
Chapter 12
Applying James–Stein Estimation
to b-Bit Minwise Hashing

Jing En Daniel Toh, Rui Xian Matthew Kan, and Keegan Kang

Abstract b-bit minwise hashing (bBMWH) is an efficient hashing algorithm used
in machine learning. The James–Stein (JS) estimator paradoxically produces a lower
mean square error (MSE) than the traditional maximum likelihood estimator. Using
1000documents from theBagofWordsDatasets (KOS) in theUCIMachineLearning
Repository, we computed the pairwise resemblance for all documents in the dataset.
We compared the performance of bBMWH with b from 1 to 4 bits with and without
JS estimation, by calculating the precision, recall, F1-score, and MSE in classi-
fying pairs with resemblance ≥ R0, with R0 from 0.30 to 0.60. Our results for
R0 = 0.30 demonstrated that for b = 4 with JS estimation, the precision was high
at 0.9 for a small sample size k < 100 and was maximized at 1.0 for higher k, while
recall was decreased to 0.8. For b = 3, JS estimation improved precision without
a significant drop in recall. JS estimation decreased the MSE of bBMWH for all b
values investigated and especially for small k where MSE is higher. Our findings
may be useful when precision is optimized over recall, e.g., spam detection. In cases
wherewewant to estimate the pairwise resemblances formachine learning, bBMWH
with JS estimation requires a smaller k to achieve the same MSE as bBMWH alone,
thus saving computational time and storage space.

Keywords James–Stein · b-bit minwise hashing · Machine learning

J. E. D. Toh (B) · R. X. M. Kan
NUS High School of Mathematics and Science, Singapore, Singapore
e-mail: h1710142@nushigh.edu.sg

R. X. M. Kan
e-mail: h1810065@nushigh.edu.sg

K. Kang
Engineering Systems and Design, Singapore University of Technology and Design, Singapore,
Singapore
e-mail: keegan_kang@sutd.edu.sg

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
H. Guo et al. (eds.), IRC-SET 2021, https://doi.org/10.1007/978-981-16-9869-9_12

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9869-9_12&domain=pdf
mailto:h1710142@nushigh.edu.sg
mailto:h1810065@nushigh.edu.sg
mailto:keegan_kang@sutd.edu.sg
https://doi.org/10.1007/978-981-16-9869-9_12

154 J. E. D. Toh et al.

12.1 Introduction

Many machine learning applications are faced with very large and high-dimensional
datasets, resulting in challenges in scaling up training algorithms and storing the data
[1]. Hashing algorithms such asminwise hashing [2, 3] and random projections [4, 5]
reduce storage requirements and improve computational efficiency, without compro-
mising on estimation accuracy. b-bit minwise hashing (bBMWH) [6, 7] is a recent
progress for efficiently (in both time and space) computing resemblances among
extremely high-dimensional binary vectors. bBMWH can be seamlessly integrated
[1] with linear support vector machine and logistic regression solvers.

In traditional statistical theory, no other estimation is uniformly better than the
observed average when applied to observations. The paradoxical element in James–
Stein estimation is that it contradicts traditional statistical theory elemental law if
there are three or more sets of data, even when the three sets are completely unrelated
[8, 9]. For example, the unrelated datasets of the estimates of the average price of
HDB flats in Singapore, the chance of rain in London, and the average height of
Americans can be combined to obtain an estimate better than computing the estimates
individually in terms of mean squared error. When first proposed, the James–Stein
estimator seemed counterintuitive and illogical. However, it has been proven to have
lower mean squared error than the traditional maximum likelihood estimator, when
there are at least three parameters of interest [8, 9].

12.2 Hypothesis

In this study, we hypothesized that adding James–Stein estimation to bBMWH
improves the precision, recall, and F1-score and decreases the mean square error
of the estimate from the hashing algorithm.

12.3 Materials and Methods

We briefly review the following: James–Stein estimation [9], minwise hashing [2,
3], and b-bit minwise hashing [7].

12.3.1 James–Stein Estimation

Given a random vector z˜NN (µ, I), the James–Stein estimator is defined to be

µ̂
(J S) =

(
1 − N − 2

S

)
z (12.1)

12 Applying James–Stein Estimation to b-Bit Minwise Hashing 155

where S = |z|2.
N is the number of true means we want to estimate across datasets.

For N = 3, µ could be a vector containing the true average price of HDB flats in
Singapore, true chance of rain in London, and the true average height of Americans.
Given some observations, we want to estimate µ with µ̂.

The maximum likelihood estimator (MLE) forµ, µ̂
(MLE) maximizes a likelihood

function under an assumed statistical model, so that the observed data is most prob-
able. The likelihood of aN-variate normal distribution has a closed form and thus can
be maximized by using numerical methods such as the Newton–Raphson method to
obtain the roots of its derivative.

The following theorem is taken from [9] and restated here:

Theorem 1 For N ≥ 3, the James–Stein estimator dominates the MLE µ in terms
of expected total squared error that is

Eµ

{
µ̂

(J S) − µ2
}

< Eµ

{
µ̂

(MLE) − µ2
}

(12.2)

for every choice of µ.

12.3.2 Minwise Hashing

Computing the size of set intersections is a fundamental problem in information
retrieval, databases, and machine learning. Given two sets, S1 and S2, where

S1, S2 ⊆ � = {0, 1, 2, . . . , D − 1},

a basic task is to compute the joint size a = |S1 ∩ S2|, which measures the (un-
normalized) similarity between S1 and S2.

The Jaccard similarity or resemblance, denoted by R, provides a normalized
similarity measure:

R = |S1 ∩ S2|
|S1 ∪ S2| = a

f1 + f2 − a
where f1 = |S1|, f2 = |S2|

Computation of all pairwise resemblances takes O(
N 2D

)
time, as one would

need to iterate over all

(
N
2

)
pairs of vectors and for each pair of vectors, over all

D elements in the set.
In most cases, D is sufficiently big to make direct computation infeasible.

156 J. E. D. Toh et al.

The original minwise hashing method [2, 3] has become a standard technique for
estimating set similarity (e.g., resemblance). We briefly restate the algorithm here as
follows:

Suppose a random permutation π is performed on �, i.e.,

π :� → �, where� = {0, 1, . . . , D − 1}

A simple probability argument shows that

Pr(min(π(S1)) = min(π(S2))) = |S1 ∩ S2|
|S1 ∪ S2| = R (12.3)

After k minwise independent permutations, π1, π2, . . . , πk, one can estimate R
without bias, as a binomial probability,

R̂M = 1

k

k∑
j=1

1
{
min

(
π j (S1)

) = min
(
π j (S2)

)}
(12.4)

Var
(

R̂M

)
= 1

k
R(1 − R). (12.5)

This reduces the time complexity to O(
N 2k

)
where k is the number of

permutations, thus reducing the time taken while sacrificing some accuracy.

12.3.3 b-Bit Minwise Hashing

By only storing the lowest b bits of each (minwise) hashed value (e.g., b = 1 or
2), b-bit minwise hashing can gain substantial advantages in terms of computational
efficiency and storage space [7].

The following theorem is taken from the paper on b-bit minwise hashing by Li
and Konig [7], which we restate here as follows:

Theorem 2 Define the minimum values under π to be zi and z2:

z1 = min(π(S1)), z2 = min(π(S2)).

Define e1,i and e2,i to be the i th lowest bit of z1 and z2, respectively.

Eb = Pr

(
b∏

i=1

1 { e1,i = e2,i } = 1

)
. (12.6)

Assuming D is large,

12 Applying James–Stein Estimation to b-Bit Minwise Hashing 157

Pr

(
b∏

i=1

1 { e1,i = e2,i } = 1

)
= C1,b + (

1 − C2,b
)
R (12.7)

where

r1 = f1
D

, r2 = f2
D

, (12.8)

C1,b = A1,b
r2

r1 + r2
+ A2,b

r1
r1 + r2

, (12.9)

C2,b = A1,b
r1

r1 + r2
+ A2,b

r2
r1 + r2

(12.10)

A1,b = r1[1 − r1]2
b−1

1 − [1 − r1]2
b , A2,b = r2[1 − r2]2

b−1

1 − [1 − r2]2
b (12.11)

R̂b is an unbiased estimator of R:

R̂b = Êb − C1,b

1 − C2,b
, (12.12)

Êb = 1

k

k∑
j=1

{
b∏

i=1

1{ e1,i = e2,i } = 1

}
, (12.13)

where e1,i,π j and e2,i,π j denote the i th lowest bit of z1, z2 under the permutation π j ,
respectively.

Following property of binomial distribution, we obtain

Var
(

R̂b

)
=

Var
(

Êb

)
[
1 − C2,b

]2 = 1

k

Eb(1 − Eb)[
1 − C2,b

]2
= 1

k

[C1,b + (
1 − C2,b

)
R][1 − C1,b − (

1 − C2,b
)
R][

1 − C2,b
]2 (12.14)

12.3.4 Experiment

We used Python 3.7.10 with vectorization to implement bBMWH and James–Stein
estimation. We also used it to plot our graphs of the results. We computed the preci-
sion, recall,F1-score, andMSE at variousR0 values, using bBMWHwith b = 1,2,3,4

158 J. E. D. Toh et al.

Table 12.1 Document pairs
in the dataset with R ≥ R0

R0 Number of pairs

0.3 4230

0.4 2529

0.5 1020

0.6 353

bits with and without James–Stein estimation and also the original minwise hashing.
We aimed to determine the smallest bit possible to save storage space and improve
computational efficiency, while maintaining good levels of precision and recall.

Our experiment adopted a similar methodology as the Experiment 3 in the
landmark b-bit minwise hashing paper by Li and Konig [7].

The word dataset used is a collection of the first 1000 documents (499,500 pairs)
from the Bag ofWords Dataset (KOS) in the UCIMachine Learning Repository [10].

We represented the i-th document as a binary vector Xi of size w, the total number
of distinct words in the dataset. For this dataset, w = 6906. The j-th element of Xi

will be 1 if the word occurs in the document and 0 otherwise.
We then computed the true pairwise resemblances for all documents in the dataset

using the binary vectors and counted the number of pairs with R ≥ R0 (Table 12.1).
We conducted our experiment for R0 ∈ {0.3, 0.4, 0.5, 0.6} to represent the range

covered in the abovementioned experiment.We ran bBMWH to compute the estimate
of pairwise resemblances between vectors in X, represented as a square matrix. We
then took the upper triangular portion of this matrix and flattened it to get a vector
of

(
N
2

)
elements res, representing the list of pairwise resemblances. We then ran

James–Stein estimation on this vector which shrank the results toward 0, to obtain
another vector jsres.

We compared these estimates to the true resemblances by selecting all elements
with R ≥ R0 and computing the precision and recall of these estimates in identifying
pairs with R ≥ R0.

Using the precision and recall, we calculated the F1-score. We also calculated the
mean squared error (MSE) of these estimates with the true resemblance. This was
done for k = 500 permutations and averaged over 100 iterations.

12.4 Results and Discussion

We present some findings for R0 = 0.30 which are more significant here.
All experiments were done for k = 500 permutations and averaged over 100

iterations.
We plotted all graphs with error bars to represent the variance in our obtained

values instead of relying on point estimates.

12 Applying James–Stein Estimation to b-Bit Minwise Hashing 159

Fig. 12.1 Precision of
bBMWH with and without
James–Stein estimation with
R0 = 0.30 for b = 1, 2, 3, 4
and original minwise hashing

12.4.1 Precision

For b ≤ 2, the precision for both bBMWH and bBMWH combined with James–Stein
estimation was low at less than 0.2. This agrees with previous research [7] where
using b = 1 bit per hashed value yields a sufficiently high precision only when R0 ≥
0.5.

At b = 3, the precision for bBMWH increased to 0.8 even for a small k = 100.
Adding James–Stein estimation to bBMWH further increased the precision.

At b = 4, the precision for bBMWH increased to 0.9 for k < 100. Adding James–
Stein estimation to bBMWH further increased the precision to near 1.0 (Fig. 12.1).

12.4.2 Recall

A high recall of more than 0.9 was obtained for bBMWH alone and bBMWH with
James–Stein estimation at the lowest bit of b = 1. This result is in accordance with
previous research [7] where recall values are all very high even when very few bits
are used andR0 is low. The recall values are all very high and do not well differentiate
between bBMWHwith or without James–Stein estimation (except for low values of
k).

However, for b = 4, the recall value decreased to 0.8when James–Stein estimation
was added.An increase in precisionwith James–Stein estimation results in a decrease
in recall (Fig. 12.2).

Adding James–Stein estimation to bBMWH would be useful for applications
where precision needs to be optimized over recall, for example, in spam detection
where important emails wrongly classified as spam will not be seen by users.

160 J. E. D. Toh et al.

Fig. 12.2 Recall of
bBMWH with and without
James–Stein estimation with
R0 = 0.30 for b = 1, 2, 3, 4
and original minwise hashing

12.4.3 Mean Square Error

MSE is not affected by the threshold value R0 chosen and is the same for all R0

values.
Adding James–Stein estimation to bBMWH decreased the MSE for all b values.

At small sample sizes of k, where MSE is higher, adding James–Stein estimation to
bBMWHwas especially useful in reducing the MSE as compared to bBMWH alone
(Fig. 12.3).

Fig. 12.3 MSE of bBMWH
with and without
James–Stein estimation for b
= 1, 2, 3, 4

12 Applying James–Stein Estimation to b-Bit Minwise Hashing 161

bBMWH (for small values of b) does require more permutations than the original
minwise hashing; for example, by increasing k by a factor of 3 when using b = 1,
the resemblance threshold is R0 = 0.5. In the context of machine learning and b-bit
minwise hashing, in some datasets, k has to be fairly large, e.g., k = 500 or even
more, and this can be expensive [11]. This is because machine learning algorithms
use all similarities, not just highly similar pairs.

Our results have potential applications in machine learning algorithms by
achieving a low MSE without a need to increase the number of permutations k,
thus saving on computational time and cost.

12.5 Conclusion and Implications

Toour knowledge,we are thefirst to study the effect of adding James–Stein estimation
to the b-bit minwise hashing algorithm.

At a low b-bit value of b = 4, the precision for bBMWH was high at 0.9 for
a small sample size k < 100. Adding James–Stein estimation to bBMWH further
increased the precision to 1.0 and decreased the recall to 0.8. For b = 3, James–Stein
estimation increased the precision while not significantly decreasing the recall value.
Adding James–Stein estimation to bBMWH would be useful for applications where
precision needs to be optimized over recall, for example, in spam detection.

Detecting similar pairs of documents represented in a Bag of Words format is
useful for search engines seeking to omit duplicate results in searches. For search
engines, precision is important as a webpage wrongly marked as duplicate and
omitted from search results will experience a decrease in site traffic, and users would
be unable to obtain a complete search result. On the other hand, a small drop in
recall that results in some duplicate pages not being omitted from search results
will not significantly impact users’ experience. Thus, improving the precision of
classification of similar pairs while sacrificing slight recall is useful.

Adding James–Stein estimation to bBMWH decreased the MSE for all b values
in the experiment. At small values of k, where MSE is typically higher, adding
James–Stein estimation to bBMWHwas especially useful in reducing the MSE. Our
results have potential applications in machine learning algorithms by achieving a
low MSE without a need to increase the number of permutations k, thus saving on
computational time and cost.

References

1. Li, P., Shrivastava, A., Moore, J., & König, A. C. (2011). Hashing algorithms for large-scale
learning. In Proceedings of the 24th international conference on neural information processing
systems (pp. 2672–2680), December 2011.

162 J. E. D. Toh et al.

2. Broder, A. Z. (1997). On the resemblance and containment of documents. In Proceedings of
the compression and complexity of sequences (pp. 21–29), June 1997.

3. Broder, A. Z., Glassman, S. C., Manasse, M. S., & Zweig, G. (1997). Syntactic clustering of
the web. Computer Networks and ISDN Systems, 29(8–13), 1157–1166.

4. Kang,K.,&Hooker,G. (2017). Randomprojectionswith control variates. InProceedings of 6th
international conference on pattern recognition application methods (ICPRAM) (pp. 138–147).

5. Kang, K. (2017). Random projections with Bayesian priors. In Proceedings of national CCF
conference on natural language processing and Chinese computing (NLPCC), Dalian, China,
pp. 170–182, Nov 2017.

6. Li, P., & König, A. C. (2011). Theory and applications of b-Bit minwise hashing. Communi-
cations of The ACM—CACM, 54(8), 101–109.

7. Li, P., & König, A. C. (2010). b-bit minwise hashing. In Proceedings of 10th international
conference on WWW, Raleigh, NC, pp. 671–680, Apr 2010.

8. Efron, B., & Morris, C. (1977). Stein’s paradox in statistics. Scientific American, 236(5),
119–127.

9. Efron, B. (2010). Empirical Bayes and the James—Stein Estimator. In Large-scale inference:
Empirical Bayes methods for estimation, testing, and prediction (Institute of Mathematical
Statistics Monographs) (pp. 1–14). Cambridge: Cambridge University Press.

10. UCI Machine Learning Repository Centre for Machine Learning and Intelligent Systems.
Bag of Words Dataset (KOS). https://archive.ics.uci.edu/ml/datasets/bag+of+words. Irvine,
CA: University of California, School of Information and Computer Science. Last retrieved, 2
January 2021.

11. Li, P., Shrivastava,A.,&König,A.C. (2013). b-Bitminwise hashing in practice. InProceedings
of 5th Asia-Pacific symposium on internetware (no. 13, pp. 1–10), Oct 2013.

https://archive.ics.uci.edu/ml/datasets/bag+of+words

	12 Applying James–Stein Estimation to b-Bit Minwise Hashing
	12.1 Introduction
	12.2 Hypothesis
	12.3 Materials and Methods
	12.3.1 James–Stein Estimation
	12.3.2 Minwise Hashing
	12.3.3 b-Bit Minwise Hashing
	12.3.4 Experiment

	12.4 Results and Discussion
	12.4.1 Precision
	12.4.2 Recall
	12.4.3 Mean Square Error

	12.5 Conclusion and Implications
	References

