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Abstract The COVID-19 pandemic has caused large regions to be locked down
for extended periods, severely impacting global economies and straining healthcare
systems. Such pandemics require swift and appropriate responses to slow the rate
of infections and reduce stress on healthcare systems. Hence, there is an urgent
need to analyse government responses to combat future epidemics more efficiently.
In this project, we study non-pharmaceutical interventions (NPIs) in particular: we
adapt Imperial College’s COVID-19 model (Flaxman et al. in Report 13: estimating
the number of infections and the impact of non-pharmaceutical interventions on
COVID-19 in 11 European countries (2020), [1]; Estimating the effects of non-
pharmaceutical interventions on COVID-19 in Europe (2020), [2]), by challenging
their assumption that the effectiveness of NPIs are shared across all 14 European
countries. We introduce two new semi-mechanistic Bayesian hierarchical models to
investigate this problem fromdifferent perspectives.While this further elevatesmodel
complexity, we can now compare NPIs’ effectiveness across countries. Additionally,
we have fine-tuned intervention input quality by introducing more interventions
and modifying the model to account for interventions only affecting a fraction of
a country. Based on the analysis of government responses in specific countries,
we conclude that governments should respond proactively instead of reactively to
emerging pandemics and implement strict restrictions especially during the early
stages. This is so that infections start slowing down, and NPIs will not need to be
implemented for extended times.
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3.1 Introduction

A. COVID-19

On 31 December 2019, a cluster of pneumonia cases in Wuhan, China, marked the
beginning of the COVID-19 pandemic. As of 30 November 2020, there have been
63,087,137 infections, with over 1,465,368 deaths reported worldwide [3]. Several
European countries, in particular, experienced large epidemics in the past fewmonths,
with daily cases increasing significantly day by day. The situation in these European
countries has highlighted the severity of the COVID-19 pandemic and its impact on
national health systems, the country’s economy and the daily lives of its people.

The last time the world experienced a pandemic of comparable scale was the 1918
H1N1 influenza pandemic. With the help of multiple NPIs, many countries eventu-
ally managed to keep the virus under control. Measures adopted included closing
schools, churches, bars and other social venues. Cities which implemented NPIs
early in the epidemic were largely successful in reducing infections and mortality
rates. However, an increase in cases was also observed after measures were lifted,
indicating transmission resurfaced. While understanding of infectious diseases and
their prevention has changed since 1918, most countries across the globe face a
similar challenge today with COVID-19.

B. Non-Pharmaceutical Interventions

In response, multiple countries have implemented, or are implementing various
NPIs to flatten the curve, maintain their healthcare systems and treat as many as
possible [4]. These NPIs follow the fundamental strategy of suppressing this infec-
tious disease, with the main aim of reducing the reproduction number (average
number of secondary cases each case generates, or rate of transmission) Rt to below
1, hence reducing transmission rates and case numbers to low levels. This reduces
stress on the nation’s healthcare systems, resulting in lower mortality rates.

However, there remain limitations to estimating reproduction numbers for SARS-
CoV-2 based on case data. Due to high proportion of undetected and asymptomatic
cases, real-world infection numbers are largely unreliable. Additionally, regular
changes in testing policies produce huge spikes in daily cases and, at times, nega-
tive reported cases. Hence, we studied an alternative way to estimate the course of
the epidemic—using observed deaths to model infections [5, 6]. Imperial College’s
model does so, while accounting for NPIs implemented, resulting in a time-varying
transmission rate. This is much more realistic than the constant transmission rate
most models assume.

In this project, we adapt Imperial College’s model [1, 2] to allow comparison
of NPIs’ effectiveness across countries. We introduce two new semi-mechanistic
Bayesian hierarchical models to investigate this problem from different perspectives.
Additionally, we have fine-tuned intervention input quality by introducing more
interventions and modifying the model to account for interventions only affecting a
fraction of a country.
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C. Motivation

The main aim of our study is to gain more insights into individual countries, where
the original model [1, 2] did not inform us about individual intervention effectiveness
for each country. We would like to compare multiple countries and conclude which
interventions were effective in which countries—and for what reasons, as well as
comparing the overall effectiveness of all interventions among different countries.
This would give more insight into how to better manage future pandemics, or how
to improve management of COVID-19 for the near future before vaccines become
widely available.

(Our analysis focuses on modelling the infection and death rate. We do not study
the economic impact of the NPIs.)

3.2 Imperial College’s Original Model

The summary of Imperial College’s model is presented in the form of a flow chart, as
shown in Fig. 3.1. In the original model, Bayesian inference is used to fit modelled
deaths to observed deaths of every country. This is informed by several prior distribu-
tions, “Symptoms to Death Distribution” and “Infection to Symptoms Distribution”,
both of which accounts for the time lag between infection and death, as well as
“Infection Fatality Ratio”. The daily infections are informed by the time-varying
reproduction number Rt,m and the Serial Interval Distribution. The model calculates
backwards from observed deaths to modelled deaths, which is then used to calculate
modelled infections and estimate Rt,m . In Imperial College’s model, Rt,m is assumed
to obey Eq. (3.1).

Rt,m = R0,m exp

(
−

6∑
k=1

αk Ik,m,t

)
(3.1)

Fig. 3.1 Summary of Imperial College’s model
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The effectiveness of the kth NPI, αk , is then fit to best follow the predicted real-
world Rt,m .

A. Limitations

As Imperial College published their report in March 2020, there was little real-world
infection and fatality data available. As such, they decided to treat all countries as
a single data set, assuming αk is similar across all counties. While this decreases
idiosyncrasy and variance, several months later, the assumption that countries have
similar NPI effectiveness is no longer true, with countries such as Belgium having
much larger death rates than their European counterparts Norway.

3.3 Methodology

Ourmodelwaswrittenwith the probabilistic programming language Stan [7], and ran
with Stan’s Hamiltonian Monte Carlo sampler, on top of R programming language.
Both models ran with six chains and 600 iterations, 300 of which is for warm-up.
JavaScript was used to extract intervention data, while Python was used to process
intervention data to input into the models.1

A. Country and Data set

We challenge Imperial College’s main assumption by introducing twomodels, A and
B, which treat each of the 14 European countries as distinct data sets, different from
the original model’s unique pooling of information from multiple countries at once.

With more real-world data, we need not worry about increased idiosyncrasy and
variance.

The added advantage is increased flexibility. Due to Imperial College’s key
assumption, countries had to be carefully chosen to have similar circumstances,
resulting in Imperial College choosing all 14 countries from Europe. However, our
models are unconstrained by this and can model any country with enough reported
deaths.

B. Model A

ModelA assumesNPI’s effectiveness varieswith country and considers the effective-
ness of the seven NPIs for each country, denoted by variable αk,m , representing the
effectiveness of intervention k in country m. The reproduction number for country
m on day t is given in Eq. (3.2), where Ik,m,t represents active interventions on day
t for each country (Fig. 3.2).

Rt,m = R0,m exp

(
−

7∑
k=1

αk,m · Ik,m,t

)
(3.2)

1 Infection, fatality and intervention data used can be found here: https://github.com/EthanKuai/
Investigating-the-Effectiveness-of-NPIs-on-COVID19/blob/main/Sources.md.

https://github.com/EthanKuai/Investigating-the-Effectiveness-of-NPIs-on-COVID19/blob/main/Sources.md://github.com/EthanKuai/Investigating-the-Effectiveness-of-NPIs-on-COVID19/blob/main/Sources.md
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Fig. 3.2 Summary of model A

However, if a country implements multiple interventions in the same time period,
theywould be statistically indistinguishable fromone another, increasing the variance
ofα of those interventions. For example, Austria and France implemented both social
distancing and self-isolation from 16 March, which thus would be indistinguishable
from one another. Additionally, with more variables to fit, more epochs are required
for model convergence to occur.

C. Model B

Model A has multiple limitations involving increased variance. Hence, we counter
these limitations with model B, which considers the overall impact of all sevenNPIs
for each country, denoted by variable αm , representing the overall effectiveness of
all interventions in country m. The reproduction number is given in Eq. (3.3). This
allows us to directly compare two countries, even if they execute entirely different
interventions, while controlling variance (Fig. 3.3).

Fig. 3.3 Summary of model B
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Fig. 3.4 New interventions “mask wearing” and “border closure”

Rt,m = R0,m exp

(
−αm ·

7∑
k=1

Ik,m,t

)
(3.3)

However, Model B assumes all interventions of a country have similar effective-
ness, which would increase variance of αm and decrease convergence rate. Addition-
ally, from the results of this model, one would be unable to conclude the effective-
ness of individual interventions of a country and cannot compare between different
interventions.

D. Interventions

Intervention data was taken until 2 December 2020. During this period, the countries
have implemented more NPIs, including “Mask Wearing” and “Border Closure”.
We have updated the list of interventions to include them, while removing “First
Intervention”, whichwould have little effect in the long run. The comparison between
the interventions considered in the original and updated model is shown in Fig. 3.4.

In the original model, all countries are treated as a single data set, thus there is
multiple “First Intervention” for the model to fit its effectiveness. However, as both
models A and B treat each country as distinct data sets, “First Intervention” only
appears once in each data set, resulting in high variance of α of “First Intervention”.

The original model assumed interventions affected the entire country and would
never end once started. Asmany European countries only implemented interventions
in highly affected regions of the country, we have collected intervention data down
to individual states and towns. A Python program was used to process such data,
producing a sequence of numbers between 0 and 1 (inclusive) for every intervention
in every country, each representing how active a country’s intervention is on a given
date (Ik,m,t ). 0 represents an inactive intervention, while 0.5 and 1 represent an
intervention affecting half the population and the whole country, respectively. This
allows interventions fed into the model to better depict the real world.

E. Serial Interval

Serial interval models the time between successive infections in the same chain
of transmission. Serial interval data from Imperial College’s model is taken from
multiple studies [8, 9] based on real-world contact tracing data. However, to
extend it to longer durations, we perform gamma regression, getting our new
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Fig. 3.5 Plot of serial interval, gamma(1.8365, 0.4071)

serial interval to be Gamma(k = 1.8365, θ = 0.4071), quantised to each day t with:
gt = ∫ t+0.5

τ=t−0.5
τ k−1e−τ/θ

�(k)θ k dτ . The updated serial interval plot is shown in Fig. 3.5.

3.4 Results

A. Norway

FromFigs. 3.6 and 3.7, Norwaywas observed to have the largest per cent reduction in
Rt for majority of its interventions and the lowest final Rt . With the help of European
news articles, we analyse the situation in Norway to understand why its interventions
were significantly more effective than the other European countries.

Fig. 3.6 Model B’s results for Norway, Spain and Belgium
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Fig. 3.7 Model A’s results for Norway

Compared to other countries such as Sweden, Norway has done an impressive
job of strictly enforcing interventions when the virus first emerged in the country.
On 12 March, when the reproduction number in Norway was at 2.5, the Norwe-
gian Government immediately imposed the strictest emergency measures at that
time—all schools, bars and parlours were closed and those entering the country
were put in a 2-week quarantine. This was a key step in combatting the virus, as
Norway was able to prevent large-scale community transmission at heavily popu-
lated areas. Norway’s quick and effective response to the growing pandemic allowed
its reproduction number to drop from 2.5 on 12 March to 0.5 by early April.

During the resurgence period, Norwaywas also quick to identify themore affected
regions, implementing a lockdown and enforcing mask wearing in Oslo. While less-
affected regions were still able to keep up the country’s economy, the lockdown in
affected regions again effectively reduced transmission of the virus. As its neighbours
were hit hard by the second wave of the pandemic, Norway kept its borders closed,
keeping infection numbers low.

B. Spain

We also analyse the interventions in Spain, particularly “Border Closure” measures,
which was observed to be more effective than the other interventions in Spain and
result in the largest per cent reduction in Rt among all 14 countries (as observed from
Fig. 3.8).
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Fig. 3.8 Model A’s results for Spain

COVID-19 first hit Europe in Italy, one of Spain’s neighbouring countries. The
Spanish government responded quickly, being the first European country to start
closing its borders to Italy on 10 March, heavily reducing the number of imported
cases. When it spread to other parts of Europe, Spain imposed travel restrictions on
all non-residents from 16 March.

Unlike other countries, Spain kept its borders closed until infection numbers were
brought down, and the viruswas kept under control. Thiswas certainlymore effective
than the 14-day quarantine implemented in some other countries as they eased border
restrictions.

During the resurgence period, with improved testing policies, Spain was able to
keep its borders open while requesting all travellers to have a negative COVID-19
test and 14-day quarantine to enter the country. As infection rates increase towards
end October, Spain was also one of the few countries to implement border closures
again.

These border closureswere essential in ensuring no carriers of the virus entered the
country, assisting the government in contact tracing efforts and for the government
to be able to focus on reducing community transmission, bringing the reproduction
number down significantly over time. The government responded quickly and kept
borders closed for an appropriate amount of time, hence resulting in a significantly
higher per cent reduction in Rt as compared to other interventions.
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C. Belgium

From Fig. 3.6, Belgium was observed to have one of the lowest per cent reductions
in Rt for majority of its interventions and the highest final Rt value. Back in April,
Belgium was also already observed to have one of the highest mortality rates in the
world. We study the possible reasons that led Belgium to become one of Europe’s
most hardly hit countries by the coronavirus.

First, Belgium is one of the smallest yet most densely populated countries in
Europe. This results in a higher initial reproduction number, which was estimated to
be at 3.4 before strict measures were implemented in Belgium. It also puts a strain on
“Social Distancing” measures, accounting for a considerably low per cent reduction
in Rt (as observed in Fig. 3.9).

Second, Belgium’s location in Europe also makes it more vulnerable to imported
cases. At the heart of Europe, Belgium is well connected to neighbouring coun-
tries, and Europeans are able to travel in and out of Belgium by train or car. Since
“Border Closure” measures were focused more on international flights and entry-
checks which were more concentrated in airports, Belgium was unable to account
for several imported cases at other entry-points of the country early on during the
pandemic. Hence, despite the strict travel flight restrictions implemented in Belgium,
“Border Closure” measures were ineffective in reducing Rt (as observed in Fig. 3.9).

Third, Belgium’s multi-layered government applied a regional approach to
COVID-19 measures, throwing citizens into confusion. As some regions imposed
stricter restrictions compared to neighbouring regions, it sparked outrage in its

Fig. 3.9 Model A’s results for Belgium
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citizens, severely affecting the government’s efforts in enforcing the NPIs imple-
mented. Anti-coronavirus protest gatherings also resulted in more congested areas
for large-scale community transmission, further increasing the reproduction number
in Belgium.

D. Intervention-specific

Our results fromModel A for all 14 countries imply that major NPIs such as “School
Closure”, “Lockdown” and “Border Closure” substantially reduced reproduction
numbers.

E. Model-specific

3.5 Model A

As different interventions have wildly different αk,m compared to others, this model
allows us to gain additional insights into the effectiveness of different interventions
by each country. For example, in the Netherlands, School Closure has an αk,m of
around 90%, which is much higher than the other interventions in the Netherlands,
which are mostly < 25%.

3.6 Model B

Certain countries have extremely small error bars in αm while others have error bars
which stretch close to the full range, meaning Model B has a tendency of “hit and
miss”. Notably, if all interventions have similar effectiveness in Model A, the αm of
Model B would have an extremely low variance. However, the same is not true for
its inverse (Fig. 3.10).

3.7 Future Studies

3.7.1 Unresolved Limitations

First, the model assumes Rt,m is constant throughout the country. There tends to be
higher urban density in cities than rural areas, thus this is not true. Second, the model
assumes Rt,m varies only with a change of interventions implemented. However,
movement of people throughout the countrywould changeurbandensities of different
regions and consequently Rt,m . While this can be controlled to some extent by inter-
ventions such as lockdowns and border closures, it still varies significantly. Third, the
model assumes α is constant throughout time. For example, people might comply to



40 W. Y. L. Angelina et al.

(a) Plot of on 2nd December (Model B)

(b) Plot of (Model B)

Fig. 3.10 Model B’s results for all 14 European countries

lockdown rules initially, but when it is extended, some may get restless and protest,
defeating the purpose of the lockdown. Additionally, if a second lockdown order is
issued, our model will assume both lockdowns have the same α, which is not always
the case. Fourth, prior distributions such as Serial Interval Distribution, Infection-
to-onset Distribution and Onset-to-death Distribution vary throughout country and
time, reducing accuracy. Fifth, as the model relies on observed deaths, countries with
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high cases yet few deaths like Singapore [10] cannot be modelled as it does not give
the model sufficient information to predict cases.

3.7.2 Impacts on Results

First, pre-emptive interventions are penalised. If an intervention is implemented
before the outbreak occurs, while it might have reduced Rt,m significantly and
lowered numbers in the outbreak, the model would register the intervention as
increasing Rt,m and thus have low-to-negative α. Second, if a country does not
update interventions for an extended duration, the model is forced to believe that
Rt,m remains constant throughout. However, due to all three limitations, it is very
likely a second outbreak will occur, as the governments have greater difficulty in
enforcing restrictions. This is most obviously seen in Model A’s Sweden data, where
the model believes Rt,m ≤ 1 even though the cases are on the rise.

3.7.3 Possible Improvements

(a) For limitations 1 and 2, a possible solution is to take mobility data and split
countries intomultiple sub-regions of similar urban density, usingmobility data
to simulate people movement. Another possible study is to analyse mobility
data within countries to determine the effectiveness of curfews, lockdowns,
and self-isolation in different countries density, using mobility data to simulate
people movement, allowing for a more in-depth analysis of changes in Rt,m .

3.8 Conclusion

By modifying Imperial College’s COVID-19 model, through the addition of the
semi-mechanistic Bayesian hierarchical models, we present novel perspectives in
the study of COVID-19 infection rates. Our model gives a clearer overview of the
efficacies of NPIs based off the 14 European countries studied and provides insights
into the ideal approaches governments should adopt to combat future pandemics.

After analysing selected European governments’ responses, we conclude that
major NPIs like “School Closure”, “Lockdown” and “Border Closure” substantially
reduced reproduction numbers. “Border closure” has also proven to bemore effective
than the “14-day quarantine”, possibly because it enables governments to focus on
minimising community transmission. Most importantly, governments should also
respond proactively instead of reactively to emerging pandemics and implement
strict restrictions especially during the early stages.
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