
Chapter 5
Beyond Logical Approach to Systems
Theory

Shingo Takahashi

Abstract Logical Approach to Systems Theory (LAST) provides a “meta”-
framework to describe and investigate explicitly and deeply the similarity of
system models based on general and formal definitions of system models and their
structures. The main theorem of LAST is F-morphism theorem. It substantially
enhances the concept of “isomorphism” between system models of the same type to
those of “different types” in the sense that they can be described in different types
of languages. After considering the limitation of LAST by interpreting Gödel’s
Incompleteness Theorem, it is clarified that the adaption and the structural change
of a system would be beyond the description capability of LAST. Hence some
new conceptual devices and effective models such as agent, internal model, and
organizational learning are required to be developed. Agent-Based Organizational
Cybernetics (AOC) could be a key model to describe the organizational learning
that induces the adaptation and structural change of system models especially in
social systems.

Keywords System model · Structure · Logic · Language · Homomorphism ·
F-morphism · Internal model · Agent · Organizational learning

5.1 Introduction

This paper describes the essence of Logical Approach to Systems Theory (LAST)
(Takahashi & Takahara, 1995), and the framework of agent-based organization
cybernetics (AOC) for consideration for adaptation that includes internal model and
organizational learning as the main concepts (Takahashi, 2006).

S. Takahashi (�)
School of Creative Science and Engineering, Waseda University, Tokyo, Japan
e-mail: shingo@waseda.jp

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2022
K. Kijima et al. (eds.), Systems Research I, Translational Systems Sciences 26,
https://doi.org/10.1007/978-981-16-9937-5_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9937-5_5&domain=pdf
mailto:shingo@waseda.jp
https://doi.org/10.1007/978-981-16-9937-5_5

90 S. Takahashi

The similarity of systems models has been a central concept in systems theory
as well as systems science. Basically, from the theoretical point of view, a system
model is similar to another if a homomorphism can be defined between the two
system models. The homomorphism theorem is one of the typical results on how
isomorphic images can be constructed in terms of homomorphism. Though the
homomorphism concept should be primally considered to give a similarity relation
of systems models, it should be still clarified what properties are interpreted as
similar between system models in the sense of “preserving” the properties by a
homomorphism from one model to another, and how the system model should
be expressed to define in a totally formal way the similarity by generalizing the
homomorphism concept.

LAST will give an answer to these questions on general similarity.
LAST provides a “meta”-framework to describe and investigate explicitly and

deeply the similarity of system models based on general and formal definitions of
system models and their structures. Systems models are described in terms of model
theory. Roughly speaking, the following relationship holds (Chang & Keisler, 1973):

model theory = universal algebra + logic.

Universal algebra is appropriate or proper for describing system models, espe-
cially general system models or abstract system models (Mesarovic & Takahara,
1975, 1989), each of which is expressed as a mathematical structure. Logic generally
includes as the main body language, formation rules of formulas, deduction system,
and satisfaction of formulas in a model. We sometimes use category theoretical
formulation as well as universal algebra, which is often effective for the theory of
general system models, when we consider a class of all systems satisfying some
specific properties, for example, a class of all state space representations.

The main theorem of LAST is F-morphism theorem. It substantially enhances
the concept of “isomorphism” between system models of the same type to those
of “different types,” which means that the two models described in “different
languages” can be isomorphic in terms of F-morphism. The relation of being
“isomorphic” of system models is the basis of the similarity in systems science.
Hence the F-morphism concept in LAST should be considered as fundamental for
the similarity in systems science, as well as homomorphism as a specific case.

The logical approach also clarifies the distinction of what type of properties of
systems can be described in the theory and what type of them cannot. In particular,
the adaptation of systems and the structural change of a system would be beyond the
description capability of LAST. We need to develop some new conceptual devices
such as agent, internal model, and organizational learning. This chapter focuses
on considering the adaptation of social systems and introduces the agent-based
organization cybernetics (AOC) as a key model.

5 Beyond Logical Approach to Systems Theory 91

5.2 General Systems

In the most general sense, a system can be defined as a relation on some attributes
V1, . . . , Vn, the relation which is expressed by S ⊂ V1 × · · · × Vn (Mesarovic &
Takahara, 1975, 1989). Each set Vi represents the collection of alternative ways in
which the corresponding object appears in the relation that defines the system. The
object is identified in terms of a property and an attribute. A general form of an
input-output system model is described as S ⊂ X × Y, where X is the set of input
attributes of concerns and Y the set of output attributes of concern, respectively.
Starting from this general definition of a system, we develop systems theory by
introducing into the attributes some structures such as linearity, stationarity, and so
on that are suitable to our interests in objects as systems. Our definition of a system
model realizes this concept of a system in as a formal and general way as possible.

5.3 Logical Approach to Systems Theory: LAST

Logical Approach to Systems Theory (LAST) provides a second-order framework
to describe and investigate explicitly and deeply both system models and structures
of them from a model theoretic point of view (Takahashi, 1995). LAST is charac-
terized by type-free representation, distinction between model and structure, and
hierarchical structure expansion.

1. Type-free representation of system models. The representation is not only inde-
pendent of any specific formalisms such as differential equations or automata, but
also capable of clarifying possibly different types of system models constructed
from multifaceted aspects in modeling.

2. Distinction of system models from their structures. The logical approach pro-
vides a language and formal framework to describe the properties of each system
model, to define its structure and specify the class. The language is determined
by the structure of a system model.

3. Hierarchical structure expansion. The relations of inclusion among classes of
system models are given as hierarchical relations of the structures of system
models. That is, when a class of system models is included in another, the
structure of system models of the former class is obtained by expanding the other.
The expanded structure inherits the antecedent.

LAST places its emphasis mainly on complex systems such as information
systems or social systems as concrete instances rather than traditional topics in
control theory. So complex is even a single information system that includes system
models of various types coming from diversity of individual objects. The design of a
complex system requires to deal with such variety of types of system models and to
specify a class of system models of any type separately from the description of the
system models. Thus exploring the inter-relations among system models to describe

92 S. Takahashi

a complex system is expected as a key feature in LAST. The primary purpose of
LAST is to provide an effective framework for using basic concepts in systems
theory to describe complex systems. The use of model theory rather than usual set
theory would make this purpose easily attainable. LAST aims at a practical device
for designing complex systems as well as theoretical development on system models
and structures.

5.3.1 Basic Concepts of LAST

There are at least four basic concepts to be understood in applying LAST. We will
illustrate in the following sections each of the concepts in detail.

1. System model. As stated previously, system models are objects of study in
systems theory. LAST provides a formal framework for representing a system
model to reflect systems recognition of a model builder. The representation
should be fully independent of the types of system models, while individual
system models employed in individual systems theories have their own specified
types. Thus we have to specify the language in such a way that not only system
models, but their types can be described, that is, what the types of system models
are should be clearly defined. LAST gives a natural and suitable way to satisfy
such requirement.

2. Structure. Since every system in the reality is recognized only as a system
model, the structure of a system is equivalent to that of a system model. If it
is allowed to use the term “structure” in defining a system, we could define a
system as follows: “A system is a whole entity having its own structure.”

The concept of structure has been less well-defined than that of a system
and rather controversial. However, in developing a meta-theory of systems, we
cannot avoid making clear the concept of structure in a formal way. In our logical
approach structure of a system model will be defined by a pair of a language to
describe the system model and a set of formulas to specify the behavior of the
system model. This definition comprehends essential parts of other definitions of
structure.

3. Morphism. The morphism is a conceptual basis for considering similarities
between system models. The similarity between two system models is often
defined by some morphism between them, more precisely, by some homomor-
phism. The definition of similarity by homomorphism, however, depends on
a particular representation or specification such as Mealy type automata used
to describe the situation. Since morphism is both practically and conceptually
significant as such in systems theory, we need to develop some general morphism
independent from representation types so that it gives the similarity between
system models not only of the same kind of type, but of different types. The type-
freeness of representation of system models in LAST enables us to construct such
a general morphism between system models of possibly different types including

5 Beyond Logical Approach to Systems Theory 93

homomorphism as a truly special case. For example we can construct a general
morphism from a finite automaton to a Petri net.

4. Universality. Since an aim of LAST is to develop a meta-theory concerning
“inter-models,” we are interested in universal properties found in a class of
system models or their structures rather than in individual models as instances. So
far, some universal properties significant in systems theory have been examined.
Here we will concentrate on the realization problem as universality, the problem
which deals with how the minimal model in a given class of a structure can be
constructed from a given set of input-output pairs. The algebraic specification is
one of important examples of the realization as universality.

5.3.2 System Model

5.3.2.1 Definition of System Model

A system model is a whole entity with some interactions among its elements.
A direct and natural representation idea of a system model is to express it as
a mathematical structure that consists of a base set with relations and functions
defined on it.

Definition 5.1 [System Model] A system model M is composed of:

1. A base set M;
2. A set of λ(i)-ary relations onM, {Ri| i ∈ I}, where λ is a function such that I →N+

(positive integers);
3. A set of μ(j)-ary functions onM, {fj| j ∈ J}, where μ is a function such that J → N

(non-negative integers).

Here an n-ary relation or function has n arguments, written as R(a1, . . . , an), or
f (a1, . . . , an). The function λ (or μ) means that the arity of a relation Ri (or fj)
depends on its index i (or j), written as Ri(a1, . . . , aλ(i)) or fj(a1, . . . , aμ(j)). Nullary
functions with no arguments are called constants. The pair 〈λ, μ〉 is called the type
of M.

We write M as follows:

M = 〈
M; {Ri |i ∈ I } ,

{
fj |j ∈ J

}〉
.

We sometimes write | M | to indicate the base set M.

94 S. Takahashi

This definition of a system model has very wide applicability. Most systems
representations we are interested in can be reformulated in the above form. We
illustrate below some typical and significant examples of system models.

Example 5.1 [Input-Output System Model] A simple but quite important instance
of system models is an input-output system model. Although we could describe it in
some different representations, the following one is natural. An input-output system
model is expressed by

MI/O = 〈X ∪ Y ; S,X, Y 〉 ,

where S ⊂ X × Y, X is the set of inputs and Y the set of outputs.

Example 5.2 [Linear System Model] A linear system model is a system model
whose input set and output set are vector spaces and whose behavior has the
linear property that S(x, y) and S(x′, y′) implies S(αx + βx′, αy + βy′) for any α

and β in a field F over which the input and output sets are the vector spaces.
The linearity of the input set is represented by the following system model:
MX = 〈F ∪ X;F,X, +, −,−1, · , 0F, 1F, 0X〉, where X is the set of inputs, F a unary
relation that is the set of scalars, 0X the zero vector, 0F the zero scalar, 1F the unit
element of F, + a binary function representing both scalar and vector addition, − a
unary function representing the additive inverse, · a binary function representing
scalar multiplication and multiplication of a vector by a scalar and −1 a unary
function representing the multiplicative inverse. The linearity of the output set is
similarly defined. A linear system model is defined as the union of, MY and the
input-output system model with the linear property of behavior, where the union
of two system models M1 and M2 is the system model whose base set, functions,
and relations are respectively the unions of the corresponding sets of the two system
models.

Example 5.3 [Discrete Event System Specification (DEVS) Model] The DEVS
formalism provides a means of constructing simulation models and a formal
representation of discrete event systems capable of mathematical manipulation just
as differential equations serve this role for continuous systems (Zeigler, 1990). A
DEVS model described in the DEVS formalism consists of a time base, inputs,
states, outputs, and functions for determining next states and outputs given current
states and inputs:

MDEVS = 〈X ∪ S ∪ Y ∪ R ∪ {∞} ; X, S, Y, δint, δext, λ, ta,Q, T 〉 ,

where X is a set of external event types, S a set of sequential state, Y a set of external
event types generated as outputs, T the time base, ta the time advance function
from S to the non-negative reals with infinity:ta : S → R+

0,∞, Q the total state
set defined by Q = {(s, e)| s ∈ S, 0 ≤ e ≤ ta(s)}, δint the internal transition function:
δint : S → S, δext the external transition function: δext : Q × X → S, and λ the output
function:λ : Q → Y.

5 Beyond Logical Approach to Systems Theory 95

Some essential behavior of a system specified by DEVS, such as the property of
the output function that generates an external output just before an internal transition
takes place, should be considered to be included implicitly in MDEVS.

5.3.2.2 Language for Describing Systems Properties

The systems properties are the properties possessed by a system model such
as linearity, stationarity, or causality. To investigate properties of these systems
properties, which can be called the meta-treatment of system models, we introduce
a formal language to describe systems properties. The use of the formal language
characterizes LAST. In this section we give only the formal framework of the
language.

Definition 5.2 [Language for a System Model] The language for a system model
M consists of:

1. λ(i)-ary predicate letters Ri for each i ∈ I, where λ is a function such that I → N+
(positive integers);

2. μ(j)-ary function symbols fj for each j ∈ J, where μ is a function such that J → N
(non-negative integers).

We write L (M) also as L (M) = 〈{Ri |i ∈ I } ,
{
fj |j ∈ J

}〉
.

〈λ, μ〉 is also said to be the type of L (M). There is the one-to-one correspon-
dence, denoted by Cor, between the boldface symbols in L (M) and the light face
symbols for the relations and functions in M, i.e., Cor(Ri) = Ri for each i ∈ I and
Cor(fj) = fj for each j ∈ J. Then M is said to be a realization of the language L (M)

or model for L (M). The languages for two system models of the same type are, up
to alphabetic variants, identical. Therefore every system model of the same type as
a system model M is a realization of the language L (M).

For example, an input-output system model,

MI/O = 〈X ∪ Y ; S,X, Y 〉

and all the system models of the same type as this system model are realizations of
the language,

L
(
MI/O

) = 〈S,X,Y〉 .

We should notice that for language we customarily use boldface symbols
with the same alphabets as a system model, for example, S and S, so as not
to confuse language with system models. This usage is only for the sake of
convenience. However, we should notice that a language, e.g., L

(
MI/O

)
, is purely

syntactic construct. Other models than MI/O , e.g.,M′ = 〈Z; T , V,W 〉, can be also
realizations of L

(
MI/O

)
, even if they have no property of an input-output system

96 S. Takahashi

model. The desirable properties that every input-output system model should have
are specified not only as a language but as a structure of the system model.

To describe systems properties, we need “grammar” that distinguishes “right
sentences” from wrong sentences. In our logical approach, we assume that the
properties of a system can be expressed as first-order sentences in first-order
language that plays the role of the “grammar.” The first-order language consists
of the primitive symbols such as variables, logical connectives, quantifiers, identity
symbols, parentheses and comma with the language L (M) for a system model, the
formation rules of the terms, the atomic formulas and the well-formed formulas.
The set of terms of the language L (M), denoted by Term (L (M)), is recursively
defined from the language L (M). Similarly the set of atomic formulas, denoted
by Atom (L (M)) and that of well-formed formulas, denoted by Form (L (M)), are
recursively defined from the language.

The logical connectives and universal quantifier as primitive symbols have no
proper meanings such as “and,” “not,” and “for all.” These intended meanings are
realized only when these symbols are interpreted in a specific system model. This
realization is called satisfaction. We will usually use other symbols, say x, y, z, as
individual variables. A term that has no variable is called a closed term. In first-
order logic some abbreviations such as ∃v, φ ∨ ψ , φ → ψ , and so on will be
defined in the standard manner. Although the abbreviations actually intend to have
the meanings of “for some (or there exist),” “or,” and “imply” respectively, these
meanings are only realized in a system model. Other logical concepts such as the
scope of the quantifier, a bound variable, a free variable, and so on are introduced
in the language, which can be found in the standard textbook of logic. A formula
φ ∈ Form (L (M)) is said to be a sentence of L (M) if φ has no free variables.
Sent (L (M)) denotes the set of sentences.

In our logical approach every systems property of an individual system model
is expressed by a sentence. For example, an input-output system model MI/O

has a basic systems property: “every element of the system is a pair of an
input and an output.” This property can be expressed by the following sentence:
(∀xy)(S(x,y) → X(x)∨Y(y)). In ordinary mathematical notations, i.e., in set-
theoretical language, this sentence means that S ⊂ X × Y. As another example,
an input-output system of function-type (Mesarovic & Takahara, 1989) can be
expressed as: (∀x ∈ X → (∃ ! y ∈ Y)S(x,y)), where the notation ∃ ! xφ(x) is the
abbreviation of the sentence that means “there uniquely exists x such that φ(x).”

We have noticed that a systems property is expressed by a sentence. Conversely,
a sentence should be interpreted as a systems property in a system model so that the
sentence obtains a concrete meaning in the system model.

Let us consider a system model MS = 〈{a, b, c} ; S,X, Y 〉, where
S = {(a, b), (a, c), (b, c)} and X = Y = {a, b}. Is a formula S(x, y) → X(x) ∨ Y(y)
true in this system model? If we assign a and b to the variables x and y respectively,
the formula is true in that model. However if c to y, then it is not true. To judge
the truth of a formula containing some free variables, we need to assign an element
of the base set of a system model to each variable. As will be stated later, since

5 Beyond Logical Approach to Systems Theory 97

a sentence has no free variable, we can judge its truth without depending on the
assignment of variables.

For example, a sentence (∀xy)(S(x,y) → X(x) ∨ Y(y)) is not true in the system
model MS, so this model is not an input-output system model. An assignment
to each variable is defined by an assignment function. Given a system model M
with a base set M, an assignment function ρ (or briefly assignment) is a function
of the set V of variables to M. Then for a given assignment, sentences in terms
of the language of the system model are interpreted into the system model. This
interpretation is defined as the denotation of a term in L (M). Each variable x is
replaced by the element ρ(x) ∈ M and each function symbol is replaced by the
corresponding function. A denotation with respect to a given assignment can be
regarded as a function of terms to the base set of a system model.

The concept that a systems property holds in a system model is defined as the
satisfaction of formulas.

Definition 5.3 [Satisfaction] A formula φ holds in M with an assignment function
ρ, or ρ satisfies φ in M, written M |� φ [ρ], is defined recursively:

1. M |� Ri
(
t1, . . . , tλ(i)

)
if and only if

〈
td1 [ρ] , . . . , tdλ(i) [ρ]

〉
∈ Ri ;

2. M |� ¬φ [ρ] if and only if it is not the case that M |� φ [ρ];
3. M |� φ1 ∧ φ2 [ρ] if and only if M |� φ1 [ρ] and M |� φ2 [ρ];
4. M |� ∀xφ [ρ] if and only if �φ[ρ(y/x)] for any y ∈ M.

5.3.3 Structure

The structure of a system model characterizes the system model in the sense that
the structure determines to which class of systems the system model pertain. In this
sense if a system model is expressed by a collection of some differential equations,
we can say that the matrices of the coefficients of the differential equations give a
structure of the system model. However, from systems viewpoints, a class of system
models should be specified not by the form of differential equations, but by a set of
systems properties. Hence the structure of a system model should have at least the
following features.

First, the structure of a system model generates its properties or behavior to be
recognized.

Second, the representation of structure is based on a hierarchical construction.
For example, the structure of an input-output linear system model is “hierarchically”
constructed from both a linear structure and an input-output structure, in the sense
that the input-output linear structure explicitly “inherits” the properties from the
linear and input-output structure.

Third, the structure distinguishes the properties of the class of system models
satisfying it from those of an individual system model in the class.

98 S. Takahashi

One way to fulfill the above requirements is to adopt a “language” that expresses
systems properties, and to represent the structure as “axioms.” This means that
we should abstract basic properties from a class of system models as axioms that
are common characteristics of the class. Thus the structure of a “family system”
in the previous section is abstracted from concrete family models. For example,
we can abstract some axioms such that every father is a male, every mother is a
female, father and mother are married, all brothers have the same father and mother,
and so on. The language such as “father,” “male,” “every,” “is-a,” etc., and some
“grammar” to make legal sentences should be chosen before axioms are described.
Then the axioms are expressed by some sentences in that language. We should notice
that this example of the structure of family does not include all families at all; a
family that has brothers whose mothers are different is not included.

A language and axioms are chosen from a systems viewpoint that reflects our
current interest. In this sense the structure of a system model expresses fundamental
interactions we recognize as the system model does. Thus a modeling process
contains as its essential part some stages of specifying language and constructing
axioms. Consequently the structure of a system model is defined as a pair, (L; Σ),
of language L to define the system model and a set of axioms
 to describe the
class to which the system model pertains. In LAST every structure is defined in a
formal language such as first-order language. Use of other formal languages than
first-order is not restricted in LAST. We notice that there are some advantages and
disadvantages of the use of first-order language.

The formal description of a structure of a system model has some technically
outstanding advantages as well as conceptual ones. It enables us to point out what
a systems property of a given system model is, and to distinguish the system
properties from system models that “satisfy” the properties. This relation is provided
as satisfaction relation that is one of the main characteristics of LAST: type-free
representation. Thus we can construct and specify a class of system models without
depending on the concrete descriptions of individual system models.

The formal definition of the structure of a system is defined below.

Definition 5.4 [Structure of a System] Let M be a system model, L (M) the
language for M, and
 a set of sentences of L (M), where M |� Σ . Then
the structure of a system as a prototype of the system model M is defined by
(L (M) ; Σ).

A given system model necessarily determines L (M), unique up to alphabetic
invariants. We should notice that L (M) is a collection of “symbols,” therefore the
role of L (M) in the systems recognition is to point out the names and types of the
relations that are identified in the system we recognize.

On the other hand,
 provides the rules how elements in a system model interact.
Therefore the properties of a system implied by the structure of the system are
expressed as the formulas derived from
; T (Σ) = {φ ∈ Sent (L (M)) |Σ � φ}
is the whole of the properties characterized by the structure of the system,
(L (M) ; Σ). If
 is complete, the properties satisfied by a system model having
the structure (L (M) ; Σ) accord with the properties of a system implied by

5 Beyond Logical Approach to Systems Theory 99

(L (M) ; Σ)); that is, let Th (M) = {φ ∈ Sent (L (M)) |M |� φ,M |� Σ}, then
Th (M) = T (Σ). Notice that it follows from the definition that (L (M) ; Σ) cannot
be uniquely determined for one system model M since we can take another
 as
axioms for which M is a model. This means that there may be plenty of system
models satisfying a given structure (L (M) ; Σ). For example, many models satisfy
the Peano’s Axioms well known as a structure of the natural number. They are not
necessarily isomorphic to the natural numbers (Chang & Keisler, 1973).

As an example we define below the structure of input-output system.

Definition 5.5 [The Structure of Input-Output System] The structure of input-
output system model is defined by (LI/O ;
I/O):

LI/O = {X,Y,S} ,

where

X, Y: unary relation symbols,
S: a binary relation symbol;

ΣI/O = {
φI/O

}
,

where φI/O ≡ (∀xy)(S(x,y) → X(x) ∧ Y(y)).

An input-output system model MI/O = 〈X ∪ Y; S,X,Y〉 is a realization of LI/O

and model for
I/O.

5.3.4 Morphism

One of the most important purposes of systems science is to investigate the
similarity between system models. The similarity can be divided into two types:
structural similarity and behavioral similarity. So far, fixing the type of models,
we have studied structural similarity in systems theory using modeling morphisms
defined especially between input-output system models. However, as will be made
clear in the subsequent discussions, these modeling morphisms are defined not in
a general way in which we can deal with structural similarity between any system
models, but in a specific way based only on homomorphisms. This section is devoted
to the development of a general theory of structural similarity between system
models.

5.3.4.1 Morphisms for Models of the Same Type

In this section we investigate morphisms between system models of the same type,
following the three cases mentioned in the previous section.

100 S. Takahashi

Preservation of Generator: Homomorphism

A morphism between system models of the same type is usually given by a
homomorphism, which preserves only atomic formulas as the generators of the
language.

Definition 5.6 [Homomorphism] Let M1 = 〈
M1;

{
Ri

1|i ∈ I
}
,
{
fj

1|j ∈ J
}〉

and M2 = 〈
M2;

{
Ri

2|i ∈ I
}
,
{
fj

2|j ∈ J
}〉

. Notice that M1 and M2 are of the
same type. A function h : M1 → M2 is called a homomorphism of M1 to M2
if for any i ∈ I, j ∈ J, a1, . . . , aλ(i), a1, . . . , aμ(j), a ∈ M1,

(
a1, . . . , aλ(i)

) ∈
R1

i implies
(
h (a1) , . . . , h

(
aλ(i)

)) ∈ R2
i and h

(
f 1

j

(
a1, . . . , aμ(j)

)) =
f 2

j

(
h (a1) , . . . , h

(
aμ(j)

))
.

A bijective (i.e., one-to-one and onto) homomorphism is called an isomorphism.
From Definition, we can see that a homomorphism preserves only the atomic

formulas, which is viewed as the generators of the language for a system model. In
systems theory, the concept of a homomorphism is defined as a modeling morphism
between input-output system models.

Definition 5.7 [Modeling Morphism (Mesarovic & Takahara, 1975, 1989)] Let
S ⊂ X × Y and S

′ ⊂ X
′ × Y

′
be input-output system models. Let hx : X → X

′
and

hy : Y → Y
′

be functions. h = (hx, hy) : S → S
′

is called a modeling morphism of S
to S

′
if for any (x, y) ∈ X × Y, (x, y) ∈ S implies (hx(x), hy(y)) ∈ S

′
.

For example, let us consider input-output system models M = 〈X ∪ Y ; S,X, Y 〉
and M′ = 〈

X′ ∪ Y ′; S′,X′, Y ′〉, where S, S
′
: binary relations on X ∪ Y and

X, X
′
, Y, Y

′
: unary relations on X ∪ Y. Suppose that M and M′ satisfy

S(X,Y) → X(X) ∧ Y(Y) and S
′
(X,Y) → X

′
(X) ∧ Y

′
(Y), respectively. Then a

homomorphism h of M to M′ is regarded as a modeling morphism of S to S
′
.

Notice that from the definition of a homomorphism, h(x) ∈ X
′

for any x ∈ X and
h(y) ∈ Y

′
for any y ∈ Y.

Preservation of
:
-Homomorphism

Next we consider homomorphisms preserving axioms
. Recall that the axioms

provide the structure of a system.
Grätzer defined such homomorphisms as
-homomorphisms (Grätzer, 1979).

By a
-homomorphism the axioms
 are preserved in a homomorphic image.
We formulate a
-homomorphism directly based on this idea. This definition is
different from Grätzer’s original definition that uses the concept of � − l inverse.

5 Beyond Logical Approach to Systems Theory 101

Let h be a homomorphism of M1 to M2. The homomorphic image of h in M2
is a submodel of M2 whose domain is h (M1). We write h (M1) to indicate the
homomorphic image of h in M2 as follows.

h (M1) =
〈
h (M1) ;

{
R2

i ∩ h(M1)
λ(i)|i ∈ I

}
,
{
f 2

j ‖ h(M1)
μ(j)|j ∈ J

}〉
,

where f 2
j ‖ h(M1)

μ(j) denotes the restriction of f 2
j to h(M1)μ(j).

By the property of a homomorphism, f 2
j ‖ h(M1)

μ(j) is well-defined.
We define a
-homomorphism as a homomorphism whose homomorphic image

preserves
.

Definition 5.8 [�-Homomorphism] Let M1 and M2 be system models of the same
type, and M1 |� Σ and M2 |� Σ . A homomorphism h of M1 to M2 is called a

-homomorphism of M1 to M2, if h (M1) |� Σ .

Our definition of
-homomorphism is slightly weaker than Grätzer’s definition
using the concept of � − l inverse. His definition requires that any “inverse” ele-
ments should be preserved. A homomorphism that has the � − l inverses is defined
as a strong
-homomorphism. The axioms
 are preserved in the homomorphic
image on h in M2 by a strong
-homomorphism h. So the homomorphic image of
a strong
-homomorphism h, h (M1), is a model of
, i.e., h (M1) |� Σ .

Preservation of Th (M): S-Homomorphism

That two system models are isomorphic or of the same structure implies that
in a sense the properties of the two system models are equivalent. A usual
homomorphism preserves the primitive properties, i.e., the generators. In this
section we will define a homomorphism as an S-homomorphism that preserves all
sentences satisfied in a system model (Th (M)). Furthermore we will show that
an induced homomorphism is an S-homomorphism, which is well known as the
homomorphism theorem. From this theorem we can see that every morphism for
the structural similarity should be an S-homomorphism.

Definition 5.9 [S-Homomorphism] Let M1 and M2 be system models of the same
type, and h : M1 → M2 a homomorphism of M1 to M2. Then h is called an
S-homomorphism of M1 to M2 if for any sentence φ of L (M1)

M1 |� φ if and only if h (M1) |� φ.

From the definition we can immediately see that an S-homomorphism is a
-
homomorphism. We should notice that if every sentence that holds in M1 holds
in h (M1) as well, then h is already an S-homomorphism. Indeed if a sentence φ

holds in h (M1) and does not hold in M1, then ¬φ holds in M1. Thus, by the above
condition, ¬φ holds in h (M1), which is a contradiction.

102 S. Takahashi

Let h : M1 → M2 be a homomorphism of M1 to M2. Then we define the
quotient system model with respect to h, written by M1/h:

M1/h =
〈
M1/h;

{
R1

i /h|i ∈ I
}

,
{
f 1

j /h|j ∈ J
}〉

,

where M1 = 〈
M1;

{
Ri

1|i ∈ I
}
,
{
fj

1|j ∈ J
}〉

and M2 = 〈
M2;

{
Ri

2|i ∈ I
}
,{

fj
2|j ∈ J

}〉
; M1/h is the partitioned set of M1 by the equivalence relation defined

by:

a ≡ b if and only if h(a) = h(b) for any a, b ∈ M1,

s
(
[a1] , . . . ,

[
aλ(i)

]) ∈ R1
i /h if and only if

(
h (a1) , . . . , h

(
aλ(i)

)) ∈ R2
i ,

f 1
j /h

(
[a1] , . . . ,

[
aμ(j)

]) =
[
f 1

j

(
a1, . . . , aμ(j)

)]
.

[ai] denotes the equivalence class of ai.
The quotient system model, M1/h, is obviously well-defined. The well-

known homomorphism theorem can be considered as a theorem by which an
S-homomorphism, h#, is induced.

Theorem 5.1 [Homomorphism Theorem] Let M1 and M2 be system models of
the same type, and h a homomorphism of M1 ontoM2. Then a map

h# : M1/h → M2

is an S-homomorphism, where h# is defined by:

h# ([a]) = h(a) for any [a] ∈ M1/h

h# is called the induced homomorphism of h.

A difference between the well-known homomorphism theorem in the usual form
in algebra and this theorem is that theorem shows that the induced isomorphism h# is
an S-homomorphism preserving sentences. One of the reasons why the concept of a
homomorphism is important is because an S-homomorphism h# can be constructed
from a homomorphism h.

5.3.4.2 Morphisms for Models of Different Types

In this section we consider morphisms between system models of different types.
Since a homomorphism as seen in the previous section can be defined only for
system models of the same type, the concept of a homomorphism is not applicable
to the class of system models of different types. We, therefore, introduce a new
morphism, called F-morphism, which is a generalization of homomorphism and can
be applied to the class of system models of different types as well as of the same
type.

5 Beyond Logical Approach to Systems Theory 103

In this section we also consider the three cases for the preservation of
properties—generators,
, and Th (M). We will show F-morphism theorem as
a theorem corresponding to the homomorphism theorem.

Preservation of Generator: F-Morphism

First we define a basic interpretation function and a basic morphism. An F-
morphism is defined recursively by using these functions.

Definition 5.10 [Basic Interpretation Function] Let M1 = 〈
M1;

{
Ri

1|i ∈ I1
}

,{
fj

1|j ∈ J1
}〉

and M2 = 〈
M2;

{
Ri

2|i ∈ I2
}
,
{
fj

2|j ∈ J2
}〉

be system models of
possibly different types.

Then a function Bas of L (M1) to the set of formulas of L (M2) is said to be a
basic interpretation function of L (M1) to L (M2) if the following conditions are
satisfied.

1. For every relation symbol Ri
1 ∈ L (M1), Bas(Ri

1) is a λ1(i)-ary formula of
L (M1);

2. For every function symbol fi1 ∈ L (M1), Bas(fi1) is a (μ1(j) + 1)-ary formula of
L (M2).

A basic interpretation function associates a formula of the second system model
with each symbol of the language of the first one. The association is intended to give
“interpretation” of the first system model to the second one. The basic interpretation
function works as a meaningful interpretation only when a basic morphism with it
is defined as follows.

Definition 5.11 [Basic Morphism] Let M1 and M2 be as above and Bas be a basic
interpretation function of L (M1) to L (M2).

A function IO of M1 to M2 is said to be a basic morphism of M1 to M2 with Bas
if the following conditions are satisfied.

1. For every relation symbol R1
i ∈ L (M1) and every assignment ρ, if M1 |�

R1
i

(
x1, . . . , xλ1(i)

)
[ρ], then M2 |� Bas

(
R1
i

) (
x1, . . . , xλ1(i)

)
[IO ◦ ρ], where

IO ◦ ρ denotes the composition of IO andρ;
2. For every function symbol f1j ∈ L (M1) and every assignment ρ, if M1 |�

(
f1j

(
x1, . . . , xμ1(j)

) = xμ1(j)+1

)
[ρ], then M2 |� Bas

(
f1j

) (
x1, . . . , xμ1(j)+1

)

[IO ◦ ρ] , and satisfies the following condition expressing that Bas
(
f1j

)
is a

function: M2 |� (∀x1 . . . xμ1(j)
) (∃xμ1(j)+1

) (∀yμ1(j)+1
) (

Bas
(
f1j

)

(
x1, . . . , xμ1(j), yμ1(j)+1

) ↔ xμ1(j)+1 = yμ1(j)+1
)
.

Bas
(
R1
i

)
and Bas

(
f1j

)
are called basic interpretations of R1

i and f1j . The

identity = is interpreted as the identity of L (M2), that is, Bas
(
=L

(
M1

)
)

≡
=L

(
M2

).

104 S. Takahashi

Definition 5.12 [F-morphism] Let M1 and M2 be as in Definition of Basic
Morphism]. An F-morphism, I : M1 → M2, is a pair of functions 〈IO, IF〉, where
IO is a basic morphism of with Bas and IF is a function of the set of formulas of M1
to the set of the formulas of M2, which is defined as follows.

For any formula � of M1

1. If � is an atomic formula of the form fj(u1, . . . , uμ(j)) = x or x= fj(u1, . . . , uμ(j)),
then

IF (Φ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Bas
(
fj
) (

u1, . . . , uμ(j), x
)
, if T (Φ) is the empty set(∃xk1 . . . xkm

)

× (
Bas

(
fj
) (
x1, . . . , xμ(j), x

)

× ∧ (∧ (
IF

(
xki = uki

) |uki

∈ T (Φ)))) , if T (Φ) = {
uk1, . . . , ukm

}

,

where every xkp is a variable not occurring in �, and xi is ui for ui /∈ T (�).
2. If � is an atomic formula P(t1, . . . , tn) other than of the form in (1), then

IF (Φ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Bas (P) (u1, . . . , un) , if T (Φ) is the empty set(∃xk1 . . . xkm
)

× (Bas (P) (x1, . . . , xn)

∧ (∧ (
IF

(
xki = uki

) |uki

∈ T (Φ)))) , if T (Φ) = {
uk1, . . . , ukm

}

,

where every xkp is a variable not occurring in P, and xi is ui for ui /∈ T (�).
3. Otherwise,

IF (¬Φ) = ¬ (IF (Φ)) ,

IF (Φ1 ∧ Φ2) = (IF (Φ1)) ∧ (IF (Φ2)) ,

IF (∀xΦ) = (∀x) (IF (Φ)) .

Since T(�) eventually becomes empty, IF is well-defined.

Let us consider an example of F-morphisms.

Example 5.4 We can define an F-morphism of (N; ≤) to (N; +), where N is the set
of natural numbers, ≤ the linear ordering on N and + addition. If we define Bas
by Bas(≤) = (∃z)(x + z = y) and IO by the identity, then 〈IO, IF〉 with Bas is an
F-morphism of (N; ≤) to (N; +).

We should notice that the function IF is “automatically” defined according to the
definition if IO with Bas is already defined. Furthermore it is clear that if (N; ≤) � φ,
then(N; +) � IF(φ). For example, let φ be a sentence (∀xyz)(x≤ y∧ y≤ z→ x≤ z).

5 Beyond Logical Approach to Systems Theory 105

Then

IF (φ) = IF ((∀xyz) (x ≤ y ∧ y ≤ z → x ≤ z))
= (∀xyz) (IF (x ≤ y) ∧ IF (y ≤ z) → IF (x ≤ z))

= (∀xyz) ((∃z1) (x + z1 = y) ∧ (∃z2) (x + z2 = y) → (∃z3) (x + z3 = y)) .

So (N; +) � IF(φ).

Example 5.5 [Automaton] A Moore type automaton, Mr = (A,B,C, φr, λr) with A,
B,C: finite sets, φr : C × A→C and λr : C → B, is regarded as equivalent to a Mealy
type automaton, Me = (A,B,C, φe, μe) with A, B, C: finite sets, φe : C × A → C
and μe : C × A → B. Let

Moore =
〈
A ∪ B ∪ C; A,B,C, φ̂r , λ̂r

〉

and

Mealy =
〈
A ∪ B ∪ C; A,B,C, φ̂e, μ̂e

〉
,

where A, B, C: unary relations, φ̂r, λ̂r, φ̂e, μ̂e: arbitrary extensions of φr, λr, φe, μe

respectively, and φ̂r = φ̂e, μ̂e (c, a) = λ̂r

(
φ̂r (c, a)

)
for any c, a ∈ A ∪ B ∪ C.

Then we can define an F-morphism of Mealy to Moore as follows.

IO : the identity
}
,

Bas
(
φ̂e

)
= φ̂r (x, y, z) ,

Bas
(
μ̂e

) =
(
λ̂r

(
φ̂r (x, y)

)
= z

)
,

Bas (A) = A, Bas (B) = B, Bas (C) = C.

These definitions obviously satisfy the conditions of basic morphisms. The
following corollary shows that an F-morphism is an extension of a homomorphism.

Corollary 5.1 Let M1 and M2 be system models of the same type, and h a
homomorphism of M1 toM2. Then h is a basic morphism of M1 toM2, and 〈h, IF〉
is an F-morphism of M1 toM2, where IF is a function uniquely determined by h in
Definition of F-morphism.

From the definition of basic morphism we can see that an F-morphism preserves
generators. Notice that it is necessary to give an interpretation IF of the generators
in defining an F-morphism, while in the case of a homomorphism IF is trivially
defined, and is not explicitly given in usual algebra.

106 S. Takahashi

Preservation of
:
F-Morphism

In this section we will define an F-morphism preserving axioms
 as a
F-
morphism. By a
F-morphism,
 is preserved in an image of an F-morphism. First
we define the image of a basic morphism.

Let M1 and M2 be system models of possibly different types. Let I = 〈IO, IF〉 :
M1 → M2 be an F-morphism. Then the image of a basic morphism, written
I (M1), is defined by:

I (M1) =
〈
IO (M1) ;

{
R2

i ∩ IO(M1)
λ2(i)|i ∈ I2

}
,

{
f 2

j ‖ IO(M1)
μ2(j)|f 2

j

(
a1, . . . , aμ2(j)

) ∈ IO (M1)

× for any a1, . . . , aμ2(j) ∈ IO (M1) , j ∈ J2
} 〉

.

Notice that if there exists a j such that f 2
j (a1, . . . , aμ2(j)) /∈ IOM1 for

a1, . . . , aμ2(j) ∈ IO (M1), then I (M1) is of a different type from M2. An F-
morphism is called an onto F-morphism if its basic morphism is onto.

Definition 5.13 [�F-Morphism] Let M1 and M2 be system models and
I = 〈IO, IF〉 an F-morphism of M1 to M2. SupposeM1 |� Σ . Then I is called
a
F-morphism of M1 to M2 if

I (M1) |� IF (Σ) ,

where IF(
) = {IF(�)|� ∈
}.
A
F-morphism is a kind of extension of a
F-homomorphism. The following

corollary says that a
F-morphism between system models of the same type accords
with a
-homomorphism.

Corollary 5.2 Let M1 and M2 be system models of the same type. Let h : M1 →
M2 be a homomorphism of M1 to M2. SupposeM1,M2 |� Σ . Then h is a
-
homomorphism of M1 to M2 if and only if 〈h, IF〉 is a
F-morphism of M1 to
M2.

Preservation of Th (M): SF-Morphism

In this section we define a morphism between system models of different types,
which preserves Th (M) of a system model. Furthermore we will show the F-
morphism theorem corresponding to the homomorphism theorem in the case of the
same type. The F-morphism theorem gives a relationship between an F-morphism

5 Beyond Logical Approach to Systems Theory 107

and an SF-morphism. Unless mentioned explicitly, in the sequel let M1, M2 be
system models and I = 〈IO, IF〉 an F-morphism of M1 to M2.

Definition 5.14 [SF-Morphism] An F-morphism I is called an SF-morphism ofM1
to M2 if for any sentence � of L (M1), M1 |� Φ if and only if I (M1) |� IF (Φ).

From the definition an SF-morphism is a
F-morphism. In general, we can
check whether an F-morphism is an SF-morphism by the way based on a structural
induction on sentences. However in most cases, they are more than routine tasks.

For an onto F-morphism I, we define the quotient system model with respect to I
by:

M1/I =
〈
M1/IO :

{
R1

i /I |i ∈ I1

}
,
{
f 1

j /I |j ∈ J1

})
,

where M1/IO is the partitioned set of M1 by the equivalence relation ≡IO defined by:

a≡IOb if and only if IO(a) = IO(b) for any a, b ∈ M1,

R1
i /I

(
[a1] , . . . ,

[
aλ1(i)

])
if and only if Bas

(
R1

i

) (
IO (a1) , . . . , IO

(
aλ1(i)

))
,

f 1
j /I

(
[a1] , . . . ,

[
aμ1(j)

]) =
[
f 1

j

(
a1, . . . , aμ1(j)

)]
,

where [a] represents an equivalence class in M1/IO by ≡IO.
The above definition of f 1

j /I is well-defined. Indeed, suppose IO (a1) =
IO (b1) , . . . , IO

(
aμ1(j)

) = IO
(
bμ1(j)

)
andf 1

j

(
a1, . . . , aμ1(j)

) = c1,

f 1
j

(
b1, . . . , bμ1(j)

) = c2 hold in M1. Then since I is an F-morphism,

Bas
(
f1j

) (
IO (a1) , . . . , IO

(
aμ1(j)

)
, IO (c1)

)
and Bas

(
f1j

)
(IO (b1) , . . . ,

IO
(
bμ1(j)

)
, IO (c1)

)
hold in M2. Since Bas

(
f1j

)
is a function from the definition

of basic morphism, we have IO(c1) = IO(c2).
The following is one of the main theorems about F-morphisms.

Theorem 5.2 [F-Morphism Theorem] Let I : M1 → M2 be an onto F-
morphism. Then

I #
O : M1/I → M2

is a one-to-one basic morphism, furthermore

I # =
〈
I #

O, I #
F

〉

108 S. Takahashi

is an SF-morphism, where I #
O is defined by

I #
O ([a]) = IO(a) for [a] ∈ M1/IO

and the basic interpretations are

Bas#
(
R1
i /I

)
= Bas

(
R1
i

)
for i ∈ I1,

Bas#
(
f1j /I

)
= Bas

(
f1j

)
for i ∈ J1.

I# is called the induced F-morphism of I.

F-morphism enhances the concept of “isomorphism” between system models to
those of different types, which means that the two models described in “different
languages” are isomorphic in terms of F-morphism.

5.3.4.3 Application of F-Morphisms

A typical way to apply the F-morphism concept to concrete system models would
be to construct an F-morphism between them. In this section, as an application of
F-morphisms, we construct an F-morphism of a given finite automaton structure to
a Petri net structure, and show the equivalence between a finite automaton and a
Petri net. The equivalence means here that we can show that there is a Petri net that
preserves all the properties of a given finite automaton. It is well known that Petri
nets can represent finite automata (Peterson, 1981). The emphasis in this section,
however, is on that the use of the F-morphism concept in considering the equivalence
between a finite automaton and a Petri net reveals that each property of the finite
automaton precisely (in a formal way) corresponds to some property of the Petri
net, and the first-order sentences satisfied in the finite automaton are all preserved
in the Petri net as corresponding sentences transformed by an F-morphism. Thus
the F-morphism concept provides a formal meaning of “equivalence” between
system models of different types, while the judgment of the equivalence “without
F-morphisms” would depend fully on the intuition of a modeler constructing the
correspondence between them.

Equivalence Between a Finite Automaton and a Petri Net

In this section we construct an F-morphism of a given finite automaton structure to
a Petri net structure, and show that all the properties holding in the finite automaton
also hold in the Petri net.

5 Beyond Logical Approach to Systems Theory 109

Definition 5.15 A finite automaton structure FA is the following system model.

FA = 〈A ∪ B ∪ C; A,B,C, φ, ρ〉 ,

where

A, B, C: unary relations
ρ: binary functions such that

φ(a, b) ∈ C, if a ∈ C and b ∈ A
φ(a, b) = a, otherwise;
and ρ(a, b) ∈ B, if a ∈ C and b ∈ A
ρ(a, b) = a, otherwise.

The conditions on a /∈ C or b /∈ A for φ and ρ are imposed only to make the
functions φ and ρ total, since the first-order language we use does not allow partial
functions. However, since we will restrict the sentences to the extent as defined
later, when we describe the properties of system models, we can regard φ and ρ

intrinsically as φ : C × A → C and ρ : C × A → B.

Definition 5.16 [Petri Net Structure] A Petri net structure PN is the following
system model.

PN =
〈
P ∪ T ∪ N; P, T , I,O, N̂

〉
,

where

P, T: unary relations
N: the set of natural numbers
N̂ : the set of constants corresponding to N
I, O ⊂ P × T × N

P denotes the set of places and T the set of transitions. I(p, t, n) means that there
are n arcs from the place p to the transition t. O(p, t, n) means that there are n arcs
from the transition t to the place p.

There are some ways to construct PN that is considered to have an equivalent
structure to FA (Peterson, 1981). Here following Peterson with some modification,
we define PN considered as equivalent to FA. Then our aim is to construct an F-
morphism between FA and PN, and to show that the constructed PN preserves all
the properties satisfied in FA.

Definition 5.17 Given a finite automaton structure FA. We define the corresponding
Petri net structure PN as follows.

PN =
〈
P ∪ T ∪ N; P, T , I,O, N̂

〉
,

110 S. Takahashi

where

P = C ∪ A ∪ B;
T = {ti| i ∈ (C × A) ∪ A ∪ B};
I = I1 ∪ I0,

where

I1 = {(p, ti, 1)| i = (c, a) ∈ C × A ∧ (p = c ∨ p = a)} ∪ {(p, ti, 1)|i = p ∈ B},
I0 = {(p, ti , 0)|(p, ti , 1) /∈ I1, p ∈ P, ti ∈ T },
O = O1 ∪ O0,

where

O1 = {(p, ti, 1)| i = (c, a) ∈ C × A ∧ (p = φ(c, a) ∨ ρ(c, a))} ∪ {(p, ti, 1)| i = p ∈ A},
O0 = {(p, ti , 0)|(p, ti , 1) /∈ O1, p ∈ P, ti ∈ T }.
Definition 5.18 Let FA and PN be as in the above definitions, respectively. An
F-morphism I = 〈IO, IF〉 : FA → PN is defined as follows.

IO: the inclusion map;
IF(A(x)) = (P(x) ∧ (∃t ∈ T)((∀p ∈ P)(I(p, t, 0) ∧ O(x, t, 1))));
IF(B(x)) = (P(x) ∧ (∃t ∈ T)((∀p ∈ P)(O(p, t, 0) ∧ I(x, t, 1))));
IF(C(x)) = (P(x) ∧ ¬ IF(A(x)) ∧ ¬ IF(B(x)));

IF (φ (x, y) = z) =
(

(IF (C (x)) ∧ IF (A (y)) → (∃t ∈ T) (I (x, t, 1) ∧ I (y, t, 1)

∧O (z, t, 1) ∧ IF (C (z)))) ∧ (¬IF (C (x)) ∨ ¬IF (A (y)) → z = x)
)
;

IF (ρ (x, y) = z) =
(

(IF (C (x)) ∧ IF (A (y)) → (∃t ∈ T) (I (x, t, 1) ∧ I (y, t, 1)

∧O (z, t, 1) ∧ IF (B (z)))) ∧ (¬IF (C (x)) ∨ ¬IF (A (y)) → z = x)
)
.

This definition clearly satisfies the condition required for F-morphisms. Also we
can see, as the following lemmas show, that the image of the above F-morphism
preserves the structure of FA.

The following theorem shows a typical type of equivalence between PN and FA.

Theorem 5.3 [Equivalence of the Structures of Finite Automaton and Petri Net
] Let I = 〈IO, IF〉 be the F-morphism defined as in the above Definition. Then for
any many-sorted sentence � of L(FA), FA � � if and only if PN � IF(�).

This theorem implies that the structure of FA is embedded in PN constructed in
Definition, and all the properties of FA are preserved there. We should notice that
the dynamic behavior of PN by the transition of marking is implied by the relation
O of PN, which can also represent the firing of the transitions.

5 Beyond Logical Approach to Systems Theory 111

5.4 Structure and Adaptation

5.4.1 Implications of Gödel’s Incompleteness Theorem for
Structural Change

The definition of the structure of a system model implies that there are two ways to
represent a change of the structure: the changes of the symbols L and of the axioms

. Here we deal with the change of the axioms. Then we can naturally say that a
system has changed its structure from
 to

′
, if

′ =
 + {ψ}, where ψ nor
¬ψcannot be derived from
, i.e.,
 � ψ nor
 � ¬ ψ , under some deduction
system.

This new property ψ cannot be recognized in the old structure
. Classical
deduction systems such as first-order logic cannot deal with this situation effectively.
Also in ordinal systems theory based on set theory without logical language and
deduction system we hardly develop comprehensive consideration on this matter.
We need to construct a meta-framework in which the structure of a system (L; Σ)

can be referred an “object” and to extend the concept of system model by adding
extra domain to it.

Gödel proved incompleteness theorem that there is a sentence that cannot be
inferred from the logical system including the primitive recursive arithmetic (PRA)
such as Peano’s axioms. From the Gödel’s incompleteness theorem, we see that
there is a formula such that PRA � φ ↔ ¬ � φ. The symbol � expresses a modal
operator and the formula �φ is interpreted to be “φ is provable” (Symoryński,
1985). Then ¬ � φ means that φ is not provable. Furthermore φ ↔ ¬ � φ means
that “I am not provable.” This formula shows a self-referential sentence. Hence if
the structure of a system includes PRA, the system has a property φ such that φ

cannot be implied from the structure, and nor identified as behavior of the system.
As stated in the previous paragraph, if the structure of a system “moves” to a

new structure that includes the old structure and the above self-referential sentence
φ that is never proved from the old one, the system actually “change” its structure:
the move from the structure
 to

′ =
 + {φ} represents a structural change of
the system.

5.4.2 Adaptation in Social System: Agent-Based
Organizational Cybernetics

There are two kinds of adaptive behavior of a system: first-order adaptive behavior
and second-order adaptive behavior. The first-order adaptive behavior seeks to make
the system stable by regulating the gap between the goal of the system and the
systems output observed. It is realized as a negative feedback mechanism, which
can be formulated in the structure of the system, i.e., in LAST. The second-order
adaptive behavior requires to change the field of systems behavior, which can be

112 S. Takahashi

represented as the concept of positive feedback or second-order cybernetics. The
second-order adaptive behavior cannot be described as any properties derived from
the structure of the system. As seen in the above, the self-referential sentence plays
a key role in the adaptation by the structural change. We need to introduce some
new conceptual devices to describe models of the second-order adaptive behavior:
agent, internal model, and organizational learning.

This section focuses on adaptation in social systems and provides the theoretical
framework for describing it. Here a comprehensively hybrid model is introduced,
which combines conventional organizational cybernetic framework and compu-
tational organization theoretic approach, especially agent-based computational
learning model. The framework of organizational cybernetics includes no agent
concept innately, but originally aims to contribute to the diagnosis of organizational
failure based on Ashby’s law of variety (Espejo et al., 1996). On the other hand,
computational organization theoretic approach contains agent-based task resolution
processes in detail operational manner, but describes only a “flat” organization that
has no hierarchical relationship between subsystems. The hybrid model presented
here is comprehensive in understanding organizational learning in the sense that the
learning process includes essentially the following steps: each agent resolves tasks
in every functional layer in an organization; the results of the resolutions of tasks
are unified to be organizational output performance; the organizational performance
should be evaluated from environment; each agent change its internal model based
on the evaluation results.

We call our newly developed approach Agent-based Organizational Cybernetics
(AOC) (Takahashi, 2006). An organization considered in AOC is formulated to
have four functional layers defined in organizational cybernetics: process, coor-
dination, adaptation, and self-organization. The organizational cybernetic model
has originally no concept of an agent. AOC introduces the concepts of agent and
communication process among agents into each functional layer of an organiza-
tional cybernetic model. An agent is characterized by individual situatedness and
internal model principle. The agent is defined as an autonomous decision-maker
who constructs individually its internal model to describe its recognition of the
situation surrounding it.

The basic features of AOC can be listed below.

1. Interaction between environment and decision-makers (from organizational
cybernetic viewpoint).

2. An autonomous decision-maker makes a decision according to his decision
principle.

3. An organization is structured in a multi-layer hierarchical form with some
functional subsystems.

4. In each layer of the hierarchy, some agent groups are involved and interact one
another.

5. Every agent has its own internal model that describes the situation surrounding
the agent (called individual situatedness).

5 Beyond Logical Approach to Systems Theory 113

6. Every agent can learn its internal model and the organization can learn by sharing
agents’ internal models. The process of learning represents single- and double-
loop learnings in organizational learning.

AOC allows us to deal with organizational problems such as organizational
learning in essentially operational manners. Results analyzed using AOC could
suggest how we should effectively and operationally manage complex problems on
the organization concerned. The principal target of AOC is to provide design criteria
of prescription, especially which has not yet been validated in actual situations, on
how an organization of concern should make a decision and take an action to adapt
itself to a dynamically changing environment. AOC can also provide an effective
way to evolve new design of functions working in an organization by re-combination
of subsystems.

5.4.3 Components of Organizational Learning

The concept of organizational learning we use for our framework has similar aspects
to the Argyris’ concept that individual learning processes are innately connected to
organizational learning process. Our framework explicitly distinguishes individual
levels of learning and organizational ones, and also does the levels of single-loop
learning and double-loop one. We can see the explicit distinctions of the four types
of learning loops.

The distinction by Argyris of single-loop learning and double-loop one is
originated, as Argyris stated (Argyris & Schön, 1996), from similar notions
in cybernetics developed by Ashby (1960). Based on organizational cybernetic
approach, Espejo has provided a basis for the way how to apply the double-loop
learning notion and process to actual organizations.

In AOC the concept of organizational learning, especially the learning-loop
processes are realized in operational ways that each agent evaluates and revises its
internal model. By actually implementing mechanisms of organizational learning
in agents, the micro-macro problems can be explored effectively so as to tackle
complex organizational systems.

The essential elements of organizational learning in AOC are the four learning
loops: individual−/organizational- and single−/double-loop learning. AOC imple-
ments the learning processes as evaluating, revising, and sharing processes of
internal models possessed by agents.

1. Individual single-loop learning.
An agent builds its internal model to describe the environmental structure

and the problem situation recognized, which includes some decision variables
and decision criteria. The agent uses its internal model to optimize the decision
variables. This learning does not enhance any ability to make organizational
decisions.

2. Organizational single-loop learning.

114 S. Takahashi

To achieve the given organizational goal, subgoals are specified to agents
in inferior subsystems The values of the individual decision variables, which
must be the results of the individual single-loop learning, are unified by the
organization. The organization makes a decision based on the unified results.

3. Individual double-loop learning.
Each agent evaluates its internal model, based on the results of the decision

performed just before. Then the internal model is revised.
This process of revising internal models by agents can be implemented

effectively by using genetic algorithm (GA). The evaluation is defined by a fitness
function that indicates what kind of information is available and how it should be
utilized for the evaluation.

After the evaluations of the internal models, applying GA operators such
as selection, crossover, and mutation, the internal models are revised for the
subsequent decisions.

4. Organizational double-loop learning.
As the result of “good” individual double-loop learning, the agents share in

the organization their good internal models that provide them with better decision
capability and allow them to keep the organization viable.

5.5 Basis of Agent-Based Organizational Cybernetics

5.5.1 Hierarchical Organization Model in AOC

Combining the hierarchical model of organizational cybernetics and the agent
model in computational organization theory, AOC consists of two basic models:
hierarchical organization model and situated agent model.

A hierarchical organization model is a multi-layer system that has basically
adaptive, coordination, and operational levels (Fig. 5.1).

In AOC the function of each level is realized by a group of agents. Every agent
belongs to one of the subsystems of the hierarchy. Each subsystem seeks a possibly
different goal from other subsystems. Hence an agent is conducted based on the goal
of the subsystem of which the agent is a member.

The adaptive level is composed of intelligence and institutional functions. In this
level, based on environmental information observed by the intelligence function,
the organization creates policy or strategy that could achieve a given organizational
goal. If the organizational goal is recreated, the organization would go to a self-
organization phase.

The coordination level has a function that determines coordination variables
to control inferior subsystems in a decentralized manner. Coordination principles,
which define how to coordinate the inferior subsystems, are essential to achieve a
coordination goal.

5 Beyond Logical Approach to Systems Theory 115

Fig. 5.1 Basic hierarchical model in AOC

In the operational level, agents determine decision variables autonomously, each
of whom aims to optimize the process assigned to him. The processes interact with
one another. The optimization process is given as a task resolution one, the result of
which is reported to the superior subsystem, i.e., coordination level.

Computational Organization Theory has focused so far on models of the
operational level. AOC formulates the operational level as a layer of the hierarchical
subsystems of the overall organization model.

5.5.2 Situated Agent Model in AOC as Autonomous
Decision-Maker

An agent concept in AOC as an autonomous decision-maker has basically the
following features (Fig. 5.2).

1. An agent recognizes a process as a target of its decision-making, and builds its
model internally, which is called an internal model.

116 S. Takahashi

Fig. 5.2 Situated agent model as decision-maker

The internal model describes the behavior of the process and external inputs
from environment, which can include agent’s recognition of the surrounding
situation. An agent has its own internal model to describe the surrounding
situation. Every agent is considered to be involved in its situation that is
individually perceived by that agent. We call it individual situatedness.

2. An agent applies a decision principle to a problem concerning the process so that
the agent evaluates options or alternatives to solve the problem.

The decision principle represents a criterion for preference ordering of the
alternatives. It can be formally defined as a function from the class of problems
to be solved into the ordering structures of preferences.

An eminent feature of AOC is to deal with, in an operational manner, micro-
macro link problems such as a problem of the relationship between individual
learning process of each agent and organizational one. An agent is typically a
member of one of the autonomous decision groups defined in the multi-layers of an
organization. The overall environment can be recognized as interpreted information
from shared internal models of individually perceived situations.

5.5.3 Typical Internal Models

We here consider typical internal models in each hierarchical level.

5 Beyond Logical Approach to Systems Theory 117

A typical internal model that an agent in adaptive level has its recognition of
the environmental structure, especially the recognition how the environment makes
responses to an agent and the organization in the form of cost-profit function.

Another typical internal model in this level is the decision principle that an
agent uses to make its decision. An internal model used in coordination level is
the recognition of the process in which assigned tasks should be actually resolved.

In the operational level, a typical internal model can be how an agent recognizes
tasks to be resolved as well as the task resolution process itself.

The point in considering learning problems in an organization is how each agent
should evaluate its internal model, based on which the agent revises its internal
model, i.e., the recognition of its individual situation and shares it among agents.

5.6 Conclusion: Beyond LAST

Logical Approach to Systems Theory (LAST) provides a way to investigate the
similarity and structure of system models in type-free representation. Hence LAST
clarifies the similarity of systems models in different representations as “isomorphic
relation” with F-morphism. LAST explicitly gives the concept of the structure of a
system model as a pair of the description language and the axioms characterizing
the system model. Then LAST clarifies the distinction of what type of properties of
systems can be described in the theory and what type of them cannot. Adaptation,
which has been a central concern of systems theory, is a typical type of properties
logical approaches hardly describe. One possibility of describing adaptation in
logical frameworks would be to exploit modal logic, which could express the self-
referential concept. Then the concepts of agent, internal model, and organizational
learning would provide a breakthrough way to describe the adaptation of systems.

Agent-based organizational cybernetics involves as its significant part an adap-
tive mechanism in which agents revise intrinsically their own internal models and
then share them with the other agents of the system through the organizational
learning process the system constructs. The adaptive mechanism has been developed
using many types of evolutionary computation algorithms such as genetic algorithm
and so on. Tons of research results concerning them have been accumulated. Our
future target would construct a way to formulate such adaptive processes as clearly
as possible based on these outcomes, which would give a landscape beyond LAST.

References

Argyris, C., & Schön, D. A. (1996). Organizational learning II. Addison-Wesley.
Ashby, W. R. (1960). Design for a brain (2nd ed.). Wiley.
Chang, C. C., & Keisler, H. J. (1973). Model theory. North-Holland.

118 S. Takahashi

Espejo, R., Schuhmann, W., Schwaninger, M., & Bilello, U. (1996). Organizational transformation
and learning. In A cybernetic approach to management. Wiley.

Grätzer, G. (1979). Universal algebra. Springer.
Mesarovic, M. D., & Takahara, Y. (1975). General systems theory: Mathematical foundation.

Academic Press.
Mesarovic, M. D., & Takahara, Y. (1989). Abstract systems theory. Springer.
Peterson, J. L. (1981). Petri net theory and the modeling of systems. Prentice-Hall.
Symoryński, C. (1985). Self-reference and modal logic. Springer.
Takahashi, S. (1995). Self-referential systems representation with modality in structure change.

Advances in Systems Science and Applications, Special Issue, The International Institute for
General Systems Studies, pp 19–24.

Takahashi, S. (2006). Agent-based organizational cybernetic approach to organizational learning.
In SICE-ICASE International Joint Conference 2006(SICE-ICCAS 2006).

Takahashi, S., & Takahara, Y. (1995). Logical approach to systems theory. Springer.
Zeigler, B. P. (1990). Object-oriented simulation with hierarchical. In Modular models: Intelligent

agents and endomorphic systems. Academic Press.

	5 Beyond Logical Approach to Systems Theory
	5.1 Introduction
	5.2 General Systems
	5.3 Logical Approach to Systems Theory: LAST
	5.3.1 Basic Concepts of LAST
	5.3.2 System Model
	5.3.2.1 Definition of System Model
	5.3.2.2 Language for Describing Systems Properties

	5.3.3 Structure
	5.3.4 Morphism
	5.3.4.1 Morphisms for Models of the Same Type
	5.3.4.2 Morphisms for Models of Different Types
	5.3.4.3 Application of F-Morphisms

	5.4 Structure and Adaptation
	5.4.1 Implications of Gödel's Incompleteness Theorem for Structural Change
	5.4.2 Adaptation in Social System: Agent-Based Organizational Cybernetics
	5.4.3 Components of Organizational Learning

	5.5 Basis of Agent-Based Organizational Cybernetics
	5.5.1 Hierarchical Organization Model in AOC
	5.5.2 Situated Agent Model in AOC as Autonomous Decision-Maker
	5.5.3 Typical Internal Models

	5.6 Conclusion: Beyond LAST
	References

