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Abstract The blasting techniques are employed in mining and underground works
to loosen the rockmass and ease the excavation. Theblasting practices are economical
and swifter in terms of their engineering application, however, they are of major envi-
ronmental and safety concerns. The major issues related to blasting are flyrock, air
over pressure, and ground vibrations etc. The rock fragments of rockmass are thrown
outward after blasting, which can be threat to workers and machineries involved in
the work, and sometimes nearby human settlements can be its victim. Therefore,
an accurate prediction of the flyrock distance is the needed by mining practitioners.
Earlier, experts have developed several empirical methods based on certain known
parameters to assess flyrock distance. However, with time they become irrelevant and
were easily replaced with advanced machine learning algorithm. The present study
reviews some of these latest publications (2019–2021) examining flyrocks through
artificial intelligent technique. The study incorporates types of machine learning
models employed, input parameters used and number of datasets supporting the
models. The input parameters were further classified according to rock-mass prop-
erties, blast design at site, and explosives responsible for blasting. Moreover, to
compare the reliability of the model coefficient of correlation of the testing data of
the all the documented model were evaluated. Rock density, rock mass rating and
Shmidt hammer rebound number (SHRN) were found to be uncertain parameters.
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Artificial Neural Network (ANN) and other hybrid models for prediction of flyrock
were compared.

Keywords Machine learning · Optimization algorithms · Flyrock prediction ·
Blasting

1 Introduction

Blasting implies the fragmenting of rocks into smaller sizes. Chemical energy of the
explosives is converted into mechanical energy, leading to fragmentation. Therefore,
blastability can be defined as the characteristics of blast design, explosive features
and legislative constraints, depending on the site particulars, and rockmass condi-
tions [1–4]. Simply put, blastability indicates the ease of blasting a rockmass under a
specific set of condition [5–8]. One of the major environmental and safety concerns
with blasting in mining is flyrock distance. Flyrocks cause accidents and damage to
equipment. Factors governing flyrock can either be controlled attributes viz., charge,
burden and spacing or uncontrolled parameters, which is the fabric and strength of
the rock mass. Mining engineers’ control blasting setup based on their assessment
of rock-mass parameters, geometrical analysis and prior experiences on similar site
conditions [9–11]. Rock mass structure and parameters are crucial for ascertaining
the blast design and blasting operations; hence, rock mass classification is routinely
carried out in any mining or civil engineering project. Previously, researchers have
correlated hole diameter with burden and spacing, eventually impacting the blast
design [12]. The geotechnical engineers hold themajor position to decide the blasting
parameters and explosives prior to blasting on drilling locations. Moreover, initially
the attributes like production capacity, loading equipment and bench height domi-
nates the selection of drilling equipment [13]. Therefore, in order to understand and
minimize flyrocks, it’s imperative to assess the blastingmechanismand its correlation
to flyrocks. Furthermore, myriad new approaches have been developed recently to
estimate the flyrock distance based on contributing geotechnical and blasting param-
eters. The paper attempts to review these novel techniques in terms of viability and
accuracy.

Blasting is the conversion of chemical energy into mechanical energy to fragment
the rock mass. Geo-engineers and workers have found that explosive charge concen-
tration per unit length is directly proportional to the hole diameter, consequently the
extent of hole diameter directly affects the flyrock distance and ground vibrations
[14, 15]. At certain blasting venues, different drill sizes can be viable to enhance
the feasibility and production. Figure 1 provides details of blast design parameters
for production blast such as burden (β), spacing (A), hole diameter (τδ), stemming
length (αμ), bench height (�́π), subdrilling (u) and hole depth (βo).

Burden (β) is the perpendicular distance between blasting face and hole. The
relationship between hole diameter (τδ) and burden proposed by many researchers
and represented by Eq. (1).
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Fig. 1 Blast design and related terminology

β = C1 ∗ τδ (1)

where, C1 is constant dependent upon inherent properties of rock mass and
explosives. Table 1 highlights the range of C1 values as proposed by several
researchers.

Burden is also expressed in terms of bench height and can be expressed with
following Eq. (2).

(2)

where, C2 is constant which varies from 0.25 to 0.50 for satisfactory blasts [20].
A vertical distance between toe and crest of bench literally means bench height

(�́π), which is eventually determined considering the hole diameter and loading
equipment. Longer bench heights render precariousness to design and favours rock-
fall and flyrock. Since blasting occurs with conversion of explosives into gases,
stemming technique avoids the chances of blown out shots, such as excessive flyrock
and air over-pressure while blasting. Therefore, sufficient stemming lengths prevents

Table 1 Constants for drill
hole diameter to burden

Name of researcher Range of values for constant C1

Jimeno et al. [16] 25 to 40

Hagan [17], Bhandari [18] 20 to 35

Dick et al. [19] 20 to 40
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potential damage to workers, locals and avoids risk to environment [21, 22]. Hole
depth in blasting setup can be evaluated as a summation of bench height and subgrade
drilling length. To prevent toe formation subgrade drilling becomes essential, and
it may vary from 10–20% of bench height. Scientific studies have revealed that
the parameters like burden, hole diameter, spacing or bench height simultaneously
control blasting operations, moreover, their ratios decide the blast performance [23,
24]. Spacing is related to burden and can vary from 1 to 1.8 times [12]. Many
researchers utilize burden to spacing ratio for evaluation of blast performance. Bench
height to burden is called stiffness ratio. Various workers have used stiffness ratio
for the design of blast [25]. The same ratio is also utilized for prediction of blast
fragmentation and flyrock [26].

Blasting phenomenon are associated with enormous energy, which are eventually
released to loosen the rockmass and make excavation economical. However, only
part of the released energy is involved in loosening the rock mass, and remaining
ones create potential threat for the environment. Flyrock is also a result of the extra
energy released in the process of blasting (Fig. 2). The flyrock causes severe problems
to local inhabitants, and if suitable precautions are not adopted, they can turn into
threat for civil workers and engineering machinery. Therefore, the accurate knowl-
edge of flyrock becomes essential for agencies to reduce or mitigate their impact on
population and property. In the same line, researchers and industries have worked
together to mark critical factors responsible in assessment of flyrock (Fig. 3).

Moreover, a few potential parameters impacting the distance of flyrock at any
blasting site had been categorised in the three main classes, namely, rock-mass of
the area, blast design setup, and explosives involved. The rock density (RD) and
rock mass rating (RMR) are assimilated in the present study to define the rock-mass.
Burden (β), spacing (A), hole diameter (τδ), stemming length (αμ), bench height
(�́π), subdrilling (u) and hole depth (βo) are some of the attributes of blast design
mentioned in the present work on flyrock. Besides, the values like Maximum Charge
per Delay (C), Capacity of the explosive charge (W), Charge Length (CL), powder

Fig. 2 Schematic diagram of flyrock (modified after Little [27])
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Fig. 3 Schematic diagram showing blasting site of granite quarry, throw, optimum throw, excess
throw, flyrock

factor (PF), and amount of explosive used per blast (Wa) are the employed charac-
teristics of explosive entrained in the present research. There is no prevalent engi-
neering technique to simulates flyrock; however, based on the past events of flyrock,
machine learning models can be a key player in discerning flyrock distances with
greater accuracies [28–35]. Linear multivariate regression (LMR) and gene expres-
sion programming (GEP) methods were explored by Monjezi et al. [36] to simulate
the flyrock prediction based on the certain blast design parameters and properties
of explosives used. Ye et al. [37] examined the effectiveness of the techniques like
genetic programming and random forest involving attributes like τδ, αμ, βo, β/A, PF
and C, moreover, coefficient of determination in the both the cases resulted approxi-
mately 0.90. Support vector regression, and Lasso and elastic-net generalized linear
model (GLMNET) with parameters like β, A, αμ, and PF turned out to be valuable
models in flyrock’s prediction [38]. Koopialipoor et al. [39] studied the role of impe-
rialist competitive algorithm, genetic algorithm, and particle swarm optimization
(PSO) over the artificial neural network (ANN) and compared their performance in
flyrock prediction. A seventy-two dataset were incorporated β, A, αμ, and C as input
to devise flyrock prediction models like, recurrent fuzzy neural network (RFNN)
optimized with PSO, adaptive neuro-fuzzy inference system (ANFIS), and a non-
linear regression model [40]. Zhou et al. [37]. investigated attributes like β, A, αμ,
βo, C, and PF to examine an ANN model for flyrock prediction, earning coefficient
of determination equal to 0.906. Armaghani et al. [42] modelled and compared three
different machine learning techniques using 262 datasets implementing β/A, τδ, αμ,
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βo, C, and PF as means of input parameters and flyrock distance as output parameter.
Correlation equations and the method used have been given in Tables 2 and 3.

2 Empirical Flyrock Estimation

The several workers in the past were curious to estimate the flyrock distances
following the blasting events, and managed to establish the certain empirical rela-
tions based on their observations. This involves identification of factors influencing
the flyrock distance, moreover collecting these data for further mathematical oper-
ations. Their scrupulous works (Table 2) earned significant results, and motivated
several others to carry out research on flyrocks. Indeed, the results were founding
stone for the present development in the blasting activities, that equipped the hands
of agencies to minimize the flyrock distance. However, the complexities induced
in these empirical relationships made the calculation of flyrock distance a tedious
and time-consuming task. Furthermore, the present era of soft computing shows
quite promising results in the last few decades in various other domains of scien-
tific world. Therefore, the geotechnical engineers cannot keep themselves away from
these modern developments for longer time and soon new discoveries replace the
earlier ones.

3 Deep Learning Models for Flyrock

In the light of earlier mathematical works and advent of modern computational
techniques people were excited to know whether machines can perform the human
tasks. Scientists and engineers worked together to accomplish these tasks to bring the
present shape of artificial intelligence (AI) andmachine learning (ML). In themodern
world, access to latest technologies made the availability of enormous data in very
short span of time to the researcher. In the present study, one will gain insights of the
some of key deep learning techniques used for the estimation of flyrock phenomenon.

The work discusses the application of techniques like Extreme LearningMachine
(ELM), Outlier Robust ELM (ORLEM), Artificial Neural Network (ANN), Multiple
Linear Regression (MLR), Artificial Neural Network with Particle Swarm Opti-
mization (ANN-PSO), Artificial Neural Network coupled with Harmony Search
(ANN-HS), Artificial Neural Network coupled with Advanced Dynamical Harmony
Search (ANN-ADHS), Adaptive Neuro-Fuzzy Inference System in combination
with Grasshopper Optimization Algorithm (ANFIS-GOA), Adaptive Neuro-Fuzzy
Inference System in combination with Cultural Algorithm (ANFIS-CA), Imperi-
alist Competitive Algorithm with ANN (ICA-ANN), Particle Swarm Optimiza-
tion with ANN (PSO-ANN), Artificial Bee Colonization with ANN (ABC-ANN),
Firefly Algorithm with ANN (FA-ANN), Genetic Algorithm with ANN (GA-ANN)
(Table 3). These discussed works encapsulate several factors affecting the flyrock
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Table 2 Empirical equations for prediction of flyrock

References Equations Descriptions

Lundborg et al.
[43]

Lmax = 260(τδ)2/3 Lmax = maximum
ejection distance
(m); τδ = hole
diameter (inch)

Olofsson [44] Lmax = Kϕ.(τδ) Kϕ = factor of
safety [45]; τδ =
hole diameter (cm)

Richards and
More [46]

Faceburst Lmax = k2
g

√
m2.6

β

CrateringLmax = k2
g

√
m2.6

αμ

Ri f lingLmax = k2
g

√
m2.6

β
sin2θ0

where, θ0 = drill
hole angle; Lmax =
maximum throw
(m); β = burden (m);
αμ = stemming
length (m); m =
charge per meter
(Kg/m); g =
gravitational
constant; k = site
constant

Little [27] Faceburst Lmax = k2
g

CrateringLmax = k2
g

Ri f lingLmax = k2
g

where, Lmax =
maximum throw
(m); g =
gravitational
constant; k = site
constant

Ghasemi et al.
[47]

Fd = 6946.547 [β−0.796 A0.783 (αμ)1.994 (βo)1.649

d1.766(PF/Q)−1.465]
R2 = 0.83
Fd = flyrock
distance (m);
Q = mean charge
per blast-hole (kg);
PF = powder factor
(t/kg)

Trivedi et al.
[48]

Flyrock = 105.1q0.511 q0.14

β0.93(αμ)0.64σ 0.75
c RQD0.93 R2 = 0.815; q1 =

linear charge
concentration; q =
specific charge; σc =
unconfined
compressive
strength; RQD =
rock quality
designation (%)

Armaghani
et al. [49]

Flyrock = 177.81 − (3.33 × βo) − (2.55 × A) − (3.49
× β) − (13.93 × (αμ)) + (0.47 × PF) + (1 × MC) −
(2.58 × RMR)

PF = powder factor,
MC = Maximum
Charge per Delay,
RMR = Rock Mass
Rating



604 R. M. Bhatawdekar et al.

Table 3 Prediction of fly-rock distance in blasting

References Techniques Input parameters No. of
datasets

R2

Rockmass
properties

Blasting
setup

Explosives

Lu et al. [50] ELM RD β, A, αμ PF 82 0.955

ORELM 0.958

ANN 0.912

MLR 0.883

Hasanipanah
et al. [51]

ANN RD β, A, αμ PF 82 0.8319

ANN-PSO 0.8328

ANN-HS 0.8715

ANN-ADHS 0.9299

Fattahi and
Hasanipanah
[52]

ANFIS-GOA RD β, A, αμ PF 80 0.974

ANFIS-CA 0.953

Li et al. [53] ICA-ANN RD, Rn β/A, βo,
αμ

C, PF 113 0.9598

PSO-ANN 0.9608

ABC-ANN 0.9666

FA-ANN 0.9719

GA-ANN 0.9466

Wu et al. [54] ICA-Linear RMR β, A, αμ Weight
charge

78 0.954

ICA-Power 0.928

ICA-Quadratic 0.952

ANN 0.841

phenomenon in any blasting activity, like Burden (β), spacing (A), stemming length
(αμ), hole depth (βo), Powder Factor (PF), Rock Density (RD), Maximum Charge
per delay (C), Rockmass rating (RMR) etc. The working principle behind these deep
learning techniques have been detailed in the sections below.

3.1 ANN, ELM, ORLEM, MLR, ANN-PSO, ANN-HS, &
ANN-ADHS

Artificial Neural Network (ANN) performs several complex operations using arrays
of nodes in different layers based on past learning. The ANN model learns the way
human brain does, moreover, the model performs better with rise in the number of
training data. Themost characteristic task of neural network is to perceive the inherent
pattern in the data, and solve the complex problems with significant accuracies and
swiftly. The structure of ANN has three layers, viz., input, hidden, and output layer;
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the input and output layers have nodes equal to the number of input and output
parameters assimilated in the study. Whereas, there is no defined number of nodes in
the hidden layer,moreover, they can have further sub-layers to obtain best performing
model. The best performing model can be engendered either on hit-and-trial basis or
tunning through any optimization techniques.

Extreme Learning Machine (ELM) technique was devised to overcome the slug-
gish learning rate faced by conventional feedforward neural networks (FFNNs).
The conventional FFNNs adopts gradient-based learning methods that are too slow,
moreover, iterative tunning of each involved parameters is embodied making them
further slow. The ELM adopts linear mapping to train the model, with tunning of
the parameters numerically equal to the hidden layer nodes, therefore processing
time and probability of overfitting is significantly reduced in these models. ELM
improves learning speed, however have difficulty in dealing with outliers in data and
may render inappropriate results. Therefore, the Outlier Robust Extreme Learning
Machine (ORELM) method uses scanty data distribution pattern of outliers and
applies the 	1—norm loss function to empower the ELM model capability.

Simple linear regression evaluates and expresses the dependency of one variable
over another mathematically. However, there are times when a single parameter is
not enough to sufficiently determine the relationship with another parameter, instead
one needs to access several variables to find the best relationship numerically. This
need is served in the establishing best relationship between multiple input and output
parameters through multi-linear regression (MLR) analysis.

The optimization algorithms are involved in the machine learning models, to
boost their performances by tunning their hyperparameters. The hyperparameters
differ based on the type of machine learning technique involved in the research,
moreover the selection of optimization algorithms depends on the direction of the
work, speed and memory requirements. In PSO, the workability of any ANN model
is enhanced by monitoring the collective direction of particles and tracking their
earlier best performances of each particle and their neighbors [55, 56]. One can infer
that this optimization algorithms evaluates the best personal and global performances
of particles’ swarm with successive iteration, eventually the best hyperparameters
contribute the best model [39].

The service of harmony search (HS) algorithm is employed to optimize the
network of ANN model, and determines the best performing model after a given
number of iterations. The impetus behind the HS algorithm is the extemporization
mechanism of musicians, implementing the best performing model with stochastic
metaheuristic process [57]. The Adjusted Dynamical Harmony Search optimiza-
tion techniques empowers the ANN to tune the best model structure supplanted with
metaheuristic, and the algorithm is based on iterative learning as the enthused-music-
search. The preferred harmony component is worked out using two key approaches
in the ADHS, viz., harmony memory considering rate, and pitch adjusting rate. Both
the approaches are magnified mathematically to update new variable in the harmony
memory, after evaluationofmaximumandminimumelements. Therefore, theADHS,
an advanced optimization technique augments the power of ANN in minimizing the
error between the predicted outcomes of the model and original one [51].
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3.2 ANFIS-GOA, ANFIS-CA, ICA-Linear, ICA-Power
and ICA-Quadratic

Adoptive Neuro-Fuzzy Inference System (ANFIS) finds its application in enumer-
ation of non-linear problems. The ANFIS benefits from fuzzy logic of human’s
qualitative reasoning (if–then rule) as well as neural learning approaches. In other
words, the adoptive network is powered by neuro inference scheme, moreover neuro-
fuzzy along with neural network render a sophisticated and robust machine learning
technique by diminishing each other’s drawbacks [58, 59]. However, again in search
of best model structure certain optimization algorithms are needed according to the
available datasets in different studies. Moreover, the grasshopper optimization algo-
rithm (GOA) plays a vital role in tunning the hyperparameters of the ANFIS model,
that promotes the viability of the model with significant rise in their robustness and
accuracies. The motivation behind the GOA is the collective behavior of swarming
grasshoppers, and is a type swarm intelligence working on the population-based
optimization technique. In GOA, the researchers have established the mathematical
relationship to determine the position of ith grasshopper in the swarm as the summa-
tion of social interaction between them, the influence of wind advection and gravity
on this [60].

The cultural algorithm (CA) boosts the ANFIS performing capabilities, as the
method attains the inspiration from the evolution of human culture [61]. The algo-
rithm sets to resolve non-linear problems and enables complex computation in search
of best ANFIS structure. The algorithm simulates civic sense, reasoning and knowl-
edge acquired in growth of human population with time by means of transfer of
information from one generation to another [52].

ICA is acronym for Imperialist Competitive Algorithm, which is a powerful
computing optimization technique inspired by socio-political evolution mechanism
of colonies and imperialists [62]. History demonstrates the competition among
several weaker and powerful kingdoms to gain the control on each other. The might-
iest one is termed as imperialist, that governs number of colonies, and invade other
countries to take control over them and expand their territories by competing with
other rival imperialists. Finally, the strongest empire (colonies along with their impe-
rialist) will hold control over the weaker ones. Atashpaz-Gargari and Lucas [63]
coined the idea of ICA with the intention of identifying the dominating imperialist
based on their economic, political, and military resources. The governing operations
of ICA are to monitor three aspects, viz., assimilation policy, revolution, and compe-
tition [54]. The optimization power of ICA can be emplaced over several machine
learning models to enhance their performance. Moreover, various multiple regres-
sion models (MRMs) benefit from the ICA to enhance their prediction results. In the
same line ICA-Linear, ICA-Quadratic, and ICA-Power models can be developed on
applying ICA optimization over linear, quadrating, and power MRMs respectively
[64]. Similarly, neural network models like ANN can yield better outcomes and
significantly reduce their cost/loss function on using optimizing capacity of ICA.
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3.3 ABC-ANN, FA-ANN, GA-ANN

The acronymABCstands for artificial bee colony optimization; the algorithmmimics
the nectar collection traits of honey bees. Karaboga [65] introduced the technique to
the scientific community, and highlighted its applicability in optimizing the predic-
tion power ofwell-knownmachine learning tools. Group of bees organize themselves
in three different groups to accomplish the nectar gathering task. The first set of bee
group lookouts for the probable source of flower’s nectar, and they randomly search
for this. On locating a reasonable source, they communicate this information with
other members once they return to hive. Afterwards, a few other members (second
group) follow the scout bees for further exploitation of located nectar resource.
Meanwhile, the third group of bees keep eyes on the hive, and exchange the rele-
vant information with member bees. To transfer information related to the nectar
collection bees perform waggle dance. The chain of data transfer will facilitate the
selection of most appropriate nectar source and its exploration.

Firefly algorithm (FA) is a kind of metaheuristic algorithm that imitate attractive-
ness traits of fireflies among themselves. The attractiveness of fireflies relies on the
brightness, means the intensity of light emitted by the individual firefly determines
their attractiveness strength [66]. In other words, they hold proportional relationship.
Moreover, the brighter one will attract the less-brighter one, despite of their sex as
these are unisexual species. Furthermore, it has been noted that the objective of the
fireflies determines their brightness level.However, the brightness also decreaseswith
the mutual distance among two individual species. If in case any firefly is far away
from their swarm, they will perform random movement. The fireflies rely on their
bioluminescence behavior to talk, arrange food, and find mates [53]. This swarm-
intelligence inspired by fireflies resulted in a valuable optimization algorithm, and
aided in enumeration of complex mathematical operation with greater accuracies.

The Genetic algorithm (GA) engenders its working principles from Darwin’s
evolution theory of natural selection. The theory enunciates that the survival of any
species depends in their capabilities to cope with different set of changing environ-
mental and climatic conditions, as well as their instinct to adopt and response the
changes. The theory further highlights the survival of fittest creature with dominant
genes over the weaker ones. The GA simulates these in the arithmetic operations
to assess the fittest organism, on examining the processes of selection, crossover,
and mutation in the individual’s population [67]. The advent of GA introduced the
features of solving linear and non-linear lucidly in different scenarios and simulates
real life challenges to boost the performances of knownmachine learning techniques.

The amalgamation of ANN with the optimization algorithms like ABC, FA, and
GA resulted into models like ABC-ANN, FA-ANN, and GA-ANN respectively.
Moreover, they improve the performance of the ANNmodels, after these techniques
were employed in the existing ANN models.



608 R. M. Bhatawdekar et al.

4 Results and Discussion

The assessment of severalways of ascertaining the flyrock distance in advance can aid
the mining engineers and planner to device the blasting setup. Proper design reduces
the number of casualties and losses owing to flyrock associated to blasting. The
detailed examination of previous literature suggests that machine learning models
will be a swifter, economic, and intelligible tool for flyrock prediction, given that
adequate number of datasets are available fro training. Furthermore, these soft
computing techniques offer better performance than empirical methods.

The present article examines several research works in between years 2019 to
2021 on machine learning based prediction of flyrock distance. Lu et al., developed
a four deep learning models for flyrock estimation taking 82 datasets, and involved
parameters like RD, β, A, αμ, and PF. The best result is shown by ORLEM earning
a coefficient of determination value of 0.958 [50]. ELM is quite close to ORLEM
with the R2 of 0.955. Besides, two other models like ANN andMLRwere developed
from the same datasets and same parameters, however their outcomes were not as
reliable as ORLEM and ELM.

Another work, taking similar parameters as in previous discussed work developed
ANN,ANN-PSO, ANN-HS, andANN-ADHS [51]. Thework shows that implemen-
tation of PSO, HS, and ADHS certainly enhanced the capability of neural network
model in flyrock prediction. Moreover, the greatest performance (in terms of R2) was
noticed in ANN-ADHS (0.9299) model, followed by ANN-HS (0.8715), ANN-PSO
(0.8328), and ANN (0.8319).

In the work of Fattahi & Hasanipanah two ANFIS models blended with GOA and
CA optimization algorithms are compiled and their outcomes were assessed with
real outcomes [52]. In this work, the authors have taken 80 datasets to account these
models based on attributes like RD, β, A, αμ, and PF. In terms of coefficient of
determination, the ANFIS-GOA (0.974) beats the ANFIS-CA (0.953). In the year
2021, Li et al. [53] tried to access the effect of different optimization algorithms over
ANN inflyrockprediction. Theirwork incorporated parameters namely,RD,Rn,β/A,
βo, αμ, C, and PF over 113 datasets. The research outcomes dictate the performance
of models in terms of R2 such as ICA-ANN (0.9598), PSO-ANN (0.9608), ABC-
ANN (0.9666), FA-ANN (0.9719), andGA-ANN (0.9466). In the same line,Wu et al.
[54] designed ICA-Linear, ICA-Power, ICA-Quadratic, and ANN taking RMR, β,
A, αμ, and weight charge in the account. Seventy-Eight datasets were taken in the
development of the model, and ICA-Linear have the best outcome and worst result
were shown by ANN.

5 Conclusion

The present article details the mechanism of blasting and the associated catastrophic
hazard of flyrock phenomenon. The fundamental attributes like spacing, burden,
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hole depth, hole diameter, rock quality designation, rock density, stemming length,
explosive characteristics etc., have major control on the flyrock distance. Therefore,
a careful examination of these properties and a judicious planning can inhibit the
risks related to blasting. A number of advanced deep learning computational models
have been assessed and compared to ascertain viability of flyrock estimation model.
Techniques b = developed between the year 2019–2021 have been considered in the
present work, and their performance have been compared using a well-recognized
statistical approach- coefficient of determination (R2). Moreover, a few empirical
equations governing the flyrock pattern owing to blasting have been accounted in the
present work. The study finds that empirical methods lag behind the deep learning
methods in precise estimation of flyrock distances in several aspects. The machine
learning models namely, ANN, ELM, ORLEM, MLR, ANN-PSO, ANN-HS, ANN-
ADHS, ANFIS-GOA, ANFIS-CA, ICA-Linear, ICA-Power, ICA-quadratic, ABC-
ANN,FA-ANN, andGA-ANNmodelswere addressed in detail. Beside, thesemodels
were evaluated in terms of number of datasets and type of input parameters involved
in the structure of models.
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