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Abstract

Miniaturized sensing devices have emerged as prevailing micro-scale analysis
devices in the past few decades. In this context, metal nanoparticle-based sensors
have proved their potential in developing highly sensitive and selective on-site
detection techniques for various analytes and environmental toxins. Among
various environmental pollutants, heavy metal contamination is the most severe
problem worldwide because of its potential toxicity and non-biodegradable
nature, even at lower exposure levels. Conventional analytical techniques for
measuring metal toxins include atomic absorption spectroscopy (AAS), induc-
tively coupled plasma mass spectroscopy (ICP-MS), and reversed-phase high-
performance liquid chromatography. These methods give accurate results but are
time-consuming, require a dedicated laboratory setup, sophisticated equipment
setup, and trained personnel to operate. Therefore, an alternative user-friendly
and cost-effective method is required for rapid and real-time monitoring of heavy
metal toxins in groundwater and industrial wastewater monitoring. Efforts are
being made in developing metal nanoparticle-enabled sensors because of distinct
optical and electrical properties, which renders better selectivity, sensitivity, and
portability that can be readily used in developing commercial products. The
sensing process is based on the aggregation of nanoparticles in the presence of
specific metal ions coupled with visible color change detected by naked eyes,
indicating the presence of targeted heavy metal toxins. This chapter summarizes
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various synthesis processes and potential colorimetric-based sensing applications
of metal nanoparticle-enabled sensors for assessing clean and safe drinking water.
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Abbreviations

AAS Atomic adsorption spectroscopy
AgNP Silver nanoparticle
AHMT Amino-3-hydrazino-5-mercapto-1,2,4-triazole
AI Artificial intelligence
ANN Artificial neural network
CE Counter electrode
CNN Convolutional neural network
CTAB Cetyl-trimethyl ammonium bromide
DLVO Derjaguin–Landau–Verwey–Overbeck
DMSA Dimercaptosuccinic acid
DTPA Diethylenetriaminepentaacetic acid
EDL Electric double layer
EPA Environmental Protection Agency
GNP Gold nanoparticles
GNR Gold nanorod
GSH Glutathione
HPLC High-performance liquid chromatography
ICP-MS Inductively coupled plasma mass spectrometry
LOC Lab-on-chip
MBA Mercaptobenzoic acid
ML Machine learning
MLR Multiple linear regression
MNP Metal nanoparticles
NADH Nicotinamide adenine dinucleotide hydrogen
PCD Paper-based colorimetric device
PEG Polyethyleneglycol
PPB Parts per billion
PtNP Platinum nanoparticle
PVA Polyvinyl alcohol
PVP Polyvinylpyrrolidone
RE Reference electrode
RGB Red, green, blue
SPR Surface plasmon resonance
SVM Support vector machine
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TA Thioctic acid
TDA Thiodiacetic
TG Thioguanine
TMB Tetramethylbenzidine
TOAB Tetraoctylammonium bromide
WE Working electrode
WHO World Health Organization
XRF X-ray fluorimetry

12.1 Introduction

Metals are always considered important materials in manufacturing, science, engi-
neering and technology, and commercial aspects (Santos 2017). These bulk metals,
when fragmented to nanosize having dimensions 1–100 nm, are termed metal
nanoparticles or metallic nanoparticles (MNP) (Venkatesh 2018). The advent of
MNP marked a revolutionary change in sensing technology and biology because of
distinct electronic, optical, biochemical, and physicochemical properties. Facile
synthesis and surface modification of MNPs with diverse functional moieties like
antibodies, enzymes, ligands, proteins, and drugs of interest facilitate target-oriented
binding with analytes rendering selectivity and an efficient sensing platform. The
large surface-area-to-volume ratio and spatial confinement of free electrons offer
massive numbers of binding sites on the surface of metal nanoparticles (MNP). It
brings an excellent scaffold to immobilize with large quantities of ligands and
biomolecules, making it highly interactive with the analytes (Venkatesh 2018;
Siontorou 2019). Metal nanoparticles (like gold, silver, copper, and platinum
nanoparticles) have the exceptional feature of absorption and scattering of light
that originates from the collective oscillation of surface electrons to unique optical
properties of MNPs (Vasquez et al. 2018; Maghsoudi et al. 2021). When exposed to
appropriate frequencies of electromagnetic waves (light), it induces the excitation of
electrons on the surface of MNPs known as surface plasmon resonance (SPR). This
property of MNPs is also responsible for their vibrant color in an aqueous solution
and can be easily tuned by changing the shape and size of the metal nanoparticle. For
example, gold nanospheres of ~20 nm diameters appear wine red in color. However,
their color becomes purple and blue as the size increases to ~100 nm. Likewise, the
silver nanoparticle of 20 nm is yellow colored in an aqueous solution, and with the
increasing size of the silver nanoparticle, color changes to red (Shrivas et al. 2015;
Venkatesh 2018; Willner and Vikesland 2018). This size-dependent change in color
of metal nanoparticles can be exploited to develop visual colorimetric sensors
(chemical sensors, biosensors, and electro-optical sensors) where small
nanoparticles aggregates in the presence of analytes change in color of the solution
(Chen et al. 2014b). The metal nanoparticles are synthesized by two approaches,
top-down and bottom-up (Wang and Xia 2004). Top-down synthesis involves bulk
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material as a precursor, broken down to nano-range particles using different physical
lithography techniques such as soft lithography and electron-beam lithography.
Top-down plays a vital role in the large-scale fabrication of nanostructure; it has
limitations such as imperfections in resulting material, expensive, and time-
consuming (Khandel et al. 2018). Bottom-up synthesis relies on the assembly of
molecules or atoms to build complex nano-constructs. Some common processes
used in bottom-up methods include sol-gel (Epifani et al. 2000), chemical vapor
deposition (Murty et al. 2013), laser ablation (Kumari et al. 2014), and solvo-thermal
method (Choi et al. 2013), but the most popular is the chemical reduction that
provides the advantage of fine control over shape and size of the nanoparticle. The
chemical reduction method of nano-metal synthesis involves reducing precursor
metal salt in the presence of a suitable stabilizer. The quasi-spherical-shaped
nanoparticles are thermodynamically most stable; therefore, the synthesis of spheri-
cal nanoparticles with different size ranges can be easily achieved by altering the
concentration of precursor salt, concentration and rate of addition of reductant, and
temperature. Since the optical properties of nanostructures vary with shape and size,
a process to synthesize non-spherical nanoparticles has been developed to utilize
these anisotropic nanostructures in different applications. Anisotropic metal
nanostructures are synthesized by step-wise growth in the presence of nanoparticle
seed and structure-directing agents, like cetyl-trimethyl ammonium bromide
(CTAB) (Murphy et al. 2011; Chang and Murphy 2018). High surface energy and
short inter-particle distances of nanoparticles make them unstable and coalesce,
forming thermodynamically favored stable bulk particles. In the absence of
interfering repulsive forces, metal nanoparticles attract each other resulting in larger
aggregates. To maintain spatial confinement in the nano range, stabilization of metal
nanoparticles is essential, which can be accomplished by steric or electrostatic
stabilization using stabilizing agents like polymer, ligands, and surfactants having
suitable functional groups (Olenin 2019; Sperling and Parak 2010). Stabilization of
metal nanoparticles leads to the formation of an electric double layer that furnishes
repulsive force to remain without aggregated in dispersed form (Venkatesh 2018;
Polte 2015). Functionalization of metal nanostructures with proper capping agents
not only provides stability to nanoparticles but also renders specificity toward target
analytes and, thus, finds several applications in sensing (Yu and Li 2019), drug
delivery (Ghosh et al. 2008), cell imaging, and photothermal therapeutics (McQuaid
et al. 2016).

In the present rapid industrialization scenario, heavy metal contamination in the
environment is a significant problem globally. The presence of excessive levels of
heavy metal pollutants in soil and water affects the quality of surface and ground-
water, resulting in a severe threat to human health and the deterioration of environ-
mental resources. The heavy metal pollutant enters water bodies by various natural
and anthropogenic sources, including mining, manufacturing, industrial, and munic-
ipal waste discharge (Poornima et al. 2016). Arsenic, chromium, lead, mercury, and
cadmium are some of the most concerning heavy metals due to their high toxicity,
even at low concentrations. Therefore, regulatory organizations like Environmental
Protection Agency (EPA) and World Health Organization (WHO) set a standard on
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permissible limits of heavy metal consumption (Varun and Kiruba Daniel 2018;

Zhang et al. 2019a; Li et al. 2013; Tchounwou et al. 2012). Consumption of heavy
metals above permissible limit triggers bio-toxic effects by altering cellular activities
and developing severe disorders, including cancer. Since they are not quickly
metabolized or excreted, they tend to accumulate in soft tissues for years, which
slowly causes mental and central nervous dis-functioning, damage to the liver,
kidneys, lungs, and other vital organs (Li et al. 2013). The traditional techniques
for detecting these toxic metals are based on either spectroscopy or chromatography,
which includes inductively coupled plasma mass spectrometry (ICP-MS), atomic
adsorption spectroscopy (AAS), inductively coupled plasma optical emission-
spectrometry (ICP-OES), X-ray fluorescence spectrometry (XRF), and high-
performance liquid chromatography (HPLC). These techniques are highly selective,
sensitive, and efficient in quantification; their large-scale implementation is still a
challenge due to their complexity and sophisticated installation procedure. More-
over, they require technical expertise to operate, involve toxic chemicals, multiple
sample preparation steps, time-consuming, and dedicated laboratory setup, and time-
to-time maintenance of instruments makes analysis highly expensive (Zhang et al.
2019a; Lu et al. 2018; Buledi et al. 2020). Thus, there is a need to develop an
inexpensive heavy metal detection technology that is rapid, easy-to-handle, user-
friendly, portable, and operated as a point-of-use device. In this context,
nanoparticle-enabled colorimetric sensing technology has huge potential to detect
metal toxins on-site with improved performance as a device in terms of selectivity,
sensitivity, and reproducibility that can be readily developed into commercial
products. A general schematic of MNP synthesis and its advantages in sensing
application has been shown in Fig. 12.1. This chapter reviews the colorimetric
sensing strategies for heavy metals based on aggregation and dispersion of metal
nanostructure, specially focusing on gold nanoparticle-based sensors. It also
highlights recent advances in developing a miniaturized, point-of-use colorimetric
sensor for metal toxins on paper substrate. Moreover, the integration of smartphone

Fig. 12.1 General schematic of MNP synthesis and their use in sensing applications of toxic
metal ions
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camera readouts and machine learning approach with colorimetric sensors
introduces a new lab-on-mobile concept, which has been discussed in the later
section of this chapter.

12.2 Metal Nanoparticle-Based Sensor

Sensors are devices that convert the chemical or physical properties of a specific
analyte into a measurable signal proportional to the analyte concentration (Jayabal
et al. 2015a). Metal nanoparticle-based sensing devices are characterized in three
units, i.e. (a) metal nanoparticle, (b) a recognition component that furnishes selec-
tivity, and (c) a signal transduction system, which supplies information about the
presence and absence of analyte (metal toxin) in a sample (Willner and Vikesland
2018; Mahato et al. 2018). The resultant signals originating from the MNP sensor
can be of different types, and based on these signals, sensors can be categorized as
optical, electrochemical, and piezoelectric sensors (Willner and Vikesland 2018).
Optical sensor depends on the interaction of toxic metals with electromagnetic
radiation (like ultraviolet, visible, or infrared light) in the form of emission or
absorption, which spectroscopic techniques can monitor. Colorimetric and fluores-
cence are two methods commonly used as reporting signals in optical sensors.
Colorimetric sensing is based on surface plasmon resonance of metal nanoparticles.
SPR peak of the metal nanoparticle is highly sensitive to the inter-particle distance
between nanoparticles. Plasmon coupling causes aggregation of metal nanoparticles
with pronounced color change and concomitant red-shift of SPR peak. Most of the
gold/silver nanoparticle-based colorimetric sensors explore the property of color
change coupled with aggregation and dispersion of nanoparticles in the presence of
target heavy metal (Doria et al. 2012). The fluorescence sensor consists of a
fluorophore as a signal-transducing element, which exhibits the property of
photoluminescence. When the fluorophore is irradiated with electromagnetic radia-
tion, it absorbs the photon energy, and its orbital electrons are excited to a higher
energy level (singlet state). Fluorescence occurs when the excited electron relaxes to
a lower energy state (ground state) by emitting a photon. Upon interaction with the
heavy metal toxin, the fluorescent signal changes as either “turn-off” or “turn-on.”
The metal nanoparticles of size 3 nm or smaller (like nanodots and nanoclusters) can
be directly used as a fluorescent marker as they exhibit inherent fluorescence
properties. Moreover, MNPs which lack their fluorescence can be functionalized
with a fluorophore to obtain a fluorescent sensor. Quenching and restoration of
fluorescence property indicate interaction of toxic metal and nanoparticle-based
changes in the sensor (Xiong et al. 2019; Willner and Vikesland 2018). An electro-
chemical sensor is a device that transforms chemical reactions into electrical signals
(Alam et al. 2020). When an electrical circuit is introduced to heavy metal, the
molecular binding of toxic metal near electrode surface initiates oxidation/reduction
process, which generates or modulates electrical current in the form of charge
(electron) transfer between the electrode and toxic metal ion. This charge transfer
may lead to the completion of an incomplete circuit or alteration in current, potential,
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or resistance measured by instruments like potentiostat or galvanostat (Willner and
Vikesland 2018; Doria et al. 2012). Electrochemical sensors may exist in a
two-electrode system or three-electrode system (Andrea Scozzari 2008). In the
two-electrode arrangement, a working electrode (WE) is coupled with a counter
electrode (Auxiliary, CE), and the difference of electric potential is measured
between WE and the potential of CE. Examples of the two-electrode system are
amperometric sensor (measures electric current between CE and WE in the presence
of a constant electric potential) (Sahin and Kaya 2019) and potentiometric sensor
(measures the potential difference between two electrodes, i.e., WE and CE in the
absence of current flow) (Isildak and Özbek 2020). Three-electrode consists of a
reference electrode (RE) along with WE and CE. The best example for a three-
electrode system is a voltammetric sensor, which measures current response as a
function of applied potential. Current is linearly dependent on the concentration of
electro-active species (toxic metal ion) (Power and Morrin 2013). Among these
sensors, colorimetric sensors have several advantages: simplicity, unmatched sensi-
tivity, and inexpensive and fast detection time. Moreover, it operates in a visible
range of the electromagnetic spectrum. The resultant signals can be detected by
naked eyes, making it possible for wide-scale use by the common people. Therefore,
it gained huge attention for quick detection of metal toxins in solutions (Kim et al.
2012; Jayabal et al. 2015b).

12.3 MNP-Based Colorimetric Detection Strategies

Metal nanoparticles are highly flexible because of precise control on size, shape,
composition, assembly, and optical properties during the synthetic process. Thus, it
has been extensively investigated for colorimetric sensing of toxic metal ions. WHO
has standardized the consumption limit for these toxic metal ions; for instance, the
permissible limit for arsenic is 10 ppb, chromium 50 ppb, lead 15 ppb, mercury
2 ppb, copper 15 ppb, and cadmium 5 ppb. Thus, their trace level monitoring is
essential, and for which researchers are coming up with new techniques based on
metal nanoparticles. This section deals with MNPs-based colorimetric sensors for
the determination of toxic metals. Zhou et al. reported 4-mercaptobenzoic acid
(4-MBA) modified silver nanoparticles (AgNP) for colorimetric sensing of CuII

ion in water. 4-MBA consists of –SH group that binds with AgNP and –COOH
groups exposed on the surface that chelates CuII forming carboxylate–CuII–carbox-
ylate bridges. Chelation of CuII causes aggregation of AgNP and color changes from
yellow to purple (Fig. 12.2a) (Zhou et al. 2011). Chen and coworkers demonstrated a
paper-based colorimetric device (PCD) for HgII detection using citrate stabilized
PtNP. 3,3,5,5-tetramethylbenzidine (TMB) and H2O2 produce blue color in the
presence of PtNP that mimics the peroxidase activity by catalyzing the reaction.
However, the introduction of HgII in the reaction system inhibits the catalytic
activity of PtNP resulting in a color change from blue to colorless. (Fig. 12.2b)
(Chen et al. 2016). Shrivas et al. reported colorimetric sensing of PbII using
polyvinyl alcohol (PVA) functionalized AgNP and paper-based analytical devices.
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After interaction of PbII with AgNP-PVA, the color changes from yellow to red and
color intensity were recorded on a smartphone followed by processing in ImageJ
software (Fig. 12.2c) (Shrivas et al. 2019). Similar color-based sensing methods
have been reported for toxic metals like AsIII, CrIII/VI, CdII, PbII, CuII, and HgII using
modified metal nanoparticles including Au, Ag, Pt, and Pd nanoparticles, which
have been listed in Table 12.1. Silver and gold nanoparticles exhibit prominent
SPR-based properties associated with a color and have been widely explored for the
same. Though Pt-like nanoparticles exhibit SPR features, they are examined mainly
for their catalytic activity and enzyme mimetic behavior for inducing an indirect
color change in sensor application. Among all these metallic nanoparticles, gold
nanoparticles (GNP) received much attention in colorimetric sensing applications
(Singla et al. 2016). GNP can be prepared by simple methods with high stability and
provides a suitable platform for multi-functionalization with various biological and
organic ligands for selective binding of target toxins. They have a high surface-to-

Fig. 12.2 Metal nanoparticle-based colorimetric sensor for heavy metal. (a) 4-MBA-AgNP-based
colorimetric detection of CuII with color change from yellow to purple. (b) Paper-based analytical
device for detection of HgII using PtNP in the presence of TMB and H2O2. (c) Colorimetric sensing
of PbII using PVA-AgNP coated paper substrate showing color change from yellow to red.
Reproduced from Ref. Zhou et al. (2011) (a). Open access with proper citation (b). Reproduced
from Ref. Shrivas et al. (2019) (c)
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volume ratio and exhibit unique optoelectrical and catalytic properties imparting
useful surface plasmon behavior that generates a detectable response in the presence
of metal ions. These distinctive properties make them “star” among the other
nanoparticles providing researchers a broad spectrum for sensor application (Jans
and Huo 2012).

12.4 Synthesis, Functionalization, Properties, and Sensing
Strategy of GNP

12.4.1 Synthesis of GNP

The sensing application of gold nanostructures is dependent mainly on their shape,
size, and surface functionality, and thus selection of suitable synthetic procedures is
crucial in designing a sensor (Yeh et al. 2012; Yu and Li 2019). In the last few
decades, numerous chemical and physical procedures are adopted to precisely
control the shape, size, and mono-dispersity of nanoscale gold. However, green
synthesis technologies involving biological entities are gaining much attention
nowadays due to the environmental-friendly and biologically safe approach to
synthesizing gold nanoparticles (Zhang et al. 2020). The details of some commonly
used synthesis procedures for nanoscale gold are summarized here.

12.4.1.1 Turkevich–Frens Method
Turkevich first reported the synthesis of gold nanoparticles in 1951 (Turkevich et al.
1951). In this method, gold chloride salt (HAuCl4) is heated (~90 �C) in the presence
of a reducing agent like sodium citrate resulting in monodispersed spherical gold
nanoparticle suspended in the water of around 20–40 nM in diameter (Fig. 12.3a).
Here, citrate plays the role of both stabilizing and reducing agents (Saha et al. 2012).
Later, in 1973, Frens improved this protocol and prepared gold nanoparticles of
different sizes ranging between 16 and 147 nm. This method provides precise
control over the size of the gold nanoparticle by adjusting the proportion of
chloroauric acid salt to sodium citrate solution (Razzaque et al. 2016). The citrate
reduction provides a negative surface charge to gold nanoparticles and prevents
aggregation by imposing repulsion induced by Coulombic force (Chen et al. 2014a).
Citrate forms a weak coordination layer with gold nanoparticles that adds easy
replacement of citrate with functionalizing agents like thiols (Zhu et al. 2003),

polymers, and biomolecules (Nghiem et al. 2010).

12.4.1.2 Brust–Schiffrin Method
In 1994, Brust and Schriffin introduced another protocol for synthesizing gold
nanoparticles in an organic medium that results in water-immiscible gold
nanoparticles (Brust et al. 1994). This synthetic strategy involves bi-phasic reduction
of gold salt to produce thiol-protected gold nanoparticles (Li et al. 2011; Perala and
Kumar 2013). The gold chloride salt is transferred from the aqueous phase to the
organic phase (toluene) using the surfactant tetraoctylammonium bromide (TOAB)
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followed by the addition of dodecanethiol as a stabilizing agent. Next, sodium
borohydride (a strong reducing agent) is added that reduces gold salt to thiol-
stabilized gold nanoparticles producing deep brown color in toluene (Fig. 12.3b).
This method results in 1.5–5 nm gold nanoparticles having low dispersity.

Fig. 12.3 Various synthesis procedures of gold nanoparticles. (a) Turkevich–Frens method. (b)
Brust–Schiffrin method. (c) Seed-mediated growth method for anisotropic gold (GNR). (d) Green
synthesis of GNP using plant extract
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Alkanethiol forms a monolayer on GNP surface enabling easy modification with
various functional groups (Saha et al. 2012).

12.4.1.3 Seed-Mediated Growth
The seed-mediated growth is the most reputed procedure used in the preparation of
anisotropic gold nanoparticles like nanorod (GNR), introduced by Murphy and
coworkers (Jana et al. 2001) and El-Sayed group (Nikoobakht and El-Sayed
2003). Cetyltrimethyl ammonium bromide (CTAB), a surface-active molecule, is
used as the template for directed growth of anisotropic nanostructures (Meng et al.
2019). The synthesis of gold nanorod is achieved in two steps (Fig. 12.3c). Step
1 involves the seed solution synthesis where a golden brown–colored gold seed is
prepared by reducing gold chloride salt (HAuCl4) with freshly prepared ice-cold
borohydride (NaBH4) sodium in the presence of CTAB. Step 2 involves the growth
of nanorods in the presence of CTAB and silver nitrate (AgNO3). Gold salt is
reduced with a mild reductant ascorbic acid followed by seed solution. The growth
solution is left undisturbed for 12 hrs to grow the seed crystals into gold nanorod
under the action of surfactant (CTAB). The nanorods of desired aspect ratio (length/
width) are achieved by altering the concentration of gold chloride salt and seed
(Murphy et al. 2011; Li et al. 2018a).

12.4.1.4 Green Synthesis of Gold Nanoparticles
Green synthesis of nanoparticles emerged as an attractive substitute for conventional
chemical synthesis procedures. This method involves the use of unicellular and
multicellular biological entities like plant extracts, bacteria, actinomycetes, fungus,
yeast, and viruses. The biological entities act as a factory for nanoparticle synthesis
that offers non-toxic, inexpensive, and environmental-friendly approaches both extra
and intra-cellularly without using toxic chemicals during synthesis, thus also termed
as “Green chemistry” (Fig. 12.3d) (Baranwal et al. 2016; Zhang et al. 2020; Salem
and Fouda 2021; Sengani et al. 2017) Das and coworkers synthesized 20 nm
spherical gold nanoparticles by using flower extracts from Nyctanthes arbor-tristis
(night jasmine) (Das et al. 2011). Narayanan and Sakthivel used leaf extracts of
Coriandrum sativum to synthesize gold nanoparticles of size 7–58 nm (Narayanan
and Sakthivel 2008). Husseiny group reported the extracellular preparation of GNP
using a bacterial strain Pseudomonas aeruginosa. The mechanism involves the
transfer of an electron from nicotinamide adenine dinucleotide hydrogen (NADH)-
dependent reductase enzyme resulting in the reduction of Au3+ to Au0 and itself
oxidized to NAD+ (Husseiny et al. 2007). Synthesis of nanoparticles using plant
extracts is comparatively easier, faster, and cost-effective than bacterial synthesis as
it does not require complex and multiple-step processes like isolation, culturing, and
maintenance of bacterial strain (Iravani 2011).
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12.4.2 Colloidal Stability of Gold Nanoparticles
and Functionalization for Sensor Application

Colloidal stability of gold nanostructure depends largely on the surface energy,
surface composition, and the inter-particle behavior arising from the surface and
intermolecular forces. Nanoparticles exhibit high surface energy and short inter-
particle distance, which make them unstable and result in aggregation. The chemis-
try behind the aggregation of the nanoparticle is complicated due to the involvement
of different kinds of forces like electrostatic repulsion, van der Waals, and magnetic
forces (Rance et al. 2010). However, the van der Waals force of attraction dominates
due to short inter-particle distance, which compels them to form aggregates. There-
fore, to avoid the agglomeration of nanoparticles, repulsive force is introduced by
adding a capping agent during the synthesis of nanoparticles. The capping agents
bind on the surface of the nanoparticle, providing two types of stabilization, electro-
static and steric. In an aqueous environment, most of the nanoparticles carry some
surface charge due to ionization of the surface group or adsorption of charged
molecules or ions. To balance the surface charge, a cloud of opposite charges is
created. This charged cloud consists of the inner stern layer and outer diffuse layer
forming an electric double layer (EDL), creating an electrostatic repulsive force
between particles. In the case of steric stabilization, a physical barrier is created by
the adsorption of ligands on the particle surface that prevents particles from aggre-
gation (Amina and Guo 2020; Moore et al. 2015). The stabilization of gold particles
was described by DLVO (Derjaguin–Landau–Verwey–Overbeck) theory of balance
between the repulsive (electrostatic interactions) and the attractive force (van der
Waal). According to DLVO theory, the sum of electrostatic and van der Waals force
between two nanoparticles represents the total force acting on the colloidal solution
(Zhou et al. 2009; Aldewachi et al. 2018).

Due to the nanometer size, gold nanoparticles have a high surface to volume ratio
making them extremely active, and therefore, surface capping is required to lower
the surface energy and increase stability. Surface functionalization of gold
nanoparticles also renders specificity for the target analyte during the sensing
procedure. Therefore, surface modification of GNP accomplishes two objectives:
(1) chemical stability and (2) target-specificity (Zhang 2013). Gold nanoparticles can
be functionalized by thiol-containing ligands, biomolecules, and polymers using
different strategies like covalent coupling (Au-S bonding), specific recognition (e.g.,
antibody-antigen, DNA, aptamer), and electrostatic interaction. Sulfur-containing
molecules are highly effective functionalizing agents, since, Au-thiol bonds are
strong, resulting in highly stable gold nanoparticles. Many thiol-containing
compounds like thioctic acid, glutathione, thioguanine, cystamine, thiolated–
diethylenetriaminepentaacetic acid (SH-DTPA), and thiolated–PEG (SH-PEG) are
used to modify gold nanoparticles and implicate in sensing of toxic metal ions
(Mahato et al. 2019). Chai and coworkers reported glutathione functionalized gold
nanoparticle (GSH-GNP) for PbII detection based on aggregation and red to blue
color change of GSH-GNP (Chai et al. 2010). Xue and group demonstrated
6-mercaptonicotinic acid and L-Cysteine co-functionalized GNP as CdII sensor
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(Xue et al. 2011). Wang and coworkers reported 4-amino-3-hydrazino-5-mercapto-
1,2,4-triazole (AHMT) functionalized gold nanoparticles for colorimetric CdII detec-
tion. AHMT consists of thio, amino, and triazole groups which can form bonding
with GNP surface. However, among these groups, thiol preferentially binds with
GNP forming (Au–S) bond while other groups are involved in the chelation of CdII

ion (Wang et al. 2013). Compared to other molecules, thiol-ligands bind easily with
the gold nanoparticle surface, which can be attributed to the mechanism of ligand
exchange that replaces the already bound ligand with the thiol compound without
altering the structural integrity of GNP. Liu and Lu fabricated a lead biosensor using
DNAzyme-directed aggregation of DNA modified gold nanoparticles. DNAzyme
consists of an enzyme specific to PbII ions. DNA functionalized GNP forms a blue-
colored assembly in the presence of DNAzyme. The introduction of PbII in reaction
activates DNAzyme to cleave DNA stand and change the color of GNP from blue to
red (Liu and Lu 2003). Lee and Mirkin developed a highly selective HgII detection
assay based on thymine-Hg-thymine base paring. The GNP surface was
functionalized with a thiol modified DNA probe (probe 1 and probe 2). Though
the thiol modified-GNP is stable, it loses stability in the presence of HgII, forming a
bridge of thymine-Hg-thymine, leading to mismatch in T–T base pairs. This causes
red-colored GNP to turn blue leading to aggregation (Lee and Mirkin 2008).

12.4.3 Optical Properties

The refinement of bulk gold to nanoscale dimension allows them to interact with
light, causing strong absorption at specific wavelengths. When gold nanoparticles
are exposed to light, the electromagnetic field of light causes polarization of free
electrons present on GNP’s surface, resulting in their collective oscillation. When the
frequency of incident light coincides with the frequency of collective oscillation of
surface electrons, it absorbs the radiation of that particular wavelength giving an
absorption band known as surface plasmon resonance (SPR). The SPR of gold
nanostructures ranges from the visible to the near-infrared region of the electromag-
netic spectrum depending on the size and shape of the gold nanoparticles (Fig. 12.4a)
(Wang and Yu 2013). A spherical gold nanoparticle of 20 nm possesses SPR peak at
520 nm in the visible region responsible for the red color of the colloidal solution. As
the size of the GNP increases, the SPR band gradually shifts to a higher wavelength
with a concomitant color change of colloidal solution. Thus, the colored appearance
(red, orange, brown, purple, and blue) of the colloidal gold solution is dependent on
the size of gold nanoparticles (Amina and Guo 2020). Moreover, as the symmetry
changes from spherical to nanorod, the SPR splits into two Plasmon bands known as
transverse bands arising due to electron oscillation along the short axis (width) and
longitudinal band due to electron oscillation along the long axis (length) (Fig. 12.4a)
(Yasun et al. 2013). Richard Gans, in 1912, explained that the change in the shape of
nanoparticles leads to alteration in position and number of SPR band and thus
depends on the aspect ratio (length/width) of nanoparticles, not absolute dimension.
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Thus, a change in SPR band can be used to track the interaction of analytes with gold
nanoparticles (Nath et al. 2018b).

The detection mechanism of colorimetric sensors is dependent on the change in
color and absorption band associated with the aggregation and disaggregation of
nanoparticles. Interaction of heavy metals with spherical gold nanoparticles forms
aggregates with a shift in SPR and red to blue color change (Fig. 12.4b). However,
gold nanorod aggregates in different ways, namely end to end, side by side,
aggregation, and etching of nanorod (Vigderman et al. 2012). End to end interaction
occurs when metal toxins bind at the edge of nanorod forming chain/wire-like
structure resulting in bathochromic shift of longitudinal band. Metals toxins when
bound on the longer edge of the nanorod result in side by side interaction with a blue
shift in longitudinal SPR. Aggregation-based assembly first initiates with end to end
and ends side by side, forming a total-aggregate nanorod with decreased absorption
band intensity. Some metal toxins etch nanorod at longitudinal edge forming
spherical shape coupled with red shift and change in color from purple to pink.
The change in optical properties with toxic ion-mediated aggregation has been
shown in Fig. 12.4c, d, e, f.

Fig. 12.4 Schematic illustration of surface plasmon excitation of GNP and GNR (a), metal
ion-mediated aggregation of GNP (b); metal ion-induced side by side (c), end to end interaction
(d), both side by side and end to end interaction forming total aggregate of GNR (e), and metal
ion-mediated etching of GNR to spherical-shaped nanoparticle (f) responsible for the change in
optical properties of gold nanostructures

12 Gold Nanoparticle-Based Colorimetric Sensing of Metal Toxins 289



12.5 GNP as a Colorimetric Sensor for Heavy Metals

As discussed in Sect. 12.4.3, gold nanoparticles are extremely responsive to the local
dielectric, which results in aggregation with change in SPR and the color of colloidal
solution indicating the presence of test analyte. Researchers have extensively
investigated this feature to develop a color-based sensor for metal ions, which has
been discussed in this section. Chen et al. reported DMSA functionalized GNP for
trace level detection of CrIII/VI. Chromium exists as an aqueous complex with six
water molecules coordinated with the CrIII ion. Cr(III) has empty orbitals that accept
one pair of electrons from the oxygen of DMSA, forming a metal–O coordinate
covalent bond by replacing water molecules from aqueous chromium. However, in
the case of Cr2O7

2�, the CrVI ion lacks coordination sites as they are already
occupied by oxygen atoms. Therefore, chromium binding occurs through hydrogen
bonding OH----O involving carboxyl –OH of DMSA and –O of Cr2O7

2�

(Fig. 12.5a). (Chen et al. 2015) Nath et al. reported a red to blue color change sensor
for arsenic (III and V) using 2-mercapto-4-methyl-5-thiazoleacetic acid (MMT) and

Fig. 12.5 (a) Interactions between DMSA-GNP and CrIII (top) and CrVI (down). (b) AsIII/V

mediated aggregation of GNP-MMT@Eu. (c) AsIII/V induced aggregation of DMSA functionalized
gold nanorod. Reproduced from Ref. Chen et al. (2015)) (a). Reproduced from Ref. Nath et al.
(2018a)) (b). Reproduced from Ref. Priyadarshni et al. (2018) (c)
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europium chloride (EuCl3) functionalized gold nanoparticle (GNP-MMT@Eu). The
SPR peak intensity of GNP-MMT@Eu at 525 nm decreased while a new peak at
650 nm appeared due to arsenic-mediated aggregation of nanosensor.
GNP-MMT@Eu exhibits Eu-OH group exposed on GNP surface which are the
sole binding sites for arsenic ion. The As-OH/As-O� groups of arsenic and –OH
groups of Eu(III) bind forming an inner-sphere arsenic complex between GNP with
the release of H2O and OH� moieties. The response of GNP-MMT@Eu for As
(V) was quick compared to that of As(III). The nanosensor surface attains a partial
positive charge at pH ~6-7 as the Eu-OH converts to Eu-OH2

+ which initiates the
binding between H2AsO4

�/HAsO4
2� and GNP-MMT@Eu through electrostatic

interaction. Thus, both covalent and electrostatic modes of binding prevail between
arsenic and the nanosensor, which are accountable for rapid response to AsV

(Fig. 12.5b) (Nath et al. 2018a). Priyadarshni et al. demonstrated aggregation-
based detection of AsIII/V using gold nanorod (GNR) modified with mPEG-SH
and DMSA. After interaction with AsIII/V, the bluish-purple color of the GNR sensor
turns colorless with a small shift (778 to ~802-820 nm) and decrease in SPR peak
suggesting side to side and end to end binding forming total aggregate. DMSA
contains two thiols (–SH) groups; one binds with GNR and other complexes with
AsIII/V. At pH ~7, AsIII and AsV exist as H3AsO3 and H3AsO4/H2AsO4

� while thiol
remains protonated. As�OH groups participate in As�S bond formation and release
H2O due to removal of hydrogen from –SH and displacement of –OH� to form a
complex between AsIII/V and GNR, inducing arsenic-mediated aggregation of
nanorods (Fig. 12.5c) (Priyadarshni et al. 2018).

12.5.1 Detection on Paper Substrate

Conventional detection methods for metal toxins have constantly improvised with
new-age technological developments to miniaturize the setup and provide a
decentralized approach. The emergence of microfluidic techniques resulted in the
notion of the “lab-on-chip (LOC)” concept back in the 1990s (Guan and Sun 2020;
Sackmann et al. 2014). In recent years, paper-based microfluidics have emerged as
promising LOC sensing devices (Li et al. 2012; Yetisen et al. 2013; Kumar et al.
2015). Microfluidics that couple paper-based devices with colorimetric analysis are
particularly attractive, attributed to easy fabrication, portability, and inexpensive,
i.e., provide a cheaper alternative for point-of-use testing. Moreover, the paper has a
porous matrix that offers self-pumping and capillary flow to the solution (Mahato
et al. 2020; Xiong et al. 2020; Mahato et al. 2017). This section discusses some
paper-based colorimetric methods for sensing toxic metal ions in water. Nath et al.
reported trace-level determination of AsIII on Y-shaped microfluidic paper device
using thioctic acid and thioguanine conjugated gold nanoparticle (Au-TA-TG). The
two arms of the device were used as the inlet, each for Au-TA-TG and AsIII, and the
reaction occurs on the paper surface resulting in red to blue color change, suggesting
the existence of AsIII (Fig. 12.6a) (Nath et al. 2014). Zhang and coworkers
demonstrated the detection of CuII by etching of nanorod in the presence of
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hexadecyltrimethylammonium bromide (HBr) on a paper substrate. When CuII in
combination with HBr is added to nanorod, HBr induces transformation of Au(0)-to-
Au(I) and CuII catalytically etches the longitudinal edge of GNR accompanied with
color change from blue to red (Fig. 12.6b) (Zhang et al. 2014). Paper-based colori-
metric metal ion detection using gold nanoparticles has been shown in Fig. 12.6 and
listed in Table 12.2.

12.6 Smartphone and Machine Learning (Color Readout)-Based
Quantification of Heavy Metals

The enhanced technical capabilities of smartphones, especially wireless connectivity
and high definition cameras, enable various innovative ideas for detecting environ-
mental toxins like heavy metals (Mutlu et al. 2017). The addition of a simple
colorimetric sensing apparatus to a smartphone makes it lab-on-phone, cost-
effective, portable, and accurate (Sajed et al. 2020; Wang et al. 2019). Most of the
integrated smartphone detection systems introduced so far rely on RGB (red, green,
blue) intensities of the colorimetric sensor. Chen et al. developed a smartphone
integrated colorimetric sensor using meso-2,3-dimercaptosuccinic acid

Fig. 12.6 (a) Au-TA-TG on Y-shaped paper strip for colorimetric detection of AsIII. (b) Paper-
based colorimetric detection of CuII by etching of nanorod in the presence of HBr turns blue-to-red.
(c) Paper-based colorimetric detection of CrVI by aggregation of BSA-AuNP/STCP. Reproduced
from Ref. Nath et al. (2014)) (a). Reproduced from Ref. Zhang et al. (2014) (b). Reproduced from
Ref. Guo et al. (2016) (c)
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Table 12.2 GNP- and GNR-mediated colorimetric detection of metal toxins in solution, paper
substrate, and smartphone

Target
metal
toxin Modification

LOD
(ppb)

Aggregation-based
color change of
GNP/GNR Ref

Arsenic

GNP Glutathione(GSH),
Dithiothreitol (DTT) cysteine
(Cys)

1.0 Red!blue Kalluri et al.
(2009)

Aptamer 1.26 Red ! blue Yu (2014)

GSH-DTT-Cys-PDCA 2.5 Red !blue Domínguez-
González
et al. (2014)

Cationic polymer and aptamer 5.3 Red ! blue Wu et al.
(2012)

Citrate 1.8 Red ! blue Gong et al.
(2017)

Polyethyleneglycol (PEG) 5.0 Red! blue Boruah and
Biswas
(2018)

Thioctic acid-thioguanine
(TA-TG)

1.0 Paper-based; red!blue Nath et al.
(2014)

2-mercapto-4-methyl-5-
thiazoleacetic acid
(MMT)- europium

1.0 Paper-based; red!blue Nath et al.
(2018a)

Sucrose 4.0 Smartphone-based
color intensity
extraction using ImageJ
software; red!blue

Shrivas et al.
(2020)

Glutathione (GSH) 0.12 Smartphone-based
RGB extraction;
red!blue

Zheng et al.
(2021)

GNR Meso 2,3-Dimercaptosuccinic
acid (DMSA)

1.0 Paper-based;
purple!colorless

Priyadarshni
et al. (2018)

Chromium

GNP 5,50-dithiobis (2-nitrobenzoic
acid) (DTNBA

93.6 Red !blue Dang et al.
(2009)

Triazole 72.6 Red !blue Chen et al.
(2013)

Citrate 15.5 Red !blue Liu and
Wang (2013)

Citrate 5.3 Paper-based; red!blue Elavarasi
et al. (2013)

Tween 20 CrIII:
0.83
CrVI:
0.46

Red !blue Wang et al.
(2015)

4-amino hippuric acid. 60.7 Red !blue Jin and
Huang
(2017)

(continued)
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Table 12.2 (continued)

Target
metal
toxin Modification

LOD
(ppb)

Aggregation-based
color change of
GNP/GNR Ref

Gallic acid 78 Red !blue Dong et al.
(2016)

O-phospho-l-serine
dithiocarbamic acid (PSDTC)

218 Red !blue Lo et al.
(2015)

1,5-diphenylcarbazide (DPC) 15.5 Red !blue Liu et al.
(2016)

Cysteamine-pyridoxal (CAPY) 596.9 Red !blue Bothra et al.
(2017)

Ribavirin 1.55 Red !blue Salimi et al.
(2018)

Thiol modified nanodiamonds
(ND-thiol)

0.019 Red !blue Shellaiah
et al. (2018)

Bovine serum albumin (BSA) 14.5 Paper-based; red!blue Guo et al.
(2016)

Meso-2,3-dimercaptosuccinic
Acid (DMSA)

0.51 Smartphone readout;
red!blue

Chen et al.
(2015)

GNR Bovine serum albumin (BSA) 16.6 Purple!red
(etching)

Alex et al.
(2018)

Lead

GNP Glutathione 0.002 Red !blue Chai et al.
(2010)

L-glutathione 0.1
umol/
L

Red !blue Mao et al.
(2011)

Maleic acid 0.5 Red !blue Ratnarathorn
et al. (2015)

Thioctic acid (TA--Dansyl
hydrazine (DNS)

1.0 Paper-based; red!blue Nath et al.
(2015)

Oligonucleotide 0.5 Smartphone-based
RGB extraction and
machine learning;
red!blue

Sajed et al.
(2020)

GNR Cysteine 0.02 Absorption
Side-by-side assembly

Cai et al.
(2014)

Unmodified GNR 0.62 Etching of GNR and
Pb-au alloy formation

Chen et al.
(2012)

Sodium thiosulfate 20.7 Blue!red (etching of
GNR)

Zhu et al.
(2016)

Mercury

GNP Papain 0.2 Red !blue Guo et al.
(2011)

3-mercaptopropionate acid and
adenosine monophosphate

0.5 Red !blue Yu and
Tseng (2008)

(continued)
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Table 12.2 (continued)

Target
metal
toxin Modification

LOD
(ppb)

Aggregation-based
color change of
GNP/GNR Ref

2-[3-(2-aminoethylsulfanyl)-
Propylsulfanyl]- ethylamine
(AEPE)

0.035 Red !blue Chansuvarn
and Imyim
(2012)

Thioctic acid (TA) 0.01 Red !blue Su et al.
(2013)

Label-free oligonucleotide 0.05 Red !blue Lee and
Mirkin
(2008)

ss-DNA 10 μPAD integrated with
smartphone (RGB
values); red!blue

Chen et al.
(2014a)

Aptamer 0.2 Smartphone-based
RGB extraction and
machine learning;
red!blue

Sajed et al.
(2019)

GNR Pyrazole 0.002 Absorption and
colorimetric
(end to end assembly)

Placido et al.
(2013)

Dithiothretol (DTT) 0.08 Absorption and
colorimetric
(aggregation)

Bi et al.
(2012)

Silica-CN 1.08 Colorimetric
(au-hg amalgamation)

Anand et al.
(2013)

Mesoporous silica 0.15 Redox mediated inner
particle interaction

Copper

GNP Dopamine dithiocarbamate
decorated gold nanoparticles
(DDTC-au NPs)

946.2 Red !blue Mehta et al.
(2013)

Polyvinylpyrrolidone (PVP)
aggregated with
2-Mercaptobenzimidazole
(MBI)

317.5 Purple!red
(dis-aggregation)

Ye et al.
(2015)

10-mercaptodecyl-1-
iminodiacetic acid (MDIA)

508 Red !blue Chai et al.
(2017)

Amyloid-like peptides
(arginine, phenylalanine,
proline)

7.62 Red !blue Pelin et al.
(2020)

Thioctic acid (TA--Dansyl
hydrazine (DNS)

1.0 Paper-based; red!blue Nath et al.
(2015)

GNR Cysteine 0.02 Blue-green!dark gray
(aggregation)

Liu et al.
(2011)

Hexadecyltrimethylammonium
bromide

0.03 Paper-based; blue!red
(etching)

Zhang et al.
(2014)

(continued)
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(DMSA)-capped GNP to detect chromium ions (III and VI). The detection system
was dependent on RGB extraction using an application software “color scan” and the
ratio of green to red was calculated to obtain a calibration curve and determine the
amount of chromium in the real water sample (Fig. 12.7a) (Chen et al. 2015). Faham
and coworkers showed a paper-based colorimetric sensor integrated with
smartphone readout for chromium (III) detection in solution. 2,20-thiodiacetic acid-
modified gold nanoparticle (TDA-GNP) was spotted on a paper disc and treated with
various concentrations of CrIII followed by image capturing using a Samsung E5
smartphone. Color intensities of the paper disc were obtained using adobe photoshop
CS5 and applied to obtain CrIII concentration in real samples (Faham et al. 2018).
Smartphone-based detection provides real-time on-site application of colorimetric
sensors with the help of simple software available by third-party service providers.
However, to obtain analytical values from color, the images are highly processed and
compressed, leading to alterations in final analytical data and cannot be trusted
completely. Moreover, simple analytical models fail to detect the number of inde-
pendent variables like in the multi-analyte sensor. The drawbacks of illumination
and smartphone detection systems can be overcome by applying artificial intelligent
systems like machine learning (Mutlu et al. 2017).

Machine learning (ML) is a subset of artificial intelligence (AI) that acquires
information from raw data by extracting its features and uses it to tackle problems
without human intervention. It is a computer program or algorithm that makes
machines more intelligent in behavior and decision by enabling them to learn from
past experiences and develop their own program (Cui et al. 2020; Lussier et al.
2020). In the field of sensing, ML is employed as a tool for data processing to extract
features like color intensity and utilize these features to predict the concentration of
analyte and toxic ions directly (Cui et al. 2020). A general workflow of machine
learning and its advantages in colorimetric sensing is presented in Fig. 12.7b. ML is
grouped into two classes: supervised and unsupervised learning (Ayodele 2010). In
unsupervised learning, the algorithm is not trained with the input data (training data);

Table 12.2 (continued)

Target
metal
toxin Modification

LOD
(ppb)

Aggregation-based
color change of
GNP/GNR Ref

Cadmium

GNP 6-mercaptonicotinic acid
(MNA) and L-cysteine (LCys)

11.2 Red !blue Xue et al.
(2011)

4-amino-3-hydrazino-5-
mercapto-1,2,4-triazole
(AHMT)

3.37 Red !blue Wang et al.
(2013)

2,6-dimercaptopurine 3.67 Red !blue Gan et al.
(2020)
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instead, it learns from the pattern of untagged data, builds a concept, and predicts the
output. k-Means clustering is the most used unsupervised learning algorithm.

On the contrary, supervised learning involves training of ML algorithms with
input data called training data. Based on training data, the algorithm predicts the
output for the unknown input data called testing data. Convolutional neural network
(CNN), artificial neural network (ANN), support vector machine (SVM), and multi-
ple linear regression (MLR) are some supervised ML algorithms, gaining attention in
chemical and biological colorimetric sensors development (Cui et al. 2020). Sajed
group reported a novel detection method for HgII ions in water utilizing smartphone-
based machine learning regression. Aptamer modified gold nanoparticle changes
color from red to purple in HgII, and the corresponding color change was captured on
a smartphone camera. The obtained color cards trained the machine learning regres-
sion model to interpret mercury ion concentration based on RGB values. The
smartphone was fabricated with an optoelectronic component using three-
dimensional printing technology, an attachment to any smartphone. The
optoelectronic device comprises three compartments: LCD board and camera’s
depth focus chamber, and cuvette holder. This setup provides an advantage of

Fig. 12.7 (a) RGB extraction and smartphone readout-based detection of CrIII/VI using
DMSA-GNP. (b) General work flow of machine learning and its advantages in colorimetric
sensing. (c) Smartphone readout and regression-based model to process RGB features extracted
from color change on interaction of PbII with oligonucleotide-GNP. Reproduced from Ref. Chen
et al. (2015) (a). Reproduced from Ref. Sajed et al. (2020) (c)
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blocking ambient light interference and results in reproducible LCD illumination
(Sajed et al. 2019). In another work, Sajed et al. reported similar detection apparatus
for PbII ion using oligonucleotide modified gold nanoparticle and machine learning
regression on the mobile platform (Fig. 12.7c) (Sajed et al. 2020). Machine learning
combined with a smartphone provides high sensitivity, accuracy, and easy operation
with ubiquitous detection using Lab-on-phone apparatus.

12.7 Conclusion

Metal nanoparticle-based colorimetric sensing has gained special attention in the
detection of environmental toxins because of distinct chemical and optical
characteristics, including catalytic behavior, easy synthesis, and a broad array of
surface functionalization molecules. SPR-based color change associated with the
aggregation of nanoparticles is the primary mechanism to develop a colorimetric
sensor. Gold and silver nanoparticles exhibit distinct SPR features. On the other
hand, the platinum-type nanoparticle is explored mainly for its catalytic activity and
enzyme mimetic behavior to induce an indirect color change in sensing application.
Among all these metallic nanoparticles, gold nanoparticles (GNP) have emerged as a
versatile platform for detecting toxic metal ions because of their stability, ease of
synthesis, and functionalization with biomolecules and unique optical properties.
Compared to traditional methods, GNP-based colorimetric sensor provides rapid and
inexpensive detection techniques specifically for the metal toxins with a detection
limit of micro-to-pico molar level. Recently, a paper-based analytical device coupled
with colorimetric assay emerged as a cheaper alternative to conventional methods to
develop the point-of-use testing system. This technique involves immobilization of
modified gold nanoparticles on paper, and metal toxins are allowed to flow through
it, exploring the self-wicking property of paper substrate toward metal ion detection.
The paper-based colorimetric devices provide a field-deployable miniaturized sens-
ing platform. The developments in sensing strategies have given a new lab-on-phone
concept, which includes the addition of a simple colorimetric sensing apparatus to a
smartphone. This smartphone-based sensing apparatus relies on RGB (red, green,
blue) features extracted from the color intensities of samples. However, the images
become highly processed and compressed during feature extraction, and thus results
from the smartphone-based devices cannot be trusted completely. The drawbacks of
smartphone detection systems can be overcome by applying artificial intelligence
systems like machine learning algorithms. ML is employed as a tool for data
processing to extract features like color intensity and utilize these features to predict
the concentration of toxic metal ions directly in the field of sensing.
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