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Abstract. Ground improvement of soft soil with construction of stone columns
has been widely adopted. Lateral deformation of stone columns plays a signif-
icant role in behavior of columns. This study aims to explore the applicability
of different AI techniques/mathematical models in predicting radial strain (ε)
(change in radius/original radius of column) in stone columns as a function of
significant input parameters viz. diameter (d) of stone column, l/d ratio, s/d (spac-
ing/diameter) ratio, area ratio (Ar), λ (area of stone column/total area of loading),
geosynthetic stiffness (k), β (clearance ratio). The radial strain (ε) in ordinary
and encased columns is predicted with the help of linear regression, SVM, GPR
and ANN models using Matlab software. The datasets of input parameters are
obtained from already published literature. The values predicted by the models
are compared to the corresponding true values of radial strain reported in the liter-
ature. A comparative analysis of the efficiency of all models is examined in terms
of RMSE, R-squared, MSE and MAE values. It was observed that ANN models
closely predicted the radial strain in columns with higher accuracy as compared
to other models. ANN models may therefore be used to predict radial strain even
in larger size columns in the field/in-situ conditions. However, these models are
put forward as a complementary technique to evaluate the radial strain in columns
and not as a substitute to field tests.
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1 Introduction

Ground improvement of soft soil sites with construction of stone columns has been
widely adopted across the globe. Construction of stone columns helps to increase the
load bearing capacity and decrease the settlement of soft ground [1–5]. Numerous studies
have been carried out to study the behavior of stone columns with different geometrical
patterns and arrangement [4–9].Various studies on design procedures andmethodologies
[2, 3, 7–12] have been established to enable a safe design of such columns.Diverse factors
like diameter and length of stone columns, spacing between columns, area replacement
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ratio [4, 5, 7, 9, 13, 14]; arrangement of columns and area of load application [6–9,
15]; length of encasement and encasement stiffness [3, 4, 9, 14, 16, 17] influence the
behavioural characteristics of stone columns.

The bulging of stone columns significantly influence column behaviour and hence
considered in design of stone columns. The load bearing capacity of the column is gen-
erated from lateral earth pressure mobilised by the surrounding soil against the bulging
of columns [1, 2, 13]. In soft clay, the inability to resist bulging due to the extremely low
shear strength of the clayey soil causes failure of such columns [4]. The confinement
provided by encasements to stone columns constructed in very soft soil (cu ≤ 15 kPa)
significantly cause reduction in column bulging [3, 7, 18]. Murugesan and Rajagopal [3]
have found that with encasement the lateral deformation or bulging of columns reduced
significantly and the trend of radial deformation is similar to the pattern of variation
of hoop strain in columns. The study observed that maximum bulging occurred over a
depth equal to twice the diameter of column and providing encasement over this range of
depth would be sufficient to arrest column bulging. The geosynthetic encasement stiff-
ness plays an important role in increasing the column stiffness by increasing the lateral
confining stress. With increase in lateral confining stress in columns the lateral stress
transferred to the surrounding soil decreased. It was noted that smaller diameter columns
perform better than larger diameter columns due to generation of higher confining stress.

The depth of predominant bulging has been reported by various studies and it falls
closely in the range of 1–4 times the diameter of columns. Irrespective of being an
end-bearing or floating column, long unreinforced columns fail by bulging while short
columns fail by punching [4]. The study also found that with an increase in diameter
of columns, the failure stress increased with construction of reinforced or unreinforced
stone columns. In layered ground it was observed that in case of column area loading
the top soft soil stratum influenced significantly the limiting axial stress of the columns.
On the contrary, for entire area loading, stiffness and load carrying capacity of column
reinforced ground decreased as the thickness of top strata of weaker soil increased [19].
The length of columns invariably affects the column performance and failure.Malarvizhi
and Ilamparuthi [15] reported that the load capacity of stone column increased with an
increase in length of columns. From the review of literature it was found that stone
columns having l/d ratio less than 4 fail by punching while bulging failure occurs in the
columns having l/d > 4 [12]. Therefore, it is noted that awide variety of factors like diam-
eter and length of columns, arrangement of columns, area of load application, encasement
stiffness significantly influence the lateral deformation/bulging of columns. Numerical
simulations can be performed to evaluate the influence of each factor. However, for engi-
neering purpose, it is more realistic to develop a simple model that can estimate radial
strain as a function of all such factors (diameter and length of columns, spacing between
columns, area replacement ratio, area of load application, type of columns i.e. floating
or end-bearing nature of columns and encasement stiffness). Such modelling is less time
consumable and gives an approximate idea of bulging characteristics. This study aims
to predict the radial strain in ordinary and encased stone columns as a function of such
factors using different numerical models/Artificial Intelligence (AI) techniques.
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2 Methodology

2.1 Theory of Artificial Intelligence (AI)

The AI techniques attempts to solve the problems with training/learning from the input
and output datasets presented. While training, it generates/devises the subtle functional
relationships between the data/training examples without explaining the physical laws
or determining the underlying relationships that govern the interdependence between
the datasets [20]. Hence, AI models are entirely dependent on the training data to obtain
the functional relationships as well as establish the parameters or structure of a system
with minimum considerations of the physical laws. In case of models based on physical
laws between different parameters, a prior knowledge of the governing relationships
between various factors, as well as the assumptions and theories involved is necessary
unlike AI techniques. This enhances the utility of such AI techniques as compared to
other physically based empirical and statistical models in the application of problems
where the target output can be evaluated [20]. Also, it was found that the AI models
performed comparably similar or better than the traditional models [20].

2.2 Applications of AI in Geotechnical Engineering

Various studies on applications of AI techniques in geotechnical engineering have been
carried out over the past few decades. Goh [21] calculated the friction capacity of piles in
soft clay with the help of ANN models. The model was trained with data obtained from
field tests. Subsequent studies were carried on application of ANN models to develop
a correlation between undrained shear strength of soil, effective overburden pressure,
undrained side resistance factor in case of drilled shafts [22]; to predict the axial load
carrying capacity of driven piles and drilled shafts based on insitu/field tests; prediction
of bearing capacity of stone columns [23] and so on. Studies have also been conducted to
calculate the settlement of stone columns with the help of ANNmodels [24, 25], predict
the bearing capacity of unreinforced as well as geogrid-reinforced sand bed constructed
on stone columns in soft clay using SVR models [26]. Hence, application of AI based
approaches/techniques in geotechnical engineering is wide.

2.3 Consideration of Input Parameters

As mentioned in previous section, various factors play a significant role in influencing
the lateral deformation/bulging of stone columns. Encasing of columns to significantly
reduce column bulging has been well established. Also l/d ratio and s/d ratio has a
remarkable influence on the lateral deformation of columns. To account for the end-
bearing as well as floating columns, β (clearance ratio) (depth between the bottom of the
column and test tank/diameter of column) is taken as an input parameter. Thus, for end-
bearing columns, the clearance ratio is 0. Area ratio (Ar) (area of stone column/total area
of loading) were considered as other significant input parameters to take into account
the variation in stone column arrangement and area of load application in evaluating the
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radial strain. The stiffness of geosynthetic used as encasements for stone columns play
a remarkable role in the radial strain developed in stone column. Hence, geosynthetic
stiffness (k) was considered as an input parameter to evaluate the maximum radial strain
and its corresponding depth.

Data collected frompublished literature [4, 5, 7, 8, 14–16, 19, 27–36]was extensively
used to evaluate the ε of ordinary and encased stone columns in the present study.
However, considerably fewer studies have reported the radial strain in columns. The
parameters considered in the study include data from experimental/model tests as well
as numerical studies. The range of input parameters was taken into consideration taking
account of the usual ranges adopted in model studies/large scale tests. The range of
variation of each of these parameters is presented in Table 1.

Table 1. Range of input parameters

Range Diameter (mm) l/d s/d Ar (%) λ (%) Geosynthetic
stiffness (kN/m)

Clearance ratio
(β)

Maximum 1000 20 12 44 100 10000 12

Minimum 20 1 1 0.7 0.1 0 0

In the present study, Linear Regression, Support Vector Machine (SVM), Gaussian
Process Regression (GPR) and Artificial Neural Network (ANN)models were built with
the help of deep learning tools/Regression Learner app inMatlab software. The different
models are described briefly in the following sections.

3 AI Techniques/Mathematical Models

Linear Regression Models
Linear regression models comprise of predictors that are linear in the model parameters.
These models are simple to understand and enable quick predictions. However, these
usually have low accuracy of prediction. The different linear regression models incorpo-
rated in the study include Linear, Interactions linear, Robust Linear and Stepwise Linear
model (Matlab [37]).

Support Vector Machine Models
Support vector machine (SVM) analysis is a popular machine learning tool employed for
classification and regression analysis. SVM regression is based on kernel functions and
hence considered to be a nonparametric technique. SVMmodels with Linear,Quadratic,
Cubic and Fine, Medium and Coarse Gaussian kernel functions are incorporated in
this study. Unlike nonlinear SVMs, linear SVMs are simple models and can be easily
interpreted. However, nonlinear SVMs have higher predictive accuracy (Matlab [37]).
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Gaussian Process Regression Models
In Gaussian process regression, the predictions are based on probability distribution over
a range of functions. Thesemodels have flexibility in choice of presets in theModel Type
gallery to enable a small training error and, protects against over-fitting. These models
are mostly non-parametric kernel based probabilistic models. Squared exponential GPR,
Matern 5/2 GPR, Exponential GPR, Rational Quadratic GPR (Matlab [37]) models have
been included in this study to predict the radial strain.

Artificial Neural Network Models
Artificial neural network is one of the widely adopted Artificial Intelligence techniques.
It is a computational technique and tries to imitate the cognitive abilities of a human brain
to solve complex problems with a simplistic approach [20]. ANN model architecture
consist of three types of layers, i.e. input layer, hidden layers and output layer in each
case. The independent variables are fed into the input layer which further transmits
information through the hidden layer and the predictions are obtained from the output
layer. The system develops a learning algorithm to determine the weights to the input
signals as well as adjusts/sets the weights and biases and employs an activation function
to develop a learning rule for input-output mapping that yields the smallest possible
error [20]. Narrow, medium, wide, Bilayered and Trilayered Neural Network models
are incorporated in the present study.

4 Determination of Accuracy of Prediction by Different Models

To determine the best model that make prediction with the closest accuracy, the RMSE,
R-squared, MSE and MAE values are compared for each model. Also, the plot of pre-
dicted vs true value of radial strain for each model demonstrates the correlation between
radial strain reported in various studies and that estimated using different models for the
corresponding case.

RMSE (Root Mean Square Error): It is a measure of the difference between observed
values and that predicted by a model/estimator. Lower values of RMSE are preferred
[37].

R-square (Coefficient of determination): It is always smaller than 1 andmostly greater
than 0. It enables comparison of the trained model to the model with a constant response
and it equals the mean of the training response. R-squared values close to 1 is preferred
[37].

MSE (Mean Squared Error): It is the square of the RMSE, smaller values of MSE
are preferred [37].

MAE (Mean Absolute Error): This is similar to the RMSE values but it is insensitive
of the outliers. Smaller values of MAE are preferred [37].
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5 Results and Discussion

The plots of predicted vs true radial strain obtained from different models are shown in
Figs. 1, 2, 3, 4, 5. It is observed from Figs. 1, 2, 3, 4, 5 and Table 2 that the predictions by
NeuralNetworks (Fig. 5(a)–(e)) exhibit higher accuracy as compared to the predictions of
LinearRegression (Fig. 1(a)–(d)), SVM(Fig. 2(a)–(c); Fig. 3(a)–(c)) andGPR (Fig. 4(a)–
(d)) models. The predictions by neural networks demonstrate a significantly higher value
of R-square (0.92–0.97) that shows a close correlation between the predicted and true
radial strain reported. Also, RMSE,MSE andMAE values of the ANNmodels are lower
than those of other models. Apart from ANN models, Interactions Linear Regressions
model (Fig. 1(b)), Quadratic (Fig. 2(b)) andCubic SVM (Fig. 2(c)), Squared Exponential
GPR (Fig. 4(a)), Matern 5/2 GPR (Fig. 4(b)), Rotational Quadratic GPR (Fig. 4(c)) and
Exponential GPR models (Fig. 4(d)) exhibit a high R-squared value in the range of
0.75–0.92. However, the RMSE, MSE and MAE values of these models are higher than

Fig. 1. Predicted vs Reported radial strain as obtained from (a) Linear (b) Interactions linear (c)
Robust linear (d) stepwise linear regression model
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Fig. 2. Predicted vs Reported radial strain as obtained from (a) Linear (b) Quadratic (c) Cubic
SVM model

that of ANN models. The values of RMSE, R-square, MSE and MAE of the different
models are listed in Table 2.

This observation emphasizes the higher applicability of ANN models in predicting
the radial strain.

Comparison of Performance of Different ANN Models
Of all the ANN models adopted in the study, predictions of Wide neural network model
(Fig. 5(c)) exhibited the highest accuracy with maximum R-squared value of 0.97 and
lowest values of RMSE, MSE and MAE of all the models. The R-squared value of pre-
dictions ofmedium, bilayered and trilayered neural networkmodels were similar to wide
ANN model unlike RMSE, MSE and MAE values. The R-squared value of correlation
between predicted and reported values was the lowest at 0.92 for narrow neural network.
However, the RMSE values of wide and trilayered neural network showed marginal
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Fig. 3. Predicted vs Reported radial strain as obtained from (a) Fine (b) Medium (c) Coarse
Gaussian SVM model

variation. It can therefore be concluded that of Linear Regression, SVM, GPR and ANN
models, ANN models (Fig. 5(a)-(e)) give the best prediction of radial strain computed
as a function of d, l/d ratio, s/d ratio, λ, k, β. Also, apart from the narrow ANN model,
all the other ANN models yielded close predictions.

Limitations and Future Scope of Work
The models were built with limited number of datasets. Detailed parametric study will
be carried out in future and data from such studies may help to better predict the lateral
deformation trend/pattern using ANNmodels. Systematic experimental studies on stone
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Fig. 4. Predicted vs Reported radial strain as obtained from (a) Squared exponential (b) Matern
5/2 (c) Rotational quadratic (d) Exponential GPR model

columns focussing on the failure of columns due to lateral deformation need to be con-
ducted for establishing database for further improvement in ANN model development.
It would also enable a reliable sensitivity analysis to understand the principal factors that
affect the target parameters. Due to a limited number of datasets sensitivity analysis was
not performed in the present study and it is planned to be carried out in further studies.
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Fig. 5. Predicted vs Reported radial strain as obtained from (a)Narrow (b)Medium (c)Wide (d)
Bilayered (e) Trilayered ANN model
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Table 2. Values of RMSE, R-square, MSE and MAE of different models

Model type RMSE R-squared MSE MAE

Linear regression 9.6588 0.48 93.235 7.1823

Interactions linear regression 5.7451 0.82 33.006 4.2865

Robust linear regression 10.311 0.41 106.31 6.5791

Stepwise linear regression 7.8935 0.65 62.307 5.9342

Linear SVM 10.326 0.41 106.63 6.5033

Quadratic SVM 6.679 0.75 44.609 4.0724

Cubic SVM 4.1814 0.9 17.484 2.6865

Fine Gaussian SVM 8.0808 0.64 65.3 4.2765

Medium Gaussian SVM 8.7979 0.57 77.403 5.4252

Coarse Gaussian SVM 11.917 0.21 142.01 7.7625

Squared exponential GPR 7.1356 0.72 50.916 5.0399

Matern 5/2 GPR 6.785 0.74 46.036 4.7668

Exponential GPR 3.7181 0.92 13.824 2.6707

Rotational quadratic GPR 7.0558 0.72 49.785 4.9707

Narrow neural network 3.6821 0.92 13.558 2.3546

Medium neural network 2.2659 0.97 5.1343 1.0773

Wide neural network 2.2062 0.97 4.8672 0.9548

Bilayered neural network 2.3825 0.97 5.6763 1.3729

Trilayered neural network 2.1939 0.97 4.8133 1.1229

6 Conclusions

The radial strain in OSC and ESC were predicted with the help of Linear Regression,
SVM, GPR and ANN models. The variance in column characteristics like the column
dimensions, geometry and arrangement, area of load application, including the effect of
the presence of a stiff stratum below the columns i.e., end-bearing and floating column,
were taken into account by the inclusion of 7 input parameters considered for prediction
of target values. The datasetswere taken frompublished literature. SuchANNmodels are
valuable, especially in geotechnical engineering applications, since most problems are
dependent on a wide range of factors and determining the physical relationship between
such factors involves considerable time. TheANNmodels are quick to provide an overall
estimate of the target parameters in investigation and can work to offer a preliminary
idea of the problem and its feasibility/applicability as a solution. However, incorporating
basic ideas or prior knowledge of the physical laws that govern the relationship between
input parameters that influence the target parameter significantly and the target data
would help to ignore noisy data and therefore enhance the efficiency and applicability
of such models. Such models will help to predict the radial strain even in larger size
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columns adopted in field conditions based on such critical input parameters. However,
such AI techniques can be adopted as an additional tool and are not recommended as
a substitute to field studies/tests. The conclusions derived from the present study are
presented below:

1. As compared to Linear Regression, SVM and GPR models, ANN models exhibited
higher efficiency of prediction of radial strain in OSC and ESC columns.

2. ANNmodelswithmultiple layerednetworks likemedium,wide, bilayered, trilayered
neural networks yielded predictions with higher accuracy as compared to narrow
ANN models.

3. Exponential GPR and Cubic SVMmodels were also found to give close predictions
with a considerable R-squared value of 0.90.
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