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Preface

This edited volume on “Recent Advances in Renewable Energy” is an outcome of the
selected papers presented at the International Conference on Electrical Systems &
Automation, (ICESA’21) which was held on 8–9 December 2021 at the National
School of Applied Sciences Khouribga, Morocco. This conference brings together
researchers in industry and academia to exchange their ideas, applications and
innovative techniques in the field of renewable energy and electrical systems.

The book provides rigorous discussions, the state of the art and recent devel-
opments in the field of renewable energy sources supported by examples and
case studies, making it an educational tool for relevant undergraduate and grad-
uate courses. The book will be a valuable reference for beginners, researchers and
professionals interested in renewable energy.

The conference programme featured a rich set of keynote session topics and
tutorials that extend beyond the papers contained in these proceedings. There were
six high-profile keynotes by eminent researchers: Prof. YazamiRachid (KVI Pte Ltd.,
Singapore), Prof. Hachimi Hanaa (Sultan Moulay Slimane University, Morocco),
Prof. Pierluigi Siano (University of Salerno, Italy), Prof.Michael Schmidt (Offenburg
University, Germany) and Prof. Yousfi Driss (Mohammed I University, Morocco).

The editors express their gratitude to Springer Nature authority for publishing this
volume in the Springer Conference Proceedings Series.

The editors also express sincere thanks to the reviewers for their dedication in
reviewing the articles. Also, thanks to the authors for submitting their articles to this
volume.

It is hoped that this volume will be a good reference manual for researchers and
budding engineers.

Khouribga, Morocco
Sankt Augustin, Germany
AL-Hoceima, Morocco

Mohamed Bendaoud
Borutzky Wolfgang

Amine El Fathi
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MPPT-Based a Fuzzy Logic and PO
Algorithm for Standalone PV System
Under Partial Shading Conditions

Farid Oufqir, Mohamed Bendaoud, and Khalid Chikh

Abstract Due to the importance of renewable energy applications, which has gotten
a lot of attention throughout the world, the use of standalone photovoltaic systems is
becoming more prominent. However, to get the optimal performance under various
operating conditions, an efficient design control must be performed. In this study,
a two-stage single-phase standalone PV system with battery storage is successfully
developed. The first stage employs a DC-DC boost converter based on an MPPT
controller. A DC-AC inverter along with LC filter is used in the second stage to
supply the load. The system has been modelled and simulated under uniform and
partial shading conditions (PSC) to extract the maximum power point. The fuzzy
logic controller was designed and compared to the conventional perturb and observe
(P&O).

Keywords Photovoltaic · Converter control · Partial shading conditions · Fuzzy
logic MPPT · Standalone system

Nomenclature

Iph Current of PV cell
Id Diode current
Ish Current in shunt resistance Rsh

Rs Serie resistance
Rsh Parallel resistance
Vth Thermal potential
k the Boltzmann constant (1381 · 10−23 J/K)
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Ns Number of series-connected cells
q Electron charge (1.6 · 10−19)
Io Reverse saturation current
A Diode ideality factor
Ish Current in parallel resistance
Icc Light generated current at nominal operating condition [A]
Ki Temperature coefficient
Tn Nominal temperature
T Actual temperature
G Irradiance of the surface
G0 Nominal irradiance
Vo DC bus voltage
Io DC bus current
α Duty cycle of the boost converter
F Switching frequency of the boost converter
�V Voltage ripple
α1 Duty cycle of the bidirectional converter in buck mode
α2 Duty cycle of the bidirectional converter in boost mode
Vbat Battery voltage
F1 Switching frequency of the bidirectional converter
fc Resonant frequency
Fi Switching frequency of the inverter
P(k) Power of the GPV at sampling time k
V(k) Voltage of the GPV at sampling time k

1 Introduction

With the growing energy demand, the evolution of technology has enabled an impor-
tant development of renewable energies [1]. These clean and sustainable energies,
particularly photovoltaic (PV) energy, have grown in prominence as an alternative to
fossil fuels. the PV power has become a reliable power source over the last decade, it
makes it possible to become energy self-sufficient. With the technical advancements
that occur every year in the industry, it is expected that solar PV systems will develop
and become more accessible to as many people as possible [2].

In this paper, we are particularly interested in standalone PV system, with a
battery storage that stabilizes the DC bus voltage and makes easy the connection
between PV modules, batteries, and AC load. the storage battery is necessary to
maintain a constant supply of electrical energy, and any extra power produced may
be accumulated for later use [3]. Battery charge and discharge control is provided
by the bidirectional converter. Another DC/DC converter is employed, it is a boost
converter that transforms theDCvoltage of the panels to a higher voltage and is driven
by a Maximum power point tracking (MPPT) controller that is designed to deal with
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the constraints caused by various climate variations. This controller’s performance
is determined by how fast it achieves the maximum power point (MPP), how to
oscillate around that point, and how robust this controller is to unexpected variations
such as partial shading condition (PSC) [4].

Under partial shading conditions, varying radiation on each PV array generates
different power from one PVmodule to another. Furthermore, multiple peaks will be
created because of the use of bypass diodes to protect the shaded PV modules from
hot spot points [5]. As a result, tracking the global maximum power is essential for
achieving high power efficiency. To reduce power loss, various PV array configura-
tions such as honeycomb, series–parallel, bridge connected, zigzag, sudoku, can be
used [6, 7].

Currently, the MPPT methods have been the subject of many studies to improve
the dynamic performance of the PV system, namely the capacity to quickly follow
the global maximum power point (GMPP) in the presence of various local maximum
power points (LMPP) during the PSC. Conventional MPPT techniques, especially
incremental conductance, constant voltage and perturb and observe (P&O), are effec-
tive, and reliable in tracking the specific peak under uniform conditions. although,
if the GMPP was not at the first peak, they failed to track it under PSC and stick at
LMPP [8]. However, Particle swarm optimization (PSO) [9] and grey wolf optimizer
(GWO) [10] are bio-inspired heuristic MPPT algorithms that can follow the GMPP.

In [7] a hybrid technique combining the incremental conductance method and the
greywolf algorithm (GWA) is presented. The findings demonstrate that the suggested
hybrid technique tracks the GMPP in the scenarios of uniform solar irradiation and
partial shading effects.

Kermadi et al. [11] presents a hybrid of adaptive P&O and particle swarm opti-
mization (PSO). A PV array simulator-based experimental prototype is used. It was
observed that the proposed approach converges to GMPP, and that tracking is assured
even in complex partial shadow conditions, however, it struggles from drift under
quickly changing irradiance values. Using fuzzy logic (FL) and a dual (MPPT)
controller, [12] provides a new digital control technique for a photovoltaic (PV)
system. It employs a novel perturb and observe (P&O) technique based on a fuzzy-
logic controller (FLC) to keep the system power operating point at its maximum.
The suggested control approach ensures that the system operates in a stable manner.

Oufqir et al. [13] presents amodel for a standalone PV system. The results demon-
strate that the suggested system maintains a steady frequency and RMS load voltage
while minimizing THD, but the MPPT has not been checked under PSC.

The authors of this paper present a design for a standalone PV system (Fig. 1),
with a series–parallel configuration for solar panels. The major contribution of this
work is to elaborate a comparative analysis to highlight the performances of the P&0
and FL. The methodology will be helpful for the system designers.

This paper is structured as follows: Section 2 contains a detailed system descrip-
tion as well as mathematical modeling of the PV panel. Sections 3 and 4 gives more
details about control strategieswith converters sizing, energy storage andMPPTalgo-
rithms. Section 5 shows the simulation results usingMATLAB/Simulink to check the
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Fig. 1 Structure of the standalone PV system

robustness of the control strategy, and the validation of the proposed MPPT method
under PS conditions.

2 System Description

Figure 1 represents the synoptic diagram for the system simulated under
MATLAB/Simulink. This system consists of a 2 kW to 1000 W/m2 PV generator
which is coupled to a load through a Boost converter, a single-phase inverter and a
bidirectional converter that plays a key role in stabilizing the DC bus voltage. In this
work, we chose the Boost converter because we have a maximum voltage of 120 V
and a current of 16.6 A that the PV generator can deliver to the input of the boost
converter, and we need a voltage of 400 V at the input of the inverter. The MPPT
controller is implemented in the Boost converter to extract the maximum power
from the PV generator. This PV generator consists of 2 PV strings interconnected
in parallel. Each PV string contains 4 PV modules interconnected in series. The PV
model parameters used are given in Table 1.

Table 1 Parameters of PV
panel

Parameters Value

Maximum power 249 W

Open circuit voltage 36.8 V

Short circuit current 8.83 A

The voltage at MPP 30 V

The Current at MPP 8.3 A
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2.1 Mathematical Modeling of PV Module

The PV cell can be represented by a single diode model (Fig. 2). This model consists
of a current generator, corresponding to the photo-generated current, two resistors,
and a diode. The mathematical model of the PV cell is given by [13]:

Ipv = Iph − Id − Ish (1)

The equation of Id current can be represented as:

Id = I0

(
Exp

[
V + (I × RS)

A × Vth

]
− 1

)
(2)

The thermal potential (Vth) is given by:

Vth = K × T × NS

q
(3)

The current Ish in parallel resistance is described as:

Ish = RS.Ipv + V

Rsh
(4)

The current of the PV cell is proportional to the irradiance (G):

IPh = [ICC + Ki (T − Tn)] ∗ G

G0
(5)

Figure 3 illustrates the I–V and P–V characteristics of the solar panel at various
levels of irradiation while maintaining a constant temperature. Temperature and irra-
diance influence these properties; as the irradiance rise, so does the power of the
photovoltaic panel. As a result, a control system is necessary to guarantee that the
PV system is running at its maximum power point [14].

Fig. 2 Circuit diagram of
PV cell
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Fig. 3 PV characteristics for
a temperature of 25 °C, a
I–V curve and b P–V curve

2.2 Partial Shading Effect

According to [15], partial shading has a significant effect on PV output energy.When
one part of the PV panel receives less radiation than another, the current produced
by the lighted cells is higher than the current produced by the shaded cells, causing
the shaded cells’ diode to be reverse biased. As a result, power will be lost and
potentially resulting in a hot spot problem with irreversible damage to the PV panel.
So, the bypass diodes can be connected in parallel with PV cells to solve this issue
[16].

Two strings of four PV panels were connected in parallel to simulate the effect
of PSC (Fig. 4b). Four patterns were considered in this analysis, the data of which
are presented in Table 2. In the first case, the irradiation of each module is equal
to 1 kW/m2, which is known as the standard test condition (STC), and various PS
conditions are considered in patterns 1, 2 and 3.

3 Power Conditioning Units

The solar energy conditioning unit comprises a boost converter controlled via an
MPPT, an inverter, and a bidirectional converter. It extracts the power available from
the solar panels and stores it in the battery bank according to the state of the load to
be supplied. Due to the constant use of energy, if the supplied power drops below the
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Fig. 4 a Power vs voltage plot under various shading patterns. b PV array arrangement

Table 2 Shading patterns

Patterns Irradiauce levels (kW/m2) for each PV panel Position of GMPP
peak

Power at GMPP
(KW)PV 1 PV 2&6 PV 3&7 PV 4&8 PV 5

Uniform 1 1 1 1 1 1st 1.992

Pattern 1 0.3 1 1 1 1 1st 1.538

Pattern 2 1 1 0.6 0.6 1 2nd 1.292

Pattern 3 1 0.8 0.6 0.4 1 3rd 0.976

level requested by the load, the battery bank will discharge automatically to transfer
the energy and meet the load requirements [17].

3.1 Boost Converter

The boost converter allows the load and the PV generator to be adapted, to draw
the most energy. Depending on the state of the switch (S), the functioning of a
Boost converter can be separated into two distinct stages. When the switch is closed,
the current in the inductor increases, resulting in the storage of energy in the form
of magnetic energy. When the switch is turned on, the inductor is connected to
the generator, causing the energy collected in the inductor to be transferred to the
capacitor. The boost converter circuit is depicted in Fig. 5.

The output voltage (Vo), and the output current (Io) can be defined by the following
equations [18]:

Io = I (1 − α), Vo = 1

1 − α
V (6)
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Fig. 5 Boost converter

Equation (7) is obtained by using (6), which represents the PV panel’s resistance.
As a result of this calculation, theMPPT controller will determine the optimal α [19].

Req = V

I
= Vo

Io
(1 − α)2 = R(1 − α)2 (7)

The inductor selection has a significant impact on the boost converter’s efficiency.
The inductance value can be given as follows, where F is the switching frequency:

Lmin = α(1 − α)2VO

2F IO
(8)

An input capacitor is used to reduce the ripple in the input voltage and to provide
an alternative current to the inductor. the value can be calculated by (9), where �V

is the voltage ripple:

Cinmin = αV

8F2L�V
(9)

The value of the output capacitor may be determined as follows (10), by using
output voltage ripple �VO:

Comin = αIo
F�Vo

(10)

3.2 Bidirectional Buck-Boost Converter

The storage battery allows the energy produced by the solar panel to be stored for
subsequent use. The battery with the bidirectional converter is utilized to maintain a
constant DC bus voltage and distribute the energy to the load when there is a power
outage [20].



MPPT-Based a Fuzzy Logic and PO Algorithm … 9

At the outset, it is important to define the energy storage and photovoltaic power
supply system specifications. The DC bus has a rated voltage (Vo) of 400 V. The
storage device consists of a series connection set of lead-acid batteries with 220 Ah
total capacity and rated voltage 48 V. Nominal parameters of the battery are shown
in Table 3.

This converter (Fig. 6) works in two modes (buck and boost), and according to
these modes, we determine the design of its elements. The selection of the inductor
is a critical design factor in a high-power converter [21].

When the converter works in the Buck mode, the inductor value can be expressed
as:

Lbuck = α1(1 − α1)VO

2F�I b
(11)

α1 is the duty cycle in the buck mode: α1 = Vbat
VO

In the boost mode, the expression is:

Lboost = α2Vbat

2F�I b
(12)

Table 3 Battery bank
parameters

Lead-acid battery parameters Value

Rated capacity 220 Ah

Nominal voltage 12 V

Number of parallel connections 1

Number of series connections 4

Total nominal voltage 48 V

Fig. 6 Bidirectional
converter
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α2 is the duty cycle in the boost mode: α2 = 1 − Vbat
VO

Therefore, the value of the converter inductor should be the minimum of the value
given by Lbuck and Lboost :

L1 = Min[Lbuck, Lboost]

Also, the output and input capacitor values are determined by the capacitor’s
voltage ripple as shown below (13):

C1 = α1(1 − α1)VO

8F1
2L�Vbat

(13)

C2 = α2 IO
F1�VO

(14)

The converter’s controller will reduce the ripple of the current and voltage in the
input or output, as well as increase the converter’s efficiency. The reliability of a
bidirectional DC/DC converter cannot be achieved by a single closed loop. As seen
in Fig. 6, we use a voltage and current double closed-loop [22].

The control circuit consists of the outer voltage loop and the inner current loop.
In the outer voltage loop, we calculate Vo and compare it to Voref (400 V). The
gap of two is transmitted to the PI regulator, then move to the current loop. Finally,
as compared to Ib, the difference through by the other PI regulator into the PWM
modulation. The controller will obtain a steady voltage in Vo and a stable current in
Ib.

3.3 Inverter Circuit

The AC load is linked to the system by a single-phase inverter, which allows the
controller in Fig. 7 to transform direct current to alternating current. To suppress
high frequency harmonics, an LC filter is employed at the inverter’s output.

The LC filter is a second order filter, the capacitor serves as the shunt element and
must be chosen in such a way as to have a low reactance at the switching frequency
(Fi ) [23]. The resonant frequency ( fC ) is obtained from (15):

fC = 1

2π

VO√
L2C4

and fC ≤ Fi
10

(15)

Then the value of the capacitor can be expressed as (16):

C4 = 1

L2

(
10

2πFi

)2

(16)
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Fig. 7 Circuit of the
single-phase inverter

The inductor eliminates the low frequency harmonic components. The ripple
current (�Iinv) is influenced by the DC bus voltage, inductance, and switching
frequency. Since the DC voltage (VO ) and switching frequency (Fi ) are fixed, the
inductance can be evaluated using Eq. (17):

L2 = 1

8

VO

Fi�Iinv
(17)

The double closed-loop proportional-integral (PI) controller with internal current
loop and external voltage loop is implemented to increase the efficiency of the inverter
and the output voltage waveform quality. The inner loop is used to improve the
system’s dynamic performance and quickly eliminate the effects of load disturbance;
the outer loop is used to improve the system’s static performance [24].

4 MPPT Controller

ThePVmodule’s output power is normally intermittent. As a result, theDC-DCboost
converter with an MPPT controller should be made to follow the MPP. Overall, the
MPPT contributes primarily to the reduction of PV system costs and the enhancement
of performance.Many approaches, including conventional and soft computingMPPT
techniques, have been used.
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Conventional MPPT techniques such as (PO) give good results under uniform
irradiance conditions. However, this performance is not assured during the PSC
because the P–V curve includes multiple peaks. Therefore, PO could be trapped by
the local maximum LMPP. Among the solutions to overcome this problem is the use
of MPPT controllers based on soft-computing algorithms [15].

4.1 Perturb and Observe Algorithm

The basic principle of (P&O) is to interrupt a small amplitude voltage and then eval-
uate the action of the resulting power variation [8]. Figure 8a depicts the flow chart
and the model of the P&OMPPT algorithm. It can be deduced that if the power rises
after a voltage disturbance, the direction of the disturbance is retained. If not, the
operation is reversed to restart convergence to the new PPM. Figure 8b depicts the
implementation of this technique in the Simulink environment. The findings in [25]
show that P&O is less efficient than (IncCond) but outperforms other conventional
MPPT techniques. Moreover, some authors found that somemodifications on (P&O)
placed it in the same rank with IncCond [26]. In general, conventional MPPT tech-
niques are not exact or effective in dealing with the PS situation since they cannot
follow the GP under PSC, while soft computing or heuristic techniques can track the
GP and effectively deal with the PS problem.

Fig. 8 a Flow chart of conventional P&O and bModel of P&O controller in simulink
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4.2 Fuzzy Logic Controller

The flowchart of the fuzzy controller is shown in Fig. 10. This MPPT employs fuzzy
logic to determine the maximum power point (MPP). This control algorithm consists
of three steps, namely:

(a) Fuzzification

Fuzzification allows real variables to be converted to fuzzy variables. The PV
module’s real voltage and current are continuously measured, and the power may
then be evaluated. The control is determined based on the satisfaction of two criteria
concerning two input variables, which are the error (E) and the error change (CE),
at sampling time k. the scale factors KE, KCE and Kd will be changed based on the
output performances [27].

The variables E and the CE are expressed as follows:

E(k) = P(k) − P(k − 1)

v(k) − v(k − 1)
(18)

CE(k) = E(k) − E(k − 1) (19)

where P(k) and V(k) are respectively the power and voltage of the GPV. Therefore,
E(k) is zero at the MPP of the GPV. These input variables are expressed in terms of
linguistic variables or labels such as PB (positive big), PS (positive small), ZE (zero),
NS (negative small), NB (negative big). Figure 9 shows the corresponding input and
output membership functions.

(b) Inference method

Table 4 [28] shows the rules of the fuzzy controller, where all the inputs to the matrix
are the fuzzy sets of error (E), change in error (CE) and change in duty cycle (dD)
converter. In the case of fuzzy control, the control rule must be designed so that the
input variable E is always zero. In our case, we use the Mamdani inference method
which is the MAX–MIN fuzzy combination.

(c) Defuzzification

Inference methods provide a function for the resulting membership variable, so this
is fuzzy information. Given that the DC-DC converter requires an accurate control
signal D at its input, this fuzzy information must be transformed into determined
information. this transformation is called defuzzification.

5 Results and Discussion

Table 5 presents the system parameters utilized in the simulation.
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Fig. 9 a Membership
function for (E), b
Membership function for
(CE), c Membership
function for increment of
duty ratio command

Fig. 10 Flowchart of the fuzzy controller

Table 4 Fuzzy rules database

Fuzzy rule E(K)

NB NS ZE PS PB

CE(k) NB ZE PB PS ZE NB

NS PB PS ZE ZE NB

ZE PB PS ZE NS NB

PS PB ZE ZE NS NB

PB PB ZE NS NB ZE
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Table 5 System parameters Parameters Values

Capacitance, Cin 500 μF

Capacitance, Co 400 μF

Inductance, L 60 μH

Switching frequency—Boost converter 50 kHz

DC bus capacitor, C3 500 μF

Capacitance, C1 500 μF

Capacitance, C2 50 μF

Inductance, L1 80 μH

Switching frequency—bidirectional converter 20 kHz

Battery 220 Ah

Battery voltage 48 V

Inductance, L2 4.06 mH

Capacitance, C4 6.23 μF

Switching frequency—inverter 10 kHz

DC link reference voltage 400 V

AC voltage reference 230 V

5.1 System Under Uniform Irradiance

The first simulation’s purpose is to validate the robustness of the suggested control
technique in response to uniform irradiance at various levels. In this scenario, the
power load is set to 2KW, and the irradiance goes from 700 to 1000 W/m2. This
scenario allows you to test the system’s operation, specifically the SOC of the
batteries, the DC bus voltage, and the quality of energy delivered to the load. The PV
system can easily track the MPP under uniform conditions using the P&O algorithm
The DC bus voltage was maintained at 400 V by the storage device and the bidirec-
tional converter despite all fluctuations in irradiance, as shown in Fig. 11a, and the
RMS value remained constant (230 V), as shown in Fig. 11b.

We can see that the irradiancewas at 700W/m2 before 0.4 s, the battery discharges
since the power provided by the PV system is not enough for the load’s demand and
intervenes to supply the supplementary energy required by the load. The SOC of the
battery due to these irradiance variations is shown in Fig. 11e, after 0.4 s irradiance
becomes 1000W/m2, and the battery SOC becomes more stable. The load voltage is
kept stable and closer to the sinusoidal form with a total harmonic distortion (THD)
less than 1%, as illustrated in Fig. 11c, d.
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(a)

(b)

(c)
(d)

(e)

700w/m²
1000w/m²

Fig. 11 a DC bus voltage, b RMS load voltage, c battery SOC level, d load voltage, e Harmonic
spectrum of the load voltage

5.2 Extracted Power Under PS Conditions

The second scenario is to test the system under partial shading conditions with
different patterns as illustrated in Table 2. These patterns are examined with FLC,
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which is compared with conventional P&O in order to evaluate the extracted power
from PV panels. Figure 4a shows the P–V curve under different shading patterns.

Pattern 1 (Fig. 12b): in this case, the PV modules were irradiated with 300 W/m2

at left corner, the global maximum power point (GMPP) is 1538 W/m2, the shading
loss is about 454 W, and the FLC was able to track the maximum power point, while
the PO could not.

Pattern 2 (Fig. 12c): In this case, the system has been examined with bottom PV
panels shaded with an irradiance of 600 W/m2. The GMPP is 1292.5 W/m2. The
MPPT algorithms are not able to track the GMPP.

Pattern 3 (Fig. 12d): In this scenario, the system was tested using various PV array
irradiance. TheGMPP is 976.22W/m2. This pattern gives the lowest extracted power.

Uniform: the system has been tested under STC (1000 W/m2), the GMPP is
1992 W/m2. The results are presented in Fig. 12a.

The results in Fig. 12 shows that the GMPP cannot be tracked by the MPPT
algorithms, and they stick at the first peak. Moreover, the proposed FLC has been

Fig. 12 a Extracted power for uniform irradiance, b extracted power for Pattern 1, c extracted
power for pattern 2, d extracted power for pattern 3
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Table 6 Parameters in various MPPT algorithms

PMP Shading loss (w) Fill factor

Pattern 1 P&O 1270 454 0.4859

FLC 1515 0.5797

Pattern 2 P&O 930 699.5 0.3578

FLC 934 0.3594

Pattern 3 P&O 773 1015.78 0.3007

FLC 775 0.3015

Uniform P&O 1962 – 0.7515

FLC 1940 0.7431

compared with P&O forMPP, fill factor and shading loss. The Fill factor is defined as
the ratio of maximum power to the product of the PV system’s open-circuit voltage
and short circuit current. If the fill factor value is close to one, the system is more effi-
cient [6]. The shading losses represent the difference in power between themaximum
power obtained from an array under STC and the total maximum power under PSC.
These parameters for all patterns are presented in Table 6.

6 Conclusion

The modeling of a stand-alone photovoltaic system is presented in this study. To
achieve an efficient system, the converters employ a specific control strategy. The
bidirectional converter is used to either give energy to the load (boostmode) or to store
excess energy in a battery (buckmode). As a result, the battery operates in twomodes
to keep the DC bus voltage stable. The double closed-loop proportional-integral (PI)
controller was used with the DC-AC inverter to reduce THD. To extract the most
available power from PV panels, the boost converter is used with the proposed FLC
and compared to the (P&O) algorithm. The simulation results indicate that control
techniques are robust. However, under PS conditions,MPPT algorithms fail to follow
the global peak (GP) if it is not positioned first at the P–V curve. So, the fuzzy logic
control must be used with other approaches to improve the performance of theMPPT
controller under PSCs.
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Comparison of the Efficiency of ANN
Training Algorithms for Tracking
the Maximum Power Point
of Photovoltaic Field

Ncir Noamane , Sebbane Saliha , and Nabil El Akchioui

Abstract Global energy demand is growing very rapidly. Suddenly, due to indus-
trial development, the supply of fossil natural resources is shrinking, which poses a
key issue for the future of the world. For this reason, the development of renewable
energies remains an economic and environmental solution to achieve the expected
objectives. However, due to changes in weather conditions, energy efficiency is one
of the biggest issues in renewable energy development. In this article, we put a Photo-
voltaic (PV) panel under Standard Test Conditions (STC) to measure and improve
its performance in terms of speed, stability, and precision based on Artificial Intel-
ligence (AI) and more precisely Artificial Neural Networks (ANN). In this case,
MATLAB software was used to simulate several training algorithms, and the results
were compared in terms of performance to track the maximum power point (MPPT)
of the photovoltaic panel.

Keywords Artificial intelligence · Artificial neural network · Gradient descent ·
Bayesian regularization · Levenberg–Marquardt · Scaled conjugate gradient ·
Photovoltaic · Maximum power point tracking

1 Introduction

Photovoltaic solar energy is considered one of the most demanded energy sources
in the world, thanks to its eco-efficiency and the fact that it solves the economic and
environmental problems associated with the use of others such as natural gas, oil,
and fossil fuels [1].
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On the other hand, compared to fossil fuels, the energy efficiency of photovoltaic
solar panels is too lowon the pretext that there are certain climatic faults andbehaviors
[2], which affect the performance of photovoltaic panels. Therefore, the photovoltaic
current or voltage is always unstable, that is, the efficiency of the photovoltaic panel
is always low. In this fact, the integrated maximum power point tracking (MPPT)
system is an effective way to increase the gain of power generation. In the literature,
a variety of algorithms are used to solve this problem, the first is the perturbation and
observation (P&O)method, Incremental conductance (INC), Fractional Short Circuit
Current Algorithm (FSCC), or Fractional Open Circuit Voltage Algorithm (FOSC).
Therefore, a more sophisticated method is needed to extract the maximum perfor-
mance from photovoltaic panels, of which we have chosen to integrate the theory
of artificial intelligence and more precisely the Artificial Neural Networks (ANN),
which have been discussed by several researchers [3–5], to solve the complications
of classical algorithms.

2 Modeling of Photovoltaic Panels

The electrical modeling of PV modules is a very important step, the goal of which is
to increase energy efficiency during energy production. For this reason, several PV
models strongly influence the operation of PV modules after their manufacture [6].

Therefore, themain objectivewhenmodeling PV is to have an output power (PPV )
whichguarantees the energy requirement of a loadof aPV installation. In addition, the
two parameters that allow PVmodules to operate are temperature (T ) and irradiance
(G), so increasing irradiation and decreasing temperature implies increasing the
current of the photon (Iph). Figure 1 shows the diagram of an equivalent circuit of a
PV model.

Indeed, PV technologies are based on the photoelectric effect or in other words
the PV effect, which presents the idea that PV cells and modules are naturally
autonomous energy generators, which require no fuel and which practically rely
on an infinity of solar energy [7].

Fig. 1 Equivalent circuit of a PV model
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IPV = Iph − I0
[
e

VPV +Rs .IPV
Vt .a − 1

]
− VPV + Rs .IPV

Rsh
(1)

Vt = Ns .K .T

q
(2)

3 Maximum Power Point Tracker (MPPT)

The MPPT is a system that controls the current and the voltage at the output of the
photovoltaic panels, which offers a very high performance, thus it calculates in real
time the optimal power point to deliver all the power to the batteries or network thanks
to their microprocessor and load algorithms. There are several MPPT algorithms
that can be separated into different groups such as classical methods, distributed
approaches, methods based on evolutionary algorithms as well as methods based on
artificial intelligence [8].

4 Artificial Intelligence (AI)

Artificial intelligence is any algorithmic computer technology whose goal is to solve
complex problems by drawing inspiration from human resonance and by simulating
human capacities such as perception and reasoning without accessing the notion of
consciousness. The two disciplines of artificial intelligence are presented as follows
in Fig. 2.

Fig. 2 The disciplines of AI
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Fig. 3 Representation of biological neuron and artificial neuron

4.1 Artificial Neural Networks (ANN)

Deep learning (DL) is one of the machine learning (ML) subfields of study that is
based on the construction of artificial neural networks (ANN). It applies to systems
that are more complex and have much larger amounts of data than ML.

The idea of creating ANNsmainly based on reconstructing concepts of the human
brain, which contains thousands ormillions of biological neurons, thus learning these
concepts and simulating their functioning [9–11].

Otherwise, a single biological neuron receives signals transmitted by other
neurons (this is the dendritic-synaptic interaction). The representation of this artificial
neuron is illustrated in Fig. 3.

In this case, we can translate biological neurons in a simple way through artificial
representations, including.

• The inputs are represented as a vector representing the dendrites,
• Weights that take on the role of synapses,
• The activation function, which represents the cell body,
• The output, which represents the axon.

The artificial representation of a neuron can be converted in the form of a
mathematical equation (3):

ŷ = f (〈ω,〉 + b) (3)

4.2 ANN Training Algorithms

Gradient descent (GD). Gradient descent is an algorithm that converges to the
minimum of the used cost function, which is normally a convex function facing the
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valley and is given by (4):

J (a) = 1

2m

m∑
i=1

(
f
(
x (i) − y(i)

)2)
(4)

The algorithm selects randomly the problem’s parameters from the search system.
For example, in the case of two parameters a and b, we use alpha as the step size to
calculate the partial derivative of J(a) with respect to each parameter until we find
the small value of the cost function. Taking into account the number of parameters
of the studied system. Formula (5) describes mathematically all parameters used to
reach the optimum based on gradient descent.

ai+1 = ai − α
∂ Jai
∂a

(5)

Levenberg–Marquardt (LM). This type of training algorithm combines the idea
of descent gradient and the Gauss–Newton method for adapting the weights of the
ANNs using the mathematical model (6–7) [12].

pk+1 = pk + (
XTk .W.Xk

)−1
.XTk .W.

(
y − i−k

)
(6)

It was originally designed for nonlinear parameter estimation problems, but it has
also been proven to be used to solve linear problems under harsh conditions [13].

pk+1 = pk + (
XTk .W.Xk + μk�k

)−1
.XTk .W.

(
y − i−k

)
(7)

Bayesian Regularization (BR). BR is used as a training algorithm for ANN by
adding to the backpropagation-learning algorithm some regularization techniques,
in order to obtain a small error value and to have a training algorithm that converges
faster than the backpropagation algorithm [14].

ANN training with BR incorporates Bayes theorem [15]. The BR algorithm
requires the Hessian matrix of the objective function [16]. The objective function is
given by the Mean Squared Error (MSE) cost function and the regularization by the
sum of the weights squared (8) and (9):

F = αEW + βED (8)

EW =
l∑

k=1

m∑
i, j=1

(wi jk)
2 (9)

where EW is the squared sum of the weights, ED is the MSE cost function on the
input and target data and finally α and β are the parameters of the objective function.
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The weights of the ANN that follow a probability distribution are given in (10):

f (W |D, α, β, M)
exp(−(αEW+βED))

ZW (α)ZD(β)

exp(−F(w))

ZF (α, β)
(10)

where M is the used ANNmodel where: ZF (α, β) = ∫
exp(−F) dw; ZD(β) = 2π/β

β = 1/σ 2; ZW (α) = ∫
exp(−αEW )dw.

Scaled Conjugate Gradient (SCG). This algorithm is a derivation of the Conjugate
Gradient Learning (CG) algorithm class [17], to train ANNs. Training with the CG
provides more robust convergence than the GD [18]. The SCG uses the same CG
strategy, but the search direction and step size are chosen efficiently using information
from the second-order approximation [19], represented by (11):

E(w + y) ≈ E ′(w) + E ′(w)T + 1

2
yT E ′′(w)y (11)

where E(w) is a global function depending on all the weights and biases attached to
the neural network, E ′(w) represent the gradient and E ′′(w) represent the Hessian
matrix. The quadratic approximation of E in a neighborhood of a point w is given
by Eq. (12):

Eqw(y) = E ′(w) + E ′(w)T + 1

2
yT E ′′(w)y (12)

To determine the minimums of Eqw, we use Eq. (13):

E ′
qw(y) = E ′′(w)y + E ′(w) = 0 (13)

5 Configuration of the Proposed Approach

In order to evaluate each training algorithm cited above in the previous section
and to summarize the efficiency of models based mainly on those algorithms and
the proposed ANN architecture, a procedure is followed to achieve the objective
of this work following six steps. The procedure is starting by defining the main
problem, collecting data, analyzing problem and data, validating and evaluating the
created model, and ending by testing the model under several conditions to prove
his capability to predict the best results. In fact, the proposed approach is tested to
predict the best duty cycle in the purpose of reaching the MPPT of the chosen PV
panel.
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Fig. 4 Proposed ANN Architecture

5.1 Proposed ANN Architecture

In this Article, the created ANN Model is based on MLP architecture of the feed-
forward ANN of three layers of nodes, including input layer with 2 features repre-
senting the current and the voltage of the used PV panel, hidden layer, and output
layer with 1 feature representing duty cycle as shown in Fig. 4. In fact, all layers
are fully connected continuously using weights, with no backward connection and
non-adjacent layers. In addition, all layers are using non-linear functions to convert
data into a mathematical form. Furthermore, the model is trained using supervised
learning with a technique called backpropagation that allows the model to change the
values of weights at each iteration to evaluate the variation and reach the minimum
of the objective function, generally the Mean Square Error (MSE). As well, this
supervised learning is based on algorithms cited in the previous section.

5.2 Proposed PV System

The proposed system is tested under Standard Test condition (STC) (T = 25°, Ir =
1000 W/m2) and it consists of the aforementioned PV panel, boost converter, MPPT
system, and simple load to evaluate the performance of each algorithm. In addition,
the different results are simulated byMATLAB-Simulink software as shown in Fig. 5.

Dataset is collected from a simulation of the maximum performance of the used
PV module (1STH-215-P) with an architecture consisting of a series of 5 modules
of the same type linked in parallel and it contains 36,301 examples for training the
ANN model.
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Fig. 5 The proposed PV system

6 Results and Discussion

6.1 Simulation Results of the Proposed ANN Model

In this paper, a comparison between four algorithms (GD, LM, BR and SCG) is
discussed to choose the best configuration for the ANN model. Parameters such as
regression, MSE, Gradient, Momentum parameters, and validation are often used to
determine the performance accuracy of any algorithm for a dataset. In addition to
that, the regression represents the efficiency of the prediction and it is evaluated by
the error that is calculated at the output of the target. To train the ANN model, we
choose to separate the dataset set into 3 Phases: 70% Training, 15% Validation, and
15% test.

The performance of each algorithm is evaluated based on the number of neurons,
training algorithms, and the MSE fitness function. The results of this simulation are
presented in Table 1 (Fig. 6).

After training the ANN model with the different algorithms and according to
several selection criteria of learning parameters,we cannotice that the algorithm (BR)
has a very high precision (99.999%) using 30 neurons in a hidden layer. However,
we can notice on the basis of the comparison between results obtained by BR with
the other algorithms, that LM and SCG algorithms present some good results as
(99.996%) for the LM that shows a faster convergence towards the optimum using
just a small number of neurons as indicated, and (99.840%) for the SCG. In contrast,
the GD algorithm shows its inability to converge to the optimum solution. Figure 6
representsmore clearly the variationof theMSEfitness curveof the best configuration
obtained whether in training, validation, or test phases. In fact, the best validation
performance has reached 2.0254 e−06 in 500 iterations as shown in below.
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Table 1 Simulation results of each training algorithm

Training algorithm Neurons number Iterations number MSE Accuracy (%)

Gradient descent (GD) 5
10
15
20
25
30

10
10
10
10
10
10

104.9085
146.7447
2.2893 e+03
125.2027
585.4966
878.9677

−1.030
−1.450
−22.880
−1.240
−5.840
−8.780

Bayesian regularization
(BR)

5
10
15
20
25
30

500
500
500
500
500
500

4.5671 e−05
3.3839 e−05
2.0920 e−04
3.7644 e−05
1.7124 e−05
2.6545 e−06

99.995
99.996
99.979
99.996
99.998
99.999

Levenberg–Marquardt
(LM)

5
10
15
20
25
30

500
500
500
500
500
500

5.9904 e−04
9.5012 e−05
3.1084 e−05
3.1428 e−05
3.6324 e−05
7.7499 e−05

99.940
99.990
99.996
99.996
99.996
99.992

Scaled conjugate gradient
(SCG)

5
10
15
20
25
30

374
362
500
364
500
479

0.0076
0.0049
0.0021
0.0054
0.0016
0.0077

99.240
99.510
99.790
99.460
99.840
99.230

Fig. 6 Best Performance for the BR Algorithm (30 neurons)
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Fig. 7 Efficiency of the proposed ANN model to track the MPP

6.2 Efficiency of the ANN Model to Track the MPP

For any MPPT algorithm, tracking efficiency and tracking time are very important
to get the most benefit from the PV system. Tracking efficiency is the ratio between
the maximum power tracked by the algorithm and the maximum power of the PV
configuration. From the results represented in Fig. 7, it is shown that the best obtained
configuration of ANNmodel has reached 99.97% of the maximum power of the used
PV panel.

7 Conclusion

In this research, we have chosen to integrate the theory of AI for the objective of
increasing the efficiency of PV solar panels. As a result, the performance of the
proposed ANN model shows that the major complications of classic algorithms are
resolved by implementing an intelligent systemwith high precision that decreases the
oscillations and gives almost the maximum efficiency as shown in the results. In fact,
this comparison between training algorithms has shown that BR algorithm converges
better toward the optimum with an error equal to 2.6545 e−06 in the training phase
compared to the other algorithms, and it has proven his ability to predict the best
duty cycle to reach the MPP.
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Development of an MPPT Control Based
on Fuzzy Logic for a Photovoltaic System

S. Mountassir, S. Sarih, and M. Tajer

Abstract Today, the connection of electricity production systems from renewable
sources is more than ever a necessity as the technologies used in this type of conver-
sion are more and more accessible and at more competitive prices. These techniques
have been optimized over the years either by optimizing photovoltaic cells, heat
transfer liquids or asynchronous generators for example, or once again, by opti-
mizing tracking control algorithms or power electronic components integrated into
inverters. In this paper, the FLC strategy is directly integrated in theMPPT to control
the DC-DC boost converter and MATLAB Simulink tool is intended for the simu-
lation. The FLC demonstrates good performance and better waveform and response
in varying environmental conditions.

Keywords P&O · Fuzzy logic · Boost converter · FLC·MPPT · PV system ·
Matlab/simulink

1 Introduction

The techniques and strategies of control of the stages of inverters to optimize the
outputwaveformhavebecomemore andmorewidespread in theworld and especially,
given the new directives of the codes of electrical networks which put conditions for
access to high, medium, and low voltage electrical energy distribution networks.

These conditions limit and regulate the technical parameters of the various elec-
trical quantities to guarantee an injection of the energy produced in the best condi-
tions of use and without disturbing the quality offered by the distributors to the end
customers and thus to prevent momentary interruptions of the supply, voltage dips
control, harmonics in the network and flickers.
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The contribution of this paper lies in the direct integration of an improved fuzzy
logic command into the MPPT process [1, 2]. All simulations are performed using
MATLAB/SIMULINK software.

In the present document, we propose a developed Fuzzy logic-based control to
achieve the maximum power point tracking. The paper is structured as follows: the
first part explains a simplifiedmodel of the PV systemwith aDC-DCboost converter,
the second part describes the FLC strategy, and gives an analysis of the simulation
results.

2 Block Diagram of a Photovoltaic System

The block diagram of theMPPT control of a system for producing photovoltaic elec-
tricity is composed of the photovoltaic panel module, the DC-DC boost converter,
the MPPT controller, and the load to be powered. The output voltage of the Photo-
voltaic panel supplies the DC boost converter according to which a direct load is
connected. Measurements of panel voltage and/or current are introduced to the input
MPPT controller, then the MPPT algorithm [3]. The following figure illustrates the
system’s block diagram (Fig. 1).

Fig. 1 Block scheme of a photovoltaic system
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3 Photovoltaic Panel Model

Considered photovoltaic block consists of an array of photovoltaic (PV) modules.
Thematrix is made up of parallel strings of modules, each string comprisingmodules
connected in series.

The Photovoltaic system object of our simulation is a five-parameter model using
an IL current source (current generated by solar irradiation), a diode, a series resistor
Rs and a shunt resistor Rsh to characterize the dependent features of the module
illumination and temperature [3] (Fig. 2).

The equivalent diagram is as follows:
The equation of the solar PV is given as below:

I = IL − IRsh − Id (1)

I = IL − IRsh − Ise
(
q(V+Rs I )

akT

)
−1

(2)

I = IL −
(
V + Rs I

Rsh

)
− Ise

(
q(V+Rs I )

akT

)
−1

(3)

where

a diode ideality factor
T temperature
Is reverse saturation current
q electric charge.

The simulation subject of this paper is based on an ascending adjustment of the
irradiation from 600 to 1000 W/m2, and a fixed temperature of 25 °C, for an MPPT
based on the fuzzy logic algorithm.

Fig. 2 A photovoltaic
panel’s circuit model
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Fig. 3 Power profile as a function of voltage for variable solar irradiation

In a second step, a downward adjustment of the irradiation from1000 to 600W/m2,
and a fixed temperature of 25 °C, was carried out for the MPPT based also on the
fuzzy logic algorithm.

The opposite case was also tested for the same MPPT control blocks, namely,
continual solar irradiation at 1000W/m2 and the stepwise variation of the temperature
from 25 to 50 °C ascending and likewise descending.

The fuzzy logic loop diagram was optimized for this application.
The following graph depicts the power profile as a function of voltage (Fig. 3)

[4].
The following graph represents the current’s profile as a function of voltage

(Fig. 4).
The characteristic curves of the case of fixed solar exposure and a temperature

variation of the PV are given below and the variations are given in steps to allow
characterization of the dynamic behavior of the system.

The characteristic of the power according to the voltage is typically given by
(Fig. 5).

The following graph (Fig. 6) represents the current’s characteristic as a function
of voltage.

Fig. 4 Current as a function of voltage profile for variable solar irradiation
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Fig. 5 Power characteristic as a function of voltage for a variable temperature

Fig. 6 Current as a function of voltage profile for a variable temperature

The characteristic curves are typical and make it possible to optimize the various
strategies used and to refine and tune the settings [5].

4 Boost Converter

The boost converter circuit employed in this simulation is a simple DC-DC power
converter, with a high-frequency switch and a diode, operating in an asynchronous
mode which raises the voltage from its input to the output.

The circuit diagram is represented in the illustration in Fig. 7.
Where “Vin” is the voltage of the PV panel, and the command signal is generated

by the MPPT module.
The transfer function of the boost converter in continuous conduction mode

configuration is:

Vout

Vin
= 1

1− α
(4)

where α is the duty cycle.
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Fig. 7 Boost converter circuit

The command signals drive the gate of the power switch (MOSFET).

5 Mppt Based on Fuzzy Logic

In overpower point tracking systems, fuzzy logic-based control has been utilized.
This control has the advantage of being a robust control that does not require an
accurate understanding of the mathematical model of the system [6].

This command has been modified to work with nonlinear systems [7]. It operates
in three blocks:

1. Fuzzification,
2. Inference
3. Defuzzification.

Where the fuzzification block permits the conversion of physical input variables
into fuzzy sets. [8–10].

Figure 8 the diagram of the fuzzy logic used in this paper
In this paper, we have considered two inputs:

Input 1: = dP

dV

Fig. 8 Diagram of the fuzzy logic used
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Input 2 : = de

dt

They are defined as follows:

e = dP

dV
= P(k) − P(k − 1)

V (k) − V (k − 1)
(5)

de = e(k) − e(k − 1) (6)

The fuzzy sets are as follows:

N negative,
Z zero,
P positive.

For the Defuzzification, we have considered the centroid method over the
Mamdani inference [11].

In our simulation, we have considered for the inputs and outputs, triangular
membership functions so as not to make the equivalent system more complex and to
decrease the running time (Fig. 9).

In the next step, while defining the membership rules, we construct
logical relationships between the inputs and outputs. Then we make a table
of rules (Table 1).

The rules foundation is shown in the table below (9 rules) set for the fuzzy logic
mechanism considered:

6 Simulation Results and Discussion

The simulation was performed based on the FLC mentioned above, with a temper-
ature set point fixed at 25 °C, and a solar irradiation set point in steps of 600–
1000 W/m2, and the opposite case by fixing the temperature at 25 °C and applying
solar irradiation set point of 1000–600W/m2 to verify the system’s stability in various
scenarios and be able to compare behavior in various setups [4] (Figs. 10, 11, 12 and
13).

The general parameters are given in Table 2.
The simulation results are given by the curves below.

• First case

The first case treated is an unchanging temperature of 25 °C and an irradiation
incremented from 600 to 1000 W/m2.

The above illustration represents the response of the MPPT based on the FLC
algorithm, the response based on the algorithm using fuzzy logic is given in red. The
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Fig. 9 a Membership functions plots for the variable: e, b membership functions plots for the
variable: de, c membership functions plots for the variable α
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Table 1 Table of the output of the fuzzy controller α

de

N Z P

e N N N Z
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Fig. 10 The evolution of output powers for irradiation varying from 600 to 1000 W/m2

behavior using fuzzy logic has fewer ripples and allows better response speed to the
system than other strategies.

• Second case

The second case treated is a constant temperature of 25 °C and solar irradiation
decremented from 1000 to 600 W/m2:

• Third case

The third case treated is a constant solar irradiation of 1000W/m2, and a temperature
decreasing from 50 to 25 °C.

Figure 12 represents the response based on the algorithm using fuzzy logic.
The behavior using fuzzy logic has fewer ripples and allows quicker response to
the system. It also demonstrates the effect of increasing temperature parameters
regarding the power produced.
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Fig. 11 The evolution of output powers for irradiation varying from 1000 to 600 W / m2
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Fig. 12 The evolution of output powers for a temperature varying from 50 to 25 °C
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Fig.13 The evolution of output powers for a temperature varying from 25 to 50 °C

Table 2 Table of parameters PV power 250 W

Vpm 31 V

ISC 8.55 A

C 2 µF

L 0.05 mH

Switching frequency 10 kHz

• Fourth case

The fourth case treated is a fixed solar irradiation of 1000 W/m2, and a temperature
incremented from 25 to 50 °C.

Figure 13 represents the response based on the algorithm using fuzzy logic. The
behavior using fuzzy logic has fewer ripples and allows an agile response to the
system.

Fuzzy logic, therefore, makes it possible to gain in terms of the speed of
convergence of the system and the quality of the signal [12, 13].

7 Conclusion

In conclusion, the stability of the whole system is determined by its behavior
regarding the parameters change, which is demonstrated in the figures above. This
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approach shows that the behavior of the system with an MPPT control based on
fuzzy logic remains better than other classic strategies like P&O and INC and espe-
cially for variation of the temperature of the panel and the solar irradiation. The
fuzzy logic control strategy, even with a minimum number of rules, is characterized
by an improvement for different requests and makes it possible to gain in speed of
convergence towards the optimum power curve and waveform quality.
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Artificial Intelligence for Forecasting
the Photovoltaic Energy Production

Azeddine El-Hammouchi, Mohammed Bouafia, Nabil El Akchioui,
and Amine El Fathi

Abstract Incoming solar energy projections are becoming increasingly relevant
because of the significant increase in solar energy generation. The management and
operation of photovoltaic solar power plants with energy storage systems necessi-
tates accurate production forecasts, in particular, the ability to predict the amount of
energy produced in a given time interval, as well as the occurrence of intermittence
that necessitates the use of energy stored in batteries or a conventional emergency
source. This paper provides a method for estimating photovoltaic power using artifi-
cial neural networks, namely long short-term memory (LSTM). In the realm of deep
learning, LSTM is an artificial recurrent neural network design. To discover the best
answer, LSTM neural networks may learn from both present and prior information.
Furthermore, LSTM cells may learn which data needs to be read, saved, and wiped
from memory. Because of these properties, LSTM networks are ideal for projecting
photovoltaic energy generation. We picked the Python programming language to
program our LSTM neural network since it is particularly powerful for situations
that demand a huge database. Our LSTM network had only one input and output
at first. The power history is the input, and the expected power is the output. Then
we added two additional inputs: irradiation and temperature. In this scenario, our
network has three inputs and one output, which is the expected power. Both of these
networks have demonstrated good forecasting performance, with the second having
a higher precision.

Keywords Artificial intelligence · Neural networks · Recurrent neural networks ·
LSTM neural networks

1 Introduction

Today, energy production in general and electricity production, in particular, is
considered to be representative indicator of a country’s economic development.
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Making energy production planning essential to ensure long-term electricity
supply [1]. Unlike traditional energy sources, the production of photovoltaic energy
cannot be exactly planned, as the amount of energy produced partly renewable
sources depend heavily on external factors such as weather conditions [2].

There are two main methods for the prediction of photovoltaic energy: The first
option is to model the photovoltaic system using analytical equations. The majority
of efforts are usually focused on establishing accurate irradiance projections, as this
is the most important component in energy generation. The physical or parametric
method is the name given to this procedure [3, 4]. The second strategy, on the other
hand, is to use statistical and machine learning algorithms to directly forecast the
output photovoltaic power [5, 6].

The prediction of photovoltaic energy generation by artificial intelligence, specif-
ically artificial neural networks implemented in the Python programming language,
will be of interest in this research.Most artificial intelligence-based predictionmodels
take into account a variety of variables that determine the amount of energy produced.
These data are used to estimate output power up to a specific time horizon by reducing
prediction error (that is, the difference between the predicted value and the actual
value) [2].

2 Neural Networks

Themost extensively utilizedmachine learning approaches in solar energy prediction
are artificial neural networks. They are based on the way biological neurons work,
in which a set of neurons is connected to form a neural network. The learning phase
determines the ultimate value of the numerical weights assigned to the synapses
between neurons [7, 8].

The learning system of the human brain is assimilated by an artificial neural
network. With less computational effort, it can find a relationship between inputs
and outputs for linear and nonlinear systems. This set of tools has proven to be
effective in a wide range of scenarios and with a big number of inputs. There are
numerous topologies to choose from [9].

An artificial neural network is made up of neurons, which are simple processing
units connected by a large number of weighted links. The knowledge is saved, and
signals or information can pass through.

In order to produce predictions, artificial neural networks require a database that
represents the network input values. In order to estimate future values at the network’s
output, these input numbers are subjected to mathematical calculations [10].
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Fig. 1 Architecture of
feedforward artificial neural
network

2.1 Feedforward Neural Networks

An artificial neural network is a feedforward if it allows signals to flow in only one
direction: from inputs to outputs without backtracking. In other words, the output
values never jump back to the inputs because there is no backpropagation (loops).
The graph of a feedforward artificial neural network is then acyclic (Fig. 1).

2.2 Recurrent Neural Networks

Recurrent artificial neural networks, unlike feedforward artificial neural networks,
can send signals in both directions by incorporating loops. These networks become
cyclical as a result. Because the presence of cycles has a significant impact on the
network’s learning capacity and performance, this sort of artificial neural network
is more powerful than feedforward neural networks. Recurrent neural networks can
handle a wide range of input data sizes. As a result, these are neural networks that
propagate impulses in both directions. [11] (Fig. 2).

Recurrent artificial neural networks are dynamic, and their state evolves over time
until they reach a stable state. They stay in balance until the input changes and a new
equilibrium is established [12].

Recent research has focused on demonstrating the effectiveness of recurrent artifi-
cial neural networks in modeling nonlinear dynamical systems. Furthermore, even in
the presence of measurement noise, recurrent artificial neural networks may produce
long-range predictions and offer greater flexibility in filtering out noisy inputs [13].
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Fig. 2 Architecture of
recurrent artificial neural
network

2.3 LSTM Neural Networks

LSTM networks are special recurrent neural networks. They are proposed by Sepp
Hochreiter and Jürgen Schmidhuber in 1997 [14]. A recurrent neural network is a
neural network with recurring connections between neurons. This allows it to learn
current and previous information in order to find a better solution [14].

However, when two cells of the recurrent neural network are far apart from each
other, it is difficult to obtain useful information due to the problems of disappearance
and explosion of the gradient [14]. The solution to this is special neurons called
LSTM memory cells [14]. LSTMs are capable of storing useful information over
an arbitrary period of time [15]. In addition, LSTM cells have the ability to learn
what data is to be read, stored and erased from memory by adjusting three different
control gates, namely: f (t) forget gate (to erase unnecessary data), input gate i(t)
(entry gate to add new information) and output gate o(t) (exit gate which gives the
state of the cell in a moment) as shown in the following figure. LSTM networks can
model temporal changes in data and improve forecast results. They are often widely
used to predict numerical values such as photovoltaic power (Fig. 3).

An LSTM network has the ability to remove or add information about the state
of the cell, carefully regulated by structures called gates. The gates in an LSTM

Fig. 3 Structure of a long
short-term memory cell
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Fig. 4 Forget gate

network are analog in the form of a sigmoid, which means they range from 0 to 1.
Being analog allows them to backpropagate with them.

a. Forget Gate

This gate determines whether information should be kept or discarded: the previous
hidden state’s information is concatenated with the input data. The numbers between
0 and 1 are then normalized using a sigmoid function. If the sigmoid’s output is close
to 0, the information must be forgotten, if it is close to 1, the information must be
memorized (Fig. 4).

The forget gate’s output is given by:

f = σ(WF[h(t − 1), X(t)] + bf (1)

b. Input Gate

This gate’s job is to extract information from the already available data. As seen
in the following diagram, two functions, the sigmoid function and the hyperbolic
tangent function, are applied in parallel (Fig. 5).

The Sigmoid function will then return a vector with a point near 0 indicating that
the coordinate in the concatenated vector’s equivalent location is unimportant. A
coordinate that is near to 1 will, on the other hand, be considered significant.

The output of the sigmoid function is given by the equation below:

Fig. 5 Input gate
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Fig. 6 Cell state

i(t) = σ(Wi [h(t − 1), X(t)] + bi (2)

To avoid overloading the computer with calculations, the tanh will simply
normalize (overwrite) the values between -1 and 1. The tanh layer generates a vector
of new candidate values C t, that can be used to update the state.

C t = tanh(WC ∗ [
ht−1, xt

] + bC (3)

As a result, the product of the two functions will allow you to maintain only the
most important data, with the rest being nearly replaced by 0.

c. Cell State

The state of the cell, represented by the horizontal line running across the top of the
diagram in the diagram below, is the key to LSTM networks. With only a fewmodest
linear interactions, the cell’s state follows the whole chain. It is quite simple for data
to pass throughout the chain without being altered (Fig. 6).

We discuss the cell’s status beforemoving on to the last gate (output gate), because
the value calculated here is employed there.

The state of the cell may be computed very easily using the forget gate and the
input gate: first, we multiply the output with the former state of the cell coordinate
by coordinate. This permits you to forget about some data from the prior state that
isn’t relevant to the new prediction. Then we combine everything (coordinate by
coordinate) with the output of the input gate, allowing us to record in the cell’s state
what the LSTM network thought meaningful (among the inputs and the previous
hidden state).

The condition of the cell is determined by:

Ct = ft∗Ct−1 + it∗Ct (4)

d. Output Gate

The output gate of an LSTM determines what will be the next hidden state, which
contains information about previous network entries and is used for predictions
(Fig. 7).
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Fig. 7 Output gate

The hyperbolic tangent normalizes the cell’s new state, which was determined
between −1 and 1 shortly before. The vector formed by concatenating the current
entry with the previous hidden state, on the other hand, is passed through a sigmoid
function whose goal is to determine which information to keep (close to 0 means that
we forget, and close to 1 that we will keep this coordinate of the state of the cell).

h(t) = o(t) ∗ tanh(c(t)) (5)

o(t) = σ(Wo[h(t − 1), X(t)] + bo (6)

3 Performance Evaluation

There are two parameters that can be used to assess the efficacy of artificial neural
networks in predicting photovoltaic energy generation.

• The Mean Squared Error (MSE)

The arithmetic mean of the squares of the differences between the forecast and the
actual value is used to calculate this factor. The RMSE factor is calculated as follows:

MSE = 1

N

N∑

i=1

(Ai − Fi )
2 (7)

• The Root Mean Squared Error

The mean square error (RMSE) is another approach to evaluating predictive quality.
The RMSE can be calculated using the equation below:

RMSE = √
MSE (8)
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4 Forecasting of Photovoltaic Energy Production Using
LSTM Neural Network

We detailed the LSTM neural networks in the preceding section by detailing all of
the network’s components and functionalities.

Now, we’ll use this technique to forecast photovoltaic energy production.
The implementation of our forecast for the production of photovoltaic power can

be reflected in Fig. 8.

• Data Set

We require historical solar power and meteorological data to develop an efficient
LSTM neural network model that allows the LSTM network to run and train in order
to extract fresh photovoltaic power values that represent the expected power.

The history of power data and meteorological data was obtained from a
photovoltaic plant located in Morocco in the city of Assa Zag.

Power (in kW), irradiance (in W/m2), and temperature (°C) data from this plant
were collected with a 5 min step from January 7, 2015 to April 30, 2015.

• Forecasting by the History of Photovoltaic Power

We’ll start by forecasting PV power based solely on historical power values. The
outcomes are depicted in Fig. 9.

Fig. 8 Forecast flowchart
Start 

Import the required libraries

Import training data

Creation of the LSTM network layers

Extract predicted values

Denormalize predicted values

View predicted values with actual values

Evaluate performance

End
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Fig. 9 Forecasting using one input

The MSE and RMSE factors of the forecast based on historical power data are as
follows:

MSE = 17312.223 (9)

RMSE = 131.578 (10)

Our model’s performance evaluation factors are relatively low. Furthermore, the
difference between the prediction and actual values is modest, indicating that our
LSTM model is effective for this type of forecasting.

Additional variables, such as meteorological data, could be added to increase the
quality of our forecast as much as possible.

• Prediction by Historical Power and Irradiance

We will now add the irradiance values to the LSTM neural network’s inputs in order
to increase accuracy. Figure 10 depicts the results achieved.

The following are the performance factors:

MSE = 358.299 (11)

RMSE = 19.629 (12)
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Fig. 10 Forecasting using two inputs

In comparison to the previous scenario, it is apparent that accuracy has become
more crucial and errors have been reduced.

• Forecast by Historical Power, Irradiance and Temperature

Finally, the temperature values were added to the network’s input. Figure 11 depicts
the outcomes that we have obtained:

In this scenario, the forecast’s MSE and RMSE factors are:

MSE = 333.673 (13)

RMSE = 18.266 (14)

Adding another representative variable (temperature) to our forecast improved its
accuracy. As a result, it is obvious that combining meteorological data with power
history data improves forecast accuracy.

• Comparison of Results and Discussion

In our work, we used the Python programming language to develop our LSTMneural
network to predict the photovoltaic power generation of the city of Assa Zag.

At first, we tried to create an ideal network architecture in order to obtain good
forecasting results. After several tests, we found that the most ideal LSTM network
for our situation consisted of four hidden layers, each with fifty neurons. Table 1
displays the results we discovered.



Artificial Intelligence for Forecasting … 57

Fig. 11 Forecasting using three inputs

Table 1 MSE and RMSE
performance factors based on
the number of forecast entries

One input Two inputs Three inputs

MSE 17,312.223 358.299 333.673

RMSE 131.578 19.629 18.266

The inclusion of several factors definitely aids our LSTM neural network in
improving prediction accuracy and minimizing the error between real and expected
power, as evidenced by the three forecasts we’ve made. Furthermore, the accuracy
of prediction is greatly influenced by the quality of training and test data.

5 Conclusion

The objective of this work is the prediction of the production of photovoltaic energy
using artificial intelligence including neural networks of the LSTM type and based
on the energy produced in the past as well as meteorological data.

First, we predicted the power based on historical photovoltaic power values. And,
in order to improve this forecast, we’ve included meteorological data, which has
proven to be quite useful in enhancing the forecast’s quality and accuracy.
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Diagnosis and Classification
of Photovoltaic Panel Defects Based
on a Hybrid Intelligent Method

Saliha Sebbane, Noamane Ncir, and Nabil El Akchioui

Abstract To enhance the efficiency of the energy generated by a photovoltaic system
(PV), a control andmonitoring systemmust be included in the PV system to guarantee
that faults are recognized instantly. With the appearance of artificial intelligence-
based methods, including machine learning (K-nearest neighbor (k-NN), Decision
Tree (DT), Support Vector Machine (SVM), and Artificial Neural Network (ANN)).
And through the evaluation of these methods in the classification of photovoltaic
faults, the results show that the ANN performs better than other machine learning
approaches on the classification of solar field defects. However, due to the artificial
neural network’s slow learning phase convergence, this article proposes a hybrid
diagnostic method based on particle swarm optimization and the neural network
(PSO-ANN) to improve the accuracy and the convergence speed of an ANN. To
compare the performance of ANNswith the PSO-ANNmethod, the solar generator’s
current Ipv and voltage Vpv characteristics are used as identification parameters.

Keywords Photovoltaic system · Fault classification · Artificial intelligence (AI) ·
Artificial neural network (ANN) · Particle swarm optimization (PSO)

1 Introduction

To ensure a sustainable source of energy, Morocco has adopted a national strategy on
renewable energies to reduce the use of fossil fuels. The strategy includes increasing
solar energy potential to 5000 MWc in 2030 [1].
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This policy was accompanied by the intense use of photovoltaic systems (PV)
at the national level because of its many advantages. However, PV installations are
sudden from time to time failures resulting in a decrease in the electricity produced,
which is why a lot of research is devoted to developing diagnostic techniques for PV
fields to guarantee reliable And efficient power output.

The diagnostic methods are divided into two categories, the first category contains
conventional methods described in literature and industry [2–5], and the second
category contains methods based on artificial intelligence (AI) [6]. The research
results prove that the artificial neural network (ANN) is the best solution to overcome
the limitations of traditional methods and other machine learning methods in the
accuracy of detection and identification of defects [7]. However, there is a problem
during the use of ANNs to detect and classify faults, such as the slow convergence
in the learning phase, which requires performance optimization of ANN.

In this study, the artificial neural network was optimized using a metaheuristic
algorithm, to improve diagnostic accuracy and minimize learning time. It is a hybrid
diagnostic method based on particle swarm optimization (PSO) and neural network
(PSO-ANN). In this article, the first part presents the studied PV field defects, the
second and third parts are about the details of the ANN and PSO methods, and
the fourth part deals with the combination between the ANN and the PSO method.
Finally, the results obtained by ANN are discussed and compared with those of
PSO-ANN.

2 Defects of a Photovoltaic Field

A change in the operating conditions of the PV array indicates implicitly that a fault
has occurred. This fault can be divided into three categories [8]: physical faults can be
a cracking or degradation of photovoltaic modules, such as corrosion and oxidation,
the second category are electrical faults which are: open-circuit, short-circuit, and
environmental faults include shading and dirt caused by accumulated dust, bird drops
and snow.

In this article, the classification is done on three faults which are: partial shading
fault, short-circuit fault, and open-circuit fault, as long as these three faults commonly
appear and occur in the PV field.

2.1 Partial Shading

Partial shading is the act of obstructing solar radiation from reaching a part of the
photovoltaic module contained in a PV field.While a part of the photovoltaic module
is exposed to partial shading, and the other part is fully exposed to solar radiation, the
output current of the photovoltaic generator is reduced, which leads to the reduction
of the total power produced by the PV field.
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2.2 Short-Circuit Fault

The short-circuit fault produced in a PV field is mainly due to the infiltration of water
in the modules, bad wiring between the module and the inverter, or the aging of the
PV modules, due to the functioning in long-term of PV system [9].

When a PV module is short-circuited, the voltage is zero. The current in the
field becomes equal to the maximum current produced by the modules, and the
short-circuited path carries the excess current.

2.3 Open-Circuit Fault

An open-circuit fault occurs due to a break in the connection wires between the PV
cells. This type of fault is usually caused by the poor quality of the connections
between PV cells, through the manufacturing process, especially when one of these
high resistance connections occurs.

3 Artificial Neural Network (ANN)

Artificial neural networks are mathematical models inspired by biology. As the basic
rebels of these networks, artificial neurons were originally the result of the hope
to model the function of biological neurons, which can be divided into three major
entities: a cell body, a set of dendrites, and an axon [10].

Perceptrons also called artificial neurons or formal neurons, are designed to
mimic the functions of biological neurons [11]. Therefore, there are several levels of
abstraction, depending on the precision of the modeling as shown in Fig. 1.

Fig. 1 Representation of an artificial neuron
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From the figure above, we will consider the following entities:

• Entries labeled in vector form, representing dendrites.
• A noted output representing the axon.
• The parameters noted w and b affect neuronal function.

This representation can be modeled as an Eq. (1) that shows how to calculate the
output by multiplying the input by the weight then adding them to the bias. Finally,
the result of the summation goes through the transfer function f, which is generally
nonlinear.

ŷ = f (〈ω, x〉 + b) (1)

The growing complexity of the problem makes it very difficult to resolve. That is
why a single neuron cannot cope with complex problems. So the effective method
that allows solving such a problem is to assemble several perceptrons to obtain what
is called the multilayer perceptron (MLP), which is an early-acting ANN and can
be applied in several applications such as recognition of images, shapes or speech,
prediction, etc. [12].

MLP is suitable for fixed-size data, such as images, and can contain at least three
main layers, the input layer, the hidden layer, and the output layer. In other words,
information flows from the input layer to the output layer via the hidden layer to
decrease the error between the desired output and the measured one. This error is
calculated with Eq. (2).

J (a) = 1

2m

m∑

i=1

(
yi − ŷi

)2
(2)

4 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a stochastic optimization metaheuristic
proposed by Eberhart and Kennedy in 1995 [13]. PSO is an optimization algorithm
inspired by biologies such as the artificial neural network, genetic algorithms, or
ant colony algorithms. It simulates the social behavior and movement of animals
(insects, birds, and fish, etc.) in search of food [14].

In thismethod, the swarm is randomly initialized in the search space. Themembers
of the swarm move (according to Eqs. (3) and (4) [15], and interact with each other
to reach the best area of solution space. Each particle resides in a place in the search
space, then passes to the evaluation with a fitness function to know the quality of its
position.

V (t + 1) = V (t) + C1r1(Pb(t) − X((t)) + C2r2(Pg(t) − X(t)) (3)
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Fig. 2 Pseudo code of PSO algorithm

X(t + 1) = X(t) + V (t + 1) (4)

X the position of the particle in the search space;
V the velocity of the particle;
Pb the position of the best solution through which the particle has passed;
Pg the position of the best known solution of the whole swarm;
C1 and C2 acceleration coefficients;
r1 and r2 two random numbers in the interval [0,1].

The conventional algorithm of the PSO method begins with the initialization of
the initial population (N), position, and velocity of movement. The particles move
in each iteration using Eqs. (3) and (4), and the fitness function of each particle in
the swarm is calculated to indicate the best position of the whole population (Pg).

After the evaluation of the fitness function value, Pb and Pg are updated, this
procedure is repeated until the stop criterion is reached. The pseudo-code of the PSO
is cited in Fig. 2 [16].

5 PSO-ANN

5.1 Design of the PSO-ANN Hybrid Method

ANNs are characterized by the efficiency of detection and diagnosis of almost all
faults affecting the PV field [17]. ANN effectiveness refers to the value of weights
and biases, but when using the ANN-based diagnostic model, convergence is slow
in the training step.

This study proposes a hybrid diagnostic method based on particle swarm opti-
mization and artificial neural network (PSO-ANN). The goal of using PSO is to
optimize the ANN in terms of convergence and accuracy.
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Fig. 3 Flowchart of the PSO-ANN hybrid method

In the PSO-ANN model, each position contains the initial weights and biases,
weights and biases are optimized before the learning phase, then used to build the
network, and next optimized again in the training step by minimizing the objective
function. Figure 3 shows the flowchart of the PSO-ANN model.

5.2 Methodology

The methodology adopted in the present study is composed of two steps: the first
step involves collecting the data used to train the neural network, while the second
step determines the neural network structure used for defect classification. To collect
the data necessary for training the neural network, a PV field (4 modules in series, 4
in parallel) is simulated on MATLAB/Simulink, under standard test conditions, and
different fault conditions presented previously.

The data assembled in this process for fault identification are the current Ipv and
the voltage Vpv generated by the PV field, including 331,315 samples.
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Fig. 4 Schematic diagram of proposed PSO-ANN method to detect the state of PV Field

Concerning the neural network structure used in the diagnostic model, we used a
3-layer neural network, the input layer contains two neurons that receive the current
Ipv and the voltage Vpv, the hidden layer containing ten neurons, finally, the output
layer composed of four neurons, each one presents the state of the PV field, such as
a normal functioning or a type of fault (partial shading fault, short-circuit fault and
open circuit fault). Figure 4 shows the simulation model diagram used to identify the
state of the PV field.

5.3 Result and Discussion

In this article, we performed a neural network-based diagnostic model. The neural
network structure chosen in this work is the MLP with three layers. The latter
was trained first with four training algorithms, including Gradient Descent (GD),
Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate
Gradient (SCG), to determine which is the correct one, which gives the small error
compared to other algorithms. We have chosen the sigmoid tangent function as the
activation function to obtain the output results as probabilities between -1 and 1. The
objective function used in the diagnostic model and the mean squared error (MSE)
(shown in Eq. 2). The results of training the ANN with the four algorithms are given
in Table 1.

Table 1 The results of
training the neural network
with the four training
algorithms

Algorithm Iterations number Error (MSE) Accuracy (%)

GD 183 0.0945 90.55

LM 449 0.0010 99.89

BR 639 0.0013 99.87

SCG 957 0.0371 96.29
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We note fromTable 1 that the Levenberg–Marquardt (LM) algorithm shows better
accuracy in comparison with gradient descent (GD), Bayesian Regularization (BR),
and Scaled Conjugate Gradient (SCG). With the results cited in [18–20], we can also
observe that the LM algorithm offers better results in the diagnosis of faults in the
photovoltaic field.

The previous results will be taken into account to fix the learning algorithm, the
next step is the training of the neural network with PSO-ANN with Levenberg–
Marquardt (LM). The PSO parameter values are shown in Table 2.

The PSO-ANN model is trained with the same 331 315 samples collected in the
data collection process, where 70% of the data is designated for the learning stage
of the ANN, 15% is used in the validation step, while the remaining 15% is used in
the learning test step. The simulation result is shown in Fig. 5.

From the analysis of Fig. 5, we notice that the PSO algorithm plays a crucial role
in the performance optimization of ANN. With the PSO-ANN model, the learning
step is accomplished with less iteration (365) in comparison with the ANN model
(449), which means that the PSO-ANN converges faster than the ANN model. The

Table 2 The values of the important parameters of PSO

Parameters Symbol Value

Population N 25

Max iteration Tmax 100

Cognitive factor C1 1.5

Social factor C2 2.5

Fig. 5 The mean squared error of PSO-ANN model
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Table 3 The classification results of the PSO-ANN model

State of PV field Scenarios Predicted result

N PS SC OC

Partial shading (PS) Irradiation of the first
column = 800 W/m2

0.0199 1 −0.001 −0.001

Normal (N) Under standard test condition
Irradiance = 1000 W/m2

1 −0.037 0.005 −0.005

Short-circuit (SC) Two modules are
short-circuited

−0.0159 0.020 0.9966 −0.0013

Open-circuit (OC) Four modules are
disconnected

0.115 −0.106 −0.006 1

Open-circuit (OC) Six modules are
disconnected

0.030 0.146 0.046 0.7773

Short-circuit (SC) Only one module are
short-circuited

0.008 −0.010 1 0.000

Partial Shading (PS) Irradiation of the first line =
500 W/m2 and Irradiation of
three modules in the first
column = 500 W/m2

−0.0009 0.66 0.039 0.296

classification precision of the hybrid method reaches a value of 99.94% though the
model precision ANN reaches just 99.89%.

Reference [21] proposed ameta-heuristicmethod based on the PSO and the neural
network for diagnosing the photovoltaic field. The results of this reference and the
results obtained in our article prove that the diagnosticmodel obtained in our research
ismore precise and the training of themodel requires only two inputs and necessitates
fewer populations and fewer iterations for the parameters of the PSO algorithm.

The trained model based on PSO-ANN is tested under several states of the chosen
PV field, the states are assembled between the three defects and the case of normal
functioning. The results are shown in Table 3.

6 Conclusion

In this research, we have combined the metaheuristic optimization algorithm PSO
and the artificial neural network ANN. This combination aims to reduce the conver-
gence time of the artificial neural network and thus improve the accuracy of the
classification.

The proposed PSO-ANN model is trained with current Ipv and voltage Vpv.
These parameters are obtained by simulating the PV field using “Matlab Simulink”
in several cases. The results show that the PSO-ANNmodel achieves an accuracy of
99.94% in fewer iterations than the ANN-based diagnostic model.
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The diagnostic model based on the hybrid method was tested on a PV field under
several faults to determine its capacity. The results prove that the fault identification
is done correctly with good precision, which offers an accurate diagnostic model.
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New Reduced Form Approach
and an Efficient Analytical Model
for the Prediction of the Five Parameters
of PV Generators Under Non-STC
Conditions

Kawtar Tifidat and Noureddine Maouhoub

Abstract In this work, a new numerical method is presented to estimate the five
parameters’ values of the single-diodemodel of photovoltaic (PV)modules operating
under standard test conditions (STC). The prediction is done with high precision and
without using any approximations. The current method is based on the reduction
of the research space from five to two unknowns. The other three parameters are
calculated analytically using the twonumerically extracted parameters.Moreover, the
new approach is based only on the remarkable points under standard test conditions
available on the datasheet, so it does not require any kind ofmeasured current–voltage
characteristics of the PV panels. As the second stage, this paper introduces also a
new contribution to the transfer of the five parameters from STC to non-standard test
conditions (non-STC). In order to prove the effectiveness of the technic presented
in this work, the method was applied to a PV generator, for which it showed a high
accuracy compared with other introduced methods in the literature.

Keywords Photovoltaic module · Single-diode model · Reduced form ·Maximum
power point ·Module temperature · I-V characteristics · Parameter extraction

1 Introduction

The increasing implementation of photovoltaic systems makes the modeling of these
systems a great requirement, in order to be able to predict their performances and the
parameters influencing them. For this purpose, various equivalent circuits were used
in the literature to model a photovoltaic generator. But, thanks to its high simplicity-
precision ratio, the single-diode equivalent model of the five parameters (The photo-
generated current Iph, the reverse saturation Is, the series resistance Rs, the parallel
resistance Rp, and the ideality factor n) modeling the physical effects inside the PV
generator remains the most used [1–3].
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According to the literature, several methods have been utilized for the estimation
of the single-diode model’s five parameters allowing the prediction of the maximum
power that a PV generator can provide, under varying levels of illumination (E)
and temperature (T). Therefore, the used methods can be divided into three kinds
of parameters’ extraction. In the first group, we have the works using analytical
formulas, which rely on the values of the key-points available on the PV panel’s
datasheet [2–4]. In the second group, we find all numerical methods exploiting the
measured characteristics and trying to minimize the errors between the experimental
and calculated I–V curves [5–11]. As a third group, we cite the methods based on
the meta-heuristic algorithms corresponding to natural phenomena to estimate the
five parameters and predict the maximum power point [12, 13].

Villalva’s method [8] stay one of the most cited works in this area, it is based on
a three remarkable-points curve adjustment technique and uses an iterative process
to estimate the series resistance’s value. Therefore, it can be concluded that this
method ensures an accurate prediction only in the vicinity of the maximum power
point and not for the whole I–V curve. In addition, the iterative process may increase
the calculation cost as well. Unlike Villalva’s method which fixes the value of the
ideality factor in advance, Benahmida et al. [6] propose an iterativemethod for which
the calculation of this value is done using the available values of the three remarkable
points on the generator’s datasheet. The mean inconvenient of both methods is the
use of the iterative process that may increase the needed time for the identification,
and also the use of the error minimization only for the maximum power point which
can lead to the loss of accuracy for the estimation of the rest of the I–V curve.
Maouhoub [11] introduces an analytical approach based on the least-squares technic
for characterizing the PV panels. But this method necessitates the calculation of the
slope in the vicinity of the short-circuit point to calculate the value of Rs. Then,
the value of Rs will be very influenced by the precision of the measurement of this
slope. Nassar-eddine et al. [9] compare two different extraction methods, the first is
an analytical approach, and the second is iterative, also based on the minimization
of the absolute error only for the maximum power point.

With the aim of identifying PV generators’ parameters with high precision under
different weather conditions, a new numerical method is introduced in this work. The
extraction starts first by calculating the values of n and Rs solving a two nonlinear
equations’ system, instead using an iterative process which can increase the calcu-
lation time and lead to the loss of precision. The three values of the other remaining
parameters (Rp, Is, and Iph) are directly calculated using three analytical equations
which do not rely on any kind of approximations. Furthermore, in order to be able to
model a photovoltaic generator working at external conditions using its identification
already done for standard test conditions, a new contribution has been made in the
current paper.
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Fig. 1 Single-diode
electrical model of a solar
cell

2 Single-Diode Modelling

The current method uses the single-diode circuit shown in Fig. 1 as a basic model for
the identification. In this equivalent circuit, Iph is the photo-generated current, Is and
n are respectively the reverse saturation current and the ideality factor, of the diode
modeling the semi-conductor material that the solar cell contains, and Rp and Rs are
respectively the shunt resistance and the series resistance.

The equation linking the current between the two surfaces of the PV module to
its output voltage is given as a function of the five parameters as follow [2–9]:

I = Iph − Is

(
exp

(
V+ IRs

nC1

)
− 1

)
− V+ IRs

Rp
(1)

C1 = NsVth , where Ns is the number of cells connected in series, forming the
PV generator. Vth correspond to the thermal voltage giving by: Vth = KBT

q . KB is

the constant of Boltzmann equals to 1.38064852.10 − 23 J/K, and q is the electron
charge equals to 1. 60217646.10 − 19 C.

Using the LambertW function, the implicit Eq. (1) can have an analytical solution
given by the following formula [14, 15]:

I = Is + Iph
1+ RsGp

− Gp

1+ RsGp
V− nC1

Rs

×W

(
IsRs

nC1
(
1+ RsGp

)exp
(
V+ Rs

(
Is + Iph

)
nC1

(
1+ RsGp

)
))

(2)

where Gp = 1
Rp
.

3 Method’s Theory

With the aim of extracting the expressions that will allow the calculation of the five
parameters’ values exploiting the four values corresponding to the key-points of the
I-V curve at STC, the application of the Eq. (1) to the remarkable points will be
requested [3, 6, 9, 11]:
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• Short-circuit point (I = Isc, V = 0)

Isc + Is(Esc − 1) + Isc Rs

Rp
− Iph = 0 (3)

• Maximum power point (I = Imp, V = Vmp)

Imp − Iph + Is
(
Emp − 1

) + Vmp + ImpRs

Rp
= 0 (4)

• Open-circuit point (I = 0, V = Voc)

Iph = Is(Eoc − 1) + Voc

Rp
(5)

where:

Esc = exp

(
IscRs

nC1

)
,Emp = exp

(
Vmp + ImpRs

nC1

)
and Eoc = exp

(
Voc

nC1

)
(6)

The series resistance and the ideality factor’s estimation require two equations
containing just Rs and n as parameters to be determined. To this end, we use as a first
equation the expression giving the fill-factor FF as a function of the four parameters:
Rs, n, Is, and Rp, given by the following formula [16, 17]:

FF = I2mp

VocIsc

(
Rs + Rp

IsRp

nC1
Emp + 1

)
(7)

Otherwise, given that FF measures the I–V characteristic’s squareness, it is also
given as the ratio of the maximum power provided by a real PV generator to the
maximum power of an ideal generator, and it can be calculated also as:

FF = Vmp Imp

Voc Isc

To reduce the number of unknown parameters in the Eq. (7), we replace Iph in
Eq. (4) by its expression of the Eq. (5), and finally, we get the reverse saturation
current Is only as a function of the three parameters Rs, n, and Rp as:

Is =
Voc−Vmp−Imp Rs

Rp
− Imp

Emp − Eoc
(8)

To get rid of Is fromEq. (7), we replace (8) in (7), so that (7) becomes an expression
linking only the three parameters Rs, n, andRp fromwhichwe can get Rp as a function
of n and Rs:
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Rp = C2 − exp(C2) + 1
Imp

nC1
+ I2mp

(FFVoc−RsI2mp)
(1− exp(C2))

(9)

where:

C2 = Voc − Vmp − Imp Rs

nC1
(10)

Finally, to use the “fsolve” function of MATLAB, which solves nonlinear equa-
tions’ systems, Eq. (7) is considered as the first equation of the two equations’ system,
which will be used for the numerical extraction of n and Rs. The second equation
can be extracted by replacing Iph in Eq. (3) with its expression of the Eq. (5):

Isc − Is(Eoc − Esc) − Voc − Isc Rs

Rp
= 0 (11)

In which Is and Rp are given respectively in Eqs. (8) and (9) only as function of
n and Rs.

To guarantee the rapid convergence of the system’s resolution towards the accurate
solutions, the right choice of their initial guesses is necessary. To this end, the approx-
imate analytical expression of Rs proposed by Kumar et al. [3], and the formula of n
used by Nassar-eddine et al. [9] and Maouhoub [11], given in the system below, are
used for the initialization.

⎧⎪⎪⎨
⎪⎪⎩
n0 = Kv− Voc

TSTC

C1

(
Ki
Isc

− 3
TSTC

− Eg

KBT2STC

)

Rs0 = Vmp

Imp
− 2Vmp−Voc

(Isc−Imp)×ln
(
1− Imp

Isc

)
+ Imp

Isc−Imp

(12)

Ki (A/°C) and Kv (V/°C) are respectively the temperature coefficient of short-
circuit current, and the temperature coefficient of open-circuit voltage. Eg is the
band gap energy.

After the numerical prediction of the values of n and Rs, the values of Rp, Is, and
Iph are calculated respectively using the analytical Eqs. (9), (8), and (5).

4 Results and Discussion

To confirm the accuracy of the current reduced form, the photovoltaic generator
Kyocera KC200GT operating under STC (E= 1000W/m2 and T= 25 °C) is chosen
to apply the method [18]. The measured parameters from the I-V characteristics of
the KC200GT PV module working under STC are (Isc = 8.21A; Vmp = 26.89 V;
Imp = 7.66A; Voc = 33.07 V). As the first task, we calculate the five parameters of
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Table 1 Predicted parameters for the multi-crystalline KC200GT operating under STC

Villalva et al.
[8]

Maouhoub
[11]

Benahmida
et al. [6]

Nassar-Eddine
et al. [9]

New method

n 1.0772 1.0805 1.0805 1.0758 1.0982

Rs (�) 0.2280 0.1950 0.2229 0.3080 0.2364

Rp (�) 195.61 59.8480 186.15 193.04 296.73

Iph (A) 8.2201 8.3232 8.2203 8.2233 8.2170

Is (nA) 1.9753 2.1031 2.1186 2.1523 3.0451

NRMSE (%) 1.0646 1.6612 1.2052 7.4747 0.9954

the PV generator for STC. Then, we estimate its I-V characteristics for non-STC.
The precision of the method can be judged by using several statistical indicators.
For this work, we select the Normalized Root Mean Square Error (NRMSE), and the
absolute error (AE) [6, 11, 12, 17]:

NRMSE =
√

1
N × ∑N

i=1

(
Ii,Measured − Ii,Predicted

)2
1
N

∑N
i=1 Ii,Measured

(13)

AE = ∣∣Xi,Measured − Xi,Predicted

∣∣ (14)

where N represents the number of measured data points, and X symbolizes current
I or voltage V.

4.1 Results for KC200GT Under STC

Table 1 regroups the predicted values of the five parameters using the new method,
compared to four other selected methods from literature. The table contains as well
the values of the provided NRMSE for the multi-crystalline KC200GT by different
methods. Based on the results, it can be observed that the value of NRMSE supplied
by the new approach is the lowest compared to the other estimating technics.

4.2 Results for KC200GT Under Non-STC

In order to estimate the values of the five parameters in external conditions and then
calculate the I–V characteristics of the PV generator, equations below are employed
to make the transfer of Iph and Is from STC to Non-STC [6, 9, 11]:
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Iph(E,T) = (
Iph,STC + Ki(T− TSTC)

) × E

ESTC
(15)

Is(E,T) =
Iph(E,T) − Voc(E,T)

Rp(E,T)

exp
(

Voc(E,T)

NsVthn(E,T)

)
− 1

(16)

To extract the other three parameters, we use the expressions used by Petrone,
where it is assumed that the three parameters are independent of temperature vari-
ations. They only depend on irradiance levels, as the following equations show
[19]:

Rs(E,T) = Rs,STC

(
Isc,STCVoc(E,TSTC)

Voc,STCIsc(E,TSTC)

)
(17)

Rp(E,T) = Rp,STC

(
Isc,STCVoc(E,TSTC)

Voc,STCIsc(E,TSTC)

)
(18)

n(E,T) = nSTC

(
Voc(E,TSTC)

Voc,STC

)
(19)

where Isc (E,T) is given as [20]:

Isc(E,T) = Isc,STC ×
(

E

ESTC

)β

(1+ Ki(T− TSTC)) (20)

The use of all five equations requires as well a prior knowledge of short-circuit
current and open-circuit voltage values in the external conditions. For this purpose,
a modified expression of Voc is used to calculate the value of this parameter under
non-standard test conditions [2, 17].

Voc(E,T) = (
Voc,STC + Kv(T− TSTC)

) ×
(

E

ESTC

)α

(21)

To demonstrate the suggested model’s accuracy, it is compared to two additional
models from literature, which are listed below as:

• Model 1 [2, 6]:

Voc(E,T) = Voc,STC + Kv(T− TSTC) + NsnVth,STCln

(
E

ESTC

)
(22)

• Model 2 [2]:

Voc(E,T) = Voc,STC + Kv(T− TSTC) + γ(E− ESTC) (23)
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Table 2 Required parameters for switching to non-STC for the multi-crystalline Kyocera
KC200GT

Parameter α β γ Kv (V/°C) Ki (A/°C)

Value 0.04422 1.005 0.002467 −0.123 0.00318

Voc,STC is the open-circuit voltage at STC. α, β and γ are three adjustment
coefficients. Table 2 shows the values of the used coefficients for KC200GT.

Figure 2a presents the measured values of the open-circuit voltage and the calcu-
lated values using the introduced modified model and compares them to two other
models from the literature for the PV generator KC200GT working under 25 °C and
various levels of irradiance. As it is observed, when compared to other models, the
new model gives the highest accuracy. The thing that can also be seen from Fig. 2b,
which presents the absolute errors between the measured data points and the calcu-
lated ones using different models, where the new model gives the lowest values of
absolute error for the whole levels of irradiance.

Figure 3a presents measured I-V curves and the calculated ones based on the
predicted five parameters’ values at STC and using the transfer equations from STC
to non-STC. As it can be seen from Fig. 3b showing the calculated values of NRMSE
using the new model of Voc and the other two models of literature, the new method
provides the best accuracy giving the lowest values of NRMSE for all levels of
irradiance and which does not exceed 2.5% in the worst case (Fig. 3b). On the first
hand, Fig. 4a presents the predicted I-V curves using the current method as well as
the measured curves for the PV panel KC200GT under 1000 W/m2 and different
levels of temperature. On the other hand, Fig. 4b gives the values of NRMSE for
various levels of temperature and which do not exceed 3%.
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Fig. 2 a Measured and calculated open-circuit voltages using the three models for various levels
of irradiance. b The absolute errors corresponding
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Fig. 3 a Measured data and predicted I-V curves at different levels of irradiance. b Normalized
root mean square errors obtained using the three models of the open-circuit voltage
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Fig. 4 a Predicted I–V curves and measured data at various levels of temperature for the PV
generator Kyocera KC200GT. b The corresponding normalized root mean square errors

5 Conclusion

This paper proposes an accurate reduced form for estimating the values of the single-
diode model’s five parameters. The introduced method uses only the provided infor-
mation about the remarkable-points in the datasheet, and it does not rely on any
approximations or iterative processes. That makes the proposed method efficient,
simple, and fast. The approach has been tested for the multi-crystalline Kyocera
KC200GT and found to be the most accurate compared to the other selected methods
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from literature. In this paper, a new contribution to predict the values of the open-
circuit voltage for external conditions with high precision has been done as well.
Then, the I-V characteristics for non-STC are estimated.
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Parameter Prediction of Solar Cell’s
Double Diode Model Using Neural
Network

Fayrouz Dkhichi

Abstract In order to monitor the behavior of the solar cell, we tried to identify the
intrinsic structure of the double diode model of the solar cell for different values of
temperature and irradiance. In this context, we tried to predict the values of the seven
electrical parameters of solar cell according to the twometeorological factors byusing
a feedforward artificial neural network. This tool allows a dynamic prediction of the
seven parameters. To achieve our goal, we trained our network by the Levenberg–
Marquardt algorithm using learning data and we tested its ability of prediction by
a test data which are completely different. Therefore, our network determines the
seven parameters in an optimal way, such as it gives the appropriate value of each
electrical parameter for any value of temperature and irradiance. The obtained results
show how each parameter varies according to the two meteorological factors.

Keywords Solar cell · Artificial neural network · Seven intrinsic parameters ·
Optimization · Hidden neurons ·Metrological factors

1 Introduction

Several external factors such as temperature, sand storms, humidity, etc., influence
negatively the performances of a PhotoVoltaic (PV) generator over time [1]. The
performance degradation of the generator occurs at the basic structures which consti-
tute it, which are the solar cells. Hence the interest in studying the response of these
cells. To do this, the researchers proposed several mathematical and electrical models
[2–5].

These models present the intrinsic phenomena which govern the PN junction of
the solar cell. The obtained response which presents the intrinsic behavior strongly
depends on irradiance and temperature. In order to study the influence of these mete-
orological factors, we need a knowledge model that presents their relationship with
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solar cell behavior. However, in literature, there is not a direct mathematical equation
expressing the intrinsic behavior of solar cells with irradiance and temperature. The
absence of a knowledge model leads us to think about a black-box model like the
artificial neural network [6, 7].

From different solar cell’s models in the literature, we choose in this paper to
predict the seven parameters of the solar cell’s double diodes model [8]. Therefore,
we proposed a feedforward neural network based on several hidden neurons. The
inputs are defined by the irradiance and temperature and the outputs are presented by
the seven electrical parameters. These outputs should be found for different values of
temperature and irradiance. The learning of our network is ensured by Levenberg–
Marquardt algorithm.

2 Solar Cell’s Double Diode Model

The light photons absorbed and converted by a semiconductor to a photocurrent
Iph allows to shed light on the solar cell as a current generator. For this reason, the
current source is considered as the core of solar cell’s electric model. This source is
connected in parallel with two diodes (D1 and D2) instead of just one and a shunt
resistor Rsh [9].

The latter is considered to model the leaks caused by the imperfections of the
semiconductor material. On other hand, another resistor is put in series Rs to present
the leaks that occurred when electrons pass through the metal contacts [10] (Fig. 1).

In order to study and analyze closely the intrinsic behavior of a solar cell,modeling
the solar cell by a mathematical equation is essential [11]:

IPV = Iph − Is1

(
exp

(
VPV + Rs IPV

n1Vth

)
− 1

)

− Is2

(
exp

(
VPV + Rs IPV

n2Vth

)
− 1

)
− VPV + Rs IPV

Rsh
(1)

where

IPV Generated photovoltaic current,

VPV

IPVRs

D2D1 RshIph

Fig. 1 Equivalent electrical circuit of a solar cell based on two diodes
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VPV Generated photovoltaic voltage,
Vth Thermal voltage, Vth = AT/q,
Is1 and Is2 Saturation currents of the diode 1 and diode 2,
n1 and n2 Ideality factors of diode 1 and diode 2,
T Temperature in Kelvin,
A Boltzmann constant A = 1.38064852 × 10–23 m2 kg s−2 K−1,
q Electric load of the electron q = − 1.602 × 10−19 C.

A IPV value obtained from Eq. (1) corresponds to a specific value of Temperature
(T) and irradiance (G). Therefore, when T and/or G change, IPV also changes. This
impact of the meteorological factors on the IPV is explained by the influence of the
seven intrinsic parameters on the response of the solar cell.

3 Parameter Prediction for Different Values of G and T

The IPV (VPV) response is generated at the output of the solar cell for an accurate
value of temperature (T) and irradiance (G). When the two metrological factors
change, the seven values of electrical parameters Rs, Rsh, Iph, Is1, Is2, n1 and n2
change also. Which leads to the variation of the characteristic IPV (VPV). The aim
of this work is to predict the values of the seven intrinsic parameters for different
values of T and G. this prediction based on the mathematical equation Eq. (1) of the
cell seems limited. In order to ensure this identification, it is necessary to apply the
equation Eq. (1) several times, which requires time and memory space during the
several codes execution. Therefore, a knowledge model is not operational in our case
and we need to adopt a faster and more optimal model based on black box context.
We cite a frequently used model: Feedforward Artificial Neural Networks (ANN).

4 Artificial Neural Network for Parameter Prediction

4.1 Feedforward Artificial Neural Network Model

In order to predict Rs, Rsh, Iph, Is1, Is2, n1 and n2 parameters according to each
value of T and G, we have designed a very suitable neural network (Fig. 2).

where

i Index of output neurons,
j Index of hidden neurons,
m Index of inputs,
wij Weight connecting the hidden neurons to the output neurons,
wjm Weight connecting the input neurons to the hidden neurons,
bij Bias of the output layer’s neurons,
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Fig. 2 Architecture of neural network for parameter prediction

bjm Bias of the hidden layer’s neurons,
y Networks output.

A neural network is divided into layers: The hidden layer and the output layer.
Each layer contains a well-defined number of neurons, to mention 7 neurons in the
output layer which presents the seven electrical parameters. The number of neurons
in the hidden layer is determined after a further detailed study. The network has two
inputs which are the two metrological parameters T and G.

4.2 Learning Process

The network learning is provided by an optimization algorithm of an error function
Mean of Sum Squared Errors (MSSE) such as [12]:

MSSE = 1

N

N∑
j=1

[
Ns∑
i=1

[
(ycalculated(i, j)− ymeasured(i, j))

2
]]

(2)

N indicates the number of samples, j is the index of used target data, i is the index
of used output, ycalculated are the output values calculated by the network and ymeasured
are the target values of the outputs.

The learning process consists of adjusting the weights w of each layer by the
Levenberg–Marquardt algorithm, the learning process is represented by the diagram
in Fig. 3.

During each adjustment of allweights at each iteration during the iterative learning
process, a test phase is triggered. During this phase, another error function is used
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Fig. 3 Block diagram of ANN learning process

called MSSEtest, completely independent of that used in the learning phase. The
sample data forming the test set is different from that constituting the training set,
in order to ensure that the adjusted w parameters are capable of responding to any
sample data.

5 Results and Discussion

In order to train our network efficiently, we used 680 samples of inputs and of outputs.
This set is divided into two groups of samples, the first one consists of 70%of samples
which present the training set, the second one which is the test set contains 30% of
samples [13].

5.1 Impact of the Number of Hidden Neurons
on the Network Response

To deduce the configuration of the hidden layer of the neural network of identification
of the seven electrical parameters, we tried different numbers of hidden neurons and
we concluded the one that corresponds to the minimum value of MSSEtest, obtained
for ten successive executions (Fig. 4).

The hidden layer should include 23 hidden neurons. This number allows the
neural network the best performance in parameter identification of the seven electrical
parameters.
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Fig. 4 Evolution of the mean of sum squared errors of the test according to the number of hidden
neurons in the identification network of the seven electrical parameters

5.2 Network Behavior During Training

Always by ensuring the learning of the network by the back-propagation algorithm
based on Levenberg–Marquardt method, we present in Figs. 5 and 6 the evolution of
the learning process of the identification network of the seven electrical parameters
as well as the evolution of the process of testing its capacity for generalization.

The training stop is done at iteration 563 by cross-validation using data from the
test set. As shown in Fig. 6, just after iteration 563, the MSSEtest error begins to
increase more than six times and in multiple times (as marked by blue circles), thus
presenting an over-learning of the network.
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Fig. 5 Evolution of MSSE of learning and test occurred during training of the neural network
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Fig. 6 Behavior of the network with seven electrical parameters during over-learning

5.3 Evolution of the Seven Electrical Parameters According
to Temperature and Irradiance

In this section, we show through Figs. 7, 8, 9, 10, 11, 12 and 13 how the predicted
values by our feedforward artificial neural network match very well with the target
values of the Rs, Rsh, Iph, Is1, Is2, n1 and n2. Otherwise, these figures illustrate how
the temperature and/or the irradiance influence the value of each parameter.

The more the temperature increases, the more the value of the series resistance
Rs increases also (Fig. 7). Indeed, the metallic contacts and connections which
are located at the level of each cell, generate losses when the temperature rises
to considerable values.

Fig. 7 Impact of temperature and irradiance on the series resistance Rs
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Fig. 8 Impact of temperature and irradiance on the shunt resistance Rsh

Fig. 9 Impact of temperature and irradiance on the photocurrent Iph

Fig. 10 Impact of temperature and irradiance on the saturation current of diode 1 Is1

The ideal value of shunt resistance Rsh should tend to infinity. However, the
decrease in this resistance values indicates the increase of losses in the semiconductor
material. As shown in Fig. 8, Rsh decreases clearly when the values of irradiance rise.

As indicated by his name, the photocurrent Iph values rise with the photons which
are the irradiance, as shown in Fig. 9. This current is the first one generated when
the solar cell is illuminated.
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Fig. 11 Impact of temperature and irradiance on the saturation current of diode 2 Is2

Fig. 12 Impact of temperature and irradiance on the ideality factor of diode 1 n1

Fig. 13 Impact of temperature and irradiance on the ideality factor of diode 2 n2

The two parameters Is1 and Is2 are more influenced by temperature. these two
parameters present the saturation current of the twoPN junctions. The lattermodel the
intrinsic nature of the solar cell. in fact, these two currents depend to the movement
of the electrons at the level of each junction, whose temperature is the main factor
for the electron’s agitation.

Likewise, for the ideality factor of the two PN junctions (n1 and n2), the values
of these two parameters increase with increasing temperature.
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6 Conclusion

In this paper, we lead a dynamic identification of the seven electrical parameters
of the solar cell’s double diode model according to irradiance and temperature. We
choose as a prediction tool an adequate method: the artificial neural network. As
shown by the obtained results the artificial neural network allows to determine each
parameter from the seven parameters for each value of temperature and irradiance
such as it gives the appropriate value of each parameter even for different values of
the two metrological factors, which are not part of the learning and the test sets. This
quality of generalization qualifies the neural network as an optimal method based on
the black box principle.
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An Assessment of Line Voltage Stability
Indices to Select the Best Combination
for Voltage Stability Prediction

Rabiaa Gadal, Faissal Elmariami, Aziz Oukennou, Naima Agouzoul,
and Ali Tarraq

Abstract Power grids have undergone major structural changes in recent years and
are constantly expanding as countries develop. This leads to complex phenomena
and can cause network collapse. Therefore, there is an urgent need to continu-
ously monitor and control electrical grids using voltage stability preventionmethods,
namely voltage stability indices. The objective of thiswork is to evaluate and compare
different line indices considering their sensitivity to network disturbances. Choosing
the best combination of the twomost sensitive indices can be used to predict the point
of voltage collapse. This study is carried out on the two standard bus test networks
IEEE 5-bus and IEEE 14-bus. The results are validated using MATLAB software.

Keywords Blackout · FVSI · NCLVSI · NLSI · Lmn · LQP · Power flow ·
SFVSI · VSI · Voltage collapse · Voltage stability line indices

1 Introduction

The need for electrical energy is steadily rising over the world. As a result of this
circumstance, the reinforcement of electrical networks has become an inevitable
operation inorder tomaintain balance andmeet customer demands.To reach this goal,
additional power plants and transmission links must be built. However, technical,
economic, and demographic limitsmake this operation difficult, if not impossible, for
operators.As a result, the networks are reaching theirmaximum level of stability. This
explains why blackouts are more common around the world. Dozens of blackouts
have been registered in various countries over the last five years. The significant
examples are presented in Table 1.
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Table 1 A brief summary of the significant blackouts took place since 2017: their consequences
and causes

References Blackout Population
affected (Million)

Blackout causes

Technique Management Climate

[3–6] United States 2017 21 x x

Usruguay 2017 3.4 x x

United States 2017 7.6 x x

Sudan 2018 41.5 x x

Azerbaïdjan 2018 8 x

Brazil 2018 10 x

Canada 2018 600 miles x

Venezuela 2019 30 x

Sri Lanka 2020 21 x

Pakistan 2021 200 x

The analysis of the root causes was reported in [1] and led to grouping them into
three categories: Management-related causes, technical causes, and causes related
to climatic or other conditions. Furthermore, numerous phenomena are established
between the cause and the blackout, and we note mostly the voltage stability. To deal
with this predicament, researchers are focusing their efforts on developing methods
for controlling and predicting this phenomenon. There are several approaches avail-
able, including curve elaboration (P-V, Q-V, and P-Q), modal analysis, continuation
power flow method, and voltage stability indices. The latter is a practical tool for
monitoring and determining the areas of the power system that requires compensa-
tion. According to [2], they are grouped into three categories: global, bus and line
indices.

The line indices that aremost frequently observed in the literature are given special
consideration in this work. First, we will assess them to determine the sensitivity of
each index and then suggest a mixed form that responds to the various network
disruptions. All the evaluations will be carried out on two test networks: IEEE 5-bus
and IEEE 14-bus.

The remainder of this paper is organized as follows: Section two introduces a set of
line indices. The third portion focuses on assessing these indices. The new proposed
index NCLVSI is presented in section four. The fifth part ends with a summary.

2 Overview of Some Line Voltage Stability Indices

Line voltage stability indices play an important role in themonitoring of the electrical
network. They permit measuring the distance of the network operating point from
the collapse point, and identifying the most critical line, they are simple, easy to



An Assessment of Line Voltage Stability Indices to Select the Best … 95

Table 2 Recap of some line voltage stability indices

Ref Indicator/Formula Nature of
inputs

Number
of inputs

Assumption Critical
value

Controlled
power

[9] Lmn =
4 Qr X

(V s. sin(θ−δ))2

X, Q, V,
�, δ

5 – 1 Q

[10] FV SI = 4 Qr Z2

V s2X
Z, Q, V, X 4 Y = 0, δ = 0 1 Q

[11, 12] SFV SI =
4 Vr
V s (1− Vr

V s )

V 1 Y = 0, δ = 0 1 –

[13] LQP =
4 X
V s2

(Qr +
Ps2 X

V s2
)

X, P, Q, V 4 Y = 0, δ = 0 1 Q, P

[14] V SI = 4Qr R2+X2

X.V s2
Q, R, X,
V

4 Y = 0, δ = 0 1 Q

[15] NLSI =
4 Pr R+Qr X

V s2

P, R, Q,
X, V

5 Y = 0, δ = 0 1 Q, P

where Vr ,V s: Voltage magnitude of (Sending bus, receiving bus), Qr : Reactive power in receiving
bus, δ: Voltage angle, θ : Line angle, Z = R + j X : Line impedance,FV SI : Fast Voltage Stability
Index,SFV SI : Simplified Fast Voltage Stability Index, Lmn: Line Stability Index, LQP: Line
stability factor, V SI : Voltage Stability Indicator and NLSI : Novel Line Stability Index

implement and require a fairly short calculation time. Some of the available line
indices existing in the literature are summarized in Table 2.

Line indices have beenwidely used in the literature. As there is also a combination
proposal of these indices to obtain a new-found index. For example, in [7] a suggested
index is based on the average of three indices FVSI, LPQ, Lmn to benefit from the
advantages of each one. But this combination was not carried out regarding the
sensitivity of those indices towards active and reactive loads. Another combination
of the two indices Lmn and FVSI is proposed in [8], but this approach missed the
evaluation of the resulting index in terms of active load variation.

3 Assessment of Some Line Voltage Stability Indices

3.1 Selection of Test Network

Our evaluation is performed around two standard networks: IEEE 5-bus and IEEE
14-bus as shown in Figs. 1 and 2. The data for both systems is taken from [16, 17].
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Fig. 1 Test network for IEEE 5-bus [16]

Fig. 2 Test network for IEEE 14-bus [17]

3.2 Methodology for Evaluating Line Voltage Stability
Indices

The following process guides our examination: First, we insert the bus and line data
into Matlab. Then we run the power flow. After the calculation of the line indices,
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Fig. 3 Flowchart of the methodology

an increase of the reactive or active load is made. This procedure as shown in Fig. 3
is continued until the power flow ceases to converge (Fig. 3).

3.3 Results and Simulations

The evaluation is executed for the line (2–5) and the line (14–9) for the IEEE 5-bus
and IEEE 14-bus network respectively. For these same lines, the indices reported in
Table 2 are calculated and compared to each other according to the variation of the
active and reactive load.

Reactive load variation:

Figures 4 and 5 illustrate the evolution of indices as a function of reactive load
variation at two lines (2–5) and (14–9) for the IEEE 5 and IEEE 14-bus network
respectively.
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Fig. 4 Evolution of indices with variation of the reactive load for IEEE 5-bus network

Fig. 5 Evolution of indices with variation of the reactive load for IEEE 14-bus network
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As both Figs. 4 and 5 show, all indices undergo a significant variation according
to the increase of the reactive load. Indeed, it is clear from the two figures that the
Lmn and VSI indices have a high sensitivity towards the reactive load and take the
most critical values. Also, based on Fig. 4 VSI seems to be the most sensitive index
because it starts with a low value 0.04526 and reaches the critical value 0.965319 for
a reactive load of 1.126 pu. Another comparison of VSI and LQP indices shows that
the slope of VSI is higher than that of LQP. Therefore, VSI has proven its superiority
for reactive load monitoring.

Active load variation:

The simulations’ results of indices evolution as a function of active load variations,
at two lines (2–5) and (14–9) for the IEEE 5 and 14-bus networks respectively, are
shown in the following two Figs. 6 and 7.

The analysis of Figs. 6 and 7 allows to notice that VSI and Lmn indices have
an insignificant variation range which is very far from the critical value, as a result,
they have an insignificant sensitivity referred to the active load variation. However,
according to the 5-bus network, the SFVSI index has a wide range of variation; it
starts with a low value of 0.1105 and reaches a significant value of 0.93402 pu for a
maximum active load of 3.981 pu. Also, it should be noted that despite the significant
variation range of LQP compared to SFVSI as shown in Fig. 6, the LQP index shows
a nonlinear evolution and a slope lower than that of SFVSI. Therefore, we deduce
that SFVSI has a strong sensitivity towards the evolution of the active load.

Fig. 6 Indices evolution with variation of active load for IEEE 5-bus network
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Fig. 7 Indices evolution with variation of active load for IEEE 14-bus network

4 Novel Combined Line Voltage Stability Index (NCLVSI)

Given the evolution of indices according to the change in active and reactive load,
and based on the results of the previous simulation for the two networks IEEE 5 and
IEEE 14 bus. We can opt for a combination of two indices namely: SFVSI and VSI
to obtain a new index NCLVSI. This combination is based on the fact that the SFVSI
showed a strong sensitivity towards the evolution of the active load, and VSI proved
its superiority for monitoring the reactive load. The new index NCLVSI is presented
in the following form:

NCLVSI = Max(SFVSI,VSI) (1)

The evolution of the proposed index will be evaluated as a function of the change
in voltage and stability margin of two active and reactive loads. We represent in
Figs. 8 and 9 the power profiles established for 5 and 14 bus of IEEE 5- and IEEE
14-bus networks respectively.

The analysis of the obtained results allows us to raise the following points:

In the case of IEEE 5-bus network:

• In the first configuration where we saved a reactive load reserve (rqq) of 2.533 pu
and an active load reserve (rpp) of 3.386 pu, we noticed a low value of theNCLVSI
index of 0.1100, which is logical due to the fact that the maximum limit of the
two active and reactive loads (Maxp, Maxq) is 2.633 and 3.986 pu successively,
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Fig. 8 NCLVSI evaCn under load variation for IEEE 5- bus

Fig. 9 NCLVSI evaluation under load variation for IEEE 14-.bus

• After a significant reduction of the active load reserve, the index reached a
significant value of 0.8190,

• The index re-reached these low values when the reserves rpp and rqq approached
their maximum values,
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• The same observation is made for reduced values of both reserves while NCLVSI
became closer to 1,

• In the case of a value of 1.133 pu of reactive load reserve and 2.101 pu of active
load reserve, an average value of the NCLVSI index is recorded, which is normal
due to themaximumpower before voltage collapse. The same observation ismade
for the couple case (rqq = 1.624 pu, rpp = 2.221 pu).

In the case of IEEE 14-bus network:

• The NCLVSI index took low values for maximum reserves,
• The NCLVSI index took medium values for both reserves’ medium values,
• For low values of the reserves, NCLVSI took significant values close to 1.

Following the obtained results, we confirm the proper sensitivity of the proposed
index in the monitoring of the two active and reactive loads.

5 Conclusion

This study gave a comparative assessment of voltage stability line indices. It was
performed on IEEE 5- bus and 14-bus networks using MATLAB as a power flow
simulation tool. The simulations’ results led us to conclude that some indices are
sensitive to the reactive load while others are not. It is the similar case for the active
load. A Novel index (NCLVSI) to analyze the voltage stability in a power system
is proposed, this index is derived from a combination of two indices SFVSI and
VSI which have shown high sensitivity to active and reactive load respectively. The
novel index, also, proved to be more sensitive to disturbances for any type of change
in active and reactive load. Therefore, it could be considered as an alternative for
monitoring and predicting the proximity of a voltage collapse.
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An Intelligent Control of a Variable
Speed Wind Turbine Based on DFIG
for Maximum Power Capture

Aicha Bouzem , Othmane Bendaou , and Bousselham Samoudi

Abstract Due to the advancement of wind turbine industry technologies, the
variable-speed wind turbine (WT) coupled with a doubly fed induction generator
(DFIG) has attracted considerable interest due to its several potential advantages
over other wind turbine concepts. To contribute to this fast-growing development,
different wind systems control strategies are looking to become more intelligent
to operate the WT around its optimum operation with high security and reliability.
Practically, theWT’s efficiency can be achieved by extracting the maximum possible
amount of power from the wind. In this context, we are particularly interested in this
work to implement an intelligent control of a variable speed wind turbine based on
a DFIG using the intelligent artificial techniques, by combining an artificial neural
network Maximum Power Point Tracking (ANN-MPPT) and intelligent Indirect
vector control by stator field alignment (ANN-IFOC). The ANN-MPPT strategy
aims to extract a maximum of power from the wind to operate the WT around its
optimum operation independently of the system parameters, the aerodynamic char-
acteristics, and the wind speed measurement. While the intelligent IFOC uses ANN-
controllers to optimize the generator’s active and reactive powers. The efficiency of
the presented control system topology is confirmed by the simulation results acquired
usingMatlab/Simulink software; the obtained results are satisfactory and confirm the
ability of the suggested approach to maintaining the system operating at the desired
response.

Keywords Wind energy · Doubly fed induction generator DFIG · Maximum
power point tracking (MPPT) · Indirect field oriented control (IFOC) · Artificial
neural network (ANN)
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1 Introduction

The Wind Energy Conversion Systems play an important role as an alternative solu-
tion for energy generation due to many motivations, such as the absence of green-
house gas pollution, the unlimited availability of driving sources, and the absence of
hazardous waste [1].

Under trends of using wind energy sources, different control strategies for wind
power systems are seeking to become more efficient and more intelligent in order
to meet the future electricity demands and the huge distribution of it. The WT’s
efficiency can be increased by capturing themaximum available power from thewind
and operating the WT at its optimum operation under rapidly varying environmental
conditions, by implementing advanced control strategies [1, 2].

In this context, many Maximum Power Point Tracking (MPPT) approaches have
been proposed and applied, such asHill Climb Search (HCS), perturbation and obser-
vation (P&O), incremental conductance (IncCond) [2, 3]. In recent years, MPPT
seeks to be more powerful in order to overcome the many limitations of traditional
MPPT, such as the inaccurate wind speed measurement, the degradation of the aero-
dynamic properties of the aeroturbine with time, and the variation of the climatic
properties from one site to another.

Artificial intelligence techniques have demonstrated new solutions in indus-
trial processes due to their many benefits compared to conventional computational
systems, and especially, they have become a perfect solution for highly sensitive
control mechanisms and non-linear models, due to their ability to provide highly
accurate and faster responses [4, 5].

The current work presented in this paper intends to implement a proposed
Maximum Power Point Tracking (MPPT) approach based on artificial intelligent
techniques (Artificial Neural Network (ANN)) accompanied by an intelligent Indi-
rect field oriented control (ANNIFOC) to optimize the energy generated from aDFIG
coupled with a variable speed wind turbine and connected to the grid.

The ANN-MPPT strategy aims to capture maximum power under varying wind
speeds, independently of the systemparameters, the aerodynamic characteristics, and
the wind speed measurement. While the intelligent IFOC aims to control the gener-
ator’s active and reactive powers and avoid any disruption caused by characteristic
uncertainty, which can affect the quality of the supplied energy.

This work is presented as follows: Sect. 2 describes the model of our wind turbine
energy system and the conventional MPPT strategy. The suggested ANN-MPPT is
explained in Sect. 3. Section 4 includes the mathematical model of DFIG in the
d-q reference frame and the ANN-IFOC strategy. While Sect. 5 is reserved for the
presentation of simulation results obtained usingMatlab/Simulink, to prove the effec-
tiveness of the proposed control strategy to ensure the system’s optimal operation.
Finally, some conclusions are summarized in Sect. 6.
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2 Modeling of the Wind Turbine and the MPPT Strategy

2.1 Modeling of the Wind Turbine

The mechanical power extracted from the wind can be represented as follows [6]:

Paero = 1

2
CP(λ, β) ρ S v3 (1)

where, ρ is the air density, S is the turbine swept area, and v denotes the wind speed
(m/s).

The power coefficient CP(λ, β) (Fig. 1) measures the turbine’s aerodynamic effi-
ciency; which is affected by the size of the blade, the angle of the blade’s orientation
(β) and the speed ratio (λ) [7]:

Cp(λ, β) = 0.5176

(
116

λi
− 0.4β − 5

)
exp

(−21

λi

)
+ 0.0068λ (2)

where:

λi = 1

λ + 0.08β
− 0.035

β3 + 1
(3)

λ = �tR

v
(4)

The wind exerts a mechanical torque on the turbine shaft, which can be expressed
by the following equation:

Ct = Pt
�t

= 1

2
ρ π R3V 2 Cc(λ, β) (5)

where: Cc = Cp

λ
; �t = �m

G ; Cg = Ct
G .

Fig. 1 Power coefficient
Cp(λ, β)
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The turbine and mechanical rated speeds are denoted respectively by �t and �m ,
while G denotes the Gearbox ratio.

2.2 The Maximum Power Point Tracking Strategy (MPPT)

The optimumoperation of theWT is achieved by running the turbine at themaximum
aerodynamic power coefficient (C p,max), which corresponds to an optimum value of
λ and (λopt , βopt ), while λ is adjusted to its optimal value by controlling indirectly
the rotor speed.

According to (2), (3), and Fig. 1, the desired value ofCp_max = 0.48 of our system
is reached for λopt = 8.1, and β = 0.

�m,opt = G v λopt

R
(6)

By combining (4), (5), and (6) we obtain the expression ofCem_ref and Paero_max :

Cem_re f = π ρ R5Cp,max

2G3 λopt
3 �2

m,opt (7)

Paero_max = π

2
ρ R2

(
R �m,opt

G λopt

)2

Cp_max (8)

Generally, we can distinguish two main modes of MPPT [2–8]:

WithMechanical Velocity Regulation. This method requires wind speed measure-
ment using an anemometer or an array of anemometers and using PI regulators,
which increases the cost of the system. On the other hand, in practice, an accu-
rate wind speed measurement is difficult to reach, and an imprecise measurement
necessarily reduces the system’s reliability and degrades the extracted power. For
these reasons, most of the WT systems are currently controlled without mechanical
velocity regulation.

Without Mechanical Velocity Regulation. For this second control structure, it is
assumed that the wind speed variations are very low in steady state compared to the
wind system’s electrical time constants, which implies that the turbine’s acceleration
torque can be neglected.

In our study, we have adopted the second mode of MPPT (Fig. 2).
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MPPT
Strategy

Fig. 2 Block diagram of the wind turbine system with MPPT

3 Maximum Power Extraction by Artificial Neural
Networks ANN-MPPT

The ANN algorithms are inspired by the biological processes of the human brain.
His goal is to accomplish specified activities or functions based on a collection of
connected artificial neurons. The NNs take in data and train themselves to be able to
anticipate the outputs of a new set of similar types of data.

The following equations represent the expression of the output yk of a neuron k
[9]:

vk =
x=n∑
x=1

(Wki · xi + b) (9)

yk = f (vk) (10)

The ANNs are constructed from a number of layers (input layer, output layer, and
hidden layers). The neurons in the layers are connected by channels, and each of
these channels is assigned a value called a weight (Wki ), which is adjusted during
the training phase using a learning algorithm. The inputs (xi ) are multiplied to the
corresponding weights and summed with the bias (b) to generate output after passing
through a threshold function called the activation function (f ).

In our case, the training set (the input and target), used for forming the ANN for
MPPT [8], is obtained from the conventionalMPPT provided in Sect. 2 (Fig. 2) using
Matlab/Simulink. The net is implemented to determine the optimal electromagnetic
torque that requires the turbine to operate at its optimum operation whatever the wind
speed.

Figure 3 shows the regression curves for the ANN, which provide highly signifi-
cant information about the performance of the ANN training, validation, and testing,
based on the value of R and the distribution of the data along the adjustment line
(Fit). For our ANN, we show that R is equal to 1, which indicates that the ANN
has successfully trained up to 100%, and we also observe that all data points are
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Fig. 3 Regression curves for ANN-MPPT

aligned with the Fit line, confirming that the ANN has precisely comprehended the
relationship between the input and output data.

The ANN controller’s performance is assured by selecting the optimum number
of neurons and hidden layers through a series of tests. In our case, we reached the
best architecture by using one hidden layer containing 10 neurons.

4 Modeling and Intelligent Field Oriented Control
of the DFIG

The configuration of DFIG can be presented in d-q reference by the following
equations [10]:

• Stator and rotor voltages
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vsd = RsIsd + d

dt
∅sd − ωs∅sd

Vsq = RsIsq + d

dt
∅sq + ωs∅sq

Vrd = RrIrd + d

dt
∅rd − (ωs − ωr)∅rd

Vrq = RrIrq + d

dt
∅rq + (ωs − ωr)∅rq

(11)

• Stator and rotor flux

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅sd = LsIsd + LmIrd
∅sq = LsIsq + LmIrq
∅rd = LrIrd + LmIsd
∅rq = LrIrq + LmIsq

(12)

• Electromagnetic torque

Tem = Lm p

Ls

(∅sdIrq + ∅sqIrd
)

(13)

• The active and reactive stator powers

{
Ps = Vsd Isd + VsqIsq
Qs = Vsq Isd − VsdIsq

(14)

To control the electrical power generated by DFIG, we will control the exchange
of the active and reactive power between the DFIG stator and the grid, based on
indirect vector control, by aligning the stator flux with the d-axis (Fig. 4), accounting
for the coupling terms, and compensating for them with a two-loop system [4].

We have: ∅sd = ∅s, ∅sq = 0, and d
dt∅sd = 0.

The voltage equations of DFIG can be simplified as:

Fig. 4 Orientation of the
stator flux of the DFIG
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Fig. 5 Global block diagram of ANN-indirect field-oriented control technique

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vsd = 0

Vsq = Vs = ωs∅s

Vrd = RrIrd + Lr σ
d

dt
Ird − gωs σ Irq

Vrq = RrIrq + Lr σ
d

dt
Irq + gωs σ Ird + g

LmVs

Ls

(15)

With: σ = 1 − L2
m

LsLr
.

By replacing (12) and (15) in (14) the generator’s active and reactive powers can
express by:

⎧⎪⎪⎨
⎪⎪⎩
Ps = −LmVs

Ls
Irq

Qs = −LmVs

Ls
Ird + Lm∅s

Ls

(16)

By establishing the indirect vector strategy, the global block diagram of the
controlled system using ANN-PI can be established as shown in Fig. 5 [4].

For ANN-PI, we acquired the appropriate structure by taking one hidden layer
with 7 neurons, and specifying the Levenberg–Marquardt (LM) algorithm as the
backpropagation algorithm to train the networks.

5 Simulation Results and Interpretation

To model our system and simulate the results of the control presented in this paper,
we usedMATLAB/Simulink software (Fig. 6). The system operates in a closed loop,
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Fig. 6 Global block diagram of the proposed control

where the ANN-MPPT control block provides the reference power to the IFOC loop
for a DFIG of 10 kW.

The results shown in Fig. 7 are related to the ANN-MPPT strategy, which shows
that the proposedMPPT required the system tomaintain the power coefficient around
itsmaximumvalueCpmax = 0.48 (Fig. 7b).Moreover, the extractedmechanical power

Fig. 7 Simulation results of the ANN-MPPT
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Fig. 8 Active and reactive
power of the DFIG using
ANN-IFOC

(Fig. 7c) and the turbine rotational speeds (Fig. 7d) track their optimal values to
extract maximum power from the wind throughout the simulation time, andwhatever
the wind speed (Fig. 7a). Whereas the results of the intelligent IFOC illustrated in
Fig. 8 indicate that the generator’s active and reactive powers track perfectly their
optimal values, and the ANN controllers react rapidly to track the fast fluctuations
of the DFIG power, which demonstrates the efficiency of the suggested control to
maintain the WT system working at its optimum operation with accuracy and fast
response.

6 Conclusions

In this paper, an ANN MPPT regulator has been presented for maximizing the
produced energy of a wind turbine system. The advantages of this strategy are that it
is independent of the system characteristics and the wind speed measurement. This
proposed MPPT was tested on a wind turbine based on a DFIG generator, which is
controlled by an intelligent indirect vector control to track the optimal power point.

The obtained results confirm that the proposed strategy optimizes the wind energy
conversion system’s efficiency by maintaining it operating at the desired response.
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Potential and Challenges in Small Hydro
Power Projects in India

Alok Bora, Saurabh Awasthi, and Nafees Ahamed

Abstract The whole world is focusing and striving for clean, green, and renewable
energy sources tomeet the ever growing energydemandand reduce the environmental
impact due to excessive use of fossil fuels. Every country has to contribute in reducing
its over-dependence on non-renewable energy and switching to greener options to
stop and reverse the damages of ecological imbalance with urgency and sincerity.
India being the second most populous country and seventh largest in the world in
terms of the land area plays an important role in this. The Indian Himalayan Region
(IHR) is a hilly region blessed with many rivers and natural ascent making it ideal
for hydropower generation. This paper will discuss small hydropower potential and
challenges in India and give probable solutions onways to overcome these challenges
in order to utilize the maximum small hydro potential of the country. Also, it will
be discussed how small hydro (including mini, micro and pico) power can play a
major role in the generation of clean energy and reduce India’s over-dependence on
fossil fuels and in turn reducing her carbon footprint. The findings and results will
be helpful for other countries as well which have small hydro potential available.

Keywords Small hydropower · Micro hydropower · Pico hydropower ·
Renewable energy

1 Introduction

With an ever increasing population and never-ending demand for electricity, the
journey of India from a developing country to a developed superpower is constantly
getting delayed. To accomplish this, one of themost important things—if not themost
important—the country will have to achieve is energy sufficiency or in other words
state of energy surplus. The reason this is of paramount importance is that energy lies
at the very foundation of all other industry or infrastructure projects. Add to this the
automobile industry, which is on the very cusp of technological change to go from
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petrol/diesel to electric in the coming years. This in combination with a multitude
of other factors is sure to cause an exponential rise in demand and consumption of
electrical energy not only in India but all over the world. As a result, to meet this
steep surge of energy demand, India will have to up its energy production, relying
mainly on renewable energy sources along with a robust and extensive transmission
and distribution system if it has to avoid the impending energy crisis and continue on
the growth trajectory. Energy consumption is directly proportional to the quality of
life of people in any country or specific region and is a universally accepted yardstick
to measure the same.

The over-dependence of our country on imported crude oil causes depletion of
foreign reserves, which could be used in a better way elsewhere. Pollution due to
the burning of fossil fuels and subsequent environmental imbalance is another major
concern associated with it. The only solution to this problem lies in developing clean
and renewable energy sources within the country which will go a long way in putting
India on the fast track of growth and development. For this to actually happen,
each state will have to pitch in by identifying and utilizing the renewable energy
resources it has been bestowed with, to the maximum. Almost every Indian state has
at least one or more combinations of renewable resources available comprising solar,
hydro, wind, tidal, etc. Some of these technologies may not be economically viable
at the moment but the ones with promise must be pursued aggressively. Although
a lot of development has taken place in the country in the last decade in the space
of renewable energy, under the Ministry of New and Renewable Energy (MNRE),
experts believe that we have barely scratched the surface. A huge amount of untapped
renewable energy is waiting to be harnessed. This paper will focus on tapping the
small hydropower (SHP) potential in India while also discussing the challenges in
its implementation and probable solutions.

There is no doubt that being a renewable energy source hydropower will play a
crucial role in contributing to energy generation in the future. International Energy
Association (IEA) has stated that hydropowerwill continue to become amajor energy
source among the various renewable energy sources in near future [1]. Hydropower is
widely considered as a leading renewable energy source and is gaining importance in
energy generation all over the world [2–4]. Currently, India ranks 5th in hydropower
generation after China, Brazil, United States of America and Canada [5]. Utilizing
small hydro potential to the maximum along with medium and large hydro potential
is the need of the hour and will go a long way in making India energy surplus.

2 Methodology

The methodology of this paper comprises of acquiring, comparing, and analyzing
data from various sources such as scientific literature presented in journals and
conferences, various reputed websites including websites of various ministries of
Government of India for authentic information on hydropower projects especially
small micro and pico hydropower plants. Also, visit to SHP plants to gather first-hand
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information by Engineers running such plants about the challenges being faced in
this sector. An extensive literature review is carried out on the said topic and on the
basis of collected data, possible solutions for specific problems in the SHP sector are
suggested which can be used as a reference for future SHP works by investors and
other interested people in this sector.

3 Classification of Hydro Power Plants

Hydro power plants are classified into large medium and small depending on their
capacity. Different countries have different parameters to categorize them. In India
their classification is done as follows:

1. Large hydro—>100.00 MW
2. Medium hydro—>25.00 to ≤100.00 MW
3. Small hydro*—>2.00 to ≤25.00 MW

– Mini hydro—>100.00 kW to ≤2.00 MW
– Micro hydro—>5.00 to ≤100.00 kW
– Pico hydro—≤5.00 kW.

*In general any hydropower project less than 25.00MW is broadly classified as small
hydro, therefore, mini, micro and pico are sub-categories of small hydro.

3.1 Formula of Power Generated from Hydro

The formula for hydropower generated is given as

P = ηρQgh (1)

where,

P power generated (W)
η dimensionless efficiency of the turbine (approx. 0.9)
ρ density of water (1000 kg/m3)
Q volumetric flow rate of water (m3/s)
g acceleration due to gravity (9.8 m/s2)
h height difference between inlet and outlet (m).

The above equation clearly shows that three out of thefiveparameters are constants
(η, ρ, g), in the given framework, which means that the power developed is directly
proportional to ‘Q’ and ‘h’ i.e. volumetric flow rate of water and height difference
between inlet and outlet.
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3.2 Advantages of SHP

As SHP is a renewable energy source, it has the obvious benefits of being clean,
sustainable, and has zero fuel cost compared to non-renewable energy sources like
fossil fuels. In addition to these benefits, it has several other advantages also, which
makes it among the best and most lucrative in non-renewable category.

The additional advantages of SHP are as follows [6]:

(1) High efficiency (70–90%) which is by far the best among all energy technolo-
gies.

(2) High Capacity Factor (typically 40–50%). Capacity factor is defined as ratio
of actual energy produced by an energy generating unit in a given time period,
to the hypothetical maximum possible (i.e. energy produced from continuous
operation at full rated power).

(3) High level of predictability, varying with annual rainfall patterns. Compared to
solar, and wind, flow and volume of rivers can be more accurately predicted.

(4) Slow rate of change i.e. the output power varies only gradually from day to
day and not from minute to minute as in the case of solar and wind.

(5) It is a long lasting and robust technology. SHP systems can be readily
engineered to last 50 years and more.

(6) Can go from stopped condition to full power in just a few minutes.
(7) Installation and commissioning for micro and pico power plants can be done

in a few weeks as compared to years in the case of large and medium hydro
power plants.

(8) In case of natural calamity like flood etc., the major components can be
dissembled and later assembled easily to protect them from getting damaged.

(9) Since SHPs likemicro and pico power plants are generally close to load centers,
therefore, extensive transmission and distribution network is not necessary in
such cases leading to savings in the amount of copper wire, poles, step-up and
step-down transformers, and other equipment used. Also, transmission and
distribution losses are reduced to a minimum since power does not have to be
transmitted over long distances.

4 India’s Energy Scenario and SHP Potential

In the past, India has always been an energy deficient country. Although energy
generation has always shown year-on-year growth and the percentage of deficiency
has decreased over time but the state of energy surplus has eluded the country until
now. The bulk of energy generation has been done by fossil fuels especially coal
due to its easy availability and low cost. But the last decade has shown tremendous
growth in the renewable energy sector and the deficiency has been reduced to an
all-time low.
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4.1 India’s Energy Scenario of Last 12 Years

Before we discuss SHP potential in Indian Himalayan Region (IHR), we have to
look at the overall picture of energy generation in the country to understand why it
is of upmost importance. Table 1 shows the Indian energy scenario from 2009–10 to
2020–21 [7].

With India being the second-most populous country in the world, its energy
requirement is also huge. Figure 1 shows the difference in energy requirement and
availability in India from 2009–10 to 2020–21 and Fig. 2 shows the difference in
peak demand and peak met in the same period.

Table 1 shows that the energy generation in the country has substantially increased
from 2009–10 to 2020–21. The energy deficit has been brought down from double
digits to decimal point, which is a commendable achievement. Also, the energy
production of the country is on the verge of becoming fully surplus in the coming
few years. The total installed capacity of India (as on 28/02/2021) as per CEA is
379,130 MW or 379.13 GW. The figure shows that in the past two Fiscal Years
(FY), the energy deficit has been around 0.5% and 0.4% respectively. Although it
is a small percentage and work done to bring it down to this level is commendable,
we also have to look at the dark side of this data. In a country with a population
of almost 1.4 billion, this deficiency means that there are still many villages with a
sizable population that does not have access to electricity even at this age. Moreover,
there are millions of other people in the country who do not have the luxury of

Table 1 Indian energy scenario from 2009–10 to 2020–21

Year Energy Peak

Requirement Availability Surplus
(+)/deficit (−)

Peak
demand

Peak
met

Surplus
(+)/deficit (−)

(MU) (MU) (MU) (%) (MW) (MW) (MW) (%)

2009–10 830,594 746,644 −83,950 −10.1 119,166 104,009 −15,157 −12.7

2010–11 861,591 788,355 −73,236 −8.5 122,287 110,256 −12,031 −9.8

2011–12 937,199 857,886 −79,313 −8.5 130,006 116,191 −13,815 −10.6

2012–13 995,557 908,652 −86,905 −8.7 135,453 123,294 −12,159 −9.0

2013–14 1,002,257 959,829 −42,428 −4.2 135,918 129,815 −6103 −4.5

2014–15 1,068,923 1,030,785 −38,138 −3.6 148,166 141,160 −7006 −4.7

2015–16 1,114,408 1,090,850 −23,558 −2.1 153,366 148,463 −4903 −3.2

2016–17 1,142,929 1,135,334 −7595 −0.7 159,542 156,934 −2608 −1.6

2017–18 1,213,326 1,204,697 −8629 −0.7 164,066 160,752 −3314 −2.0

2018–19 1,274,595 1,267,526 −7070 −0.6 177,022 175,528 −1494 −0.8

2019–20 1,291,010 1,284,444 −6566 −0.5 183,804 182,533 −1271 −0.7

2020–21a 1,155,130 1,150,891 −4239 −0.4 190,198 189,395 −802 −0.4

aUpto February 2021 (Provisional)
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Fig. 1 Shows the difference in energy requirement and availability in India from 2009–10 to 2020–
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Fig. 2 Shows the difference in peak demand and peak met India from 2009–10 to 2020–21

uninterrupted electricity supply, with constant load-shedding part of their already
hard life. This load-shedding sometimes extends up to 12 hours every day at some
places. Needless to say, this energy shortage is causing a major hindrance in many
an individual’s life and also the nation as a whole.

Going by the recent data (early 2021), the energy production currently is fluctu-
ating between being deficit marginally for the most part and going a modest surplus
occasionally. This modest energy surplus theory could be attributed to the fact that
the country has gone undermultiple lockdowns due to the COVID-19 pandemic from
March 2020 up tomid-2021, resulting in the closure of various industries, educational
institutions, commercial spaces, etc. This closure has caused an obvious reduction
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in demand and hence the surplus energy state may go back to deficit once the situa-
tion normalizes and demand goes back to its peak. Then there is also the perennial
problem of uneven energy distribution among cities and villages and various states.
For example, the North-Eastern states of India face a higher energy deficit than the
national average. This may be due to amultitude of factors but themain reasonwould
surely be transmission and distribution challenges due to the geographic location of
these states. In fact, it would not be wrong to say that the bigger problem plaguing
the country currently is not energy production but transmission and distribution. The
last mile delivery of electricity to every home is quite a challenge in a country as
geographically vast and diverse as India. With the current urgency and resolve of the
power sector, it is only amatter of time that this will be fully accomplished. However,
things need to move at a faster rate by ramping up energy generation especially by
renewable methods. This is due to the fact that a delay of each day is causing wastage
in the tune of hundreds and thousands of MWs of energy in the form of solar, hydro,
wind, etc. The sooner and more of these renewable energies are tapped, the better it
will be in the overall scheme of things. It is predicted by experts that by 2030, energy
consumption will double and the demand will be tripled.

4.2 India’s Current Installed Capacity

The energy generation in the country is done through four major categories
comprising of thermal, large hydro, nuclear, and renewable energy sources. Table 2
shows the installed capacity of India as of 28/02/2021 [7].

Table 2 clearly shows that more than 60% of total generation is still dependent
on thermal energy sources with coal alone contributing 53% of total generation.
Coal although cheap is the biggest environmental polluter and so its usage has to be
drastically reduced and substituted with green energy options. This will also be in

Table 2 Installed capacity of
India as on 28/02/2021

S. No. Fuel MW % of total

1. Total thermal 233,171 61.5

a. Coal 201,085 53.0

b. Lignite 6620 1.7

c. Gas 24,957 6.6

d. Diesel 510 0.1

2. Hydro (large) 46,209 12.2

3. Nuclear 6780 1.8

4. RES (MNRE)a 91,154 24.5

Total 379,130 100

aRES include SHP, biomass gasifier, biomass power, urban and
industrial waste power, solar and wind energy
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Fig. 3 Shows the share of
various fuels in total energy
production in India currently
(upto February 2021)

Total 
Thermal
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12%

Nuclear
2%
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24%

MW

line with India’s energy goals to boost its renewable power capacity to 175 GW by
2022 (Fig. 3).

4.3 SHP Potential of India

India is blessed with many rivers due to which the potential of hydropower is quite
substantial in the country. Table 3 shows SHP data of the top five states/UT [8].

The estimated potential of SHP in India is 21,133.65MW from 7133 sites located
in different states of the country [8]. The cumulative capacity target of 5000 MW

Table 3 SHP data of top-five state/UT as per annual report of MNRE, 2020–21

S.
No.

State/UT Total potential Total projects
installed (upto
2020–21)

Projects under
implementation

% utilization of
energy potential
(including
projects under
implementation)

Nos Total
capacity

Nos Total
capacity

Nos Total
capacity

1. Karnataka 618 3726.49 170 1280.73 3 13.00 34.71

2. Himachal
Pradesh

1049 3460.34 196 911.51 13 151.60 30.72

3. Arunachal
Pradesh

800 2064.92 156 131.11 9 6.05 6.64

4. Uttarakhand 442 1664.31 102 214.32 14 28.58 14.59

5. UT of
Jammu and
Kashmir

103 1311.79 19 146.34 6 31.90 13.58

Total of all
states and
UTs

7133 21,133.62 1134 4750.46 96 450.80 24.61
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for SHP by 2022 is well within reach as an aggregate capacity of 4750.46 MW has
been achieved by 31st December 2020 through 1134 SHP projects. In addition, 96
projects of aggregate capacity of 450.80 MW are at various stages of implementa-
tion. The overall target is to achieve grid-connected renewable energy power projects
of 175,000 MW or 175 GW by 2022. Four out of the top five in the list comprise
of states/Union Territories (UT) in IHR facing more or less common challenges in
terms of SHP implementation. The IHR region consists of 12 states/UTs comprising
of UT of Jammu and Kashmir and Laddakh and states of Himachal Pradesh, Uttarak-
hand, Sikkim, Arunachal Pradesh, Nagaland, Manipur, Tripura, Meghalaya, and
Assam. The IHR consists of many rivers and hilly regions which makes it ideal for
hydropower production. The actual utilization of SHP in India and particularly IHR
is still very low. To substantially increase this utilization percentage, the various stake
holders in SHP production will have to work together and remove the bottlenecks
which cause hindrance in the implementation of this clean and green technology.

4.4 SHP Potential in Indian Himalayan Region (IHR)

As discussed earlier, the hydropower developed depends mainly on volumetric flow
rate ofwater and height difference between inlet and outlet. IHR is abundantly blessed
with both these parameters in abundance. The region has dozens of rivers that are
ice-fed and flow all year round (high ‘Q’). Also, due to its geographic location, the
region boasts of natural hilly terrain and a steep accent (high ‘h’).

5 Challenges and Risks in SHP

With every energy source, there are certain benefits and risks associated. As of
now, there is no perfect or ideal energy source that can be practically harnessed to
provide clean, sustainable, and cheap electricity for years and decades to come on
a worldwide scale. Although continuous research and development is being done in
this sector by the top scientists of the whole world, we are still a few years away,
if not decades, to arrive at a possible energy solution. As said earlier, every energy
source whether renewable or non-renewable has pros and cons. SHP too has its fair
share of downsides. It is important to know the challenges and risks associated with
SHP and ways to minimize them before starting any project in this sector.

5.1 Identification of Risks

Any feature, be it benefit or risk can be subdivided into either tangible (quantitative) or
intangible (qualitative) features. Tangible features are those which can be expressed
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in costs and benefits i.e. in monetary terms. Conversely, intangible features are those
which cannot be readily valued in money, for example, environmental and socio-
economic risks.

The risks in hydropower projects, in general, can be broadly classified into seven
categories and then further subdivided into various risk factors. It is important to
mention that this is not a complete list but a selection of possible risks. The impor-
tance and emphasis of every kind of risk depend on the potential site, target group,
technology, and the stage for an implementation of a hydropower plant.

5.2 Classification of Risks in SHP

The major classes of risk in small hydropower projects are as follows [9]:

(1) Technical Risk: This risk comprises technical related aspects in the project such
asmachinery, breakdown, operation andmaintenance, aswell as the delay from
suppliers.

(2) Construction Risk: Construction of a dam is a huge capital investment project.
It includes the construction schedule and construction budget risk.

(3) Financial Risk: This risk plays a major role in the small hydropower project.
Financial resources, tax rate, and inflation risk come under this risk type. Finan-
cial resources can be subdivided into fund blockage and interest rate risk. The
exchange rate risk comes into play only when foreign investment is made,
which in the case of IHR, is negligible.

(4) Legal Risk: Obtaining the Legal clearances is one of the starting points in
SHP projects. It consists of getting clearances as per regulatory. Approvals
have to be taken at various levels and from different departments before actual
implementation can begin. Public private partnership and norms and rule and
regulation changes come under legal risks.

(5) Business Risk: This risk is associatedwith the situation in which the investor(s)
in SHP project run into financial difficulties and not able to generate profit or
live up to market expectations. The risk parameters under this category consist
of capital cost, electricity price, generation, and modeling techniques.

(6) Environmental Risk: Environmental risks are those factors that may affect the
environment or climate of the particular region. These include changes in river
flow, precipitation, and flora and fauna.

(7) Socio-Economic Risk: This risk directly or indirectly affects the general popu-
lation of the region where the SHP project is set up. This risk needs to be mini-
mized to increase the safety andwell-being of the local community. The various
risks under this category are relocation and rehabilitation, loss of employment,
affecting tourist places, noise pollution, changes in water quality, and soil
erosion.
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5.3 Additional Risks in IHR

In addition to above-mentioned risks, there are several additional risks in SHP which
are present in IHR states of India. They are as follows:

(a) Risk of natural hazards:

• Being located in an active seismic zone region, the region is prone to high-
intensity earth quakes (especially the state of Uttarakhand). To overcome
this problem, a detailed study is required to identify the sites which are low
risk and ideal for SHP.

• Floods are also a major concern that can damage not just small and medium
but large hydropower plants as well. Floods can cause due to multiple
reasons. Major reasons of flood include heavy rainfall, cloud bursts and
breaking of glacier or its part.

(b) Damage to the electro-mechanical components of the SHP plant especially
the turbine due to silt: Silt is the fine particles of sand that are present in the
river. This silt continuously comes in contact with the blades of the turbine and
corrodes it gradually over time. This results in a frequent change of turbine
and other components which escalates the cost of the plant.

(c) Inaccessibility of project location due to lack of proper motorable roads
increases the cost and delays the project substantially. This is because all the
heavy equipment has to be transported on foot to the site which is often in a
remote location. This may take weeks or even months. This not only delays
the project but also puts the equipment at risk during transportation.

(d) Lack of skilled man power that is willing to work in remote locations.
(e) Due to the above reasons and high-risk factors, the interest rate on loans as well

as insurance premiums on such projects are on the higher side. This financial
roadblock comes across as a major deterrent among the private investors of
SHP plants in the IHR states of India.

5.4 Major Natural Disasters in IHR in Recent Times

In the last decade, 2 major disasters have struck IHR region especially the state of
Uttarakhand, and 4 more in the bordering countries of Nepal and China which also
come in Himalayan region [10]. The chronology of these disasters is as follows:

(1) Kedarnath disaster, Uttarakhand, India, 2013

On 16th June, 2013, a flash flood of unseen magnitude hit Kedarnath, Uttarakhand,
India. This flash flood occurred due to a cloudburst which caused the collapse of the
bank (moraine wall) of the Chorabari glacier lake in Kedarnath [10]. This caused a
chain reaction of landslide and huge debris flow causing widespread destruction in
Uttarakhand. There was a huge loss of life and property as more than 5000 people
lost their lives.
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(2) Chamoli floods, Uttarakhand, India, 2021

On 7th February 2021, a huge chunk of rock (with snow and ice) detached from
RontigadMountain and fell into Rontigad River [10–12]. This rock was about 550 m
wide and had an estimated volume of 25 million m3 and fell from an elevation of
about 5600 m. This apparently caused huge mass of landslide debris to propagate
along the steep slope downstream and pushing Rontigad and Rishiganaga rivers
towards Dhauliganga which resulted in hyper-concentration and partly granular flow.
The water level at downstream reaches (e.g. at Alakhnanda) exceeded the extreme
level which evinces the signature of flash flood. The exact cause for this disaster is
still under investigation but based on available information and analysis, the most
convincing conclusion is that it was a landslide of a huge rock mass with thick
ice/snow and their pulverization leading to debris flow-induced flash flood.

5.5 Effect of Chamoli Disaster on Hydro Power Projects

Due to the Chamoli disaster, Rishiganga hydropower project (13.2MW, operational)
in Rishiganga River near Raini village and Tapovan Vishnugad hydropower project
(520 MW, under construction in Dhauliganga River) were severely damaged. Also,
some other projects, namely Vishnuprayag HPP (400 MW, under operation) and
Vishnugad Pipalkoti HPP (444 MW, under construction) were affected (e.g. closed)
by the disaster.

Due to this disaster, the 520 MW Tapovan-Vishnugad hydel project has suffered
an estimated loss of |1500 crore and it is unlikely that it will meet its scheduled
commissioning target in 2023. Also, huge amount of silt is deposited in the project
site which will take a considerable amount of time to be desilt by the authorities. The
Geological Survey of India has found 13 of 486 glacial lakes in Uttarakhand to be
vulnerable through remote sensing and multispectral data [10].

5.6 List of Disasters in Neighboring Countries of Himalayan
Region

Apart from the above two major disasters in Uttarakhand, India, a few other major
disasters occurred in the neighboring countries of Nepal and China in the last decade
[10]. All these disaster hit territories share geographical similarities and therefore
offer insights into damage done and precautionary measures that should be taken to
minimize the losses.

1. Seti River disaster, Nepal, 2012
2. Jure landslide, Nepal, 2014
3. Glacial Lake Outburst Flood (GLOF), China and Nepal, 2016
4. Landslide (rockfall) hazard in Upper Barun Valley, Nepal, 2017.
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The frequent natural disasters in the Himalayan region points to the fact that the
region is highly unpredictable and hence vulnerable to such threats. As a result, the
hydropower advancements in the region get seriously hampered and investors are
apprehensive to put their money on such risky projects.

6 Result and Discussion

6.1 Possible Solutions to the SHP Problems in India

Supplying electricity to remote villages (which are still devoid of electricity) through
a state/national grid is economically not viable. This is due to the fact that these
remote villages are many and far away from each other and each village has a small
population of approximately a few dozens to a few hundred. Due to this, heavy
transmission and distribution costs to each of these villages catering to only a few
hundred people in every village at most are difficult to justify from financial point of
view. The solution to this problem is a decentralized generation and distribution of
electricity in such remote places. Electricity can be centrally generated with available
resources here and then be distributed with a local grid to every household in the
area. In IHR states, SHPs can be the source of generation. This is called as captive
power plant i.e. electricity generation facilitymanaged by an industrial or commercial
energy user for their energy consumption. The benefit of such captive power plants
is that they can operate off-grid but if the need arises due to excess generation,
can be connected to the grid to avoid wastage of generated energy. Hence, where
ever possible, captive users of SHP should be promoted. Central financial assistance
and guidance are available for people who are willing to set up such captive power
plants. Such schemes should be advertised on a mass scale to encourage people to
become captive users. In this age, when it comes to electricity, people in such remote
places should become pro-active and self-reliant and not just fully depend on the
government to do the needful. Although this is easier said than done considering that
people living in such remote places are generally from economically weaker sections
of society, it is also true that with the right guidance and attitude, such villages can
be electrified which will cause a paradigm shift in the lives of these people and their
coming generations.

The first stage in setting a SHP plant is site selection. Proper planning has to be
done for site selection as it is the most crucial part of the whole project as the site
cannot be changed after the completion of the project. Since there is a constant threat
of natural hazards in the state, proper and in depth risk mapping and hazard suscep-
tibility must be done before starting the project. It is important to do a topographical
survey (contour view of the site) which will give us a clear idea of the entire area
and therefore enable us to take appropriate decisions on discharge calculation and
capacity of the catchment area [13]. In addition to this, the latest technology must
be used in forecasting and early warning systems. Emergency action and response
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plan must be in place in case of any eventuality along with a disaster preparedness
and management system. Also, a detailed study must be done on the environmental
and socio-economic impact of the SHP plant. Only if the site is favorable in the
above-mentioned parameters the project should go ahead. After the site is locked,
planning of design, operation, and optimization takes place.

The next stage in setting up an SHP plant is getting the legal compliances. Since
many different clearances have to be taken at various levels, this process usually
becomes a tiring, time-consuming, and daunting task. Tomake this process easier and
user friendly, the government must introduce a ‘single window fast track clearance
system’ for such SHP projects. Such an initiative will boost investor confidence and
help the commissioning of the project much earlier. Also, this would increase the
ease of doing business ranking of the state as well.

The next and probably the most important step consist of raising the capital for
the project. There exist a few schemes by the government which provide financial
assistance to people for setting up such plants. Effortsmust be done to popularize such
schemes as many interested people are unaware of such schemes by the government.
Alongwith interest free or very low-interest loans, technical end-to-end support must
also be provided for the smooth implementation and functioning of the project. For
corporate investors who wish to set up SHP plants for commercial purposes, tax
rebates in profits can be provided at least in the first few years. This will make SHP
a lucrative and potentially profitable business venture for investors.

One of the major costs in hydro projects is the construction of dams or reservoirs
which regulate water flow and help in flood control and also provide freshwater for
agriculture in addition to generating power. This cost can be avoided for SHPs espe-
cially micro and pico by using the run-of-the-river (ROR) hydroelectric generation
method where little or no water storage is provided and as such construction of dam
or large reservoir is not necessary. However, in some cases, a small storage reservoir
can be used which is called a pondage. Another advantage of ROR hydro-electric
power is that it eliminates emissions of carbon dioxide andmethane gases caused due
to decomposition of organic matter in the reservoir of a conventional hydroelectric
dam.

The high initial cost of conventional hydro turbines is also the main hindrance
in implementing SHP schemes. The cost of these plants can be brought down by
using a Pump as Turbine (PAT) [14]. Also, the diversion system has to be planned
i.e. whether an open system or closed system will be used to divert water from the
source and transport it to the turbine [15]. Also, filters should be used before the inlet
valve in case there is a high amount of silt or muck in the flowing water to minimize
the damage to the turbine blades.

Another hindrance in SHP is the lack of qualified technicians for its repair and
maintenance purposes. Most people who are technically skilled are reluctant to move
to remote locations permanently. To solve this problem, the local population needs
to be given hands-on skills training in SHP through short-term courses. This will
immensely help the local youths to become technically skilled and employable
elsewhere too.
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Lastly, lack of motorable roads is a major bottleneck in any infrastructure devel-
opment project due to difficulty in transporting equipment and man power in the
proposed site. The same geography which provides the state with natural ascent
necessary for SHP also causes a hindrance in the construction of motorable roads
due to its difficult anduneven terrain.Although rapid development has beenwitnessed
in road construction in the IHR region in the last decade, the problem still persists
in certain remote locations. Completion of the roads will strengthen the last mile
connectivity of every village with mainstream cities and towns which will, in turn,
usher fast socio-economic growth of people residing in such far-off places.

Due to inherent risks and high costs involved in large and medium hydropower
projects [16], it is more logical to develop and utilize small hydropower potential
in India. If a large hydropower plant has to be shut down due to technical problems
or for repair and maintenance work, then electricity supply is affected for a large
number of consumers. However, if micro and pico power plants are installed in large
numbers, with each supplying power to a small group of consumers, this problem can
be addressed to a large extent. At the simplest and most cost-effective level, micro
and pico hydropower plants can generate enough power to charge batteries which
can then be used for running electrical appliances of low wattage especially LED
bulbs [17], and provide lighting solutions to homes that are not yet electrified.

7 Conclusion

In this study, it was found that IHR states have vast potential for SHP but less
than a quarter of that potential has been utilized to date. This shows that there is
tremendous scope for growth in this sector in the region. Next, the various problems,
risks, challenges, and bottlenecks associated with SHP were identified, both general
and region-specific, which are the reason for the low implementation of such SHP
projects. After a careful and in-depth assessment of these problems, an attempt has
been made to provide possible solutions to every type of risk at every level.

Finding new potential sites in SHP and the risk assessment associated with it is
an area of continuous study and research. This part has a lot of future scopes as more
research is needed in various technical aspects of SHPs and their working. There
are various types of turbines like Kaplan, Francis, and Pelton whose performances
can be studied and the one best suited for a particular region can be adopted for that
place. There is also vortex turbine that can be tested for SHP in the region. Another
upcoming technology is the hydrokinetic turbine which can be set up in canals and
controlled rivers.

Although SHP alone will not solve all the energy problems around the world,
with the right planning and implementation it can complement the primary grid by
serving as secondary power generating unit or decentralized electricity generation
grid. This will make the grid more reliable and robust.
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The Use of IoT to Improve the Energy
Efficiency of the Fez Meknes Exhibition
Hall
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Abstract The mean goal of our current research work is to study the thermal opti-
mization of the Exhibition Hall in an existing structure in Fez, which is considered a
vital issue in morocco. The external walls and roofs will be insulated, and an efficient
air conditioning, cooling, and heating systemwill be installed. The building envelope
is simulated with TRNSYS as a multi-zone building by employing a specific flexible
occupancy scenario, which allowed a proposal of solutions for thermal insulation and
the integration of intelligent technologies, such as the Internet of Things (IoT). As
an efficient technology for connecting objects, the Internet of Things (IoT) enables
better exploitation and collection of building data. This is the ability to connect
objects (sensors and actuators) by interacting them with their physical environment,
allowing for better control of energy consumption patterns of active and passive
customers. Therefore, using dynamic thermal simulation tools such as Revit-Insight
360 and TRNSYS is the main objective to provide a comparative assessment of
several possibilities and solutions available to reduce the energy consumption of the
exhibition hall.
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1 Introduction

Morocco’s two primary energy policy challenges are a shortage of exploited natural
resources and the enforcement of energy efficiency regulations. The energy consump-
tion of our country is increasing; it increased from 0.34 TOE/capita in 2003 to 0.57
TOE/capita in 2018 [1]. Local primary energy production provided only 10.2% of
the country’s needs in 2018, and the rest is met by imports [3].

The construction sector iswas found to be the largest energy consumer, accounting
formore than 25% [4] of thewhole consumption. Residential buildings consume72%
[5] of overall building energy, with the rest going to tertiary buildings (government,
schools, hotels, hospitals, etc.).

Therefore, the building sector represents an enormous savings opportunity; about
40% can be saved by integrating several elements (efficient lighting, attractive
surroundings, and well-maintained equipment).

In order to solve some issues related to energy consumption, the kingdom of
morocco adopted several strategic steps in relation to this problem. Since 2008,
daylight saving time (GMT + 1) has been an effective technique to mitigate the
impact of overlapping usage, particularly during peak hours.

In 2014, this institutional initiative saved about 29 GWh of energy [6]. Imple-
menting a new law, RTCM (Thermal Construction Regulation in Morocco), has
allowed conserving about 1.3 Mtoe in 2020. The objective of the first iteration of
this rule is to increase the energy efficiency of the building envelope in the new
construction by using efficient insulation and glazing systems.

The intelligent building management system is responsible for monitoring,
controlling, and optimizing building services (heating, cooling, visualization, etc.).
It goes without saying that increased comfort in the indoor environment means
increased energy consumption. This is a challenge for intelligent and efficient
buildings to balance occupant comfort and energy consumption [7].

By introducing a lot of gadgets that are compatible with specific components of
the home technology system. These technologies are based on Wi-Fi data transport,
making it possible to have practically the house at your fingertips without the need
for additional wiring or equipment modifications; this is also called the IoT (Internet
of Things) technology.

The objective of this work is to increase both the summer and winter thermal
comfort at the building level by parameterizing passive elements such as glass,
building orientation, ventilation, and thermo-physical properties of materials [8, 9],
while taking into account external variables (temperature, lighting, etc.), further-
more, by deploying a smart sensor that allows the collection and analysis of data on
these many variables.
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2 Building Description

2.1 Building External Views

The Chamber of Commerce, Industry, and Services of the Fez-Meknes region is
currently working in partnership with the Ministry of Industry, the Fez-Meknes
Regional Council, and the Fez City Council, the exhibition center project on the
road to Sefrou. The location of this project is given in Fig. 1.

Fig. 1 a The computerized model of an architectural structure concerning its surroundings. b A
Google maps satellite picture is depicting the project’s location
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Fig. 2 Exhibition hall plan: a the ground floor, b the mezzanine

2.2 Exhibition Hall Plan

The exhibition hall is generally made up of a ground floor and a mezzanine, as
illustrated in Fig. 2.

2.3 Building 3D Model

The modeling of the studied building (3D digital model) in Revit is shown in Fig. 3.

2.4 Internet of Things IoT

Internet of Things (IoT) devices are becoming increasingly popular tomake buildings
smarter and more energy-efficient. As buildings consume a huge amount of energy,
smart buildings are intended to measure, limit, and control their energy consumption
without compromising occupant comfort or operational efficiency [10]. Lighting,
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Fig. 3 D model of the studied building using Revit software

electrical outlets, heating, ventilation, and air conditioning systems in buildings are
large energy consumers.

The application of various IoT sensors in these systems helps buildings to become
more intelligent and flexible. These IoT sensors and actuators create huge data (big
data). Building analytics can be used to retrieve, filter, analyze, and make use of
the huge amounts of IoT-enabled smart building data. Through the use of big data
analytics, building energy efficiency and the overall user experience can bemonitored
and improved [11] (Fig. 4).

The development of the IoT guarantees positive energy gains in terms of consump-
tion while ensuring comfort inside the building. Thus the easy integration of new
energy sources, including renewable energy (solar energy).

2.5 Thermal Procedure Simulation

In order to study the thermal behavior thoroughly of this building, depending on
several characteristics (location, building materials, overall architecture, energy
concept chosen, etc.). The Trnsys software is used to integrate all the character-
istics of a building and its equipment (heating and cooling systems). The simulation
diagram of this building from Trnsys Simulation Studio is presented in Fig. 5.

Insight enables architects and engineers to design more energy-efficient buildings
with advanced simulation engines and to build performance analysis data integrated
intoRevit. The building performance analysis team atAutodeskCompany had a large
number of projects in Autodesk Beta that made their way into Revit; sometimes, it
seemed like they were made up of a lot of separate pieces.

These days, Insight 360 is a comprehensive and consistent guide to increasing the
energy and environmental performance of buildings.
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Fig. 4 Applications of IoT in an integrated smart energy system [12]

Fig. 5 Simulation diagram from Trnsys Simulation Studio
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3 Automation System Description

Summer and winter set point temperatures are set by the automation system to ensure
not only thermal comfort but also to control and manage the various electrical loads
and monitor the energy used by the building’s equipment.

The PLC is the brain of this automation system, which communicates with all
of the sensors and actuators. This pre-programmed to achieve the ideal situations
and specifications suited to our requirements, the PLC is an industrial controller that
serves to command and operates many devices at once autonomously without human
interaction.

Sensors and actuators are connected to the PLC inputs/outputs, and if necessary,
extensionmodules are added.Communication protocols (Modbus, Profibus, Profinet)
are used to communicate the PLC with its environment.

Switches and push buttons (PLC digital inputs) are used by TOR modules to
control lamps (PLC digital outputs). As the temperature varies in an analog manner,
analog inputs/outputs are used to control HVAC systems with PID controllers.

Air-Wall Stone Exchanger (also known as Moroccan well and more recently as
climate well) is an exchanger that uses extremely little energy while cooling or
heating the vented air in a building. This helps our new exchanger system work
properly. Figure 6 shows this sort of heat exchanger in use in a passive dwelling.

To manage the whole system control and supervision, we used four touch screens
are used and connected to each other as well as to PLC through ethernet protocol.
Figure 7 describes the automation system.

4 Results and Discussions

The input/output values (analog) variation allowed the building comfort to be easily
achieved with minimal energy consumption (Fig. 8).

4.1 Comparison of Energy Demand Results Between
TRNSYS Software and Insight Autodesk

The Insight platformprovides the average value of the building’s annual consumption
per m2. Insight also gives several possible solutions to select the most optimal one.

In our case, we obtained the following energy consumption result: 218 kWh/m2

per year.
Figure 9 shows an overview of the Insight platform, where we got our results and

the other proposed solutions in order to select the best one.
Table 1 shows the simulation comparison results between Trnsys and Insight 360.
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Port 2 RS-485 Modbus

Fig. 6 Air exchanger—stonewall

Simulation results with Trnsys and Insight 360 give almost identical values. The
absolute error obtained is 1.3% ((221 − 218)/221 = 0.013). This means that the
energy simulation of both tools is successful.

5 Conclusion

This paper is set at the energy optimization of the design phase of the International
Exhibition Hall of a building located in Fez. We used Revit design software to create
a 3Dmodel of the building.We then converted it to the Insight Autodesk 360 software
to investigate the effect of sunshine on the building’s thermal profile.

In a subsequent step, we integrated the project’s many scenarios and material
classes into the Trnsys dynamic thermal simulation software allowing for the energy
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Fig. 7 Communication between the PLC and the wireless switch

Fig. 8 Summer/winter temperature distribution profile in a building

simulation of the building for all four seasons of the year. Furthermore, Codes similar
to the national building code should be adopted at the highest policy level for inclusion
in building regulations. Modern technologies and secure platforms can be integrated
with the internet of things to optimize energy use. Then the project’s main objective
is to manage and regulate energy resources in a cost-effective manner.

The study has shown how to achieve the comfort zone very efficiently without the
use of active systems that generate energy losses, but rather through a low-energy-
consumption ventilation system that compensates for these losses to ensure an energy
balance through an intelligent energy management system known as the Internet of
Things.
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Fig. 9 Result of the analysis on the Insight platform

Table 1 Comparison results
between Trnsys and Insight
360

Total of energy demand kWh/m2/an

Trnsys Insight

221 218
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Use of Photovoltaic Energy
in the Distillation and Purification
of Water: Design of a Prototype

Kamilia Mounich, Aicha Wahabi, and Mohamed Chafi

Abstract Globally, the demand for good quality drinking water is growing. Indeed,
the desalination and purification of sea water require lots of treatments. This paper
presents the theoretical study and practical realization of a system that consists to
solve the issue of water anti-calcification. Softening is the technique used to remove
TH from water (due to the presence of alkaline earth salts: carbonates, sulfates,
and chlorides of calcium and magnesium). This system will provide soft water, free
of alkaline earth salts and heavy metals such as arsenic, lead, cadmium, nickel,
mercury, chromium, cobalt, zinc, and selenium and which are highly toxic even
in minor quantities. Hence, the principle of magnetic induction was studied as a
key milestone to solve the calcite deposit into the canalization. This phenomenon
creates strong magnetic fields that cause mineral ions (especially calcium carbonate)
to agglomerate and neutralize with each other before the water is heated to reach
then the final step which is the pass-through activated carbon filter.

Keywords Sea water distillation · Heavy metal ·Water softener · Softener
device · Limestone deposit · Anti limestone magnet

1 Introduction

Faced with a certain water crisis that is beginning to be felt and triggered the alarm all
over the world, in addition to the economic constraints of sustainable development,
appropriate solutionsmust be formulated to prepare for this challengewhich threatens
the survival of humanity.Morocco has considerable salinewater resources and a large
solar period throughout the year. It is necessary to use desalination technology by
exploiting the available green energy [1]. This solution is a reliable way to produce
drinking water. However, it should be noted that this method is economically reliable
only for small units whose daily volume of drinking water varies from a few cubic
meters to tens (or even hundreds) of drinking water per day [2].
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The following study is focused on the practice of small processes. For large capaci-
ties, the combination of desalination processes with renewable energies requires high
investment costs and the reliability of such systems is not always guaranteed [3].

The desalination process is divided into twomain categories: firstly, the distillation
processes (which require a phase change, evaporation/condensation) and secondly,
the membrane processes (filtration), which consist to eliminate heavy Metals and
bad taste from water thanks to filtration phenomenon [4, 5].

Thebest andmost cost-effectivemethod to ensure that is using afilterwithmultiple
stages with activated carbon based as used in this experiment.

2 Process Working Principle

2.1 Materials and Methods

The study was conducted on a laboratory-scale distiller. It is consisting of a heat
source (heating element) and a 750 ml container of sea water and a 6 mm diameter
copper tube formed into 7 turns, a cooling fan powered through a 3.7 V lithium
battery which in turn is charged through a 5 V, 12 W photovoltaic panel controlled
by an SG09 servo motor, 4 LDR and an Arduino Nano Atmel Atmega 328p board.
The freshwater passes through an anti-lime magnet to resolve the deposit of calcite
in the pipeline and five steps activated carbon filter using gravity and absorption
phenomenon (Fig. 1), and then to the final container to collect fresh water.

The five steps filter activated carbon-based offer a significant result in terms of
water purification such as removing heavy metals, bad taste, and other deposits. This
filter is a combination of five materials: Activated carbon, Anthracite, Sand, Garnet,
and Gravet. Activated carbon and the Anthracite filters use minimal bonding agents
and have superior contaminant reduction and performance capability.

Also, sand filtration technology can homogenize wastewater containing heavy
metals. Thanks to the continuous flushing system, the resistance and flow rate of the
filter bed are always stable and self-disciplined, providing stable output and steady-
state operation. However, the Gravel layer was found to be very effective for the
removal of sediment and heavy metals, even as the system clogged over time. In
addition, the pores of the Garnet are small enough to allow the passage of liquid but
too small to allow the passage of certain contaminating particles, which are filtered
from the fluid.

2.2 Process and Theoretical Measures

The synoptic diagram (Fig. 2) describes the operating principle of the desalination
system equipped, on the one hand, with a mechanism which supplies thermal energy
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Fig. 1 Multiple steps filter (activated carbon-based)

Fig. 2 Sea water distiller, purifying schema
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Table 1 Taste of water with
different concentrations of
TDS

TDS level in parts per million (ppm) Evaluation

Between 50 and 150 Excellent for drinking

150–250 Good

250–300 Fair

300–500 Poor

Above 1200 Unacceptable

through photovoltaic panels, and on the other hand, with a sub-system composed of
two parts: the use of anti-lime magnets [4] to eliminate lime deposits in the pipes and
the use of 5-stage filters based on activated carbon and other absorbent materials in
order to eliminate the presence of heavy metals [5].

The permanent magnet processes generate a constant magnetic field: They are to
be distinguished from electromagnetic processes which are at the origin of a variable
magnetic field, catalytic processes, or systems at the origin of turbulent regimes.

These processes act on the calcium carbonate and facilitate its crystallization in
a non-encrusting form they prevent the formation of scale.

Magnetic lime scale devices are placed in series on the pipe; the devices generate
the magnetic field through which the water passes.

The water purity measurement is done using the TDS meter (Total Dissolved
Solid) [6] (Table 1).

The experience showed a value of 10,600 ppm in saline water sampling measured
by TDS before starting the heating. Hence, according to EPA (Environmental Protec-
tionAgency), this value is health-harming as it’s over the limits. So, theTDSmeasure-
ments token on the final recipient showed a value of 90 ppm, which is within EPA
limits.

2.3 Electronic Components

In order to enable this project, the electronic part is necessary to drive results. The
diagrams (Fig. 3) show the wiring and essential electronic components. In fact, the
electric power is ensured by the photovoltaic panel to all electronic items. The type
of photovoltaic panel is monocrystalline 12 V 80 W.

The Arduino Nano card controls the servo motor movement via four LDR, then
moves the photovoltaic panels in the direction of the sun (sun follower) to catch a
maximum of solar rays. The battery 7.4 V is under charge permanently to ensure the
cooling system fan power supply. A Peltier module was added to guarantee a perfect
cooling of the solenoid copper tube.
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Fig. 3 Electronics schema

2.4 Magnetic Anti-lime Scale Device

Revolutionary anti-lime scale and anti-magnetic scale solution works without chem-
ical additives, without maintenance, and current. This very powerful magnetic field
prevents the formation of limestone and other deposits and cleanses pipes and
equipment from old limestone encrustation.

The presence of limestone nanocrystals suspended in the water causes indeed
a natural phenomenon of limestone erosion. The water that has become depleted
in available calcium and carbonate ions begins to behave like rainwater: it seeks
to become loaded with mineral salts. In other words, the principle is simple and
effective; these magnets create a magnetic field that modifies the polarization of the
mineral salts suspended in the water, thus preventing the formation of scale inside
the water pipes (Fig. 4).

2.5 Grouping of Photovoltaic Cells

We have coupled two photovoltaic panels in parallel. A parallel mounting of two
cells increases the generator output current. In a group of identical cells connected



150 K. Mounich et al.

Fig. 4 Anti-lime magnet (calcium build up)

in parallel, the cells are subjected to the same voltage and the characteristic resulting
from the grouping is obtained by adding the currents (Fig. 5). Equation (1) in turn
summarizes the electrical characteristics of a parallel association of NP cells.

V1 = VN and IT = I1 + IN (N is PV cells number)

Fig. 5 Characteristic result from a grouping of Np cells in parallel
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IT = I total (1)

3 Results and Discussion

The day of September 9th, 2021, was chosen to perform the experience, which is
characterized by strong sunshine throughout the day with a maximum temperature
around 33 °C, specify that the time of the first drop was detected at 10:30 a.m. and the
total amount of distillate collected until 12 p.m. is equal to 645 ml. The time between
the first drop and the total quantity of collected freshwater is around 120min (Fig. 6).

As mentioned before, the first fresh drop was collected at 10:28 even the conden-
sation begin earlier as the water take several times to pass through the five stages
of the filter. As the process progress, the quantity of water increase to reach finally
around 640 ml at mid-day.

Among the results done, the biochemical test of the fresh water coming from the
filter with the TDS device, and we had in Fig. 7.

4 Conclusion

It is well known that the scarcity of water is an object of both nature matter and
human responsibility. The huge need for fresh water requires the exploitation of all
available green energy such as solar energy, and at the same time take benefit that
nature offers in terms of organic filters to provide fresh drinkable water for all needy
areas. Indeed, this will not only gives alternatives but also will stop harming our
planet by using fossil fuel.
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Electromagnetic and magnetic techniques are a good solution to decrease the rate
of heavy metals treatments because these non-invasive and cheap techniques do not
need chemicals added to thewater. There are various theories about the effects of these
techniques. Other papers affirm that an electromagnetic field favors the formation of
crystals within the fluid instead of in the pipes, and for this reason, the scale would not
form. These techniques can increase or decrease turbulence in the fluid, promoting
the aggregation or disaggregation of ferromagnetic and diamagnetic colloids. In
addition, studies conducted at the University of Alicante have seen an orientation
of the crystals formed after the application of an electromagnetic treatment that did
not occur without treatment. It has also been observed in other studies that after
the application of the magnetic treatment, the diffusion coefficients of the sodium,
magnesium, and calcium ions increased and those of the anions decreased [7].

The filtration and absorption system provides a wide utilization in wastewater
treatment. Nowadays, many prototypes of filters are available, competitive cost,
easy to build, and efficient. As this research showed the benefits of a mixture of
all absorbents material (Activated carbon, Anthracite, sand, Garnet, and Gravel),
lots of the study demonstrated the strong influence of additions on the removal of
heavy metals from saline water by using 5 layers filter, which varied according to
the type of heavy metal.

The anti-lime magnet is fixed permanently in the water pipe, which gives
autonomy and performance to the system. However, the treatments of different types
of wastewater present a challenge. In fact, all types of water treatment will not be
covered by a single filter, which gives the perspective towork on the filter change over
or develop a filter that gathers all the characteristics that allow a standard filtration.
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Towards FPGA Implementation
of an Intelligent Hybrid Energy
Management System

Asmae Chakir, Badr Chegari, Mohamed Tabaa, and Emmanuel Simeu

Abstract In this paper, we propose a state machine energy management system
towards a software and subsequently hardware implementation embedded on FPGA
(Field Programmable Gate Array) to plan the missions of the energy management
state machine. The state machine is based on 8-active states. They are illustrated as
follows. Two states for battery charging and discharging management during energy
shortage. One state representing energy consumption from the grid and one state for
hybrid consumption fromPVandwind turbine. Two states for the direct consumption
from the wind turbine and the injection of the PV production to the grid with and
without battery charging. Finally, two states for direct consumption from PV and
injection of wind generation to the grid with and without battery charging. To ensure
the proper operation of the hardware pre-implementation, the state machine has
been turned to a VHDL (VHSIC Hardware Description Language) code following
the ISE Design Suite synthesis software. The results obtained show the efficiency of
the state machine developed to complete the control states by meeting the transition
constraints.

Keywords Hybrid renewable system · Energy management system · State
machine · VHDL coding · Hardware/software implementation · FPGA
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1 Introduction

The energy management concept started to be built since 1982 [1], as a part of power
control that allows a system to interact easily with other entities belonging to the
same electrical grid. The aim is to manage and control the energy consumption of
buildings, industries, companies, factories, or others according to a specific control
system. At present, the residential sector is considered the primary consumer of
electricity. Therefore, more than 31% of the work involved in energy management
systems improvement has been focused on residential buildings [2]. The use of
energy management has also become increasingly important with the integration
of renewable energies in the power generation sector. This is due to intermittency
periods of renewable production that require energy efficiency.

With the smart grid concept and the implementation of communication and
information infrastructures with a bi-directional aspect, advanced metering, energy
storage technologies and renewable generation systems, the paradigm revolution in
the use of electricity, conservation and energy optimization remains crucial [3, 4].
This revolution has greatly interested researchers in the electrical field, as they have
tried to solve the energy management issue using several intelligent and/or linear
methods. Whether it is for isolated applications or grid-connected [5].

Several studies have tackled the problem of energy management, the difference
between them has been noticed on the energy sources used, the considered storage
system, and the connection or not to the utility grid, otherwise the used energy
management method [6]. In fact, the authors in [7] proposed a stochastic mixed-
integer nonlinear programming to manage the energy of a micro-grid consisting
of a non-renewable generation, PV plant, storage systems, an electric vehicle, and
electric loads. A stochastic optimization approach was reported in [8] to schedule
energy inside a smart household to facilitate the implementation of demand response
programs. Similarly, based on mixed integral linear programming authors in [9]
proposed a system to intelligently manage the energy of a smart home in order to
ensure minimal energy costs while increasing the comfort of the consumer.

In [10], a real-time control was conducted using Dspace rapid prototyping system
in order to balance at each instant the energy produced byPV-Wind hybrid system and
the energy stored and consumed by loads.A nature-inspiredmethod has been handled
in [11] to develop a new meta-heuristic optimization for smart home appliances
scheduling. The authors of [12] have developed five different operation modes of the
PV-Wind-Battery hybrid system using a finite state schematic model; the transitions
were performed by a nonlinear switching system. A control strategy is implemented
in [13] with a fuzzy logic controller to smooth the power fluctuation of a PV-Wind
hybrid system and to maintain the battery state of charge (SOC) within the allowed
limits.

We note that most of the studies in the literature have used linear, dynamic, or
predictive programming; otherwise, the energymanagement can be performedwith a
reduced state sequence algorithm [14]. Moreover, the linear programming solution is
efficient to obtain an optimal solution according to constraints satisfaction for linear
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problems. However, it is not very efficient for most applications. However, non-
linear programming is able to solve problems that are more complex even though it
requires a very high number of iterations. For the same degree of programcomplexity,
dynamic programming divides the optimization into sub-systems. All these methods
are characterized by the speed of convergence, which can be solved by artificial intel-
ligence, as well as by particle swarm optimization or genetic algorithms, although
they are under the constraints of the parameter definition and arrest criteria [15]. This
makes their hardware implementation difficult to handle.

In fact, the energy management of an electrical system must be done in a fully
automatic way. The tasks for an autonomous system are considered very complex. In
order to perform themwith high performance, developers use hardware boosters [16].
There are several types of hardware accelerators, namely: GPU (Graphics Processing
Unit), ASIC (application-specific integrated circuit) and FPGA (field-programmable
gate array). It should be noted that FPGAs have been used according to the literature
as they have the advantage of flexibility and being reconfigurable.

Indeed, it is difficult to ensure just with software implementation the real time
reaction character for an energy management algorithm, especially adapted to a
system of fluctuating character as the renewable production systems. In this sense,
the authors on [17] studied all the dynamics via a hardware implementation of a
hybrid Wind-supercapacitor-Battery system feeding a variable DC load. The result
showed the real time dynamics of the micro-grid even with fluctuating load or wind
conditions.Thiswasdonevia anFPGAimplementation.Also, a sub-model basedon a
Marcovmodel have been implemented on FPGAby the authors of [18] for the energy
management of electric vehicles taking into account significant criteria, namely: the
driving style and the planned trip. An experiment was conducted by the authors [19]
to validate the management algorithm they developed for the management of a PV-
battery-fuel cell based system. The FPGA was used in this case as an intermediate
interface.

From the mentioned literature, few researchers have dealt with the case of the
physical implementation.Nevertheless, it is a very important criterion for the solution
selection and obviously, it depends on the strategy pursued accordingly. Indeed, this
is the objective of our current paper. In fact, we aim to develop the first phase of
the system implementation, which is based on the energy management algorithm
adaptation to its test platform. For this, we have adapted an energy management
algorithm for the PV-Wind-Battery hybrid renewable system [20] to a state machine
that was then implemented on the Xilinx ISE (Integrated Synthesis Environment)
synthesizer for a later FPGA implementation.

To this end, in the following section,wewill start to present in detail the considered
hybridization architecture. Then we will present our state machine energy manage-
ment system. Section 4 is devoted to the simulation study and discussions. Otherwise,
the conclusion and future work are drawn up towards the end.
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2 Hybridization Strategy: Architecture

In Morocco, the solar and wind potential is considered as significant [21]. These two
sources represent complementary energy supply systems [22]. Their use in hybrid
energy system represents a cost-effective solution [23]. Such a system has proven its
efficiency in a weather condition like the Mediterranean one. Besides, in most cases,
to increase the reliability of a renewable system, a storage system is necessary. For
this reason, we considered the PV-Wind-Battery system as an optimal architecture
for an alternative renewable generation system [24].

For countries that have already been connected to the grid, such as Morocco,
these systems may be connected to the grid to further benefit from the renewable
character of these systems as we studied in [25, 26]. Besides, the characteristics and
the passive part of the house held in view in this paper resulted from previous studies
[27, 28]. Therefore, for our present case we propose the architecture presented on
Fig. 1, which is a continuation of our previous work.

The architecture is based on a photovoltaic installation and a wind generation.
These two sources are connected with DC/DC and AC/DC converters respectively.
These two converters are used to extractmaximumpower from the renewable sources
as well as to keep a continuous common bus voltage steady. The architecture repre-
sents a battery storage system with its bi-directional system to ensure both charge
and discharge phases. The utility grid is linked via a bi-directional converter for the
collaboration and injection stages.

Fig. 1 Energy management system architecture
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The six switches (S1, S2, S3, S4, S5 and S6) are used to facilitate the energy
management of the hybrid system considered for our study. Below is the role of each
switch.

• S1: This switch is used to directly transmit the energy generated by the PV array
to the DC bus.

• S2: It is used to transmit directly the energy produced by the micro wind turbine
to the DC bus.

• S3: This switch is used bi-directionally to initiate both the charge and discharge
of the energy storage battery.

• S4: This switch is used to access the electrical grid to meet a possible energy
deficit in the system.

• S5: It is used to inject all the energy produced by the photovoltaic field into the
electrical grid.

• S6: This one is used to inject all the energy produced by the micro wind turbine
into the electrical grid.

3 State Machine Energy Management System

Six switches will manage the hybrid system that their task has been well described
during the previous section. These switches can be either open or closed so they
represent a state of zero or one Eq. (1), respectively. According to the discrete prob-
ability distributions [29], the management system will be simulated at the flip of a
coin six times. Therefore, we have 26 corresponding to 64 possibilities. However,
the management system must meet physical constraints for an optimal control and
implementation.

Si ∈ {0} ∪ {1}, i ∈ [[1, 6]] (1)

To ensure continuity of power consumption to the building’s loads, the switches
must not all be in low state. In return, for an optimal supply efficiency, the switches
should not all be in high state. Which translates into Eqs. (2) and (3).

6∑

1

Si �= 0 (2)

6∑

1

Si �= 6 (3)

From the architecture shown in Fig. 1, we can deduce that switches S1 and S5
play a complementary role for photovoltaic generation. Moreover, the switches S2
and S6 play complements roles for the wind generation. Indeed, the system cannot
ensure local production and at the same time inject electricity to the grid, Eqs. (4)
and (5).
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S1 + S5 = 1 (4)

S2 + S6 = 1 (5)

These constraints help us to eliminate 48 cases of switch states that cannot be
produced for the proper operation of the management and control system. However,
other states are to be eliminated because physically they do not represent tolerable
states for the adequate performance of the architecture. Hereafter, the reasons for
improving the states and the transition from 16 remaining states to only 8 states.

• 000111: To be eliminated because we cannot take energy from the network (S4
= 1) at the same time we inject renewable energy to the grid (S5 = S6 = 1).

• 001011: To be eliminated because we cannot take energy from the battery (S3
= 1), while the energy produced from the PV-Wind system is injected to the
neighboring grid (S5 = S6 = 1).

• 001111: To be eliminated. Same reason as 000111.
• 010110: The system cannot take from the grid (S4 = 1), while it injects towards

the grid solar energy (S5 = 1).
• 011110, 100101, 101101: Are to be eliminated for the same reason as 010110.
• 111100: It is not possible to consume from the grid and the battery and both

renewable sources at the same time.
• 000011: Hybrid energy cannot be injected completely without consumption.

On Table 1, we have the states held in account for the generation of the energy
management state machine of the PV-wind-battery hybrid system connected to the
grid as represented in Fig. 2. Following are the notations for the transitions considered
in the state machine.

x ⇔ Ppv > Pload (6)

y ⇔ Pwind > Pload (7)

Table 1 The eight remaining
machine states

The 8 remaining states after updating under the form: [s1 s2 s3
s4 s5 s6]

010010

011010

100001

101001

110000

110100

111000 Battery discharge

111000 Battery charging
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Fig. 2 Proposed energy management system state machine

z ⇔ Ppv + Pwind > Pload (8)

a ⇔ SOC > SOCmin (9)

b ⇔ SOC > SOCmax (10)

where, Ppv is the energy produced by the photovoltaic panels, Pwind is the energy
produced by thewind turbine. Pload is the energy consumed by the loads of the house.
SOC is the state of charge and SOCmin is the minimal state of charge else SOCmax is
maximal one. These powers and battery states of charge are considered as inputs for
our control system and then the comparisons will allow us to see the states machine
that are considered as output of our block.

4 Simulation Study

Our proposed solution is based on a state machine energy management system. Each
state is characterized by a combination of the high and low (one or zero) states of the
six switches that characterize the hybrid architecture. To move the system from state
A to state B, the transition from A to B must be assured. According to the previous
section, the transitions are based on the availability of renewable energy, the state of
charge of the storage system, and the electrical consumption at a given time.

Before a power management system is actually implemented, it must go through
a pre-implementation phase. To this end, we have chosen the Xilinx ISE software
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to perform our simulation study. The aim of using such a synthesis software, in
particular ISE Design Suite, is to ensure the proper operation of the hardware pre-
implementation. For that, we have predefined hypotheses for the various inputs of
the system to be able to check its dynamic performance.

We implemented the state machine developed as VHDL code under the synthe-
sizing software ISE, Fig. 3. The system was validated under the same simulation
package and the results were based on simulation hypotheses at the level of transi-
tion constraints. The simulations that have been carried out on theXilinx ISE software
have shown the validity of the state machine that we have developed. The limitations
for the batteries that have been taken into consideration are in the order of 20–80%
for a minimum and a maximum state respectively. The hypotheses that have been
assumed represent scenarios of building loads electrical consumption, wind energy
availability and photovoltaic energy supply. These scenarios are spread over a clock
provided by the test software with a period of 10 nF.

We notice that the system follows perfectly the states that must be adequate for
each combination of the constraints presented by Eqs. (6)–(10). In fact, in case of
solar potential availability that can cover totally the load of the house the state 100001
is activated (st1 between 0 and 24 nS), mentioned by st1 on the simulation, which
makes the house consume all the power from the solar system. Depending on the
hypothesis, this state is enabled during the first 10 nS. Moreover, what is produced
by the wind system is injected in full into the neighborhood network. This is valid
when the battery is on its maximum state; otherwise, the state 101001 is activated
(st3 at 10 and 180 nS) so that the storage system takes the excess energy produced
during this period. By the same process and assuming the coverage reliability of the
building consumption by the wind energy, the state 010001 is activated (st2 between
24 and 54 nS, 104 and 134 nS, 184 and 214 nS). This occurs when the battery
is in its maximum state of charge. If this is not the case, then the 011010 state is
activated. When it is the role of the hybrid system to cover the electrical demand it
is the 110000 state that is activated (st5 between 54 and 64 nS, 134 and 144 nS and
214 and 224 nS) when the battery is on its maximum state. Otherwise, if the battery
is on its minimum state, the network comes in to cover the energy shortage during
the concerned instant with the state 110100 (st6 between 74 and 94 nS, 154 and
174 nS). During the activation of the hybrid system, two cases are possible. If the
hybrid energy is in excess and the state of charge of the battery is under its maximum
state, then the 111000-state of charge is activated. Otherwise, if the hybrid system
is not able to cover the energy demand at a given instant and the battery is above its
minimum state, then the 111000-state of discharge is activated (st8 between 64 and
74 nS, 144 and 154 nS and 224 and 234 nS).

5 Conclusion and Future Work

This paper develops an energy management method for a grid-connected PV-Wind-
Battery hybrid system based on a state machine. This latter consists of 8 states each
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setting the six switches of the architecture according to a possible combination of
two values taken by each Si, namely: 0 or 1. The proposed state machine has been
translated into aVHDL code and simulated on theXilinx ISE synthesis platform. The
transitions of the state machine have been taken as hypotheses or scenarios varying
on a sinusoidal duration period, taken in this simulation as 20 nF. The simulations
showed that the management system follows very well the adequate and optimal
states for each instant t. However, this is only a test bench to validate the operation
of the machine. While in the real case, we must first implement this system at the
hardware level via the RTL diagram that we will have after synthesizing it on the
software. In fact, The RTL code enters a phase known as logic synthesis, where the
RTL code is translated into a set of logic components (adders, memory blocks, etc.)
called a netlist. Then comes the physical implementation phase for an FPGA target.
After that, couple the developed system with the environment generating the thermal
loads of the building, especially those of the air conditioning and heating as well
as the weather conditions for the generation of the hybrid system powers. This will
allow us to effectively and physically test how our system can manage its energy
flow in order to respond in an efficient way to the energy deficiency of this building.
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