
Microbial Remediation of Persistent
Agrochemicals 8
Priyanka Priyadarshinee, Sophia Subhadarsini Pradhan,
Ritesh Mishra, S. Aravindan, P. C. Rath, Pradipta Kumar Mohapatra,
and Totan Adak

Abstract

Agrochemicals are an integral part of the agricultural ecosystem as it contributes
significantly to improving the crop yield through pest management. The chemi-
cally synthesized products such as insecticides, herbicides, and fungicides exhibit
harmful effects on living organisms and few of them are characterized as resistant
to degradation. Besides being persistent in nature, they may leach into ground-
water and run off to surface water. Thus, to degrade the persistent agrochemicals,
bioremediation with the help of microbes is one of the best options. This approach
is environmentally friendly, effective, and less expensive with the least adverse
effects. Microbes such as bacteria, actinobacteria, fungi, and cyanobacteria are
reported of having the exclusive trait of degradation. The microbial world
consumes persistent toxic chemicals as the source of their growth by facilitating
the mineralization of those chemicals. This detoxification process is carried out
with the help of microbial enzymes. Some efficient and potential bioremediation
agents are Bacillus sp., Pseudomonas sp., Arthrobacter sp., Anabaena sp.,
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Leptolyngbya sp., Nostoc sp., Spirulina sp., etc. This chapter discusses the extent
of the use of persistent agrochemicals and key biodegradation pathways. The
chapter also discusses on the advantages and disadvantages of microbial remedi-
ation and the scope of commercial utilization of microbes for agrochemical
degradation.

Keywords

Pesticides · Bioremediation · Enzymes · Persistent agrochemicals (PAs) · Bio-
concentration factor (BCF)

8.1 Introduction

Use of agrochemicals has increased manyfold from the period of “Green Revolu-
tion.” Agrochemicals, more particularly pesticides, are applied to improve crop yield
with better quality of product through the management of pest (insecticides), disease
(fungicides), and weed (herbicides). Synthetic pesticides are semi-volatile, toxic, and
persistent in nature and trigger harmful effects on humans, environment, and wild-
life. These chemicals take decades of time to degrade significantly in natural
environment. During such longer period of time they may get transported to ground-
water, surface water, surface, and core part of soil. From soil and water, they are
accumulated in food crops and enter into the food cycle (El-Bestawy et al. 2007).
Apart from this, beneficial microbes and nontarget organisms are affected by the
indiscriminate use of synthetic chemicals in the agroecosystem. Aquatic flora, fauna,
and microorganisms are affected by the discharges of agrochemical manufacturing
factories as well as by unintended spills. Persistent organic pollutants in agriculture
(persistent agrochemicals, PAs) can be degraded by various mechanisms such as
photodegradation (Bustos et al. 2019), bioadsorption (Mishaqa 2017),
bioaccumulation (Xu and Huang 2017), and biodegradation (Bhadouria et al. 2020).

The term bioremediation comprises two words, i.e., “bios” (Greek) means life
and “remedium” (a Latin term) means to take out an evil. So, bioremediation is a
process that eradicates, degrades, and detoxifies the persistent pollutants by living
beings. The two highlighted classes of bioremediation are phytoremediation and
microbial remediation. In ex situ bioremediation, the contaminants are removed
from its native place to another place and treated with microbes. In in situ bioreme-
diation, the microbes are directly inoculated at the contamination site. For certain
microorganisms, PAs are the source of nutrients and act as electron donors. Hence,
they can be used to manage the PAs in polluted areas.

Some of the important microbial genera efficient in bioremediating
agrochemicals are described here. Bacterial strains having degrading capacity of
PAs belong to the genera of Bacillus sp., Arthrobacter sp., Rhodococcus sp.,
Alcaligenes sp., Flavobacterium sp., Yersinia sp., Pseudomonas sp., Acetobacter
sp., Burkholderia sp., Weeksella virosa sp., Stenotrophomonas sp., etc.
(Padmanabhan et al. 2003). Among the actinobacteria group, reports suggest that
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Streptomycetes can significantly detoxify PAs. Cyanobacteria with pesticide degra-
dation prospective include Nostoc sp., Anabaena sp., Phormidium sp., Oscillatoria
sp., and Spirulina sp. Among fungi, Fusarium sp., Aspergillus niger, Penicillium
sp., Lecanicillium sp., and Oxysporum sp. are known to be the most potent degraders
of agrochemicals. Enzymes released by these microorganisms, namely, oxygenase,
phosphotriesterase, hydrolases, peroxidases, dehydrogenase, dehalogenase, lignin-
modifying enzymes, organophosphorus acid anhydrolase, and laccase, play a crucial
role in PA degradation.

This chapter discusses the extent of use of persistent agrochemicals and key
biodegradation pathways. It also focuses on the pros and cons of microbial remedia-
tion of persistent agrochemicals, and successful and commercial level utilization of
microbes for agrochemical degradation. Mechanisms, genes, and enzymes involved
in the metabolism of agrochemicals are also discussed in this chapter.

8.2 Persistent Agrochemicals

An ideal agrochemical/pesticide may be defined as a noxious compound that is only
harmful to targeted organisms. Unfortunately, this is not true; pesticides also have a
negative effect on non-targeted organisms and human beings. Thus, persistent
agrochemicals (PAs) can be defined as groups of synthetic and nonvolatile chemicals
exposed intentionally or non-intentionally to targeted or non-targeted organisms and
having toxic/adverse impacts on humans, environment, and wildlife. According to
the sources only 0.1% of applied pesticides reach the targeted organism, whereas the
remaining pesticides are deposited on non-targeted environmental compartments
such as soil, water, and sediments. Thus, pesticides and their metabolites are the
main factors for environmental pollution posing serious threat to the health of
non-target organisms like humans and wildlife (Rani et al. 2020).

Nowadays, in international market more than 1000 pesticide compounds and their
metabolites have been registered. Popp (2011) reported that the international market
capital of agrochemical/pesticide per annum is valued at about USD 40 billion and
the total consumption is three million tonnes. Recently, the practical usage of
agrochemical covers 25% of the total cultivated land. In India, use of agrochemicals
has immensely increased after independence. On international platform, India has
become the fourth largest manufacturer of agrochemicals after the USA, Japan, and
China (Nayak et al. 2018). The most common agrochemicals of India are organo-
phosphate, neonicotinoids, organochlorines, etc. Among the total pesticide con-
sumption, India has accounted for 50% of insecticides, 35% of fungicides, and
15% of herbicides.

Depending on the chemical structure and mode of action, PA can be divided into
several forms such as organochlorine, organophosphate, carbamates, pyrethroids,
nicotinic, pyrazole, phenolics, trizines, benzoics, sulfonylureas, bipyridilium,
chloroacetamide, glycine, dinitroaniline, phenylpyrazoline, methyl benzimidazole
carbamate, demethylation inhibitor, phenylamide, anilopyrimidine, quinone outside
inhibitor, and phenylpyrrole. In organochlorine group, on the basis of chlorination
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number and substitution position, there may be 209 different polychlorinated
biphenyls. In aromatics, the most persistent chlorine- and bromine-containing
compounds are polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins,
polybrominated diphenyl ethers, and organochloride pesticides (e.g.,
dichlorodiphenyl trichloroethane (DDT), toxaphene, chlordane) (Nayak et al.
2018). In Stockholm Convention, the United Nations Environment Programme
(UNEP) motivates countries to get rid of 12 persistent organic pollutants that are
termed as “dirty dozen” that constitutes 8 agrochemicals, 2 commercial enterprise
chemical substances, and 2 accidental industrial intermediate products. However,
these persistent virulent eight agrochemicals are prohibited by most of the developed
countries, while in case of developing countries, it is being used till today due to their
low cost.

The fate of PAs depends on three basic processes of transport, transfer, and
transformation (Fig. 8.1). Throughout the mechanism of transport, the PA is
departed from its original area of application to the surroundings, and thereafter
dispersed throughout the surface water. In the process of transfer, various factors are
involved in the distribution and dispersion of PAs in the environment. Last one is the
transformation activity, which indicates the natural process along with chemical
mechanisms that alters the PA into less complex form of chemicals or degrades it
entirely. These persistent agrochemicals are considered as tolerant to degradation or
it may take decades or even centuries to eradicate them successfully. These
chemicals may get dispersed into extended areas that lead to environmental pollution
and some of them get transported into food cycles and immensely affect humans.

Fig. 8.1 Entry of pesticides into food chain through different ecological factors
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8.2.1 Impact of Persistent Agrochemicals on Agriculture
and Environment

According to the WHO report, more than three million people are suffering severely
each year from exposure of pesticides. In India, the first agrochemical poisoning
incident happened in 1958 in Kerala, where the death of over 100 people occurred by
the consumption of wheat flour which was contaminated with parathion
(Karunakaran 1958). Another terrible case was Bhopal Gas Tragedy of 1984,
where the leakage of methyl isocyanate killed about 2259 people. Some studies
also revealed that the accumulation of minute amount of persistent agrochemicals by
a person can induce combined harmful effects on health conditions like induction of
breast cancer, decrease in the number of sperms which results in male sterility, and
suppression of immune response with hypersensitive response to some other
agrochemicals/chemical antigens (Carvalho 2006). Pesticide application results in
decrements in cell development, increment in mutagenesis condition, and nuclear
anomalies (Iqbal Lone et al. 2013).

Moreover, agricultural step-up and excessively widespread usage of
agrochemicals are responsible for the extinction of various indigenous flora and
fauna, which causes a functional disorder in the agroecosystems. Through the long-
term use, such persistent agrochemicals are either deposited in soils or leached into
the groundwater, thereby dispersing to and polluting different land, marine, and
fresh aquatic ecosystems (Nayak and Mishra 2020). These chemicals are decreasing
the microbial population of soil and water. For example, the earthworm populations
are negatively affected by PAs (Mahmood et al. 2016). By the excessive use of
persistent agrochemicals, minor pests are turning into major pests. Natural predators
and competitors are being eliminated by excessive use of insecticides. The agro-
chemical residues decrease the quality of groundwater. Another harmful effect is the
leaf interception of agrochemicals, which causes several damages to the non-target
plants. The air and other organisms may also be polluted by the excessive use of
volatile agrochemicals.

8.3 Mechanism of Microbial Bioremediation of Persistent
Agrochemicals

In the ecosystem, various mechanisms are put forward to make it pollutant/contami-
nant free. Bioremediation can be defined as a process to eradicate, degrade, and
detoxify the persistent pollutants by using living beings. Bioremediation may be
active or passive based upon the supply of energy, and various mechanisms of
bioremediation are as follows:
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8.3.1 Bioadsorption

Bioadsorption of PAs is categorized under passive process. Bioadsorption involves a
number of mechanisms, i.e., electrostatic interaction, complexation of surface,
exchange of ions, absorption, and precipitation (Bilal et al. 2018). Microbes like
microalgae are more efficiently used as adsorbents. Mishaqa (2017) found that the
cultured algae were able to get rid of 87–96% of pesticides (i.e., alachlor, atrazine,
pendimethalin, propanil, simazine, isoproturon, molinate, and carbofuran) in aque-
ous phase. The efficiency of removal of pesticides was different depending upon the
kinds of surface groups present in algae (Ata et al. 2012). The cell wall composition
of microalgae plays an important role in PA biodegradation as it facilitates the
adsorption of contaminants from polluted water (Qiu et al. 2017). Gracilaria
verrucosa having hydroxyl, amine, and carboxyl as the surface groups was found
to adsorb 2,4-dichlorophenoxyacetic acid (Ata et al. 2012). Several factors, i.e.,
optimal conditions of the biome, chemical composition and structure of organisms
and pesticides, density of organism, pH, temperature, quality and strength of light,
salinity, nutrients, water availability, organism (biological) and pesticide (substrate)
contact, their surface bonding, redox potential, alternative substrates of carbon,
oxygen tension, and electron accepter along with donor, are responsible for the
completion of a suitable bioadsorption process.

8.3.2 Bioaccumulation

Bioaccumulation requires externally driven energy and is based on the
bio-concentration factor (BCF). BCF reflects the concentration quotient of a con-
taminant of a certain organism with regard to its surroundings. The variation depends
on different factors, i.e., bio-concentration activity differences, bioavailability of
chemicals, physical barriers, dissolved organic matter, variation in interspecies,
metabolism, and ionization of ionizable chemicals with certain ecological
parameters. Reports suggested that the exposure of microbes to the pesticides
(PA) produces reactive oxygen species (ROS) within the cell (Pérezgarcía et al.
2013) which is lethal as that causes functional damage leading to cell death.
However, some microalgae manage to produce several antioxidants of the group,
polyphenols, carotenoids, and sterols. These antioxidants are able to minimize the
ROS effect on the matter of cell damage. In this way agrochemicals can induce the
process of detoxification activity in microalgae and this reflects the possibility of
biodegradation of PAs through bioaccumulation process. The combination of
bioaccumulation and biodegradation process to detoxify agrochemicals rapidly is
seen in microalgae group (Xu and Huang 2017). Biodegradation of triadimefon by
green algae Scenedesmus obliquus through bioaccumulation has been successfully
reported (Xu et al. 2007).
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8.3.3 Biodegradation

The mechanism of catabolic activity to form simpler, nonhazardous, and smaller
form of toxic PAs is termed as biodegradation. PA degradation can be done both by
aerobic and anaerobic conditions. Under aerobic circumstances, the use of
oxygenase enzyme on aromatic compound is generally initiated by electrophilic
attack; however, it is delayed with the occurrence of various electron-withdrawing
substituents like azo, nitro, and chloro groups. In anaerobic conditions the degrada-
tion is initiated via nucleophilic attack and these groups will favor preliminary
reductive attack. For the agrochemicals like DDT and heptachlor, anaerobic degra-
dation works better than aerobic degradation. The biodegradation of PAs refers to
the chemical activities like reduction, ring cleavage dehydrogenation, dealkylation,
oxidation, alkylation, and dehalogenation (Bhadouria et al. 2020).

Hatzios (1991) reported that pesticide degradation process is concluded under
three stages. In stage I, the agrochemicals transform to less poisonous by-products
by oxidation or hydrolysis. Oxidation, the essential step in the process of degrada-
tion, is controlled through the oxidative enzymes, e.g., peroxidase, dioxygenase,
polyphenol oxidases, and cytochrome P450 polyphenol oxidases. The hydrolytic
reaction plays a key role in some degradation processes. In the next stage, conjuga-
tion of PA metabolites occurs to amino acid, glutathione, or sugar. Pesticide or
agrochemical conjugation can be defined as “a metabolic procedure where a natural
compound is joined to an agrochemical or to its metabolite(s)/intermediate products
facilitating sequestration, compartmentalization, detoxification, and/or
mineralization.”

8.4 Persistent Agrochemical-Degrading Microbes

8.4.1 Bacteria as PA-Degrading Agents

Bacteria can degrade diverse groups of pesticides (Table 8.1). A huge puddle of
bacterial strains with degrading capacity include Bacillus sp., Arthrobacter sp.,
Ralstonia sp., Rhodococcus sp., Yersinia sp., and Pseudomonas sp. (Padmanabhan
et al. 2003). The detoxification of PA is achieved by co-metabolism and it is further
amplified through root fluids excreted in rhizosphere, because of the gross microbial
interaction. In bacteria, PAs are generally taken as carbon and energy sources and get
degraded to minerals (Fritsche and Hofrichter 2008). This degradation ability is
influenced by several physiochemical factors like soil texture and water-holding
capacity, pH, temperature, and availability of nutrients (Singh 2008).

Bacterial multiplication and growth are affected by pesticides because of the
proficient absorption of PA in soil organic particles. Apart from this limitation,
bacteria have exceptional significance to detoxify the PAs. Reports suggest that
aerobic remediation is much faster than anaerobic; however, some exceptions are
there such as DDT degradation that occurs ten times faster in anaerobic condition
than in aerobic remediation. The most active prokaryotic genus for remediation
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Table 8.1 Biodegradation of persistent agrochemicals by bacteria

Sl.
No. Pesticides Bacteria References

1. Acetamiprid Ochrobactrum sp. D-12 Wang et al. (2013)

2. Alachlor Pseudomonas sp. ADP,
Ancylobacter sp. S15,
Agrobacterium sp. CZBSA1

Katz et al. (2001);
Ewida (2014)

3. Aldrin Pseudomonas sp., Bacillus
sp.,
Micrococcus sp.

Sharma et al. (2016)

4. Atrazine Arthrobacter sp.,
Clavibacter sp.

Sharma et al. (2016)

5. Cadusafos Pseudomonas putida,
Flavobacterium sp.

Karpouzas et al.
(2005)

6. Carbaryl Pseudomonas sp.,
Achromobacter sp.,
Arthrobacter sp.,
Xanthomonas sp.,
Pseudomonas cepacia

Chapalamadugu
and Chaudhry
(1991); Gunasekara
et al. (2008)

7. Carbendazim Pseudomonas sp.,
Brevibacillus borstelensis

Arya et al. (2017)

8. Carbofuran Flavobacterium sp.,
Pseudomonas sp.,
Flavobacterium sp.,
Achromobacterium sp.,
Sphingomonas sp.,
Arthrobacter sp.

Sharma et al. (2016)

9. Chlorpyrifos Achromobacter
xylosoxidans (JCp4),
Ochrobactrum sp. (FCp1)

Akbar and Sultan
(2016)

10. Cyhalothrin Klebsiella sp.,
Pseudomonas oleovorans

Thatheyus and
Selvam (2013)

11. Cypermethrin Escherichia coli,
Staphylococcus aureus,
Pseudomonas aeruginosa,
Bacillus subtilis,
Enterobacter asburiae,
Pseudomonas stutzeri

Thatheyus and
Selvam (2013)

12. DDT
(dichlorodiphenyltrichloroethane)

Klebsiella pneumonia,
Bacillus sp., Pseudomonas
putida, E. coli,
Hydrogenomonas sp.

Sharma et al. (2016)

13. Diazinon Pseudomonas cepacia Tewari and Saini
(2012)

14. Dieldrin Pseudomonas sp. Sharma et al. (2016)

15. Dimethoate Bacillus cereus, Bacillus
subtilis,
Bacillus safensis

Ishag et al. (2016)

(continued)
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Table 8.1 (continued)

Sl.
No. Pesticides Bacteria References

16. Endosulfan (α- and β-endosulfan) Pseudomonas sp., Bacillus
sp.,
Flavobacterium sp.

Karpouzas et al.
(2005)

17. Ethoprophos Sphingomonas paucimobilis Karpouzas et al.
(2005)

18. Fenvalerate Bacillus cereus,
Pseudomonas viridiflava

Thatheyus and
Selvam (2013)

19. Glyphosate Clostridium sp.,
Arthrobacter sp.

Tewari and Saini
(2012)

20. Imidacloprid Achromobacter sp.,
Pseudoxanthomonas sp.,
Sinorhizobium sp.,
Mesorhizobium sp.,
Microbacterium sp.

Sharma et al. (2016)

21. Iprodione Pseudomonas fluorescens,
P. paucimobilis,
Arthrobacter sp. C1,
Achromobacter sp. C2

Mercadier et al.
(1997); Campos
et al. (2015)

22. Lindane Bosea thiooxidans,
Sphingomonas paucimobilis

Karpouzas et al.
(2005)

23. Malathion Pseudomonas aeruginosa
AA112

Abo-Amer (2007)

24. Molinate Achromobacter
xylosoxidans subsp.
denitrificans,
Stenotrophomonas
maltophilia, Pseudomonas
chlororaphis IFO3904,
Pseudomonas nitroreducens
IAM 143, Curtobacterium
flaccumfaciens var,
Flaccumfaciens LMG 3645

Barreiros et al.
(2003)

25. Monocrotophos Rhodococcus sp. Tewari and Saini
(2012)

26. Pendimethalin Pseudomonas aeruginosa,
Bacillus mycoides, Bacillus
cereus

Sharef Ibrahim et al.
(2013)

27. Pentachloronitrobenzene Cupriavidus sp. BIS7 Teng et al. (2017)

28. Pyridine Paracoccus sp. Qiao and Wang
(2010)

29. Rizolex Bradyrhizobium sp. Moawad et al.
(2014)

30. Strobilurin Stenotrophomonas
maltophilia, Bacillus
amyloliquefaciens, Bacillus
flexus, Arthrobacter
oxydans

Clinton et al. (2011)

(continued)
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purpose is Pseudomonas sp. and they are found universally. Pseudomonas putida is
able to degenerate organophosphates (fenamiphos) and carbamate compounds
(carbofuran) (Chanika et al. 2011). Bacillus sp. and Pseudomonas sp. have the
capacity to degrade highly persistent substituents such as pyridine and their
metabolites, triclopyridine, picloram, nitrapyrin, and fluridone aerobically (Sims
and O’Loughlin 1989). Atrazine, a herbicide, breaks down by the excreted hydro-
lytic enzyme of Pseudomonas sp. and Klebsiella pneumoniae (Baishya and Sarma
2015).

8.4.1.1 Mechanism and Pathways of Remediation Process
The biodegradation or detoxification of PAs is a very complex process, involving
numerous enzyme-controlled biochemical pathways. The thorough understanding of
PA biodegradation pathway within bacteria enhances the capacity to modify
microbes for bioremediation. PA biodegradation is based on various classes of
enzymes, such as transferase, hydrolase, isomerase involved in redox reactions,
conversion of amino to nitro group by oxidation, nitro group reduction,
dehalogenation hydrolysis, insertion of O2 to a double bond and a �OH group in
benzene ring, and sulfur replacement (Megharaj et al. 2011). In aerobic conditions
Pseudomonas species is able to degrade organochlorides as it has initially
dechlorinated them and then converted to other forms by various reactions. For
example, DDT is initially converted to less toxic dichlorodiphenyldichloroethane
(DDD) which is then transformed to dihydroxy metabolites by dioxygenase enzyme
(Nadeau et al. 1994).

Table 8.1 (continued)

Sl.
No. Pesticides Bacteria References

31. Tetrachlorvinphos Stenotrophomonas
maltophilia, Proteus
vulgaris, Vibrio
metschnikovii, Serratia
ficaria, Serratia sp.,
Yersinia enterocolitica

Ortiz-Hernández
and Sánchez-
Salinas (2010)

32. Thiamethoxam, clothianidin,
dinotefuran

Leifsonia sp. Sabourmoghaddam
et al. (2015)

33. Tetramethylthiuram disulfide Pseudomonas aeruginosa Ray and Mondal
(2017)

34. Triclosan Aspergillus versicolor Taştan and Dönmez
(2015)

35. Triazine (s) methylthio-s-triazines Rhodococcus sp. strain
FJ1117YT

Fujii et al. (2007)

36. Tributyltin chloride (TBTCl) Pseudomonas aeruginosa,
Pseudomonas fluorescens

Ebah et al. (2016)

37. Vitavax (37.5% thiram) Rhizobium leguminosarum Moawad et al.
(2014)
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The degradation process for 2,4-dichlorophenoxyacetic acid is carried out aero-
bically by an ortho-cleavage pathway by Flavobacterium sp., Alcaligenes sp., and
Pseudomonas sp. finally yielding chloromaleylacetic acid along with its derivatives
2,4-dichlorophenol and 3,5-dichlorocatechol (Gibson and Sulflita 1990). Similarly,
Flavobacterium sp. (ATCC 27551) is able to satisfy the need of carbon by breaking
down the organophosphate compounds through phosphotriesterase enzyme. Atra-
zine (S-triazine group member) is degraded by dechlorination and hydrolysis. The
bacteria (specially found in soil) have the ability to degrade atrazine moderately or
completely with carbon dioxide and ammonia as the final yields (Singh et al. 2004).

Sims and O’Loughlin (1989) suggested that Bacillus sp. and Pseudomonas
sp. carry out the metabolism of pyridine to produce hydropyridine and successive
split into saturated aliphatic compounds. Association of Burkholderia sp. and
Ralstonia sp. in the remediation of aromatic (unsaturated) hydrocarbons and degra-
dation of n-hexadecanoic acid through intracellular β-oxidation (Yuan et al. 2013)
was suggested. Glyphosate metabolism by the bacterium Streptomyces lusitanuswas
done by Lipok et al. (2009).

8.4.1.2 Bacterial Enzymes/Genes Involved in PA Degradation
Bacteria possess remediating genes in both chromosome and plasmid. Suenaga et al.
(2001) reported that enzymes degrade PAs by considering them as their substrates.
Evolution of microbial biodegrading gene gives a huge opportunity to use them as a
bioremediating tool and also raise a ray of hope to deal with the challenge of
agrochemical pollution. Pseudomonas sp., Actinobacteria sp., and Klebsiella
sp. (Sayler et al. 1990) possess genes encoded for pesticide degradation and pollutant
degradation within anticatabolic plasmids and transposons (Laemmli et al. 2000),
respectively. The genes, i.e., atzA, atzC (trzC), and atzB (trzB), produce carbamate-
degrading enzymes such as atrazine chlorohydrolase, N-isopropyl-ammelide isopro-
pyl-amino-hydrolase, and hydroxy-atrazine ethylamino-hydrolase, respectively
(Sadowski et al. 1998). These clusters of genes manage the successive conversion
of atrazine to cyanuric acid after which it completely mineralizes into carbon dioxide
and ammonia (Sene et al. 2010).

Degradation of organophosphate compounds by Plesiomonas sp. strain M6 is
carried out through the enzyme methyl parathion hydrolase (MPH), encoded by mpd
gene. Likewise, some cluster of genes have been identified from diverse bacterial
species such as Rhodococcus sp. strain NI86/21 (Nagy et al. 1995) and
Achromobacter sp. WMll (Tomasek and Karns 1989), which are able to degrade
EPTC by the enzymes of aldehyde dehydrogenase, and P450 was responsible for the
degradation of thiocarbamate. 2,4-D (2,4-dichlorophenoxyacetic acid) biodegrada-
tion is carried out via the plasmid pJP4 (entitled as tfd gene) of Alcaligenes
eutrophus JMP134, 2,4-dichlorophenoxyacetate monooxygenase encoded by tfdA
(Streber et al. 1987), 2,4-dichlorophenol hydroxylase encoded by tfdB (Kaphammer
and Olsen 1990), and chlorocatechol-1,2-dioxygenase, chloromuconate
cycloisomerase, chlorodienelactone isomerase, and chlorodienelactone hydrolase
encoded by tfdCDEF (Kaphammer and Olsen 1990). Some transposons of Ralstonia
eutropha (Tn4371), Burkholderia cepacia (Tn5530), Alcaligenes sp. (Tn5271), and
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Pseudomonas putida (Tn4654) enable the degradation of biphenyl 4-chlorobi-phe-
nyl molecules, 2,4-D, toluene, carbofuran, and 3-chlorobenzoate, respectively
(Verma et al. 2014). Nagata et al. (1999) reported that Sphingobium japonicum
UT26 has dechlorinase enzyme, LinA (γ-hexachlorocyclohexane
dehydrochlorinase, EC 4.5.1), encoded by linA gene, which catalyzes a dehydro-
chlorination of two steps: γ-HCH to 1,3,4,6-tetrachloro-1,4-cyclohexadiene
(1,4-TCDN) via γ-pentachlorocyclohexene (γ-PCCH).

8.4.2 Cyanobacteria as PA-Degrading Agents

Cyanobacteria are the largest group of gram-negative, oxygen-evolving photoauto-
trophic prokaryotes which belongs to the kingdom Eubacteria. The other well-
known name of cyanobacteria is blue-green algae (BGA), named because of its
diverse morphology (unicellular, filamentous, and colonial) and pigmentation
(pigments like chlorophyll a, phycocyanin, allophycocyanin, phycoerythrin,
carotenoids, and xanthophylls). They can easily accommodate in diverse
ecosystems. Nowadays, cyanoremediation is a new term evolved to define the use
of cyanobacteria to fulfil the purpose of degradation or detoxification of
contaminants like PAs, heavy metal, and dye. There are frequent instances of
successful bioremediation of PAs by cyanobacteria (Table 8.2).

8.4.2.1 Mechanism and Pathways of Remediation Process
Nostoc ellipsosporum and Anabaena sp. PCC7120 are able to degrade
hexachlorocyclohexane to a combination of 1,2,3- and 1,2,4-trichlorobenzenes.
According to some reports, cyanobacteria, namely, Nostoc, Phormidium, and
Oscillatoria, can utilize methyl parathion by considering it as the solitary source
of nitrate and organic phosphorus (Megharaj et al. 1994) for their growth and
metabolism. In aerobic conditions, Anabaena sp. strain PCC 7120 is able to reduce
the nitro group of methyl parathion to an amino group (Barton et al. 2004). One of
the intermediate products of OP decomposition is para-nitrophenol which is more
lethal than OP. Report suggests that cyanobacteria oxidize nitro group of para-
nitrophenol and release nitrite. However, the biological mechanism of this process
is still unknown. Nevertheless, further metabolism of released nitrite is carried out by
“nir” operon which encodes nitrite reductase enzyme (Megharaj et al. 1994).
Phormidium valderianum BDU 20041 is able to tolerate the exposure of chlorpyri-
fos by showing the enhancement activity of oxidoreductase enzymes for chlorpyri-
fos degradation (Palanisami et al. 2009). Thengodkar and Sivakami (2010) reported
that Spirulina platensis is tolerant up to high concentration (80 ppm) of chlorpyrifos
treatment by converting it to 3,5,6-trichloro-2-pyridinol by utilizing its alkaline
phosphatase enzyme. Report suggests that Nostoc muscorum, Spirulina platensis,
and Anabaena oryzae facilitate the degradation of malathion and high-concentration
pesticides enhance the protein, carbohydrate, and biomass content in these
cyanobacterial cells (Ibrahim et al. 2014). Forlani et al. (2008) reported that Nostoc
punctiforme, Anabaena sp., and Microcystis aeruginosa have the potential of
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glyphosate degradation and consume it as a prime source of phosphorus.
Trichodesmium erythraeum has been reported to carry out the glyphosate transfor-
mation process for the utilization of phosphorus (Dyhrman et al. 2006).

Table 8.2 Biodegradation of persistent agrochemicals by cyanobacteria

Sl.
No. Pesticides Cyanobacteria References

1. 2,4-d
(Dichlorophenoxyacetic
acid)

Anabaena fertilissima,
Aulosira fertilissima,
Westiellopsis prolifica

Kumar et al. (2013)

2. 2,4-DNP (dinitrophenol) Anabaena variabilis,
Anabaena cylindrica

Hirooka et al. (2006)

3. Anilofos Synechocystis sp. PUPCCC 64 Singh et al. (2013)

4. Acetochlor Cyanobacterial mat consisting
of Phormidium and
Oscillatoria

El-Nahhal et al. (2013)

5. Carbaryl Calothrix brevissima Habib et al. (2011)

6. Carbendazim Oscillatoria sp. Ravindran et al. (2000)

7. Carbofuran Anabaena sphaerica, Nostoc
hatei, Westiellopsis prolifica

Jha and Mishra (2005)

8. Chlorpyrifos Phormidium valderianum,
Spirulina platensis,
Synechocystis sp. PUPCCC64

Palanisami et al. (2009)

9. Cypermethrin Oscillatoria sp. Thengodkar and Sivakami
(2010)

10. Endosulfan (α- and
β-endosulfan)

Anabaena sp. PCC 7120,
Anabaena flosaquae, Aulosira
fertilissima

Singh et al. (2011a, b, c);
Ravindran et al. (2000);
Lee et al. (2003)

11. Fenamiphos Nostoc muscorum, Anabaena
sp.

Cáceres et al. (2008)

12. Glyphosate Spirulina platensis, Nostoc
punctiforme, Microcystis
aeruginosa, Leptolyngbya
boryana

Kumar et al. (2012);
Cáceres et al. (2008);
Forlani et al. (2008); Lipok
et al. (2009)

13. Isoproturon Anabaena inaequalis Arunakumara et al. (2013)

14. Lindane Anabaena sp. PCC7120,
Nostoc ellipsosporum

González et al. (2012)

15. Malathion Anabaena oryzae, Nostoc
muscorum, Spirulina platensis

Ibrahim et al. (2014)

Anabaena sp. PCC7120 El-Bestawy et al. (2007)

16. Methyl parathion Anabaena fertilissima,
Aulosira fertilissima,
Westiellopsis prolifica,
Fischerella sp., Scytonema
sp. BHUS-5

Ibrahim et al. (2014);
Tiwari et al. (2017)
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8.4.2.2 Cyanobacterial Genes Involved in PA Degradation
The genetically manipulated cyanobacterial strains such as Anabaena, Nostoc
sp. PCC7120 (Masukawa et al. 2007), Anabaena variabilis ATCC 29413 (Roessler
et al. 2009), Synechococcus elongatus PCC 7942 (Kaczmarzyk and Fulda 2010),
and Synechococcus sp. PCC 6301 (McNeely et al. 2010) have been tested for their
bioremediating capacity. Anabaena sp. PCC 7120 and Nostoc muscorum
FACHB244 were genetically modified by introducing a plasmid which contains
opd (organophosphorus degradation) gene through conjugation gene transfer sys-
tem. By the process of genetic engineering, fcABC was introduced into Anabaena
sp. and Nostoc ellipsosporum for dechlorination of 4-chlorobenzoate. For the degra-
dation of lindane, linA gene was introduced into Anabaena sp. and Nostoc
ellipsosporum (Kuritz and Wolk 1995).

8.4.3 Fungus as PA-Degrading Agents

In the biogeochemical cycle, fungi play a significant role as they are responsible for
degrading different kinds of xenobiotics including agrochemicals (Diez et al. 2012)
(Table 8.3). Various fungal species are able to mineralize different groups of
substances (Esterhuizen-Londt et al. 2016). Gianfreda and Rao (2004) reported
that fungi are able to alter the structures of agrochemicals and other fractious
compounds releasing biotransformed products. These biotransformed products are
further broken down by other potential microbial strains.

Another strain, Penicillium oxalicum, showed 99.9% biodegradation of
methamidophos within the incubation period of 12th day (Zhao et al. 2010). The
phenylurea agrochemicals such as linuron, chlortoluron, isoproturon, and diuron
were found to be degraded byMortierella sp., Bjerkandera adusta, and Rhizoctonia
solani (Khadrani et al. 1999). Several reports suggested that soil fungi such as
Penicillium sp., Eurotium sp., and Aspergillus sp. have the capacity to degrade
chlorpyrifos and its by-product TCP after 7 days of incubation (Maya et al. 2012).
Mucor racemosus can degrade dieldrin (93%), DDE (79%), endosulfan sulfate
(95%), heptachlor (94%), endosulfan (80%), heptachlor epoxide (67.5%), and
DDT (49.3%) (Kataoka et al. 2010). Several white-rot fungal isolates including
Phanerochaete sordida, Trametes hirsutus, and Pleurotus ostreatus have also
revealed their potential to degrade diuron, lindane, and other fractious agrochemicals
(Sagar and Singh 2011). Purnomo et al. (2014) suggested that P. ostreatus, a white-
rot fungus, had the ability to eliminate around 89% of heptachlor and 32% of
heptachlor epoxide after the incubation period of 28 days.

Current scenario of pesticide biodegradation is the utilization of fungal-bacterial
co-culture because they frequently share the same niche (Warmink et al. 2009).
Reports (Ellegaard-Jensen et al. 2014) suggested that the consortium of fungi
(Mortierella sp. LEJ703 and LEJ702) and bacteria (Arthrobacter globiformis,
Sphingomonas sp., and Variovorax sp.) has the ability of fast mineralization of the
agrochemical diuron. Barathidasan et al. (2014) recorded a consortium of
Cellulomonas fimi (bacteria) and Phanerochaete chrysosporium (fungi) able to
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Table 8.3 Biodegradation of persistent agrochemicals by fungi

Sl.
No. Pesticides Fungi References

1. Aldrin Phlebia acanthocystis,
Phlebia brevispora,
Phlebia aurea, Mucor
racemosus

Bhosle and Nasreen
(2013); León-
Santiesteban and
Rodríguez-Vázquez
(2017)

2. Atrazine P. ostreatus INCQS
40310, Rhizopus
stolonifer, Penicillium
purpurogenum

Pereira et al. (2013);
Gonçalves et al. (2012)

3. Bensulfuron-methyl Penicillium pinophilum Peng et al. (2012)

4. Chlordane Boletus edulis Bhandari (2017)

5. Chlorothalonil Pleurotus ECS-0190 Camacho-Morales and
Sanchez (2016)

6. Chlorfenvinphos Trichoderma harzianum Oliveira et al. (2015)

7. Chlorpyrifos Verticillium sp. Yu et al. (2006)

Aspergillus sp.,
Penicillium sp.,
Eurotium sp.,
Emericella sp.

Maya et al. (2012)

Cladosporium
cladosporioides

Chen et al. (2012)

Ganoderma sp. Silambarasan and
Abraham (2014)

Acremonium sp. strain
GFRC-1

Kulshrestha and Kumari
(2011)

Streptomyces sp. M7 Fuentes et al. (2013)

Verticillium sp. Fang et al. (2008)

8. Cypermethrin Pseudomonas
aeruginosa

Bhosle and Nasreen
(2013)

9. β-Cypermethrin Aspergillus niger YAT Deng et al. (2015)

10. DDT
(dichlorodiphenyltrichloroethane)

Laccaria bicolor,
Boletus edulis,
L. scabrum,
Gymnopilus viscidus,
P. ostreatus,
G. trabeum, Daedalea
dickinsii, Fomitopsis
pinicola, Gomphidius
viscidus

Purnomo et al. (2010);
Purnomo et al. (2011);
Bhandari (2017)

11. Dimethoate Phlebia acanthocystis,
P. brevispora, Phlebia
aurea

Xiao et al. (2011)

12. Diuron Phanerochaete
chrysosporium,
Cunninghamella
elegans, Mortirella

Fratila-Apachitei et al.
(1999); Tixier et al.
(2000, 2001); Badawi

(continued)
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Table 8.3 (continued)

Sl.
No. Pesticides Fungi References

isabellina, Beauveria
bassiana, Aspergillus
niger, Mortierella
isabellina, Mortierella
sp., Aspergillus
fumigatus

et al. (2009); Oliveira
et al. (2015)

13. Endosulfan (α- and β-endosulfan) Aspergillus terricola,
Aspergillus terreus,
Trametes hirsute,
Aspergillus niger,
Aspergillus niger
ARIFCC 1053,
Mortierella sp. Cm1–
45, Mortierella sp. W8,
Aspergillus sydoni,
Gloeophyllum trabeum

Hussain et al. (2007);
Kamei et al. (2011);
Bhalerao and Puranik
(2007); Bhalerao
(2012); Kataoka et al.
(2010); Goswami et al.
(2009); Spina et al.
(2018)

14. Endrin Leccinum scabrum Bhandari (2017)

15. Heptachlor Pleurotus ostreatus Purnomo et al. (2014)

Phlebia acanthocystis,
Phlebia tremellosa,
Phlebia brevispora

Xiao et al. (2011)

16. Isoproturon Mortierella sp., Mucor
sp., Alternaria sp.,
Phoma eupyrena,
Basidiomycete Gr177,
Cunninghamella
elegans, Penicillium
melanoconidium

Rønhede et al. (2005);
Oliveira et al. (2015)

17. Lindane Fusarium solani,
Fusarium poae,
Fusarium
verticillioides, Irpex
lacteus, Phanerochaete
chrysosporium,
Phanerochaete sordida,
Phlebia radiata,
Stereum hirsutum,
Gloeophyllum trabeum

Dritsa et al. (2009);
Sagar and Singh (2011);
Guillen-Jimenez et al.
(2012); Quintero et al.
(2008); Spina et al.
(2018)

18. Malathion Fusarium oxysporum
JASA1

Peter et al. (2015)

19. Methamidophos Penicillium oxalicum Zhao et al. (2010)

20. Monocrotophos Aspergillus flavus,
Fusarium
pallidoroseum,
Macrophomina sp.

Jain et al. (2014)

21. Parathion Bjerkandera adusta
8258, P. ostreatus 7989,
Phanerochaete
chrysosporium 3641

Jauregui et al. (2003)

(continued)
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mineralize chlorpyrifos completely within 16 h. Abraham and Silambarasan (2014)
reported a co-culture of bacterial strains such as Enterobacter cloacae JAS7 and
Klebsiella pneumoniae JAS8 and fungal strains such as Lasiodiplodia sp. JAS12,
Aspergillus tamarii JAS9, and Botryosphaeria laricina JAS6 which had the ability
to degrade endosulfan completely in both aqueous and solid media.

8.4.3.1 Mechanism and Pathways of Remediation Process
The fungal strains follow various pathways during the degradation process. For
example, during the biodegradation process of isoproturon (IPU) by Mortierella
sp. Gr4, it was found that IPU undergoes two successive demethylation activities on
urea chain and results in generating monodemethyl isoproturon and didemethyl
isoproturon and then hydroxylation of isopropyl ring takes place which leads to
the formation of 1-OH-IPU, 1-OH-monodemethyl isoproturon, and
1-OH-didemethyl isoproturon (Hussain et al. 2007). Another agrochemical
β-cypermethrin, a pyrethroid insecticide, was esterified into two intermediates, i.e.,
permethric acid and α-cyano-3-phenoxy benzyl alcohol by Aspergillus niger (Deng
et al. 2015). Kadimaliev et al. (2011) observed phenol degradation by Lentinus
tigrinus in liquid medium via peroxidase and laccase enzymes.

León-Santiesteban and Rodríguez-Vázquez (2017) found that Rhizopus oryzae
CDBB-H-1877 has the efficiency of pentachlorophenol biosorption. However, it has
been notified that this agrochemical can be degraded through the process of methyl-
ation along with dechlorination. Two dark septate endophytes (DSEs) as Alternaria
alternata and Cochliobolus sp. are able to degrade glyphosate, cypermethrin, and
carbendazim by their intracellular enzymes (Spagnoletti and Chiocchio 2020).

8.4.3.2 Fungal Genes/Enzymes Involved in PA Degradation
Recently, few studies have revealed different fungal enzymes involved in the
biodegradation of different types of agrochemicals (Jain et al. 2014). Conidiobolus

Table 8.3 (continued)

Sl.
No. Pesticides Fungi References

22. Pendimethalin Aspergillus terreus,
A. versicolor

Caihong et al. (2011)

Lentinula edodes Pinto et al. (2016)

23. Pentachlorophenol (PCP) T. harzianum CBMAI
1677

Vacondio et al. (2015)

Anthracophyllum
discolor

Rubilar et al. (2007)

24. Pyrene Pseudotrametes
gibbosa

Wen et al. (2011)

25. Vydate Trichoderma viride Helal and Abo-El-
Seoud (2015)
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sp. (a fungal strain) was found to be capable of removing lindane from liquid
medium by using its extracellular oxidative enzymes (lignin peroxidase and lignin-
modifying enzymes). Similar enzymatic activity was observed during the degrada-
tion process of dieldrin, trifluralin, and simazine by Trametes versicolor and
Phanerochaete chrysosporium, and the production of extracellular enzymes such
as dehydrogenase/cellulase was enhanced in inoculated soil (Fragoeiro and Magan
2008). Likewise, Jain et al. (2014) documented the degradation of monocrotophos
by three fungal isolates Macrophomina sp., Fusarium pallidoroseum, and Aspergil-
lus flavus that were coupled with the release of extracellular enzymes like alkaline
phosphatase, ammonia, and inorganic phosphates.

Nguyen et al. (2014) tested the efficiency of crude form of laccase extracted from
Trametes versicolor to degrade the various agrochemicals such as fenoprop,
ametryn, and atrazine. The genotype and growth conditions permit certain fungi to
release specific enzymes such as manganese-dependent peroxidase (MnP) and lignin
peroxidase (LiP) that play a significant role in pesticide degradation (Purnomo et al.
2010). Nowadays, the genetically transformed fungal strains are playing a vital role
as they enhance the efficiency of pesticide degradation (Zhou et al. 2007; He et al.
2014).

8.5 Factors Affecting Biodegradation of PA

Bioremediation of PAs is affected by numerous chemical, physical, and environ-
mental factors like chemical structure and concentration of PAs, soil moisture, soil
pH, temperature, salinity, sustainable microbial population, aeration, and medium
composition.

8.5.1 Chemical Structure and Concentration of PA

Chemical structure of PAs is a crucial factor in the biodegradation of PAs. The
physiochemical properties of agrochemicals are varying from compound to com-
pound. It was revealed that the polar group such as NH2 and OH, of an agrochemical,
is an easier site of attack by the microbial system (Cork and Krueger 1991).
However, the presence of any substituent of alkyl or halogen in a pesticide makes
it resistant to degradation. It was stated that minor differences in the structure and
nature of substituent groups of same class can affect the rate of degradation. The
amount of agrochemical significantly affects the biodegradation of agrochemicals.
Reports suggested that some microbes can be able to degrade PA rapidly at high
concentrations, whereas some can carry out degradation at low concentrations.
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8.5.2 pH

pH is always an important factor in the environment and affects degradation of PAs
by fungi and other microbes (Fang et al. 2008). It also affects the bioavailability,
chemical speciation, and mobility of the chemical compounds. Racke et al. (1997)
stated that biodegradation of an agrochemical depends on the soil pH. Any variation
in pH from the optimum value adversely affects the biodegradation capacity of
specific fungi. pH range of 4.0–8.0 showed good degradation rate for dieldrin by
Mucor racemosus, a potential fungal strain (Kataoka et al. 2010). Yang et al. (2011)
found that pH 7.5 was the optimum pH for the highest degradation rate of carbofuran
by Pichia anomala. An optimal pH for the highest degradation rate of chlorpyrifos
by a consortium of Serratia sp. and Trichosporon sp. was found to be 8 (Xu et al.
2007). However, several investigations also suggest that somewhat acidic pH is
comparatively more desirable to carry out optimal fungal degradation of
agrochemicals (Hussain et al. 2007). Caihong et al. (2011) observed that the
maximum biodegradation of an agrochemical pendimethalin (belongs to
dinitroaniline class) by Aspergillus versicolor was achieved at pH 6.5.

8.5.3 Temperature

Besides pH, temperature also has significant effects on the pesticide degradation.
The optimum temperature is not fixed; it can be variable in certain conditions. For
example, reports found that the optimal chlorpyrifos degradation by a bacterial
strain, Verticillium sp., was attained at 35 �C (Fang et al. 2008). Derbalah and
Belal (2008) reported the optimal degradation of cymoxanil by microbes to be
30 �C. A reliable temperature of 30 �C was reported in the degradation process of
various pesticides—endosulfan, carbofuran, and pendimethalin—by the isolates of
Aspergillus terreus, Pichia anomala, and Aspergillus versicolor, respectively
(Hussain et al. 2007; Yang et al. 2011). Reports of Dritsa et al. (2009) suggested
the optimal temperature to degrade lindane by Ganoderma australe to be 18 �C.

8.5.4 Moisture and Water Availability

Moisture is a considerable factor that affects the biodegradation rate by facilitating
water as the medium for mobility and diffusion of agrochemicals as well as essential
for making agrochemicals available for microbes. For a blooming degradation
process, the moisture content of soil should be in a range of 25–85% of the water-
holding capacity. However, the optimum range varies between 50 and 80%. Water
availability has an impact on oxygen supply that later impacts the growth of fungus
and production of enzymes (Philippoussis et al. 2001). It also impacts the agrochem-
ical binding patterns and its dispersion in soil by affecting the accessibility of
compounds to the soil microbiota. Bastos and Magan (2009) investigated the
biodegradation of atrazine in a period of 24 weeks by Trametes versicolor and
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indicated that 98% and 85% degradation took place at water potential of �0.7 MPa
and �2.8 MPa, respectively.

8.5.5 Salinity

There is less information on the effect of salinity on the rate of biodegradation
process. But salinity is a hurdle in varied regions like coastal, arid, and semiarid.
Thus, it may influence the degradation rate of PAs. In nonsaline soil condition, the
rate of parathion degradation is much faster than saline condition. The stability of
agrochemicals is affected by the degree of salinity. For example, high salinity may
cause an obstacle for biodegradation of agrochemicals as it inhibits degradation
process.

8.5.6 Nutrients

The optimal biodegradation takes place by the occurrence of high nitrogen content
along with 1% of glucose. Zhao et al. (2010) reported that only 1% of glucose is
needed for the biodegradation of methamidophos by Penicillium oxalicum ZHJ6.
Likewise, Kataoka et al. (2010) found Mucor racemosus to have better efficiency in
degrading dieldrin in the presence of nitrogen and glucose. Dritsa et al. (2009)
reported the media composition of 1.28 g/L of nitrogen to be the optimal condition
for lindane biodegradation by the fungus Ganoderma australe. Hussain et al. (2007)
reported that the rate of endosulfan degradation by fungi Aspergillus terreus,
Aspergillus terricola, and Chaetosartorya stromatoides is considerably higher in
agitation incubation than in static incubation. Similarly, Xu et al. (2007) suggested
that the addition of sucrose with a little higher concentration was able to enhance
chlorpyrifos mineralization by a consortium of Trichosporon sp. and Serratia
sp. Likewise, Caihong et al. (2011) reported that Aspergillus versicolor showed
enhancement in the rate of pendimethalin degradation by adding 1–2% of sucrose. In
case of soil, oxyfluorfen degradation by fungus is affected by both temperature and
mineral fertilizers.

8.6 Advantages and Limitations of Bioremediation

For a successful bioremediation process, microbes with specific quantity and correct
timing under correct place and environment are required. The definition of a perfect
microbe regarding this context is having the potential to degrade, detoxify, or
remove contaminants including agrochemicals and other persistent pollutants.
Thus, bioremediation is such a process that helps in keeping the environment
clean by removing contaminants through biological aspects such as microorganisms
and plants. In nature, every aspect has its own pros and cons; however, bioremedia-
tion technique offers numerous benefits with little limitations. Bioremediation can be
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carried out in contamination sites, termed as in situ bioremediation. In this context,
the substrates or nutrients are added to that particular contaminated site which
stimulates the growth of indigenous microbes to enhance the degradation rate.
This process is often less expensive as it minimizes the site disruption which leads
to non-disturbance of soil and ensures soil fertility and integrity. Additionally, it
helps to get rid of waste permanently and eradicates long-term liability. After the
destruction of pollutants, the land is allowed to use. In some cases, the contaminated
or polluted material is collected from the site and supplied with essential microbes or
microbial consortium at an organized site, called as ex situ bioremediation. This
process is found successful in wastewater management. The latter technique is more
controlled than the former one. The bioremediation method can easily be coupled
with other treatment (chemical and physical) methods. It has more public acceptance
with proper regulatory encouragement. In the context of performance efficiency,
there is no such kind of universal guidelines to define degradation efficiency as
standard. Thus, there is always a variation in performance. The bioremediation
process needs microorganisms along with a suitable environmental condition to
keep them growing, which might not be always possible in in situ bioremediation.
In case of certain uncontrolled remediation processes, the partial destruction might
produce more poisonous and ambulant products than its native form. Uninterrupted
observations are essential to check the status and know the speed of degradation of
the persistent agrochemicals. In ex situ process, the organic compounds which have
volatile property are challengeable to control. As the process is dependent on
biological and physiological activity of microbes, its duration is slightly longer
than that of chemical and physical processes. The genetically modified microbes
are hard to take away from application sites and there is always a frightened
possibility of causing more potential damage by these microbes than the original
pollutants. Apart from all these limitations, bioremediation is considered as a
significant tool in mitigating today’s environmental issues.

8.7 Strategies to Enhance the Efficacy of PA Degradation

As contamination of environment is rising rapidly, to cope up this situation certain
strategies are needed which enhance the efficacy of biodegradation. These processes
are described below:

8.7.1 Immobilization

The immobilization concept may be defined as the act of restricting the movement of
molecules/cellular organelles/enzymes/cells/microbes in a matrix. This concept is
developed from the attachment nature of microbes onto a surface, thereafter growing
on them (Robinson et al. 1986). In this method the accurate positioning of microbes
takes place in such a manner that they are active in biodegradation (Mohamad et al.
2015). This process needs high biomass (mass culture) of microbes with proper
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catalytic activity, simple separation, and reusability. This technique can be divided
into four types, i.e., surface adsorption, embedding, covalent bonding, and cross-
linking (Vasilieva et al. 2018). The surface adsorbent is the most affordable and
simple process. The adsorbent materials/carriers play vital roles with reversible route
as it convenes the prospect of sustaining the catalytic activity for a longer duration
(Chen and Georgiou 2002). A suitable carrier should have the following criteria:
(1) affordable price, (2) nonhazardous, (3) non-pollutant, (4) easy physical structure,
and (5) lightweight. For passive immobilization, natural carrier and polyvinyl and
polyurethane (synthetic carrier) are mostly used. In active immobilization the
carriers are flocculent agents (chitosan), chemical attachment (glutaraldehyde), and
gel entrapment (natural polysaccharides and synthetic polymers, i.e., acrylamide;
proteins, i.e., collagen) (Taha and Khateb 2013). Reports suggest that the immobili-
zation technique has been widely employed in the bioremediation of pesticides and
wastewater treatment (Cassidy et al. 1996). Immobilized microalgae like Chlorella
were used for the removal of lindane (Kuritz and Wolk 1995). The combination of
algae and bacteria can be used for the enhancement of pollutant removal. Thus,
immobilization techniques are considered as an admirable way for removal of
pesticides.

8.7.2 Acclimation

This process is defined as the continuous association of a population of microbes to a
particular chemical, leading to quick degradation of that chemical. In this associa-
tion, microbes produce enzymes that can provide them tolerance or degrading
capacity against that particular chemical (Guo et al. 2017). In stress conditions,
organisms always tend to retain their internal mechanism by altering gene expression
(Borowitzka 2018). Reports suggest that lindane concentration between 5 and
120 mg/L could be tolerated by Staphylococcus intermedius under this acclimation
process with 99% lindane-degrading efficiency (González et al. 2012). The extended
acclimation period is the major obstacle on the way of achieving a potential
microbial strain.

8.7.3 Co-cultivation

Co-cultivation is a process where the existence of more than one microbial group is
found. Cyanobacteria and bacteria (Patel et al. 2017), bacteria and microalgae co-
cultures remediate organic pollutants more efficiently. Cyanobacterium offers
growth substrates and oxygen along with suitable environmental condition to bacte-
ria for promoting their growth (Subashchandrabose et al. 2013). The bacteria
produce carbon dioxide which is used as a carbon source by cyanobacteria and
microalgae (Kumar and Singh 2017; Kumari et al. 2016). In certain cases, Bacillus
pumilus, for example, promotes the growth of Chlorella vulgaris in a medium
without nitrogen and inhibits the growth of nannochloropsis species (Fulbright
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et al. 2016). The research on co-cultivation concept should be more focused to be a
promising bioremediation tool.

8.7.4 Genetic Modification and Enzyme Application

The genetic alteration of microbes is an innovative strategy that inserts certain target
genes into the chromosome of host cell or erases a particular chromosomal fragment,
which can undergo successive screening and acclimation activity to instantly express
the preferred form and intensify the metabolism of the cell (Poliner et al. 2018). A
wild fungal strain with hygromycin B phosphotransferase (hph) gene insertion
showed improved quality to decadent pesticide. In fungal species, cytochrome
P450 monooxygenases induce the gene clusters to express deferentially, based on
the availability of nutrients and xenobiotic compounds (Yadav et al. 2015). The
CCA gene cluster consisting of copied carbonic anhydrase and cyanase in Fusarium
oxysporum has the efficiency to detoxify an agrochemical, cyanate (Elmore et al.
2015).

8.8 Conclusion

The hazardous chemicals need a promising tool for detoxification and remediation of
its toxicity from our environment. The environmental consciousness resulted in
improved regulatory measures to remediate environmental pollution and defend
our ecosystem from upcoming pollution and exploitation. Because of this rational
motive, it is essential to make strategies for the bioremediation of contaminated
environment. Nowadays bioremediation is a most active, innovative, fascinating,
and multidisciplinary area of research. In developing countries, the microbial reme-
diation can enhance soil quality by detoxifying the hazardous chemicals from soil.
However, more research programs are required to improve the potential of bioreme-
diation and restore the soil quality by applying microbes. Economically, the use of
PAs is beneficial as it improves the crop production and controls the diseases and
pests, while in the environmental context PAs are considered as the most harmful
factor for the environment. Thus, from both the environmental and economic
standpoints, biodegradation is a fruitful technology upon PA application. Currently,
the usefulness of indigenous as well as genetically modified organisms in removing
or detoxifying persistent agrochemicals has emerged as a potential in situ remedia-
tion method. Numerous research reports have been collected and presented here on
various organisms like bacteria, blue-green algae, and fungus, used for the bioreme-
diation of environmental pollutants. However, the large-scale utilization of microbes
for the degradation of PA pollutants is still to be explored.
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