
Chapter 47
Self-supervised Learning with Deep
Neural Networks for Computer Vision

Tan Huan Xi Gregory, Neo Souw Chuan, and Shen Bingquan

Abstract Self-supervised learning has gained popularity in recent years due to a
need to avoid the expensive costs of large-scale data annotation. This field has
had huge developments in recent months, with the state-of-the-art self-supervised
learning methods achieving results that surpass their supervised counterparts on
the ImageNet dataset. In this study, we investigate and implement 2 forms of self-
supervised learning: Momentum Contrast (MoCo) and autoencoders, which are
contrastive and generative methods, respectively. Through several experiments, we
analyze the quality of the latent representations that are learnt by each method and
assess whether they allow for increased performance when labels are scarce. We also
propose a dual head network for self-supervised learning, combining elements from
both the above methods and study the effectiveness of such a method.

47.1 Introduction

Deep neural networks, specifically convolutional neural networks, have seen great
success in Computer Vision, with networks such as ResNet being able to classify
imageswith great accuracy. The current convention for training deep neural networks
is supervised learning, where the network is trained using a large amount of labeled
data, split into train, test and validation sets. However, a bottleneck is arising in
this process. Annotating and labeling image data remains a time consuming and
expensive process that is prone to human error. Furthermore, supervised networks
suffer from generalization errors and are prone to adversarial attacks. As such, self-
supervised learning is an increasingly popular field in machine learning, which is the
process of utilizing the large amounts of unlabeled data available to extract effective
representations from images. In recent months, notable successes in self-supervised
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representation learning with images include MoCo [1], SIMCLR [2], BYOL [3] and
SimSiam [4]. The latent representations learnt through self-supervised pre-training
can then be transferred into downstream tasks, such as Object Detection, Semantic
Segmentation and Image Classification. For example, a model trained using self-
supervised learning can allow for fewer labels to be used to achieve high classification
accuracy. This can be especially helpful in fields where labeled data is incredibly
limited, such as medical imaging or robotics. Our aim is to investigate and explore
various methods for self-supervised learning and propose our own method.

In this paper, we study 2 different methods of self-supervised learning: MoCo and
autoencoders. These 2 training methods vary greatly, as MoCo utilizes contrastive
learning approach and is a more recent, state-of-the-art method, whereas autoen-
coders are a more traditional form of self-supervised learning, which uses a gener-
ative approach. We also propose a dual head network, which adds an additional
decoder head to the query encoder of the MoCo model so as to produce a weighted
loss that combines the contrastive loss of MoCo with the reconstruction loss from
the autoencoders, to see if combining these two contrastive and generative would
result in a more robust model. We use ResNet18 as our backbone for the models and
train them on the CIFAR-10 dataset.

We then evaluate their performance on downstream image classification tasks to
analyze how strong the learnt representations are. We also study how this classifi-
cation accuracy scales with the amount of labels, so as to find out if self-supervised
learning is effective at reducing the amount of required labels for high classification
accuracy.

47.2 Related Work

A large body of research in Computer Vision is dedicated to training convolutional
neural networks without the use of labeled data. There have been many proposed
methods for self-supervised learning, which can be broadly split into two categories:
Pretext Tasks and Contrastive Learning.

47.2.1 Pretext Tasks

One of the most popular methods for self-supervised learning for Computer Vision
involve automatically creating “pseudo-labels” based on data alone and training the
deep neural networks on auxiliary tasks using these labels. Many pretext tasks have
been used for self-supervised learning. One example is autoencoders, which involves
the pretext task of reconstructing an image based on a latent representation, treating
the original image as the pseudo-label. Other works include colorization of grayscale
images [5] and predicting the rotation of an image [6]. Even though these methods
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have proven effective at learning image representations, the representations are far
from their supervised counterparts and are unable to achieve state-of-art performance.

47.2.2 Contrastive Learning

Recent developments in self-supervised learning mostly involve contrastive self-
supervised learning, focusing on the task of Instance Discrimination for training. In
short, Instance Discrimination task treats each image and its augmented version as its
own class. A contrastive loss, such as InfoNCE [7], is used tomaximize the similarity
between the different augmentations of the same image, while at the same time
minimize the similarity between the augmented images and entirely different images.
Very aggressive image augmentation has proven to be integral to the success of the
instance discrimination task.Manyworks have taken varying approaches to this task.
CPC [7] andCPCv2 [3] propose using patcheswithin an image as instances.Wu et al.
[8] uses a memory bank to store a large amount of negative instances, which MoCo
[1] expands upon by maintaining a queue of negative examples. SIMCLR [2] and
BYOL [3] draw negative instances from the same mini-batch as the positive sample,
requiring large batch sizes for successful representations to be learnt. SimSiam [4]
uses a Siamese architecture, proposing that doing so eliminates the need for the
negative examples used in SIMCLR [2] and the momentum encoder used in BYOL
[3] andMoCo [1]. Currently, contrastive self-supervised learningmethods have state-
of-the-art performance, with some methods even surpassing supervised methods on
the ImageNet dataset.

47.3 Methods

47.3.1 Dataset and Model

In this study, we used the CIFAR-10 dataset, which contains 50 000 32 × 32 images
consisting of 10 classes of different objects and animals. The dataset was chosen
due to its popularity and relatively small size in comparison to other commonly used
benchmark datasets such as ImageNet, which contains over 1 million images. This
smaller dataset size made it feasible for us to train our models, given that we lacked
access to powerful hardware for training. We also chose ResNet18 [9] as the main
encoder network to be trained using the self-supervised training method. We chose
this model as opposed to the more commonly used ResNet50 as its shallower depth
was sufficient for a relatively small dataset like CIFAR-10. The model architecture
was slightly changed to better suit the CIFAR-10 dataset, with the first MaxPooling
layer being removed.
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47.3.2 Experiment 1: Momentum Contrast

One of the state-of-the-art methods for the self-supervised learning that we have
chosen to study in detail is Momentum Contrast (MoCo) [1], a method that uses
contrastive learning. MoCo defines self-supervised contrastive learning as a dictio-
nary lookup problem, where encoders are trained to encode similar images into
embeddings that are similar to each other and dissimilar to the embeddings of
different images. MoCo trains a visual representation encoder by matching an
encoded query q to a dictionary of encoded keys using a contrastive loss [7]. The
dictionary is built as a queue, which is constantly updated by enqueuing the current
batch and dequeuing the oldest batch. The use of a dictionary decouples the number
of keys, K, from the batch size, allowing for a large number of keys without a
large batch size, which is memory-intensive. The keys are encoded by a slowly
progressing momentum encoder, which derives its weights from moving average of
the weights of the query encoder for consistency. Denoting the θk as the parameters
of the momentum encoder f k and θq as the parameters of the query encoder f q, θk is
updated by:

θk ← mθk + (1 − m)θq

where m is the momentum hyperparameter. It was found that a relatively large
momentum worked much better suggesting that a slowly progressing key encoder is
integral to the use of a dictionary (Figs. 47.1 and 47.2).

In the training procedure, the MoCo model randomly performs a series of
strong augmentations (Color Jitter, Gaussian Blur, Random Resized Crop, Random
Horizontal Flip, Random Grayscale) on the same image twice to produce two
different views of the same image, xq and xk , which are then fed into the query

Fig. 47.1 MoCo maintains a
dictionary of encoded keys
which serve as negative
samples for the contrastive
loss function
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Fig. 47.2 Augmentations used on CIFAR-10 images for MoCo

encoder f q and momentum encoder f k, respectively, to produce encoded query q
and its positive key k+.

A contrastive loss function known as InfoNCE [7] is then applied. The function
is defined as follows:

Lq = −log
exp(q · k+/τ)

�K
i=0exp(q · k/τ)

where τ is a temperature hyperparameter. The sum is over one positive sample and
K negative samples from the dictionary. This loss can be seen as the log loss of a
(K + 1)-way softmax-based classifier that tries to classify q as k+. Minimizing this
loss function helps the query encoder to learn to discriminate between the positive
and negative samples, thus allowing it to learn strong image representations in a self-
supervised manner. After training, the query encoder is kept as a feature extractor
for downstream tasks. We trained our MoCo model using ResNet18 [9] as the base
encoder, with K = 4096. The linear head was replaced with a projection MLP head
which contained a hidden layer with 512 neurons and a ReLU activation, a feature
from [2] that improved performance. A batch size of 256 was used and themodel was
trained for 800 epochs using SGD with momentum as the optimizer. The learning
rate was initially set at 0.03 and was divided by 10 at epoch 120 and epoch 160.



602 T. H. X. Gregory et al.

47.4 Results and Discussion

We evaluated the quality of the learnt representations by freezing the ResNet18
encoder and training a single fully-connected layer on top of it to classify the images.
Our linear classification protocol is as follows: the linear layer on top of the ResNet18
was trained for 100 epochs, using SGD optimizer with momentum 0.9. The learning
rate was set at 0.3 and divided by 10 at the 60th and 80th epoch. No image augmen-
tations were applied. As a comparison, a fully supervised ResNet18 was also trained
using basic augmentations (RandomResized Crop, Horizontal Flip). We also trained
a linear layer on top of a randomly initialized ResNet18. The optimizer, learning rate
and learning rate schedule were the same for all tests (Table 47.1).

The above results prove that MoCo is indeed a highly effective method for self-
supervised learning as it achieves a high linear classification accuracy, one that is
rather close to the accuracy of a fully supervised network. This is consistent with
the successful results that other contrastive self-supervised learning methods such as
SIMCLR and BYOL have achieved on the ImageNet dataset (Fig. 47.3).

The t-SNE plot of the output of from the final Average Pooling Layer of the model
shows clear clustering of the classes in the CIFAR-10 dataset, with the ship, truck,
airplane and automobile classes being the most linearly separable. This reaffirms that
a good representation has been learnt, allowing the encoder to properly discriminate
between images of each class.

47.4.1 Experiment 2: Autoencoder

Autoencoders are one of the earliest forms of self-supervised learning where the
image is compressed into a small latent space through an encoder before being
decompressed back into the image with a decoder. The loss is then taken by taking
the mean squared error of the reconstructed image and the original image. For self-
supervised learning, the more common approach is to use a denoising autoencoder
rather than a regular autoencoder, as shown in [6]. The input images are corrupted
with either noise or occlusion and the autoencoder is expected to restore the image
to its original form. The architecture of the denoising encoder is identical to that of a
basic autoencoder, with the only difference being that the input image is a corrupted
one.

Table 47.1 Results of linear
classifier for MoCo

Training method Train accuracy/% Test accuracy/%

MoCo 86.59 86.62

Fully supervised 91.61 93.08

Randomly initialized 36.21 ± 0.47 34.14 ± 0.95
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Fig. 47.3 t-SNE visualization of representations learnt by MoCo

We implemented our autoencoders using ResNet18 [9] as the base encoder to
allow for a consistent comparison withMoCo. For the decoder portion of the autoen-
coder, we simply reversed the layers of the regular ResNet18, with the addition of
up sampling layers, which used interpolation to resize the compressed latent repre-
sentation back to the size of the original image. For a more in-depth study, we tested
3 variations of autoencoders: a basic autoencoder, a denoising autoencoder and a
denoising autoencoder with strong augmentations. The first denoising autoencoder
applied pixel-level Gaussian noise to then images (with a standard deviation of 0.15).
We only applied gaussian noise as opposed to other works which cut out portions of
the image, as the low resolution of CIFAR-10 would render such image corruption
ineffective. The second denoising autoencoder applied the same strong augmentation
that was used for our MoCo model (shown in Fig. 47.2). Each autoencoder model
was trained for 200 epochs with Adam optimizer with an initial learning rate of
0.001, which was divided by 10 at the 80 and 160 epochs.

47.5 Results and Discussion

We evaluated the effectiveness of autoencoders for self-supervised representation
learning by applying the same linear classification method that we used for MoCo.
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After training, the decoder portion of the autoencoder was discarded and the encoder
was frozen. A linear layer was then trained on top of these frozen features, using the
same hyperparameters as the linear classification for MoCo (Table 47.2).

From the results above, autoencoders prove to be a less effective method for self-
supervised learning, with classification accuracies significantly lower than MoCo.
However, the linear classification accuracy of all 3 autoencoder methods do still
show a large improvement in comparison to the randomly initialized network, indi-
cating that image representations have indeed been learnt by the encoder. The results
also indicate that the quality of the learnt representations tend to increase with the
amount of augmentation added to the image, even if the increased augmentations
harm performance on the pretext task, as shown below. The increase from the basic
autoencoder to the denoising autoencoder is relatively small, whereas the increase
from the denoising autoencoder to the denoising autoencoder with strong augmen-
tation is quite large. This indicates the importance of strong image augmentation in
self-supervised learning and shows that it is incredibly helpful not only for contrastive
methods, but also for generative ones (Figs. 47.4, 47.5 and 47.6).

Even though the performance of the autoencoder with the strongest augmentation
on the reconstruction task was the poorest, the learnt representations proved to be
the strongest, showing that the performance on the pretext task and the performance
on downstream tasks can be completely unrelated.

Table 47.2 Results of linear classifier for autoencoders

Training method Train accuracy/% Test accuracy/%

Regular autoencoder 54.79 54.83

Denoising autoencoder 58.50 58.62

Autoencoder with augmentation 67.71 67.73

Fully supervised 91.61 93.08

Randomly initialized 36.21 ± 0.47 34.14 ± 0.95

Fig. 47.4 Original images (top) and reconstructed images (bottom) for basic autoencoder
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Fig. 47.5 Original images (top), noisy images (middle) and reconstructed images for denoising
autoencoder

Fig. 47.6 Original images (top), augmented images (middle) and reconstructed images for
autoencoder with augmentation

47.5.1 Experiment 3: Dual Head Network

After studying and implementing the above methods of self-supervised learning, we
wanted to explore the possibility of combining multiple methods (pretext task and
contrastive) to see if it would result in better performance. To study this, we created
a dual head network, which feeds the encoded query from the query encoder of the
MoCo network into a decoder to produce an MSE loss. This loss is then combined
with the contrastive loss of the original MoCo network via the following equation:

L = αLcontrastive + (1 − α)LMSE

where α is the hyperparameter adjusting the weightage of each individual loss
function (Fig. 47.7).

Due to the inclusion of the regressive MSE loss in the loss function, the learning
rate had to be lowered from 0.03 to 0.003 to prevent the loss from increasing expo-
nentially. We trained the model with SGD optimizer with momentum 0.9 for 800
epochs, dividing the learning rate by 10 at the 160th, 240th and 320th epoch.
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Fig. 47.7 Diagram
explaining the structure of
the dual head network

47.6 Results and Discussion

The results above show that as alpha values increase and the influence of the
contrastive loss increases, the accuracy increases, then stagnates after alpha = 0.7.
This is contradictory towhat we expected as we hoped that the addition of the autoen-
coder would increase the accuracy since new latent features are detected allowing
for better classification. However, the results show otherwise, and we hypothesize
that this is due to the addition of the two loss functions, which results in the gradient
descent being in two not necessarily similar directions. Concatenating the outputs
of the alpha = 1.0 and alpha = 0.0 and classifying the combined features yielded
an accuracy of 73.6%, which was very close to the accuracy of the alpha = 1.0
network, suggesting that the features learnt by the autoencoder and MoCo sections
ended up learning were similar. The 10 × lower learning rate used could also be a
factor contributing to the dual head network being less effective at learning image
representations than a pure MoCo. The lower learning rate had to be used to prevent
the regressive MSE Loss from exploding, but may have caused the model to get
stuck in local minima and become unable to effectively minimize the loss function.
Possible improvements to this dual head network include having separate weights for
the two loss functions, to give the MSE Loss a smaller weightage in order to prevent
it from exploding even with a greater learning rate. Further tuning of the learning
rate and momentum hyperparameters and use of other optimizers such ADAM and
AdaGrad could also help to avoid local minima (Fig. 47.8).
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Fig. 47.8 Graph of test
accuracy against alpha value
for dual head network

47.6.1 Experiment 4: Varying Amounts of Labels

After implementing various methods of self-supervised learning, we wanted to
analyze the effectiveness of the trained encoders on one of the key goals of self-
supervised representation learning: reducing the reliance on large amounts of labeled
data. We ran tests on 4 different label benchmarks: 1000, 2000, 4000 and 10,000
labels. We ensured that an equal number of labeled images from each of the 10
classes. We chose to run this test with our MoCo network, the autoencoder with
augmentation, as well as the dual head network with an alpha value of 0.5, which
meant an equal representation of both loss functions.We once again applied our eval-
uation protocol that was used for the linear classification with all the labels, training
a single fully-connected layer on top of the frozen encoder. Since the labeled images
were chosen at random, we ran the test 5 times, each with a different random seed.
This was benchmarked against a supervised ResNet18, which was trained with the
basic augmentations of Horizontal Flip and Random Resized Crop.

47.7 Results and Discussion

As the above results show, the accuracy of the self-supervised methods is much
greater when the amount of available data is sparse. With 1000 labels, the accuracy
of the encoder trained with MoCo is almost double that of the supervised method.
Even the autoencoder achieves greater accuracy at this label benchmark. This clearly
shows that self-supervised learning can lead to far superior results with limited data.
The results also prove that the accuracy of the supervised method greatly increases
with more labeled data, whereas the accuracy of the self-supervised methods only
increase slightly. It is important to note that the main reason for this trend is that only
the linear head of the self-supervised encoders was fine-tuned to the labels, with
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Table 47.3 Results for linear classification using varying amounts of labeled data

Model 10 k labels 4 k labels 2 k labels 1 k labels

MoCo 81.80 ± 0.11 80.64 ± 0.21 79.78 ± 0.28 78.87 ± 0.19

Autoencoder with augmentation 62.64 ± 0.46 60.73 ± 0.46 58.42 ± 0.54 56.22 ± 0.80

Fully supervised 83.10 ± 0.11 74.12 ± 0.59 62.96 ± 1.32 49.45 ± 0.75

Dual head (alpha = 0.5) 67.00 ± 0.21 64.56 ± 0.17 62.42 ± 0.26 59.57 ± 0.50

Fig. 47.9 Graph of
classification accuracy
against amount of labeled
images, including all
accuracy with all 50 k labels

the rest of the network remaining frozen. This is also the reason for the accuracy
with all the labels being greater with the supervised method. We surmise that the
classification accuracy would be even greater if the entire model was unfrozen and
allowed to be fine-tuned on the labels, rather than only the final layer, as such results
have been shownwith other self-supervised trainingmethods on the ImageNet dataset
[7]. Using the pre-trained self-supervised weights as an initialization and training the
entire model would likely surpass the supervised baseline by a significant margin at
all label benchmarks (Table 47.3 and Fig. 47.9).

47.8 Conclusion

In this paper, we implemented MoCo and 3 variations of autoencoders for
self-supervised representation learning. We verify that contrastive self-supervised
learning is highly effective for learning deep image representations, with perfor-
mance on image classification coming close to the supervised benchmark. Our study
also shows that contrastive self-supervised learning is also effective with lower reso-
lution images (32 × 32 images in CIFAR-10, compared to 224 × 224 images in
the more commonly used ImageNet) and with shallower models (ResNet18 rather
than the standard ResNet50). We also proposed a method for integrating contrastive
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methods with generative methods, through adding a secondary head. Although Dual
Head networks do not provide a promising result, we believe that it is due to the
combination of Autoencoder and MoCo, which results in similar latent representa-
tions thus preventing it from being able to achieve higher accuracy. Due to similar
representations being learnt despite the networks using two different methods for
self-supervised learning, we also believe that there is a need for models to focus on
smaller features as well.

47.9 Future Work

Even though our dual head network using a decoder head did not help performance,
we believe that more research can be done in combining generative and contrastive
methods for self-supervised learning, as well as training the encoder to recognize
alternative representations as well. The decoder could be replaced with other pretext
tasks, such as a self-supervised CutMix [10] which criteria is how accurate the
encoder can recognize the replaced section of the image allowing it to learn a diversity
of representations.
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