable to recognize most of the existing obstacles. Because the Lidar points will
only be projected onto the detected 2D bounding boxes, the model will only estimate
the distance of identifiable objects within the visual field (Table 3).
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Fig. 4 Results of vehicle detection using the Tiny YOLOv4 algorithm for 3 different scenarios a,
b and c

As previously indicated, the model allows us to obtain distance information for
only detected objects inside the 2D bounding box. Although the Deep Learning
algorithm is much faster than YOLO’s other versions, it still has many limitations. It
is then necessary to upgrade to a higher version, such as Scaled YOLOv4, Embedded
YOLOv4, or even YOLOv5, for better and more accurate results in object detection
and recognition, resulting in a robust sensor fusion model capable of detecting,
recognizing, and estimating distance for all existing obstacles in the surrounding
environment.
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Fig. 5 Lidar points projection onto the 2D bounding box for 3 different scenarios a, b and c

5 Conclusions

This research work presents an object detection and distance estimation approach for
self-driving vehicles. A low level real- time data fusion of 2 main perception sensors
which are Lidar and Camera was conducted. First, we calibrate the LiDAR and
camera sensors, relyingon the extrinsic intrinsic characteristics tomap the point cloud
information onto the camera images. Next, Tiny YOLOv4 algorithm is implemented
to detect objects and obstacles in the region of interest. Finally, we evaluate our
proposed method by using different scenarios that are provided by KITTI datasets.
However, the proposed algorithm has certain flaws that must be fixed. For example,
Tiny YOLOv4 is unable to detect all the surrounding objects within a long or near
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Fig. 6 Output of data fusion for distance estimation

Table 3 Results of Tiny
YOLOv4

Scene Vehicles (%) Cyclists/pedestrians
(%)

Traffic signs (%)

(a) 42 50 –

(b) 80 – 12.5

(c) 100 100 –

distance, thus the algorithm can only estimate the distance of fewer obstacles, which
is still insufficient for practical tests.

In our future work, to enhance the robustness of our sensor fusion approach we
will try to improve the YOLO algorithm or utilize more specialized Deep Learning
models to obtain higher detection accuracy for real-time execution.
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