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Abstract In multi-user multi-processor online scheduling, resources are shared
among competing users, and fairness is considered to be a major performance crite-
rion for resource allocation by the scheduler. Fairness ensures equality of resource
sharing among the users. According to our knowledge, fairness based on the user’s
objective has neither been thoroughly explored nor a formal model has been well-
defined in the literature. In this article, we propose a new fairness model for Multi-
user Multi-processor Online Scheduling Problem (MUMPOSP). We introduce and
formally define quantitative fairness measures for an online scheduling algorithm
based on optimization of makespan as an user’s objective. Furthermore, we define
unfairness and absolute fairness for an online scheduling algorithm. Lower bound
results are shown for absolute fairness in a scheduling framework of equal length
jobs. We show that our proposed fairness model can also measure algorithmic fair-
ness by considering well-known optimality criteria such as sum of completion times,
weighted sum of completion times and sum of flow times.

Keywords Multi-user system · Scheduling · Makespan · Performance measure ·
Fairness

1 Introduction

Fairness is an important performance criterion for a scheduler. Particularly, in multi-
user systems, where several users compete for a set of resources (e.g., processor,
memory) in order to achieve their objectives, the scheduler must guarantee fairness
with respect to allocation of resources and user’s objective. Though fairness has been
studied based on resource allocation policies in the literature, there is less attention
to devise a quantitative well-defined measure of fairness based on user’s objectives.

User’s objective as a fairness parameter has beenmotivated from the prevalent use
of Web servers in client–server networking, grids and clusters in high-performance
computing (HPC). Edge nodes in edge computing, service-oriented systems (SoS)
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and supercomputers [1]. Unlike the traditional computing systems such as personal
computer, the SoS supports multiple users. The users compete for system’s resources
for execution of their respective jobs. The most popular cluster schedulerMAUI [2]
and the well-known BOINC platform [3] deal with a number of competing users,
where each user submits a set of jobs simultaneously and desires minimum time of
completion (makespan) for its submissions. A non-trivial challenge for the scheduler
is to schedule jobs of multiple users in such a way that each user obtains its desired
makespan.

Multi-user Multi-processor Online Scheduling Problem (MUMPOSP)

• Inputs: We are given a set M = {M1, M2, . . . , Mm} ofm identical processors and
a set of n jobs, where m ≥ 2 and n >>> m. Let Ur represents a user, where
1 ≤ r ≤ k and Jr is the sequence of jobs requested by user Ur , where Jr =
(Jri |1 ≤ i ≤ nr ) such that J = ⋃k

r=1 J
r ,

∑k
r=1 nr = n and J x ∩ J y = φ, where

x �= y and 1 ≤ x, y ≤ k. The processing time of job Jri is pri , where pri ≥ 1.
• Output: A schedule (S) in which makespan for each Ur is denoted by Cr

max =
max{cri |1 ≤ i ≤ nr }, where cri is the completion time of job Jri• Objective: Minimization of Cr

max, ∀Ur .
• Constraint: The scheduler can receive a batch of at most r jobs at any time step,
and the jobs must be irrevocably scheduled before the arrival of next batch of jobs,
where 1 ≤ r ≤ k.

• Assumption: Jobs are independent and are requested from k parallel users, where
k ≥ 2.

Illustration of MUMPOSP. For simplicity and basic understanding of the readers,
we illustrate an instance of MUMPOSP for scheduling of n jobs that are submitted
by k users in Fig. 1. Here, {M1, M2, . . . , Mm} represent m identical machines and
〈U1,U2, . . . ,Uk−1,Uk〉 denote job sequences for k users, where each user has n

k
number of jobs. Jobs are submitted in batches online, where a batch is constructed
after receiving exactly one job from each user (as long as a user has an unscheduled
job). A batch consists of at least one job. Therefore, we have at least 1 batch, where
k = n and at most n − k + 1 batches, where any one of the users Ur has nr =
n − k + 1, and remaining users have exactly one job each. Each Ur seeks to obtain
a minimum value for its makespan (Cr

max) as the output, rather than the overall
makespan (Cmax) of the system. Hence, it is indispensable for the scheduler to be fair
while optimizing the Cr

max, ∀Ur .

Representation of MUMPOSP. By following general framework α|β|γ of Graham
et al. [4], we represent MUMPOSP as MUMPOSP(k, Pm |Cr

max), where Pm denotes
m identical machines and k represents number of users.

Perspectives of Fairness. Fairness has been considered and studied as a major per-
formance criterion for scheduling algorithms in multi-user systems [5, 6] from two
perspectives such as allocation of resources to the users and user’s objective. Fair-
ness of an algorithmwith respect to resource allocation guarantees uniform allocation
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Fig. 1 Illustration of MUMPOSP for k users with equal number of jobs

of resources to the competing users [7]. The resources to be shared are application-
dependent. For example, in client-server networking, the resources such as link band-
width, network delay and specific time quantum can be shared [8, 9], whereas in case
of HPC systems, the resources such as processors, memory and time slices can be
shared [10, 11].

Algorithmic fairness based on user’s objective is evaluated by the objective values
achieved for respective users. An equality in the obtained objective values for a user
ensures fairness of a scheduling algorithm. It is important for a fairness measure
to define the equality for quantifying gap of an achieved objective value from the
defined equality.

Related Work. Fairness as a quantitative performance measure based on resource
allocation was studied by Jain et al. [7]. A set of properties for an ideal fairness
measure was defined, and a fairness index F(x)was proposed for resource allocation
schemes. F(x) is defined as follows: if any scheduling algorithm assigns resources
to k competing users such that r th user gets an allocation of xr . Then,

F(x) = (
∑k

r=1 xr )
2

∑k
r=1 xr

2
, where xr ≥ 0.

The value of F(x) is bounded between 0 and 1 to show percentage of fairness
and discrimination of a resource allocation scheme for each user. Fairness based
on sharing of resources such as processors, memory, system clock and system bus
in multi-programmed multi-user system was well studied in [10–12]. Some recent
works on fairness in scheduling online jobs on multi-user systems can be found in
[13, 14]. To the best of our knowledge, fairness of online scheduling algorithms based
on user’s objective has not been exhaustively studied and explored the literature.

In [15–18], stretchmatrix has been considered as a user’s objective-based fairness
measure for resource scheduling algorithms in multi-user systems. Here, Stretch
(drA) has been defined as a degradation factor in the objective value obtained by any
algorithm A for each user Ur . Let us consider V r

A be the objective value achieved
by algorithm A and V r

OPT be the optimum objective value for respective Ur . Then,
stretch has been defined as follows:
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drA = V r
A

V r
OPT

The objective of any scheduling algorithm is to incur an equal stretch for eachUr

to ensure fairness. Stretch matrix guarantees fairness based on equality in achieved
objective values. However, it fails to depict the exact value of fairness per user as
well as overall fairness of a scheduling algorithm. Stretch matrix does not capture
the discrimination of a scheduling algorithm for the deprived users. Therefore, it is
quintessential to define a formal fairness measure based on user’s objective.

Our Contributions. We propose a novel model to evaluate fairness of online algo-
rithms in theMulti-user Multi-processor Online Scheduling Problem (MUMPOSP).
We introduce and formally define quantitative fairness measures in our proposed
model by considering optimization of makespan as user’s objective. Furthermore,
we define unfairness and absolute fairness of an online scheduling algorithm. We
obtain lower bound results for the absolute fairness for a framework of m identical
machines with equal length jobs. We show that our proposed model can be served
as a framework for measuring algorithmic fairness by considering other optimality
criteria such as sum of completion times, weighted sum of completion times and
sum of flow times.

2 Our Proposed Fairness Model

We develop a new model, in which we define five quantitative measures to ensure
algorithmic fairness. Instead of considering the resource allocation at the input level,
our model considers the achieved value of user’s makespan at the output level to
determine the fairness of a scheduling algorithm. The model captures the issues
of relative and global parameters for fairness by a Fairness Index (FI). The issues
of unfairness is captured by a Discrimination Index (DI). The FI includes fairness
parameters such as Relative Fairness (RF) and Global Fairness (GF). Higher value
of any fairness parameter indicates more fair algorithm. The DI includes unfairness
measures such as User Discrimination Index (UDI), Global Discrimination Index
(GDI) and Relative Discrimination Index (RDI). Lower value of any unfairness mea-
sure indicates higher degree of fairness of the algorithm. Before defining fairness and
unfairness parameters, we illustrate our novel model and discuss the characteristics
of a good fairness model as follows.

Illustration of Our Proposed Fairness Model. We illustrate our proposed fairness
model as shown in Fig. 2. The model quantitatively defines the fairness of an online
scheduling algorithm by taking into account the makespan (Cr

max) of individual user
in theMUMPOSP setup.
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Fig. 2 A fairness model based on user’s objective

2.1 Characteristics of a Good Fairness Model

A fairness model evaluates the performance of a scheduling algorithm based on the
achieved makespan for each user. Recall that in [15–18], Stretch was considered as
a user’s objective-based fairness measure. For instance, if a scheduling algorithm A
obtainsmakespans for three users as 5, 10, and 15, respectively,where their respective
optimum makespans are 1, 5 and 10, then stretch defines the following degradation
factors for respective users: d1

A = 5, d2
A = 2, and d3

A = 1.5.
Before formally defining fairness and unfairness parameters, we present the char-

acteristics of a good fairness model as follows. A good fairness model must be:

• Finitely Bounded—The fairness of a scheduling algorithm is bounded within a
finite interval, preferably between 0 and 1 formeaningful representation of fairness
with respect to each user.

• Consistent—If any change in the scheduling policy results in different makespans
for at least one user, then the change in the fairness parameters must be reflected
for the concerned users as well as in the overall fairness of the policy.

• Independent of Input Size—It is applicable to any number of userswith any number
of jobs and machines.

• Independent of Scale. It must be able to measure fairness irrespective of units
of measurement of processing time of the jobs such as seconds or milliseconds,
microseconds or nanoseconds. The measuring unit must be uniform or inter con-
vertible.

In addition to the above-mentioned properties, we also consider relative and overall
fairness as an essential feature to develop our fairness parameters. We believe that
the model must represent relative equality among achieved objective values for the
users to show fairness of an algorithm for each user. For example, the users may
not seek equal makespan as a gesture of fairness; however, they expect from an
online scheduling algorithm to obtain an equal ratio between the desired makespan
(optimum value) to the achieved makespan for all users. The value obtained by an
algorithm for relative equality leads to relative fairness with respect to each user.
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Also, the model must show overall fairness of an algorithm with respect to all users,
which can lead to the comparison of the fairness of different scheduling policies.

2.2 Our Proposed Fairness and Unfairness Parameters

By considering the above-mentioned desirable properties, we now define formal
measures of fairness and unfairness for MUMPOSP as follows.

Let A be an online scheduling algorithm. If algorithm A schedules jobs of k
competing users on m identical processors such that r th user obtains a makespan of
Cr

A, then we define the following fairness parameters.

Definition 1 The Relative Fairness (RF) obtained by algorithm A for any user Ur

is defined as:

RF(Cr
A) = Cr

OPT

Cr
A

, where Cr
OPT =

∑nr
i=1 p

r
i

m
(1)

Corollary 1 The Relative Fairness Percentage (RFP) for any user Ur obtained by
algorithm A is defined as:

RFP(Cr
A) = RF(Cr

A) · 100 (2)

Definition 2 The Global Fairness (GF) of algorithm A for k users is defined as:

GF(CA, k) = 1

k
·

k∑

r=1

(RF(Cr
A)) (3)

Corollary 2 TheGlobal Fairness Percentage (GFP) of any algorithm A for k users
is defined as:

GFP(CA, k) = GF(CA, k) · 100 (4)

If algorithm A schedules jobs of k competing users such that r th user obtains a
makespan of Cr

A, then we define Fairness Index for algorithm A represented by
2-tuple with two parameters such as RF and GF as follows

FI(CA, k) = 〈{RF(Cr
A)|1 ≤ r ≤ k},GF(CA, k)〉 (5)

Example 1 Let us consider three departments {CSE, MAT, PHY} of a University
as three users {U1,U2,U3}, submitting jobs by MUMPOSP model to a central-
ized supercomputer (having 2 identical machines) in order to finish their respec-
tive projects at the earliest. Let us denote the job sequences of U1, U2, and U3 as
U1 = 〈J 1

1 /1, J 1
2 /2〉, U2 = 〈J 2

1 /3, J 2
2 /4〉 and U3 = 〈J 3

1 /5, J 3
2 /6〉, respectively. Sup-

pose that the supercomputer runs an online scheduling algorithm Alg that schedules
the jobs of U1, U2 and U3 and obtains C1

Alg = 11, C2
Alg = 9 and C3

Alg = 10, then we
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have, RF(C1
Alg) = 1.5

11 = 0.13 and RFP(C1
Alg) = 13%, RF(C2

Alg) = 3.5
9 = 0.38 and

RFP(C2
Alg) = 38%, RF(C3

Alg) = 5.5
10 = 0.55 and RFP(CAlg) = 55%. Therefore, we

have GF(CA, 3) = 0.35 and GFP(CA, 3) = 35%.

Definition 3 The Unfairness of algorithm A for MUMPOSP with respect to each
user Ur is defined by User Discrimination Index as:

UDIrA = 1 − RF(Cr
A) (6)

Definition 4 TheOverall Unfairness of algorithmA for k users is definedbyGlobal
Discrimination Index as:

GDI(Cr
A, k) = 1 − GF(Cr

A, k) (7)

Definition 5 The Realtive Discrimination Index (RDI) of any algorithm A for
MUMPOSP with respect to each user Ur is defined as:

RDIrA =
{
GF(Cr

A, k) − RF(Cr
A), if RF(Cr

A) < GF(Cr
A, k)

0, otherwise
(8)

If algorithm A schedules jobs of k competing users such that r th user obtains a
makespan of Cr

A, then we define Discrimination Index for algorithm A as 3-tuple
with three parameters such as UDI, GDI and RDI as follows.

DI(CA, k) = 〈 {UDIrA | 1 ≤ r ≤ k},GDI(Cr
A, k), {RDIrA|1 ≤ r ≤ k} 〉 (9)

Example 2 Let us consider algorithmA results in relative fairness forU1,U2,U3 and
U4 as 0.6, 0.6, 0.6 and 0.2 respectively. We now have GF(Cr

A, 4) = 0.5. Therefore,
UDI1A = 1 − 0.6 = 0.4, UDI2A = 1 − 0.6 = 0.4, UDI3A = 1 − 0.6 = 0.4, UDI4A =
1 − 0.2 = 0.8, GDI(Cr

A, 4) = 1 − 0.5 = 0.5 and RDI4A = 0.5 − 0.2 = 0.3.

3 Absolute Fairness and Lower Bound Results

Wedefine absolute fairness as a quantitativemeasure and provide lower bound results
of absolute fairness in generic MUMPOSP setting with equal length jobs. Let A be
an online scheduling algorithm for the setup MUMPOSP (k, Pm |Cr

max).

Definition 6 Algorithm A achieves Absolute Fairness if RF(Cr
A) is same ∀Ur ,

where 1 ≤ r ≤ k.

Lemma 1 If any algorithm A incurs RDIrA = 0, ∀Ur , then it achieves absolute fair-
ness.
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Proof If RDIrA = 0, ∀Ur , 1 ≤ r ≤ k, then by Eq. (8), we have

RF(Cr
A) ≥ GF(Cr

A, k) (10)

By Eqs. (3) and (10), we can infer that

RF(Cr
A) = GF(Cr

A, k),∀Ur .

Therefore, Lemma 1 holds true. �

Definition 7 Any Algorithm A is b-fair, if it achieves RF(Cr
A) = b for allUr , where

1 ≤ r ≤ k and 0 < b ≤ 1.

Theorem 1 Any online algorithm A achieves absolute fairness in the setup
MUMPOSP (k, P2|Cr

max) such that Cr
OPT
Cr

A
≥ 1

k , ∀Ur , where k ≥ 2 and 1 ≤ r ≤ k.

Proof Let us consider an instance of MUMPOSP (k, P|Cr
max), where k = 2. We

analyze two cases based on nr as follows.

Case1: n1 �= n2.
Case 1(a): If the first job pair (J 1

1 , J 2
1 ) is scheduled on different machines. Let us

consider the following instanceU1 : 〈J 1
2 /2, J 1

1 /1〉,U2 : 〈J 2
1 /1〉, where each job is

specified by its processing time. Assigning J 1
1 /1 and J 2

1 /1 to machines M1 and
M2, respectively, followed by the assignment of J 1

2 /2 to either of the machines
such thatC1

A = 3 andC2
A = 1, whereC1

OPT ≥ 1.5 andC2
OPT ≥ 0.5. Therefore, we

have C1
OPT

C1
A

≥ 1
2 and C2

OPT

C2
A

≥ 1
2 .

Case 1(b): If the first job pair (J 1
1 , J 2

1 ) is scheduled on the same machine. Let us
consider the following instanceU1 : 〈J 1

3 /2, J 1
2 /1, J 1

1 /1〉,U2 : 〈J 2
2 /2, J 2

1 /1〉. If the
first job pair (J 1

1 /1, J 2
1 /1) is scheduled either on machine M1 or on M2, then by

assigning the next pair of jobs (J 1
2 , J 2

2 ) to the same or different machines, followed
by the assignment of job J 1

3 /2 such that C1
A = 4 and C2

A = 3, where C1
OPT ≥ 2

and C2
OPT ≥ 1.5. Therefore, we have C1

OPT

C1
A

≥ 1
2 and C2

OPT

C2
A

≥ 1
2 .

Case 2: n1 = n2.
Case 2(a): If the first job pair (J 1

1 , J 2
1 ) is scheduled on different machines. Let us

consider the following instanceU1 : 〈J 1
3 /2, J 1

2 /1, J 1
1 /1〉,U2 : 〈J 2

3 /2, J 2
2 /2, J 2

1 /1〉.
Assigning jobs J 1

1 /1 and J 2
1 /1 to machines M1 and M2 respectively, followed

by the assignment of the subsequent jobs as shown in Fig. 3a, such that C1
A = 4

and C2
A = 5, where C1

OPT ≥ 2 and C2
OPT ≥ 2.5. Therefore, we have C1

OPT

C1
A

≥ 1
2 and

C2
OPT

C2
A

≥ 1
2 .

Case 2(b): If the first job pair (J 1
1 , J 2

1 ) is assigned to the samemachine.We consider
the same instance of Case 2(a). Assigning J 1

1 /1 and J 2
1 on either machine M1 or

on M2, followed by the assignment of the subsequent jobs as shown in Fig. 3b such

that C1
A = 4 and C2

A = 5. Therefore, we have C1
OPT

C1
A

≥ 1
2 and C2

OPT

C2
A

≥ 1
2 . �
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Fig. 3 Illustration of case 2

3.1 Results on Absolute Fairness in MUMPOSP with m
Identical Machines for Equal Length Jobs

For ease of understanding, we analyze the lower bound of absolute fairness for
any online algorithm in a generic MUMPOSP setting, where each user has equal
number of jobs, and all jobs have equal processing time of x unit, where x ≥ 1. The
objective of each user is to obtain a minimum Cr

max. We formally denote the problem
as MUMPOSP (k, Pm |pri = x |Cr

max).

Lemma 2 Let A be an online scheduling algorithm. In MUMPOSP
(k, Pm |pri =x |Cr

max) with k = b · m, algorithm A obtains Cr
A ≤ b · ∑nr

i=1 p
r
i , for each

Ur , respectively, where 1 ≤ r ≤ k, m ≥ 2 and b ≥ 1.

Proof We prove Lemma 2 by method of induction on number of jobs per user (nr )
as follows.

Induction Basis: Let us consider k = m = 2, n1 = n2 = 1 and p11 = p21 = 1.
Clearly, Cr

A = 1 ≤ b · 1 · 1, where r = 1, 2 and b ≥ 1.
InductionHypothesis: Let us consider k = b · m, nr = n

k = y, where y ≥ 1, b ≥ 1

and n = ∑k
r=1 nr .

We assume that

Cr
A ≤ b ·

nr∑

i=1

pri ≤ b · x · y (11)

Inductive Step: For nr = y + 1 with pri = x , ∀Jri . We have to show that Cr
A ≤

(y + 1) · b · x .
By Eq. (11), we have Cr

A = y · b · x with nr = y. When we add extra one job
to each user, we have by Induction Basis Cr

A = b · x · y + (b · x) = (y + 1) · b · x .
Therefore, Lemma 2 holds true. �

Lemma 3 Any algorithm A is 1
k -fair for MUMPOSP (k, Pm |pri = x |Cr

max) with k =
b · m, where m ≥ 2 and b ≥ 1.

Proof By Lemma 2, we have

Cr
A ≤ b ·

nr∑

i=1

pri ,∀Ur (12)
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We have the fair optimum bound as

Cr
OPT ≥

∑nr
i=1 p

r
i

m
, ∀Ur (13)

By Eqs. (12) and (13), we have

Cr
OPT

Cr
A

≥ 1

k
, ∀Ur . (14)

Therefore, Lemma 3 holds true. �

Lemma 4 In MUMPOSP (k, Pm |pri = x |Cr
max) with k > m, algorithm A obtains

Cr
A ≤ 	 n

m 
 · x, for each Ur respectively, where k �= m · b for b ≥ 1.

Proof The correctness of Lemma4 is shownbymethod of induction on nr as follows.
Induction Basis: Let us considerm = 2, k = 3, nr = 1 and pri = 1. Now, we have

n = nr · k = 3.
Clearly, Cr

A ≤ 2 = 	 n
2 
 · 1.

Induction Hypothesis: Let us consider nr = n
k = y, pri = x and k > m with k �=

m · b for b ≥ 1. We assume that Cr
A ≤ 	 n

m 
 · x , ∀Ur .
Inductive Step: We show that Cr

A ≤ 	 n+k
m 
 · x for nr = y + 1, ∀Ur .

By our Induction Basis, for one extra job of each user Ur , where 1 ≤ r ≤ k,
algorithm A incurs an additional time of 	 k

m 
 · x for each Ur .
Therefore, Cr

A ≤ 	 n
m 
 · x + 	 k

m 
 · x ≤ 	 n+k
m 
 · x

Thus, Lemma 4 holds true. �

Theorem 2 Any Algorithm A is 1
k -fair for MUMPOSP (k, Pm |pri = x |Cr

max), where
k ≥ m and m ≥ 2.

Proof Theorem 2 holds true by Lemma 3 for k = m · b, where b ≥ 1.
By Lemma 4, we have

Cr
A ≤ 	 n

m

 · x (15)

By Eq. (13), we have Cr
OPT ≥ n

k ·x
m .

Implies,

Cr
OPT ≥ n · x

k · m (16)

By Eqs. (14) and (15), we have

Cr
OPT

Cr
A

≥
n·x
k·m
n·x
m

≥ n · x · m
n · k · m · x ≥ 1

k
. �
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4 Fairness Measure Using Flow Time and Completion
Time as User’s Objective

We show that our proposed Fairness Index can be served as a framework for mea-
suring fairness of any algorithm based on well-known user’s objectives such as sum
of completion times (Sr ), weighted sum of completion times (Wr ) and sum of flow
times (SFr ). Selection of an user’s objective is application-dependent. For instance,
users of interactive systems require optimized value for respective flow time f r ,
where f ri of any Jri is the difference between its completion time cri and arrival time
tri . We now define relative fairness measures based on the above-mentioned user’s
objectives, respectively, by our proposed FI.

• Sum of Completion Times (Sr ): Here, the objective for eachUr is to obtain amin-
imum Sr = ∑nr

i=1 c
r
i . The relative fairness for any Ur , obtained by any algorithm

A based on Sr is defined as

RA(S
r
A) = SrOPT

SrA
, where SrOPT is the optimum value for Sr .

• Weighted Sum of Completion Times (Wr ): Here, the cri is associatedwith certain
positive weight wr

i . The objective for each Ur is to obtain a minimum Wr =∑nr
i=1 wr

i · cri . The relative fairness for any Ur obtained by algorithm A based on
Wr is defined as

RA(W
r
A) = Wr

OPT

Wr
A

where, Wr
OPT is the optimum value for Wr .

• Sum of Flow Times (SFr ): Here, each Ur wants a minimum value for respective
SFr = ∑nr

i=1 f ri , where f ∗r
i is the desired value of f ri and SFrOPT = ∑nr

i=1 f ∗r
i . The

relative fairness for any Ur obtained by algorithm A based on SFr is defined as

RA(SF
r
A) = SFrOPT

SFrA
.

5 Concluding Remarks and Scope of Future Work

In this work, we make an attempt to address the non-trivial research challenge of
defining a new fairness model with quantitative measures of algorithmic fairness
for Multi-user Multi-processor Online Scheduling Problem (MUMPOSP) based on
user’s objective. We formally presented the MUMPOSP setting with an illustration
followed by a discussion on perspectives of fairness in MUMPOSP. We have pro-
posed a new fairness model and have defined five quantitative measures to ensure
algorithmic fairness by considering minimization of makespan as the user objective.
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Lower bound results on absolute fairness of an online scheduling algorithm have
been shown in MUMPOSP setup with equal length jobs. We have shown how our
proposed fairness measure can be served as a framework for measuring algorithmic
fairness based on well-known user’s objectives such as sum of completion times,
weighted sum of completion times and sum of flow times.

Scope of Future Work. We assumed a ideal theoretical bound for Cr
OPT. It is still

open to explore a realistic bound for Cr
OPT. A non-trivial challenge is to compare the

fairness of any two online scheduling algorithms A and B, when global fairness of
algorithms A and B are same, whereas relative fairness of A is more than that of
B for some users or vice-versa. In this scenario, it is interesting to make a trade-off
by considering the number of users and individual relative fairness for each user to
compare the fairness of two different algorithms.
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