
Chapter 5
Topology and Geometry of 3-Band
Models

Ching Hua Lee and Chien Hao Tan

Abstract Berry curvature is a property ofN-band models which plays an analogous
role of the magnetic field. The Majorana stellar representation (MSR) is a method
of decomposing N-band states into multiple 2-band states, which paves way for a
more intuitive geometric understanding of N-band models. We utilise the MSR to
obtain a new formula for the Berry curvature of 3-band models in terms of individual
contributions from each star and cross terms involving both stars, which could be
insightful for investigating Berry curvature uniformity and topological behaviour of
stars. We applied the MSR method to a model with uniform Berry curvature and
investigated the cancellation of the divergences among three out of four of the terms
to yield an overall non-divergent Berry curvature. In summary, the MSR approach
aids the discovery of materials with uniform Berry curvature and is a powerful tool
in the study of fractional Chern insulators (FCI).

5.1 Introduction

The study of topology in physics emerged in the late 1980s and has been an active
field of study in recent literature. Historically, the concept of topological order was
required to explain the chiral spin state in high-temperature superconductivity after
it was discovered that Landau’s spontaneous symmetry breaking was unable to do
so. And more recently, the 2016 Nobel Prize has been awarded to David J. Thou-
less, J. Michael Kosterlitz and F. Duncan M. Haldane for “theoretical discoveries of
topological phase transitions and topological phases of matter” [1].

Researchers study topological physics for their robustness to environmental noise
and impurities. For instance, topological insulators, which we study in this paper,
have potential applications for quantum computing. Imagine a thin film of electrons
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Fig. 5.1 When a thin film of electrons is exposed to an external magnetic field, electrons in the
middle will be in bound orbits, resulting in a current (red). While electrons at the edges will scatter
off the edge while orbiting, resulting in an edge current (blue) that is robust to material impurities

Fig. 5.2 An illustration of the Kagome lattice being converted into an 3-band model. As the lattice
possesses translational symmetry, Bloch’s theorem can be used to transform the real space tight-
binding model into momentum space. The resultant 3-by-3 matrix is then diagonalised to obtain
eigensolutions

in a strong magnetic field (refer to Fig. 5.1). The electrons in the middle (bulk) will
be confined to circular orbits, but the electrons at the side will scatter off the edge and
cause a current to flow around the edge of the material. The material’s conductivity
at the edge is not affected by small changes in the material, like impurities or imper-
fections and is therefore said to be protected by topology. In fact, this topologically
protected edge conductivity is so robust that it is used to measure the fine structure
constant.

5.1.1 Research Objectives

This paper investigates topological behaviour of 3-band models with the use of
Majorana stellar representation (MSR). An N-band model is a theoretical model of
condensed matter physics systems. Examples of condensed matter physics systems
include graphene, superconductors, semiconductors, and generally solids with some
crystalline or lattice structure. The value of N depends on the number of orbitals
and sublattice sites one wishes to account for. Condensed matter systems, which
often involve transition metals, typically involve many orbitals. Hence, the greater
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the value of N, the higher the degree of accuracy of the model, although this comes
at the cost of increased complexity. These condensed matter systems can effectively
be simplified to anN byN (hermitian) matrix by transforming into momentum space
using the method of Bloch waves (refer to Fig. 5.2) [2]. The properties of the system
(i.e. Berry curvature) are then investigated by calculating the eigenvectors (which
correspond to the quantum states) and eigenvalues (which correspond to the (eigen-
)energy of the states) of the square matrix. Unfortunately, each N-band eigenstate is
a complex N-dimensional vector which is difficult to visualise. The Majorana stellar
representation (MSR) approach promises to solve this problem.

In this paper, the goal of the MSR approach is to understand the flatness of the
Berry curvature of 3-band models. Berry curvature plays the analagous role of a
magnetic field in topological materials. A more uniform Berry curvature leads to
better behaviour, and therefore, models with a flat Berry curvature are sought after.
For 2-bandmodels, there is a lower-bound for the uniformity due to the fact that there
is no map from T

2 to S
2 that has a perfectly uniform Jacobian [3]. For higher-band

models, a perfectly uniformBerry curvature is permitted.However, perfectly uniform
models are unphysical as they require infinite-distance-hopping terms. Hence, the
trimming of hopping terms that are too far would result in a trade-off between Berry
curvature uniformity and experimental feasibility. An example of a relatively uniform
3-band model has been found in [3], and the Hamiltonian can be found in Appendix
1. We seek to understand the flatness of the Berry curvature of this model with the
MSR approach, in hope of discovering other uniform models.

As a small but important digression, in most literature, “flat models” refer to
models with a flat eigenenergy spectrum. A flat energy spectrum also has desirable
properties, but it is very different from a flat Berry curvature. To avoid confusion, this
paper refers to models with flat Berry curvature as uniform models from hereon. A
flat energy spectrum is mathematically easier to achieve than a flat Berry curvature,
as one can always add/subtract the identity matrix to the Hamiltonian to translate
the energy. On the other hand, a flat Berry curvature is much harder to achieve
mathematically, and in some cases, even impossible (such as in 2-band models).
Additionally, to further achieve flat energy or flat curvaturemodels in an experimental
setup is an even greater feat, as one is constrained by physical materials in addition
to mathematical difficulty. In this paper, we only focus on the mathematical aspects
of uniform models.

It is also worth mentioning that although the techniques developed in this paper
is most applicable to the study of topological insulators, the MSR approach could be
applied to other areas such as topolectrical circuits [4] and high-spin systems (Fig.
5.3).

5.1.2 Berry Phase, Berry Curvature, and Chern Number

To further elaborate on what is meant by “topological behaviour”, we will dis-
cuss the concept of Berry curvature in this paragraph. The concept of Berry phase
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Fig. 5.3 The process of calculating the “topological behaviour” of a model

was developed in 1984 [5]. When a quantum eigenstate |�〉 undergoes adiabatic
cyclic evolution in parameter space (example in the proceeding paragraph), in addi-
tion to the dynamical phase exp(− i

�

∫ t
0 dt

′E(t ′)), it acquires a geometrical phase
exp(− ∮

C 〈�| |d�〉), called the Berry phase, which can be experimentally observed
[5]. This also paves for the concept of a Berry connection and Berry curvature.
The Berry connection is defined as A = −i 〈�| |d�〉 and the Berry curvature
F = dA = −i 〈d�| ∧ |d�〉. Application of Stokes’ theorem yields an expression
of Berry phase in terms of a surface integral of Berry curvature, γ (C) = − ∮

S F ,
where C = ∂S. The Berry curvature, which can have several physical consequences
[6–8], is the focus of this paper.

5.1.2.1 Spin-1/2 Particle in Magnetic Field

We provide an example of an electron in an external magnetic field to aid in explain-
ing Berry phase, connection, and curvature. An electron is a spin-1/2 particle, and its
quantum behaviour is governed by the Hamiltonian H ∝ σ · B and the Schrodinger
equation H |�〉 = i� ∂

∂t |�〉. This Hamiltonian is the potential energy of the electron
in a magnetic field, and the quantum state of the electron is given by the eigenvectors
to the Hamiltonian. We choose to present only the positive energy eigenstate for this
paper as the method is easily applied to other eigenstates. Since the Hamiltonian is
dependent on the direction of the magnetic field B = (Bx , By, Bz) ∈ R

3, the eigen-
vectors also depend on the magnetic field. The magnetic field is the parameter space
for this example. A varying magnetic field would cause the eigenstate to vary, and
we ascribe an eigenstate to each corresponding point in parameter space. Calculating
the eigenstate for spin-1/2 particles is achieved by decomposing the 2× 2 hermitian
matrix H into a combination of pauli matrices.

H ∝ Bxσ1 + Byσ2 + Bzσ3 (5.1)

σ1 =
(
0 1
1 0

)

σ2 =
(
0 −i
i 0

)

σ3 =
(
1 0
0 −1

)

(5.2)
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Fig. 5.4 Visualisations of the Berry phase and curvature of 2-band models. The Berry phase is
acquired after a cyclic evolution in parameter space, and it can be thought of as (minus half) the
solid angle of the path. The Berry curvature can be regarded as the Berry phase of a infinitesimal
loop, and is hence (half) the differential solid angle (in spherical coordinates)

|�(B)〉 =
(
Bz + |B|
Bx + i By

)

(5.3)

After an adiabatic evolution along a cyclic pathC in parameter space, the eigenstate
returns to its original value, but it picks up a phase factor eiα . This phase factor consists
of two parts, the dynamical term exp(− i

�

∫ t
0 dt

′E(B(t ′))) and the geometrical term
exp(iγ (C)) = exp(− ∮

C 〈�| |∇B�〉 · dB). The geometrical term is only a function
of the cyclic path traced out by the eigenstate and does not involve the time taken for
cyclic evolution.

Moreover, we consider B = B0

⎛

⎝
sin θ cosφ

sin θ sin φ

cos θ

⎞

⎠ in polar coordinates, then the

eigenstate can be written as |�(B(θ, φ))〉 =
(

cos θ/2
eiφ sin θ/2

)

. The eigenstate |�〉 is

represented on the Bloch sphere as � =
⎛

⎝
sin θ cosφ

sin θ sin φ

cos θ

⎞

⎠ ∈ S2. As a mathematical

interlude, the Bloch sphere representation owes its existence to the fact that the
space of quantum states C

2/U (1) ∼ CP
1 ∼ S2 is isomorphic to the 2-sphere topo-

logically. The Bloch sphere representation is elegant because the Berry curvature of
2-band models can be interpreted as the differential solid angle on the Bloch sphere
F = Im 〈d�| ∧ |d�〉 = 1

2 sin θ dθ ∧ dφ. Therefore, the Berry phase of a cyclic evo-
lution of the magnetic field is interpreted as the solid angle traced out by the cyclic
path γ (C) = − 1

2	(C) (refer to Fig. 5.4).

5.1.2.2 N-Band Models

For condensed matter physics models, the parameter space is (kx , ky) ∈ T2 because
(crystal) momentum is 2π -periodic. The Berry curvature is F = Im 〈d�| ∧ |d�〉 =
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Fig. 5.5 The 2-band eigenstate is a map from the 2-torus to the 2-sphere. Maps from T
2 to S2 can

be characterised by a winding number called the Chern number

Im(〈∂x�| ∣∣∂y�
〉 − 〈

∂y�
∣
∣ |∂x�〉)dkx ∧ dky = Fxydkx ∧ dky . And the Chern number

of N-band models is defined as C = 1/2π
∫
BZ Fxyd2k. N-band condensed matter

physics models are analogous to spin-((N−1)/2) systems as the Hamiltonians of
both systems are of the same size. 2-band models, which describe physical systems
like polyacetylene (Su-Schrieffer-Heeger) [9], are analogous to spin-1/2 systems.
One simply replaces the magnetic field Bwith the analogous vector d(k). Therefore,
the calculations in the previous subsection on spin-1/2 particles carry over to 2-band
models. TheChern number of 2-bandmodels is thus quantised in integer values, since
the total solid angle swept out by the eigenstate on theBloch sphere is amultiple of 4π .
As we have seen, the Bloch sphere representation of 2-band (or spin-1/2) states offers
insights into its Berry curvature (refer to Fig. 5.5). The generalisation of the Bloch
sphere representation for higher-band models is the goal of this paper. Specifically,
we work on 3-band models where eigenstates live in CP

2 ∼ (S2 × S2)/S2.

5.2 The Majorana Stellar Representation for N-Band
Models

TheBloch sphere representation for the 2-band state is not immediately generalisable
to higher-band models. However, the Majorana stellar representation (MSR) has
potential to pave a geometrical intuition for higher-band models. The MSR has
already been used to understand the Berry phase of higher-spin systems [10, 11],
but the application of the MSR to Berry curvature has not been studied in-depth, and
is therefore the goal of this paper. The MSR allows one to decompose an N-band
state into (N−1) entangled 2-band states (refer to Fig. 5.6). The Berry curvature,
which we will derive later, will comprise of solid angles from the individual stars,
as well as correlation terms. The contribution that only involve single stars have a
simple geometrical interpretation, and therefore, the MSR has hope of allowing us
to explore the geometry of higher-band models in a more intuitive manner.
From [12], an N -band state

∣
∣�(N )

〉 = ∑N
m=1 �m |m〉 can be represented as N − 1
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Fig. 5.6 2-band states can be projected onto the Bloch sphere. By MSR, 3-band states can be
represented on 2 Bloch spheres as 2 entangled Majorana stars. The stars are given by roots to (5.4)
followed by a stereographic projection from the complex plane to 2-sphere

stars on the Bloch sphere, |ui 〉 =
(

cos θi/2
eiφi sin θi/2

)

, with θi , φi given by the roots xi =
eiφi tan θi

2 to the polynomial
∑N

k=1
(−1)k+1�k√
(N−k)!(k−1)! x

N−k = 0. Kindly refer to Appendix
2 for a more in-depth explanation.

For 3-band models, the 2 stars can be calculated by finding the roots to

�1√
2
x2 − �2x + �3√

2
= 0 (5.4)

where �i are the components to the 3-component eigenstate |�〉. The roots

x1,2 =
√
2�2 ±

√
2�2

2 − 4�1�3

2�1
(5.5)

can be used to find the angles of the stars |A〉 , |B〉 when represented on the Bloch
sphere, xi = tan θi

2 e
iφi , via stereographic projection from the complex plane to the

2-sphere (refer to Fig. 5.6). It is also important to note that due to the branch cuts of
the square root function, star |A〉 and star |B〉 interchange along paths in the Brillouin
zone. Kindly refer to Fig. 5.13 for a visual illustration. This exchange is later reflected
in the calculation of Chern number for the individual stars.

5.3 Analysis of Uniform 3-Band Model with MSR

In this section, we investigate the uniform model obtained in [3]. The Hamiltonian
can be found in Appendix 1.
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An eigenstate of a 3-band model |�〉 can be decomposed into 2 Majorana Stars
|A〉 , |B〉. TheBerry curvature of 3-bandmodels can be decomposed into 4 terms. The
derivation is found in Appendix 3. The terms are grouped in the following way so as
to allow for the most illuminating geometric interpretation. T1 and T2 have a simple
geometric interpretation. T1 and T2 are half the differential solid angle subtended by
stars A and B, respectively. However, a simple geometric interpretation for T3 and
T4 has not been found. When we calculate the Chern number for T1 and T2 for the
uniform model, we obtained 1.5 for both. If each star came from its own 2-band
model, this Chern number would be an integer. However, the fact that it is not an
integer is due to the mixing and entanglement of the 2 stars as mentioned earlier
(refer to Fig. 5.13) in Sect. 5.2.

Im 〈d�| ∧ |d�〉 = T1 + T2 + T3 + T4 (5.6)

T1 = Im 〈dA| ∧ |dA〉
T2 = Im 〈dB| ∧ |dB〉
T3 = 1

4

d(A × B) ∧ d(A − B)

N 2
2

T4 = 1

8

(A × B) · d(A − B) ∧ d(A · B)

N 4
2

We proceed to plot the T1, T2, T3, T4 terms separately as shown in Figs. 5.7, 5.8,
5.9 and 5.10. Figures 5.11 and 5.12 verify the correctness of the formula.

5.3.1 Cancellation of Divergences in the Terms

The total Berry curvature is relatively flat as we are calculating the Berry curvature
for the uniform model. However, the individual terms T1, T2, T3 are not flat as there
are divergences (points where the value goes go infinity). It is observed that there
are four points of divergence for T1, T2, T3 each. These four divergences are sym-
metric about kx = π and ky = π , and the location is numerically calculated to be
around kx = ky = 0.4219322π , where f (kx , ky) := 2�2

2 − 4�1�3 = 0. Since the
total Berry curvature does not have any divergences, the first 3 terms’ (T1, T2, T3)
divergences must cancel to result in a non-divergent Berry curvature. We investigate
this cancellation in the next paragraph.

To investigate the divergences near kx = ky = 0.42π (which we call k0 from
hereon for convenience) for T1, T2, T3, we proceed to plot �1(kx , ky),�2(kx , ky),
f (kx , ky) from kx = ky = 0.41π to kx = ky = 0.43π . From the graphs (Figs. 5.14a,
5.15 and 5.16b), we observe that�1 and�2 are relatively smooth, whereas f (kx , ky)
can be approximated as f ∝ (kx − k0) + i(ky − k0).
Plugging this approximation for f into T1, T2 and T3 explains the existence as well
as the cancellation of divergences near k0 = 0.42π . We shall begin this process.
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Fig. 5.7 Plot of T1

Fig. 5.8 Plot of T2

Firstly, by stereographic projection of the Bloch sphere onto the complex plane,
we obtain T1, T2 in terms of α1 = Re(z1), α2 = Im(z1), β1 = Re(z2), β2 = Im(z2)
[refer to Eqs. (5.3.1) and (5.3.1)]. Then, we look at the T3 term, decomposing Eq.
(5.9) into 6 pairwise (α1, α2, β1, β2, 4 choose 2) wedge products (refer to Eq. (5.44)
in Appendix 4.

T1 = Im 〈dA| ∧ |dA 〉
= 2

(1 + α2
1 + α2

2)
2
dα1 ∧ dα2

(5.7)
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Fig. 5.9 Plot of T3

Fig. 5.10 Plot of T4

T2 = Im 〈dB| ∧ |dB 〉
= 2

(1 + β2
1 + β2

2 )
2
dβ1 ∧ dβ2

(5.8)

T3 = 1

4N 2
2

d(A × B) ∧ d(A − B) (5.9)

where N 2
2 = 3

2
+ 1

2
A · B (5.10)
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Fig. 5.11 Plot of T1 + T2 + T3 + T4

Fig. 5.12 Plot of Im 〈d�| ∧ |d�〉
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Table 5.1 Decomposition of T1, T2, T3 into wedge products. � := 1 + α2
1 + α2

2

Term/
coefficient of

dα1 ∧ dα2 dα1 ∧ dβ1 dα1 ∧ dβ2 dα2 ∧ dβ1 dα2 ∧ dβ2 dβ1 ∧ dβ2

T1
2

�2
0 0 0 0 0

T2 0 0 0 0 0 2
�2

T3 − 1
�2

0 1
�2

− 1
�2

0 − 1
�2

Evaluating the partial derivatives found in Eq. (5.44) is a straightforward but
tedious process, which can be achieved with the help of symbolic Mathematica.
Moreover, because we are focussed on k0 = 0.42π where f = 0 and therefore
z1 = z2 (α1 = β1, α2 = β2), the massive expressions turn out to simplify greatly.
We present the simplification of ∂α1(A × B)∂α2(A − B) − ∂α2(A × B)∂α1(A − B)

in detail [refer to Eqs. (5.45)–(5.52)] of Appendix 5 but provide only the result
for the other 5 terms (refer to Table5.1). We look at the divergent terms of
dα1 ∧ dα2, dα1 ∧ dβ2, dα2 ∧ dβ2, dβ1 ∧ dβ2 (because they have non-zero coeffi-
cient in T1, T2, T3). In order to evaluate the wedge products like dα1 ∧ dα2, we make
use of the approximation for f near k0.

f (kx , ky) ≈ 1.85e−i0.7π ((kx − k0) + i(ky − k0)) (5.11)

Evaluating partial derivatives and neglecting non-divergent terms (Appendix 6),
we observe there are two types of terms responsible for divergence at k0: (a) The
1/

√
(kx − k0)2 + (ky − k0)2 term and (b) the 1/

√
(kx − k0) − i(ky − k0) term. Both

need to have coefficients (from T1, T2, T3) that cancel in order for the Berry curvature
to be non-divergent.

D1 := 1.85

16�2
1

1
√

(kx − k0)2 + (ky − k0)2
(5.12)

D2 := Re

[√
1.85e+i0.7π

√
2�1

∂z

(
�2

�1

)
1

√
(kx − k0) − i(ky − k0)

]

(5.13)

D3 := Re

[√
1.85e+i0.7π

√
2�1

∂z

(
�̄2

�1

)
1

√
(kx − k0) − i(ky − k0)

]

(5.14)

From Table 5.2, the cancellation of divergent terms is observed. This concludes
our discussion.
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Table 5.2 Coefficients of divergent terms D1, D2, D3 in T1, T2, T3.We observe that all coefficients
cancel when T1, T2, T3 is added up. � := 1 + α2

1 + α2
2

D1 D2 D3

T1
dα1 ∧ dα2

2
�2

2
�2

T2
dβ1 ∧ dβ2

2
�2 − 2

�2

T3 dα1 ∧ dα2 − 1
�2 − 1

�2

dα1 ∧ dβ2 − 1
�2 − 1

�2

dα2 ∧ dβ1 − 1
�2

1
�2

dβ1 ∧ dβ2 − 1
�2

1
�2

T1 + T2 + T3 0 0 0

5.4 Conclusion

In this paper, we discussed concept of Berry curvature and explored a model with
relatively uniformBerry curvature from [3] using theMajorana stellar representation
(MSR). We observed and explained analytically the cancellations of divergences in
the Berry curvatures T1–T3. Overall, the key result of this paper is the development
of the MSR method (Eq.5.6) and the cancellation of divergences when the MSR
method is applied to the uniform model in [3].

5.5 Further Work

As the MSR method for Berry curvature has not been explored extensively, there is
still plenty of room for further research.We are currently generalising the divergences
analysis to any model and investigating the switching of the stars. The discriminant
function f (kx , ky) is also promising, and exceptional points (points where f = 0)
hint at the possibility of Riemann surfaces and topological characterisation.
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Appendix 1: Hamiltonian of Uniform 3-Band Model

H =
⎛

⎜
⎝

51
76 + 2 cos kx

15 + 2 cos ky
15 − 2 cos kx cos ky

45

− 3 sin kx
38 + 4 cos ky sin kx

31 +
(
− 3 sin ky

38 + 4 cos kx sin ky
31

)
i

− 3 cos kx
25 + 3 cos ky

25 − sin kx sin ky
7 i

− 3 sin kx
38 + 4 cos ky sin kx

31 +
(
3 sin ky
38 − 4 cos kx sin ky

31

)
i

63
95 − 4 cos kx

41 − 4 cos ky
41 − 2 cos kx cos ky

17

− 5 sin kx
33 − cos ky sin kx

15 +
(
− 5 sin ky

33 − cos kx sin ky
15

)
i

− 3 cos kx
25 + 3 cos ky

25 + sin kx sin ky
7 i

− 5 sin kx
33 − cos ky sin kx

15 +
(
5 sin ky
33 + cos kx sin ky

15

)
i

2
3 − cos kx

28 − cos ky
28 + 4 cos kx cos ky

25

⎞

⎟
⎠

Appendix 2: Derivation of the Majorana Stellar
Representation (MSR)

2.1 Schwinger Boson Representation

Webegin by first discussing the Schwinger Boson Representation for spin-J quantum
systems [13]. A spin-J Hilbert space is characterised by a basis and spin operators
that act on the basis states. Namely, the (2J + 1)-dimensional space has basis states
given by |J,m〉 ,m ∈ {−J,−J + 1, ..., J − 1, J }. Spin operators S+, S−, S2, Sz act
on these basis states in the following way.

S+ |J,m〉 = √
J (J + 1) − m(m + 1) |J,m + 1〉 (5.15)

S− |J,m〉 = √
J (J + 1) − m(m − 1) |J,m − 1〉 (5.16)

S2 |J,m〉 = J (J + 1) |J,m〉 (5.17)

Sz |J,m〉 = m |J,m〉 (5.18)

The spin operators also obey the su(2) Lie algebra.

Sx : = 1

2
(S+ + S−) (5.19)

Sy : = 1

2i
(S+ − S−) (5.20)

[Si , Sj ] = iεi jk Sk (5.21)
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It turns out, we can define two bosonic modes and use a clever definition of the
spin operators to achieve the same commutation relations and basis states. If we
define [a, a†] = [b, b†] = 1 (all other commutation relations vanish), and

S+ = a†b (5.22)

S− = b†a (5.23)

Sz = 1

2
(a†a − b†b) (5.24)

then we can obtain the commutation relations

[S+, S−] = 2Sz (5.25)

[Sz, S+] = +S+ (5.26)

[Sz, S−] = −S− (5.27)

which is exactly Eq. (5.21) after some manipulation.

Additionally, if we define the basis states as

|J,m〉 = (a†)J+m

√
(J + m)!

(b†)J−m

√
(J − m)! |	〉 (5.28)

then one can check that it satisfies the following Eqs. (5.15)–(5.18) even with the new
definitions (5.22)–(5.24). Equation (5.28) is the Schwinger Boson Representation for
spin-J states in terms of 2 bosonic modes.

2.2. Majorana Stellar Representation

TheMajorana Stellar Representation is simply a factorisation after converting a spin-
J system to its Schwinger Boson Representation [12]. Let a spin-J quantum state be
written in terms of the basis states |J,m〉 using Schwinger bosons.

|�〉 =
J∑

m=−J

Cm |J,m〉 (5.29)

=
J∑

m=−J

Cm(a†)J+m(b†)J−m

√
(J + m)!(J − m)! |	〉 (5.30)

We may factorise (5.30) in the following way (5.31). The 2J complex numbers
zi completely characterise the spin-J state. Moreover, when we stereographically
project the complex numbers zi onto the 2-sphere, we obtain 2J points in the Bloch
sphere, which we call the Majorana Stars.
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|�〉 = CJ√
(2J )!

2J∏

i=1

(a† + zib
†) |	〉 (5.31)

= CJ√
(2J )!

[

(a†)2J + (a†)2J−1b†
(

2J∑

i=1

zi

)

+(a†)2J−2(b†)2

⎛

⎝
∑

i< j

zi z j

⎞

⎠ + ... + (b†)2J
(

∏

i

zi

)⎤

⎦

(5.32)

Comparing coefficients of Eqs. (5.30) and (5.32).

m = J − 1: CJ−1√
(2J − 1)! = CJ√

(2J )!
∑

i

zi (5.33)

m = J − 2: CJ−2√
(2J − 2)!2! = CJ√

(2J )!
∑

i< j

zi z j (5.34)

m = J − 3: CJ−3√
(2J − 3)!3! = CJ√

(2J )!
∑

i< j<k

zi z j zk (5.35)

... (5.36)

m = −J : C−J√
(2J )! = CJ√

(2J )!
∏

i

zi (5.37)

Now, in order to find the values of zi , 1 ≤ i ≤ 2J that satisfy Eqs. (5.33)–(5.37),
we consider the polynomial equation with zi as roots,

0 =
2J∏

i=1

(x − zi ) (5.38)

= x2J − x2J−1

(
∑

i

zi

)

+ x2J−2

⎛

⎝
∑

i< j

zi z j

⎞

⎠

− x2J−3

⎛

⎝
∑

i< j<k

zi z j zk

⎞

⎠ + · · · + (−1)2J
(

∏

i

zi

) (5.39)

and substituting (5.33) to (5.37) into (5.39) yields

2J∑

k=0

(−1)kCJ−k x2J−k

√
(2J − k)!k! = 0 (5.40)
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Appendix 3: Derivation of Berry Curvature in Terms of
Majorana Stars (N = 3)

We denote the stars for N = 3 models by |A〉 and |B〉. Starting from the expression
from [10].

Im 〈�| |d�〉 = Im 〈A| |dA〉 + Im 〈B| |dB〉 + 1

4

(A × B) · d(A − B)

N 2
2

where N 2
2 = 1 + 〈A| |B〉 〈B| |A〉 = 3

2 + 1
2 (A · B). TofindF = Im 〈d�| ∧ |d�〉,we

take the exterior derivative of the Berry phase.

F = Im 〈d�| ∧ |d�〉 (5.41)

F = Im d 〈�| |d�〉 (5.42)

F = Im 〈dA| ∧ |dA〉 + Im 〈dB| ∧ |dB〉 (5.43)

+ 1

4

d(A × B) ∧ d(A − B)

N 2
2

+ 1

8

(A × B) · d(A − B) ∧ d(A · B)

N 4
2

Appendix 4: Decomposition of T3 into Wedge Products

T3 = 1

4N 2
2

d(A × B) ∧ d(A − B) (5.44)

= 1

4N 2
2

[∂α1(A × B)∂α2(A − B) − ∂α2(A × B)∂α1(A − B)]dα1 ∧ dα2

+ 1

4N 2
2

[∂α1(A × B)∂β1(A − B) − ∂β1(A × B)∂α1(A − B)]dα1 ∧ dβ1

+ 1

4N 2
2

[∂α1(A × B)∂β2(A − B) − ∂β2(A × B)∂α1(A − B)]dα1 ∧ dβ2

+ 1

4N 2
2

[∂α2(A × B)∂β1(A − B) − ∂β1(A × B)∂α2(A − B)]dα2 ∧ dβ1

+ 1

4N 2
2

[∂α2(A × B)∂β2(A − B) − ∂β2(A × B)∂α2(A − B)]dα2 ∧ dβ2

+ 1

4N 2
2

[∂β1(A × B)∂β2(A − B) − ∂β2(A × B)∂β1(A − B)]dβ1 ∧ dβ2
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Appendix 5: Simplification of Coefficient of dα1 ∧ dα2 at
(k0, k0)

∂α1 (A × B)∂α2 (A − B) − ∂α2 (A × B)∂α1 (A − B)

= −8(1 + 4α1β1 − β2
1 + 4α2β2 − β2

2 + α2
1(−1 + β2

1 + β2
2 ) + α2

2(−1 + β2
1 + β2

2 ))

((1 + α2
1 + α2

2)
3(1 + β2

1 + β2
2 ))

(5.45)

At kx = ky = k0, (5.46)

f (k0, k0) = 0 → z1 = z2(α1 = β1, α2 = β2), (5.47)

f = 0 → A = B → A · B = 1 → N 2
2 (k0, k0) = 3/2 + 1/2 = 2 (5.48)

Substituting (47 ) into (45), it simplifies to (5.49)

∂α1(A × B)∂α2(A − B) − ∂α2(A × B)∂α1(A − B) = − 8

(1 + α2
1 + α2

2)
2

(5.50)

Coefficient of dα1 ∧ dα2 = 1

4N 2
2

[∂α1(A × B)∂α2(A − B) − ∂α2(A × B)∂α1(A − B)]
(5.51)

= − 1

(1 + α2
1 + α2

2)
2

(5.52)

Appendix 6: Evaluation of Wedge Products

The 2 stars are given by complex roots (Eqs. 5.53 and 5.54). With the approxima-
tion of f near k0 (Eq. 5.11), we can obtain partial derivatives ∂x = ∂

∂kx
, ∂y = ∂

∂ky
of z1, z2, z̄1, z̄2. Then, by Eqs. (5.55)–(5.58), we obtain partial derivatives ∂x , ∂y of
α1 = Re(z1), α2 = Im(z1), β1 = Re(z2), β2 = Im(z2).
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z1 =
√
2�2 + √

f

2�1
(5.53)

z2 =
√
2�2 − √

f

2�1
(5.54)

α1 = 1

2
(z1 + z̄1) (5.55)

α2 = 1

2i
(z1 − z̄1) (5.56)

β1 = 1

2
(z2 + z̄2) (5.57)

β2 = 1

2i
(z2 − z̄2) (5.58)

Defining ∂z = 1
2 (∂x − i∂y) and ∂z̄ = 1

2 (∂x + i∂y), listed beloware thewedgeprod-
ucts which have non-zero coefficient (refer to Table5.1) in T1, T2, T3.

∂xα1∂yα2 − ∂yα1∂xα2 ≈ 1.85

16�2
1

1
√

(kx − k0)2 + (ky − k0)2

+ Re

[√
1.85e+i0.7π

√
2�1

∂z

(
�2

�1

)
1

√
(kx − k0) − i(ky − k0)

]

(5.59)

∂xα1∂yβ2 − ∂yα1∂xβ2 ≈ − 1.85

16�2
1

1
√

(kx − k0)2 + (ky − k0)2

− Re

[√
1.85e+i0.7π

√
2�1

∂z

(
�̄

2�1

)
1

√
(kx − k0) − i(ky − k0)

]

(5.60)

∂xα2∂yβ1 − ∂yα2∂xβ1 ≈ 1.85

16�2
1

1
√

(kx − k0)2 + (ky − k0)2

− Re

[√
1.85e+i0.7π

√
2�1

∂z

(
�̄2

�1

)
1

√
(kx − k0) − i(ky − k0)

]

(5.61)

∂xβ1∂yβ2 − ∂yβ1∂xβ2 ≈ 1.85

16�2
1

1
√

(kx − k0)2 + (ky − k0)2

− Re

[√
1.85e+i0.7π

√
2�1

∂z

(
�2

�1

)
1

√
(kx − k0) − i(ky − k0)

]

(5.62)
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Appendix 7: Additional Figures

See Figs. 5.13, 5.14, 5.15, and 5.16.

(a) Plot of θ(kx, ky)

(b) Plot of φ(kx, ky)

Fig. 5.13 Plot of θ and φ for both stars. The stars interchange positions as one traverses in the
parameter space T

2, and thus are said to be entangled
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Re(Ψ1) near k0

Fig. 5.14 Plot of �1 near k0

(a) Re(Ψ2) near k0

Fig. 5.15 Plot of �2 near k0
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(b) Im(Ψ2) near k0

Fig. 5.15 (continued)

(a) Arg(f) near k0

Fig. 5.16 Plot of f near k0
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(b) Abs(f) near k0

Fig. 5.16 (continued)
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