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Abstract Existed results have shown that the evolution of nonlinear Rossby solitary
wave is essential for the understanding of long-term atmospheric or oceanic prop-
agations, which makes much contribution to the prediction of long-term extreme
weather or climate phenomena. In this chapter, the nonlinear equatorial Rossby wave
is considered under the Non-Traditional Approximation (NTA). Using methods of
multiple scales and weak nonlinear expansions, we derive a newmodified Zakharov-
Kuznetsov equation from the barotropic potential vorticity equation with combined
effects of the horizontal component of Coriolis parameter, the topography and the
dissipation. Weak nonlinear method and reduced differential transform method are
developed to solve the obtained newmodified Zakharov-Kuznetsov equation, respec-
tively. The effects of topography and dissipation are studied numerically. Within the
present selected parameter ranges, the numerical result shows that the basic topogra-
phy affects the Rossby wave amplitude much than slowly varying topography does.
In addition, the influence of slowly varying topography on Rossby wave amplitude
happens in the direction of latitude. Finally, conservation laws of new modified
Zakharov-Kuznetsov equation are discussed and the corresponding dynamical anal-
ysis without dissipation or slowly varying topography is given.
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1 Introduction

Geophysical Fluid Mechanics (GFM) is mainly on the study of fluid flows while the
rotation effect of planets could not be neglected, such as the atmosphere or ocean in
the earth. Among many kinds of wave motions in GFM, the Rossby wave describes
the long-term propagations, such as weather or climate phenomena in atmospheres,
wave guide in oceans [1]. The durations of such phenomena are usually about 10
days or longer. One distinctive fact is that they can maintain stable, persistent, and
large solitary kind waves, such as the Jupiter’s Great Red Spot, the North Atlantic
Oscillation (NAO), and the atmospheric blocking [2]. The evolution of Rossby soli-
tary wave is affected by multiple physical factors, such as the bottom topography,
the basic flow, the stratification of atmosphere or ocean, and the external heat or
dissipation. Such fascinating features enable scholars to explain the physical mech-
anisms of some extreme weather activities. Historically, several types of nonlinear
partial differential equations were derived to disclose the physical mechanisms of
Rossby solitary waves. In 1895, Korteweg and de Vries [3] initiated the well-known
Korteweg-de Vries (KdV) model equation

At + αAx + βAxxx + γ AAx = 0 (1)

to describe the evolution of nonlinear shallow water waves, where t, x represents
the temporal and spatial variable, respectively, and the subscripts denote the partial
derivatives to the corresponding variables. It was first derived by Long [4] in 1964
to simulate the evolution of nonlinear Rossby solitary wave amplitude under the β-
plane approximation. In 1966, Benny further investigated the Rossby solitary waves
according to the KdV model equation [5]. The corresponding results present the
relationship between the wave velocity and the wave amplitude, which generalized
the results of Long [4]. Later, the modified Korteweg-de Vries (mKdV) [6–8]

At + αAx + βAxxx + γ A2Ax = 0 (2)

was obtained to present a stronger nonlinearity of mKdV than that of KdV. Besides,
Body [9, 10] obtained theKdVandmKdVmodel equations bydirectly usingmethods
of reductive perturbations based on the primitive model equations. Later, other kinds
of evolution equations were given to describe the nonlinear Rossby solitary waves,
such as KdV-Burgers equation [11], and so on . Interestingly, Ono [12, 13] used an
integra-differential model equation, named as Benjamin-Davis-Ono (BDO) equation
to simulate the propagation of nonlinear Rossby waves, which declares the existence
of algebraic solitary waves in GFM. The BDO equation is

At + αAx + βAAx + γ
∂2 H(A)

∂x2
= 0, (3)
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where H(A(x, t)) = 1
π
P

∫ +∞
−∞

A(x ′,t)
x−x ′ dx ′ is the Hilbert transformation of A(x, t), and

P represents the Cauchy Principal Integral. The Boussinesq model equation

Att + αAxx + βAxxxx + γ AAx = 0 (4)

was obtained to simulate the evolution of nonlinear Rossby solitary waves. It should
be denoted that the Boussinesq model equation represents that the wave propagates
in two directions while other models yield only one-direction evolutions. With the
development in this field,more andmore complex and fascinating evolution equations
were derived by scholars to reveal the dynamics of nonlinear Rossby waves. For
example, Yang and the cooperators have done much progress on the study of Rossby
solitary waves in deep rotational fluids [14–19]. Most investigations declare that the
meridional shear basic flow and the bottom topography have great influence on the
excitation, the evolution, and disappearance of Rossby solitary waves. In recent past
years, Hoddys et al. [20–23] considered the effect of zonally varying basic flow on
the dynamics of nonlinear Rossby solitary waves. The KdV equation and Boussinesq
equation with variable coefficients were derived to simulate the Rossby solitary wave
amplitude. The results yield that the zonally varying background flow has obvious
influence on both the wave phase speed and the amplitude. Special attention should
be paid on the development of Rossby wave packet theory. Luo et al. [24–27] begun
to use the efficient nonlinear Schrödinger model equation (NLS)

i At + αAxx + |A|2Ax = 0, (5)

since the 1980s, where i is the square root of−1. They used the NLSmodel equation
to characterize the evolution of kinds of extreme weather event, such as the NAO,
all their abovementioned results depict that it is appropriate for the adoption of NLS
model equation in simulating the propagation of nonlinear Rossby solitary waves.
Much more related work has been done in the recent years [28–36].

On the other hand, for most previous studies, such as [20], the “Traditional
Approximation” (TA), which neglects the horizontal component of the Coriolis
parameter fH = 2Ω cosϕ, was accepted by most investigators like Eckart [37], and
so on, where Ω is the angular velocity of the earth rotation, and ϕ is the latitude. By
now, large amounts of work have been finished on such approximation. Existed theo-
retical and numerical results have shown that the TA is quite successful in the investi-
gation and understanding for large-scale atmospheric or oceanic motions. However,
it is necessary to consider the qualitative dynamics of nonlinear waves with com-
plete Coriolis parameters of both vertical and horizontal components, f = 2Ω sin ϕ

and fH = 2Ω cosϕ, respectively. It is called the “Non-Traditional Approximation”
(NTA) [38–41]. Especially for the case of the equatorial atmospheres or oceans, the
horizontal component of the Coriolis parameter is more important compared to the
vertical one in this area. Thus, it is essential to study the tropical motions under NTA,
such as the instability, the dispersion, and the Madden-Julian Oscillation (MJO). For
the study of completeCoriolis parameters, Beckman denoted that the horizontal Cori-
olis parameter has advantages than both the vertical one and the nonlinearity [42].
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Gerkema and Shiria [43, 44], White and Bromley [45] announced that the horizontal
Coriolis parameter should not be omitted as it is one of the main factors inducing
the equatorial near-inertial waves. Hayashi [46] further denoted that the horizontal
Coriolis parameter affects the vertical vorticity, the pressure, the potential tempera-
ture, and the density of the equatorial atmosphere under the NTA. Yasuda and Sato
[47] presented the influence of complete Coriolis force on the linear near-inertial
waves. Kasahara and Gary [48–50] gave the numerical solution of the linearized
model under the complete Coriolis force. Davies et al. [51] obtained the numerical
solution for a general compressible fluids, which has great application for theweather
prediction and climate changes. Reznik discussed linearized wave dynamics and the
geostrophic problems under the non-traditional approximation [52–55]. Itano [56],
Tort et al. [57] investigated the inertial instability of the zonally symmetric flow under
the f -plane approximation of NTA. It discloses that theNTAwould enhance the iner-
tial instability. Mass and Harlander studied the equatorial wave attractor and inertial
oscillation under the complete Coriolis force [58] and some other results [59–61].
Last but not most, the variational approach was also popular for the scholars to study
the nonlinear Rossby waves in the past decades [62, 63]. It is worthy of mentioning
the fact that Dellar and Salmon [64] obtained a similar conserved potential vortic-
ity equation under NTA just as the classical potential vorticity conserved equation
under TA.

However, there is only one spatial variable in abovementioned equations.Actually,
the real evolution of nonlinear Rossby solitary waves depends on not only one spatial
direction. Therefore, it is quite necessary to generalize the evolution of Rossbywaves
with respect to higher dimensional cases. In the context of some physical fields, such
as plasma physics, ion-acoustic waves, and shallow water waves, some researchers
generalized the KdV equation and the mKdV equation in higher dimensional cases.
It is well known that the Kadomtsev-Petviashvili (KP) and Zakharov-Kuznetsov
(ZK) equations are in two spatial and one temporal coordinates. Kadomtsev and
Petviashvili [65] first proposed the KP equation in their study of the evolution of long
ion-acoustic waves of small amplitude propagation in plasma. Hereafter, Infeld et al.
[66] and Groves et al. [67] investigated the extended KP equation with respect to 2-D
shallow water waves and ion-acoustic waves in plasma, respectively. The Zakharov-
Kuznetsov equation [68, 69], which is a higher dimensional generalization of the
KdV equation, was derived in the area of plasma. Different from the KP equation,
Ablowitz et al. [70] proved that the ZK equation is not integrable by the inverse
scattering method. In the research of the Rossby waves in GFM, Gottwalld [71]
first derived the ZK equation for the evolution of nonlinear Rossby waves from the
quasi-geostrophic potential vorticity equation. In recent years, Zhang et al. [72–75]
presented the physicalmechanismsof nonlinearRossbywaves byusing theZKmodel
equation, and manifested the existed results a lot. Fu et al. [76] and Guo et al. [77]
further derived some kind of fractional ZKmodel equations to simulate the evolution
of nonlinear Rossby solitary waves in stratified fluids. The above studies showed that
ZK equation and generalized ZK equation are appropriate model equations in the
simulation of the evolution of nonlinear Rossby waves.
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Additionally, it is important to construct analytical solutions for the nonlinear
partial differential equation (NPDE). In the construction of the solutions to theNPDE,
many directmethods have been developed, such as the inverse scatteringmethod [70],
the sine-cosine algorithm [78], the Hirota bilinear method [79–81], the efficient first
integral method by Feng [82], the modified trigonometric function series method
[83], The tanh method [84], the homotopy analysis method [85], the homogeneous
balancemethod [86], themultiple exp-function [87], themodified (G ′/G)-expansion
method [88], and soon [89–92]. In the present paper, choosing the appropriatemethod
is also necessary for us to obtain the analytical solutions to the new mZK equation.
Furthermore, numerical solutions are essential for the investigations of kinds of
fluid phenomena. For example, Zeidan et al. [93–95], Goncalves et al. [96] studied
porous media mixtures containing nanofluids using a hyperbolic conservative two-
phase flow model. Goncalves et al. [97, 98] also numerically studied the interaction
between a plane incident shock wave and a cylindrical bubble.

To the best of our knowledge, there are not many reports about the generalized
formal equation of the ZK in the study of nonlinear Rossby waves yet. It is essen-
tial for us to investigate such problems. Now, we will consider a new modified ZK
(nmZK) equation for nonlinear Rossby waves. In Sect. 2, we are interested in the
derivation of the nmZK equation for nonlinear Rossby waves from the barotropic
quasi-geostrophic equation. In Sect. 3, the solitary wave solutions of the nmZK equa-
tion are obtained by using weak nonlinear perturbation and efficient reduced differ-
ential transform methods. Through numerical calculation, the influence of all kinds
of physical parameters on the Rossby wave amplitude is given. In Sect. 4, the con-
servation laws under the influence of dissipation and slowly varying topography are
obtained.Also, the dynamical analysiswithout considering the slowly varying topog-
raphy and dissipation is given. Finally, some conclusions and further discussions are
presented in Sect. 5.

2 Nonlinear Equatorial Wave Model

2.1 Basic Mathematical Model

In this work, we will go on investigating the nonlinear equatorial waves based on the
conserved potential vorticity equation under the NTA [64]

(
∂

∂t
+ ∂Ψ

∂x

∂

∂y
− ∂Ψ

∂y

∂

∂x

)(

∇2Ψ + f − fH
∂B

∂y

)

= −μ∇2Ψ + Q, (6)

with boundary conditions

∂Ψ

∂x

∣
∣
∣
∣
y=0

= ∂Ψ

∂x

∣
∣
∣
∣
y=1

= 0, (7)
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whereΨ is the total stream function, B(x, y) is the topography,μ is the turbulent dis-
sipation parameter, Q is the potential vorticity forcing, and∇ is the two-dimensional
Laplace operator.

In our contribution, we mainly consider the motions of tropical atmospheres. It is
obvious that the vertical Coriolis parameter f is weak compared to the horizontal one
fH . Thus, throughout the whole work, the variation of vertical Coriolis parameter f
is neglected. Next, introducing L ,U to be the characteristics of spatial length and
velocity, respectively, and H is the topography characteristic. We have the following
non-dimensional equation:

(
∂

∂t
+ ∂Ψ

∂x

∂

∂y
− ∂Ψ

∂y

∂

∂x

)(

∇2Ψ − δ
∂B

∂y

)

= −μ∇2Ψ + Q (8)

and the boundary conditions

∂Ψ

∂x

∣
∣
∣
∣
y=0

= ∂Ψ

∂x

∣
∣
∣
∣
y=1

= 0, (9)

where parameter δ = H
L denotes the aspect ratio, and the corresponding term with δ

represents a combined effect of both topography and Coriolis parameter fH on the
waves.

In order to solve the nonlinear problems (8) and (9) , we assume that

Ψ = Ψ̄ (y) + Ψ ′(x, y, t), (10)

where Ψ̄ (y) = − ∫ y
0 [ū(s) − c0]ds is the basic stream function andΨ ′ is the perturbed

one, ū(y)is the shear background current, and c0 is the wave speed. To obtain the
equation governing the amplitude modulation of the Rossby waves, we need to
introduce the following slow time and space variables [74]

X = ε
1
4 x, Y = ε

1
4 y, T = ε

3
4 t, (11)

where 0 ≤ ε � 1 is small for weak nonlinearity. We expand the perturbation stream
function Ψ ′ with the following form:

Ψ ′ = ε
1
4 Ψ1 + ε

1
2 Ψ2 + ε

3
4 Ψ3 + · · · . (12)

It is appropriate to believe that the topography is varying strongly along with the
south-north directions but weakly in the east-west directions. Thus, we assume

B(X, y,Y ) = B0(y) + ε
1
4 B1(X,Y ). (13)

The topography is in multiple scales, and it is different from most previous stud-
ies [18, 99], which considered only basic or slowly varying topography separately.
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The potential vorticity forcing is believed to balance the dissipation caused by the
background shear current [100].

Substituting Eqs.(8)–(11) into Eq.(7) leads to all order perturbation equations
about ε:

O(ε
1
2 ) :

{
(ū − c0)

∂
∂X

(
∂2Ψ1
∂y2

) + p(y) ∂Ψ1
∂X = 0

∂Ψ1
∂X = 0, y = 0, 1,

(14)

O(ε
3
4 ) :

⎧
⎪⎪⎨

⎪⎪⎩

(ū − c0)
∂

∂X ( ∂2Ψ2
∂y2 ) + p(y) ∂Ψ2

∂X = −2(ū − c0)
∂

∂X ( ∂2Ψ1
∂y∂Y )

− ∂Ψ1
∂X

∂
∂y (

∂2Ψ1
∂y2 ) + ∂Ψ1

∂y
∂

∂X ( ∂2Ψ1
∂y2 )

∂Ψ2
∂X = 0, y = 0, 1,

(15)

O(ε) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ū − c0)
∂

∂X ( ∂2Ψ3
∂y2 ) + p(y) ∂Ψ3

∂X = − ∂
∂T

∂2Ψ1
∂y2 − (ū − c0)

∂
∂X ∇2Ψ1

−2(ū − c0)
∂

∂X ( ∂2Ψ2
∂y∂Y ) − 3 ∂Ψ1

∂X
∂3Ψ1
∂y2∂Y − ∂Ψ1

∂X
∂3Ψ2
∂y3 − ∂Ψ2

∂X
∂3Ψ1
∂y3

+2 ∂Ψ1
∂y

∂
∂X ( ∂2Ψ1

∂y∂Y ) + ∂Ψ1
∂Y

∂
∂X ( ∂2Ψ1

∂y2 ) + ∂Ψ1
∂y

∂
∂X ( ∂2Ψ2

∂y2 )+
∂Ψ2
∂y

∂
∂X ( ∂2Ψ1

∂y2 ) + δ ∂Ψ1
∂y

∂2B1
∂X∂Y − μ0

∂2Ψ1
∂y2

∂Ψ3
∂X = 0, y = 0, 1,

(16)

where p(y) = −[δB ′′
0 (y) + ū′′(y)] and μ = ε

3
4 μ0 are satisfied.

2.2 Model Derivation by Multiple-Scale Method

Assume that a formal solution of Eq. (14) is

Ψ1 = A(X,Y, T )ϕ1(y). (17)

When ū(y) − c0 �= 0 , that is, without critical layer effect [100], it follows from
Eqs. (14) and (17) that {

ϕ′′
1 (y) + q(y)ϕ1(y) = 0,

ϕ1(0) = ϕ1(1) = 0.
(18)

Equation (18) is thewell-knownRayleigh-Kuo equation. q(y) = p(y)
ū(y)−c0

is the poten-
tial function of the meridional structure equation and it states that the nonlinear
topography and shear basic flow are necessary for the motions of the Rossby waves,
which is consistent with the real case. Here, it is a new finding that both the Coriolis
parameter fH and nonlinear topography are important in inducing the evolution of
nonlinear Rossby waves. However, Eq. (18) only determines the meridional struc-
ture of the waves. Thus, we need to solve higher order equations so as to know
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more about the spatial-temporal evolution of wave amplitude A(X,Y, T ). Assume a
formal solution of (15) to be

Ψ2 = Ψ21 + Ψ22, (19)

where
Ψ21 = B1(X,Y, T )ϕ21(y), Ψ22 = B2(X,Y, T )ϕ22(y). (20)

According to themethod of separable variables, B1, B2, ϕ21, ϕ22 satisfy the following
equations:

{
(ū − c0)

∂B1
∂X ϕ′′

21 + p(y) ∂B1
∂X ϕ21 = −2(ū − c0)

∂2A
∂X∂Y ϕ′

1,

(ū − c0)
∂B2
∂X ϕ′′

22 + p(y) ∂B2
∂X ϕ22 = A ∂A

∂X (
p(y)

(ū−c0)
)′ϕ2

1 .
(21)

Without loss of generality, we set

B1 = ∂A

∂Y
, B2 = A2

2
. (22)

Then the following equations are satisfied:

{
ϕ′′
21 + q(y)ϕ21 = −2ϕ′

1,

ϕ21(0) = ϕ21(1) = 0.
(23)

{
ϕ′′
22 + q(y)ϕ22 = q ′(y)

ū−c0
ϕ2
1 ,

ϕ22(0) = ϕ22(1) = 0.
(24)

Equations (23) and (24) cannot determine the structure of the amplitude A(X,Y, T ).
Substituting Eqs. (17) and (20) into Eq. (16) yields the following equation:

(ū − c0)
∂

∂X
(
∂2Ψ3

∂y2
) + p(y)

∂Ψ3

∂X
= F, (25)

where

F = − ∂

∂T

∂2Ψ1

∂y2
− (ū − c0)

∂

∂X
∇2Ψ1 − 2(ū − c0)

∂

∂X
(
∂2Ψ2

∂y∂Y
) − 3

∂Ψ1

∂X

∂3Ψ1

∂y2∂Y

− ∂Ψ1

∂X

∂3Ψ2

∂y3
− ∂Ψ2

∂X

∂3Ψ1

∂y3
+ 2

∂Ψ1

∂y

∂

∂X
(
∂2Ψ1

∂y∂Y
) + ∂Ψ1

∂Y

∂

∂X
(
∂2Ψ1

∂y2
)

+ ∂Ψ1

∂y

∂

∂X
(
∂2Ψ2

∂y2
) + ∂Ψ2

∂y

∂

∂X
(
∂2Ψ1

∂y2
) + δ

∂Ψ1

∂y

∂2B1

∂X∂Y
− μ0

∂2Ψ1

∂y2
.

The homogeneous part of Eq. (25) is the same as that of Eq. (14), and non-singular
condition is needed in order to obtain a regular solution of Eq. (25) as
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1∫

0

ϕ0(y)

ū − c0
Fdy = 0. (26)

Substituting Eqs. (17), (20), and (22) into Eq. (26) yields

∂A

∂T
+ a1A

2 ∂A

∂X
+ a2

∂3A

∂X3
+ a3

∂3A

∂X∂Y 2
+ a4

∂A

∂X

∂A

∂Y
+ a4A

∂2A

∂X∂Y

+
(

δa5
∂2B1

∂X∂Y
+ μ0

)

A = 0. (27)

The coefficients area1 = I1
I , a2 = I2

I , a3 = I3
I , a4 = I4

I , a5 = I5
I with representations

of

I =
1∫

0

q(y)

(ū − c0)
ϕ2
1(y)dy,

I1 =
1∫

0

1

ū − c0
[3
2
q ′(y)ϕ2

1(y)ϕ22(y) − 1

2

(
q(y)

ū − c0

)′
ϕ4
1(y)]dy,

I2 = −
1∫

0

ϕ2
1(y)dy,

I3 = −
1∫

0

[2ϕ1(y)ϕ
′
21(y) + ϕ2

1(y)]dy,

I4 =
1∫

0

1

ū − c0
[−2(ū − c0)ϕ1ϕ

′
22 + q ′(y)ϕ2

1(y)ϕ21(y)]dy,

I5 =
1∫

0

ϕ1(y)ϕ′
1(y)

ū − c0
dy. (28)

Until now, we have obtained Eq. (27) for wave amplitude A(X,Y, T ), which is a
new mZK equation for the evolution of forced and low-frequency nonlinear Rossby
waves. Firstly, the term with coefficient indicates that a necessary condition for the
excitation of nonlinear Rossby waves is q ′(y) �= 0. q ′(y) denotes that the combined
effects of Coriolis parameter hH and topography are of great importance in inducing
the nonlinear equatorial Rossby solitary waves, especially in the situation without
shear background current. Most previous studies showed that the equatorial beta
plane approximation is necessary, but, in our study, it is unnecessary that we treat
with the issue of shear background current. Secondly, Eq. (27) represents a stronger
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nonlinear effect of the ZKmodel equation in [16–18]. It states that the real nonlinear
equatorial Rossby waves propagate in two spatial and one temporal coordinates with
multiple nonlinearities. Thirdly, the term with coefficient a2 is the same as that of the
classical mKdV or the ZKmodel. Lastly, the term with the δa5

∂2B1
∂X∂Y represents linear

growth or decay of the evolution of wave amplitude, where μ0 is the dissipation
from friction. δa5

∂2B1
∂X∂Y represents a linear growth or decay from the slowly varying

topography, which means that the slowly varying topography is an unstable factor
for the equatorial Rossby waves. Obviously, a5 will disappear in the case of constant
background flow ū(y) = u0. The above analysis reveals the complexity of tropical
motions. When the slow variation in meridional direction is absent, Eq. (27) reduces
to the mKdV equation.

3 Solutions and Simulations

For a clear understanding of the mechanism about the excitation of nonlinear
Rossby solitary waves created by the multiple topography B(X, y,Y ) = B0(u) +
ε

1
4 B1(X,Y ), we let

ū(y) = u0 − εy, B0(y) = 1

2
b0y

2 + b1y + b2, B1(X,Y ) = exp(−γ X2 + σY ),

(29)
where u0, b0, b1, b2 are all real constants. Here, u0 represents basic background
flow. b0, b1, b2 are coefficients of the parabola. ε is a small parameter indicating
the weak shear. γ and σ are also real constants representing the rates of change
of the topography in zonal and meridional directions, respectively. Then, using the
given parameters,we solveEqs. (18), (23) and (24) throughweak nonlinearmethod to
determine the coefficients of Eq. (27). Then, we solve Eq. (27) by reduced differential
transform method. Finally, the influence of all parameters on the amplitude of the
Rossby waves is obtained through numerical calculation.

3.1 Solutions of the New Modified mZK Equation

Weak nonlinear method is developed to solve Eqs. (18), (23), and (24)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ1(y) = ϕ11(y) + εϕ12(y) + · · · ,

c0 = c00 + εc01 + · · · ,

ϕ21(y) = ϕ211(y) + εϕ212(y) + · · · ,

ϕ22(y) = εϕ221(y) + ε2ϕ222(y) + · · · .

(30)
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Substituting Eq. (30) into Eqs. (18), (23), and (24) leads to all order perturbation
equations about ε:

ε(0):
{

ϕ′′
11(y) − b0δ

u0−c00
ϕ11(y) = 0,

ϕ11(0) = ϕ11(1) = 0.
(31)

{
ϕ′′
211(y) − b0δ

u0−c00
ϕ211(y) = −2mπcos mπy,

ϕ211(0) = ϕ211(1) = 0.
(32)

By solving the eigenvalue problem of Eqs. (31) and (32) with homogeneous
boundary value condition, the solutions can be obtained as

ϕ11(y) = sin mπy, (33)

ϕ211(y) = −ysin mπy, (34)

with c00 = u0 + bδ
m2π2 .

ε(1):
{

ϕ′′
12(y) − b0δ

u0−c00
ϕ12(y) = −m2π2 y+c01

u0−c00
sin mπy,

ϕ12(0) = ϕ12(1) = 0.
(35)

{
ϕ′′
212(y) − b0δ

u0−c00
ϕ212(y) = 1

2(u0−c00)
[(1 − m2π2y2)sin mπy − mπ(y − 1)cos mπy],

ϕ12(0) = ϕ12(1) = 0.

(36)

In the same way, from Eqs. (35) and (36), we obtain

ϕ12(y) = 1

4(u0 − c00)
[−ysin mπy + mπ(y2 − y)cos mπy], wi th c01 = −1

2
,

(37)

ϕ212(y) = 1

u0 − c00

[
1

4
((y − y2)sin mπy) + 1

2

(
mπ

6
y3 − 1

mπ
y − m2π2 − 6

6mπ

)

cos mπy

]

,

(38)

ϕ221(y) = 1

6(u0 − c00)
cos 2mπy + 1

2(u0 − c00)
− 2cos mπy

3(u0 − c00)
. (39)
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Thus, Eqs. (18), (23), and (24) have asymptotic solutions as follows:

ϕ1(y) = ϕ11(y) + εϕ12(y), (40)

ϕ21(y) = ϕ211(y) + εϕ212(y), (41)

and
ϕ22(y) = εϕ221(y). (42)

Substituting Eqs. (29), (40)–(42) into Eq. (28), we obtain the coefficients of Eq. (27).
In the next step, the reduced differential transform method [101] is developed to

solve Eq. (22). Assume

A(X,Y, T ) =
∞∑

k=0

Ak(X,Y )T k . (43)

Substituting Eq. (43) into Eq. (27), we obtain the following iterations:

A = − 1

k + 1

[

a1

k∑

s=0

( s∑

r=0

Ar As−r
∂Ak−s

∂X

)

+ a2
∂3Ak

∂X3
+ a3

∂3Ak

∂X∂Y 2

+ a4

k∑

r=0

∂Ar

∂X

∂Ak−r

∂Y
+ a4

k∑

r=0

Ar
∂2Ak−r

∂X∂Y
+

(

δa5
∂2B1

∂X∂Y
+ μ0

)

Ak

]

. (44)

Assume that
A0(X,Y ) = sech(X + Y ).

From Eq. (44), we can get A0, A1, A2, . . . , through MATLAB. For simplicity, we
omit the details. Taking first three terms, we can get the solution to Eq. (27)

A(X,Y, T ) = A0(X,Y ) + A1(X,Y )T + A2(X,Y )T 2. (45)

3.2 Results and Discussions

In this paper, we take the small parameter ε to be ε = 0.0001 and m = 2. In
Figs. 1, 2, and 3, we use different expressions to describe the evolution of wave
amplitude. These figures show that the evolution process of the amplitude of soli-
tary wave has similar laws of changing in X - and Y -directions under the given
parameters because the value of nonlinear item a4 (in computation, its value is the
largest) has the decisive functions in the equations with required amplitude. The term
with a4 of (27) is symmetrical about variables X and Y . Meanwhile, the simulation
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Fig. 1 δ = 0.3, b0 = −0.7, u0 = 0.9, μ0 = 0.02, γ = 1, σ = −1: a The 3D evolutionary plot of
amplitude at Y = 0. b the amplitude profile at different time at Y = 0

Fig. 2 δ = 0.3, b0 = −0.7, u0 = 0.9, μ0 = 0.02, γ = 1, σ = −1: a The 3D evolutionary plot of
amplitude at X = 0. b the amplitude profile at X = 0

of Figs. 1, 2, and 3 demonstrates the necessity of considering higher dimensional
nonlinear Rossby waves.

Figure4 shows that with the decrease of aspect ratio, the amplitude becomes
larger and larger, which means that shallow water is one important factor in exciting
Rossby waves. In Fig. 5, we characterize the effect of basic topography, and it can be
seen that the forcing effect of variation of topography can enhance the evolution of
amplitude. Also, Fig. 5 reveals that basic topography and its variation have obvious
influence on amplitude.

Figure6 shows that slowly varying topography almost has no influence on ampli-
tude in X -direction. However, when σ = −1, slowly varying topography has small
influence on the amplitude in the negative half axis of Y and almost no influence on
the amplitude in the positive half axis of Y . In the negative half axis of Y , with the
increase of γ , the amplitude becomes smaller and smaller. When σ = 1, the influ-
ence of slowly varying topography on the amplitude in the direction of Y is opposite.
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Fig. 3 The 3D-plot of amplitude A in spatial direction of X and Y in fixed moment T with
δ = 0.3, b0 = −0.7, u0 = 0.9, μ0 = 0.02, γ = 1, σ = −1: a T = 0; b T = 0; c T = 0; d T = 0

Fig. 4 The changes of amplitude A under different aspect ratioδ with b0 = −0.7, u0 = 0.9, μ0 =
0.02, γ = 1, σ = −1 at time T = 10. a at Y = 0. b at X = 0
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Fig. 5 The changes of amplitude A under different values of b0 with δ = 0.3, u0 = 0.9, μ0 =
0.02, γ = 1, σ = −1 at time T = 10. a at the spatial point Y = 0. b at the spatial point X = 0

Fig. 6 The changes of amplitude A under different topographic parameter γ with δ = 0.3, b0 =
−0.7, u0 = 0.9, μ0 = 0.02 at T = 10; a at σ = −1, Y = 0; b at σ = −1, X = 0; c at σ = 1, Y =
0; d at σ = 1, X = 0
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Fig. 7 The changes of amplitude A under different topographic parameter σ with δ = 0.3, b0 =
−0.7, u0 = 0.9, μ0 = 0.02, γ = 1 at T = 10; a at the spatial point Y = 0, σ is negative; b at the
spatial point X = 0, σ is negative; c at the spatial point Y = 0, σ is positive; d at the spatial point
Y = 0, σ is positive

In summary, slowly varying topography has influence on amplitude, but it is much
weaker than that of basic topography.

In Fig. 7, we can also see the influence of slowly varying topography parameter
σ on amplitude. Similarly, in X -direction, slowly varying topography almost has no
influence. But, when σ = −1 is negative, slowly varying topography only has small
influence in the negative half axis of Y and no influence in the positive half axis of Y .
Also,with the increase ofσ , the amplitude becomes bigger and bigger.Whenσ = −1
is positive, slowly varying topography only has small influence in the positive half
axis of Y and no influence in the negative half axis of Y . Also, with the increase of
σ , the amplitude becomes smaller and smaller. Figure8 demonstrates the influence
of dissipation coefficient on Rossby wave amplitude. We can see that Rossby wave
amplitude is influenced in both X - and Y -directions. And the influence in X - and Y -
directions is similar. With the increase of dissipation coefficient, amplitude becomes
smaller and smaller.
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Fig. 8 The changes of amplitude A under different dissipation parameters μ0 with δ = 0.3, u0 =
0.9, γ = 1, σ = −1 at time T = 10. a at the spatial point Y = 0. b at the spatial point X = 0

4 Conservation Laws and Dynamical Analysis

The conservation properties and the dynamics of the obtained new mZK equation
are analyzed in this section. The conservation laws are essential in characterizing
the qualitative properties of mechanical systems, especially for the integrable sys-
tems. Infinite number of conservation laws can be obtained from the classical mKdV
equation. The present study focuses on the mass and momentum of the motions. The
following equations can be easily obtained from Eq.(27):

∂A

∂T
+ ∂

∂X

(
1

3
a1A

3 + a2
∂2A

∂X2
+ a3

∂2A

∂Y 2
+ a4A

∂A

∂Y

)

+
[

δa5
∂2B1

∂X∂Y
+ μ0

]

A = 0,

(46)

∂A2

∂T
+ ∂

∂X

[
a1
2
A4 + 2a2A

∂2A

∂X2
− a2

(
∂A

∂X

)2

− a3

(
∂A

∂Y

)2

+ 2a4A
2 ∂A

∂Y

]

+ ∂

∂Y

(

2a3A
∂2A

∂X∂Y

)

− a4
∂(A2)

∂X

∂A

∂Y
+ 2

[

δa5
∂2B1

∂X∂Y
+ μ0

]

A2 = 0. (47)

The mass

C1 =
∫∫

X,Y

AdXdY (48)

and the momentum

C2 =
∫∫

X,Y

A2dXdY (49)

satisfy the following equations:
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dC1

dT
= −

∫∫

X,Y

[δa5 ∂2B1

∂X∂Y
+ μ0]AdXdY, (50)

dC2

dT
= −

∫∫

X,Y

2[δa5 ∂2B1

∂X∂Y
+ μ0]A2dXdY, (51)

where A and its any order partial derivation are assumed to be zero at infinity.
It is evident that the mass and the momentum are affected by the slowly vary-

ing topography and the dissipation, which is consistent with the former qualitative
analysis. Equations (50) and (51) enjoy conservation laws when the slowly vary-
ing topography and the dissipation are absent. Generally speaking, the mass and
momentum of the system are not conserved any more, which is consistent with the
real motions of atmospheres and oceans.

On the other hand, benefited from some ideas of [102], we investigate the dynam-
ical analysis of the Eq. (27). Next we neglect the influence of the slowly varying
topography and dissipation, that is, B1 = 0, μ0 = 0.

Let A(X,Y, T ) = φ(ξ), ξ = mX + nY − lT , then

(a2m
3 + a3mn2)φ′′′ + a4mn(φ′2 + φφ′′) − Iφ′ + a1mφ2φ′ = 0. (52)

Using (φφ′)2 = (φ′)2 + φφ′′ and integrating Eq. (47) yields

(a2m
3 + a3mn2)φ′′ + a4mnφφ′ − Iφ + 1

3
a1mφ3 = 0. (53)

To facilitate further discussion, assume

−I

a2m3 + a3mn2
= α,

a1m

3(a2m3 + a3mn2)
= β,

a4mn

a2m3 + a3mn2
= γ.

Then Eq. (53) reduces to

φ′′ + γφφ′ + αφ + βφ3 = 0. (54)

Putting φ′ = y, then the following planar system is given:

{
dφ
dξ = y,
dy
dξ = −γφy − αφ − βφ3,

(55)

with the Hamiltonian

H(φ, y) = y2 + γφ2y + αφ2 + β

2
φ4. (56)
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In order to investigate the phase portrait of the system (55), let

f (φ) = −αφ − βφ3.

It has three zero points φ−, φ0, and φ+ with

φ− = −
√

−α

β
, φ0 = 0, φ+ =

√
α

β
, αβ < 0.

Letting (φi , 0) be one of the singular points of system (55), then the characteristic
values of the linearized system of (55) at the singular points (φi , 0) are

λ± = ±√
f ′(φi ). (57)

From the qualitative theory of dynamical systems, we deduce that

1. if f ′(φi ) > 0, then (φi , 0) is a saddle point;
2. if f ′(φi ) < 0, then (φi , 0) is a center point;
3. if f ′(φi ) = 0, then (φi , 0) is a degenerate saddle point.

Therefore, we obtain the phase portraits of system (55), see Fig. 9. Let

H(φ, y) = h, (58)

where h is a Hamiltonian function. Next, we consider the relations between the orbits
of (55) and the Hamiltonian. Set

h∗ = |H(φ+, 0)| = |H(φ−, 0)| = α2

2|β| . (59)

Thus, the following conclusions hold:

• If β < 0 and α > 0, then

A When h < 0 or h > h∗, system (55) does not have any closed orbit;
B When 0 < h < h∗, system (55) has three periodic orbits L2, L5 and L6;
C When h = 0, system (55) has two periodic orbits L1 and L7;
D When h = h∗, system (55) has two heteroclinic orbits L3 and L4.

• If β > 0 and α < 0, then

A When h < −h∗, system (55) does not have any closed orbit;
B When −h∗ < h < 0, system (55) has two periodic orbits L8 and L9;
C When h = 0, system (55) has two heteroclinic orbits L10 and L11;
D When h > 0, system (55) has a periodic orbits L12.
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Fig. 9 The phase portraits of system (50): a β < 0 and α > 0; b β > 0 and α < 0

5 Conclusions

In this paper, we derived a nmZK model equation with the effects of the horizontal
component of Coriolis parameter, the topography, and the dissipation. The influence
mechanisms of all kinds of parameters on the Rossby waves are discussed through
theoretical analysis and numerical calculations. Moreover, we find that both the
horizontal Coriolis parameter and nonlinear topography are important in inducing the
evolution of the nonlinear Rossby waves. In addition, the conservation laws and the
dynamical analysis without considering dissipation and slowly varying topography
are studied.

There are some problems to be addressed in our future research as follows. On one
hand, due to the complex dispersive structure of the nmZK equation, we shall study
the traveling wave solutions. On the other hand, we shall study the lump solutions.

Acknowledgements The authors thank for the very valuable comments from reviewers and con-
structive suggestions from Managing Editor and Assistant Editor which greatly improved the qual-
ity of the paper. This project was supported by the National Natural Science Foundation of China
(Grant Nos. 11762011, 11562014), the Natural Science Foundation of InnerMongolia Autonomous
Region (Grant No. 2020BS01002), the Research Program of Science at Universities of Inner Mon-
golia Autonomous Region, China (No. NJZY20003), and the Scientific Starting Foundation of Inner
Mongolia University (Grant No. 21100–5185105).

References

1. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (1987)
2. Nezlin, M., Snezhkin, E.: Rossby Vortices, Spiral Structures, Solitons. Springer Series in

Non-Linear Dynamics. Springer, Berlin (1993)
3. Korteweg, D., de Vries, G.: On the change of form of long waves advancing in a rectangular

canal and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)



Semi-analytical and Numerical Study on Equatorial Rossby Solitary Waves … 89

4. Long, R.: Solitary waves in the westerlies. J. Atmos. Sci. 21(3), 197–200 (1964)
5. Benney, D.: Long nonlinear waves in fluid flow. J. Math. Phys. 45, 52–63 (1966)
6. Wadati, M.: The modified Korteweg-deVries equation. J. Phys. Soc. Jpn. 34, 1289–1296

(1973)
7. Redekopp, L.: On the theory of solitary Rossby waves. J. Fluid Mech. 82, 725–745 (1977)
8. Redekopp, L., Weidman, P.: Solitary Rossby waves in zonal shear flows and interactions. J.

Atmos. Sic. 35, 790–804 (1978)
9. Body, J.: Equatorial solitary waves. Part I: Rossby solitons. J. Phys. Ocean 10, 1699–1718

(1980)
10. Body, J.: Equatorial solitarywaves. Part2: Rossby solitons. J. Phys. Ocean 13, 428–449 (1983)
11. Song, J., Liu, Q.S., Yang, L.G.: Beta effect and slowly changing topography Rossby waves

in shear a flow. Acta Phys. Sin. 61(21), 210510 (2012)
12. Ono, H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jpn. 39(4), 1082–1091

(1975)
13. Ono, H.: Algebraic Rossby wave soliton. J. Phys. Soc. Jpn. 50(8), 2757–2761 (1981)
14. Yang, H., Yin, B., Shi, Y. et al.: Forced ILW-Burgers equation as a model for rossby solitary

waves generated by topography in finite depth fluids. J. Appl. Math. 491343 (2012)
15. Yang, H., Zhao, Q., Yin, B. et al.: A new integro-differential equation for Rossby solitary

waves with topography effect in deep rotational fluids. Abs. App. Ana. 597807 (2013)
16. Shi, Y., Yin, B., Yang, H. et al.: Dissipative nonlinear Schrödinger equation for envelope

solitary Rossby waves with dissipation effect in stratified fluids and its solution. Abs. Appl.
Anal. 643652 (2014)

17. Yang, H., Yang, D., Shi, Y. et al.: Interaction of algebraic Rossby solitary waves with topog-
raphy and atmospheric blocking. Dyn. Atmos. Oceans 71, 21–34 (2015)

18. Zhao, B., Sun, W.T., Zhan, T.M.: The Modified quasi-geostrophic barotropic models based
on unsteady topography. Earth Sci. Res. J. 21(1), 23–28 (2017)

19. Ren, Y., Tao, M., Dong, H., Yang, H.W.: Analytical research of (3+1)-dimensional Rossby
waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach. Adv.
Diff. Equ. 2019, 13 (2019)

20. Hodyss, D., Terrence, R.N.: Solitary Rossby waves in zonally varying jet flows. Geophys.
Astrophys. Fluid Dyn. 96(3), 239–262 (2002)

21. Hodyss, D., Terrence, R.N.: Effects of topography and potential vorticity forcing on Solitary
Rossby waves in zonally varying flows. Geophys. Astrophys. Fluid Dyn. 98(3), 175–202
(2004)

22. Hodyss, D., Terrence, R.N.: The connection between coherent structures and low-frequency
wave packets in large-scale atmosphere flow. J. Atmos. Sci. 61, 2616–2626 (2004)

23. Hodyss, D., Terrence, R.N.: Long waves in streamwise varying shear flows: new mechanisms
for a weakly nonlinear instability. Phys. Rev. Lett. 93(7), 074502 (2004)

24. Luo,D.: Low-frequencyfinite-amplitude oscillations in a near resonant topographically forced
barotropic flow. Dyn. Atmos. Ocean 26, 53–72 (1997)

25. Luo, D., Li, J.: Barotropic interaction between planetary-and-synoptic-scale waves during the
life cycles of blockings. Adv. Atmos. Sci. 17(4), 649–670 (2000)

26. Luo, D.: A barotropic envelope Rossby solition model for block-eddy interaction. Part I.
Effect Topograph. J. Atmos. Sci. 62, 5–21 (2005)

27. Luo, D., Cha, J., Zhong, L. et al.: A nonlinear multiscale interaction model for atmospheric
blocking: the eddy-blocking matching mechanism. Q. J. R. Meteorol. Soc. 140, 1785–1808
(2014)

28. Tang, X., Gao, Y., Huang, F. et al.: Variable coefficient nonlinear systems derived from an
atmospheric dynamical system. Chin. Phys. B 18(11), 4622–4635 (2009)

29. Yang, L., Da, C., Song, J. et al.: KdV equation for the amplitude of solitary Rossby waves in
barotropic fluids. Pac. J. Appl. Math. 1, 195–206 (2008)

30. Yang, L., Song, J., Da, C. et al.: mKdV equation for the amplitude of solitary Rossby waves
in stratified fluids. Pac. J. Appl. Math. 1, 207–221 (2008)



90 R. Zhang et al.

31. Song, J.,Yang, L.:ModifedKdVequation for solitaryRossbywaveswithβ effect in barotropic
fluids. Chin. Phys. B. 18(07), 2873–2877 (2009)

32. Zhang, R., Yang, L.: Nonlinear Rossby waves in zonally varying flow under generalized beta
approximation. Dyn. Atmos. Oceans 85, 16–27

33. Zhang, R., Yang, L., Liu, Q., Yin, X.: Dynamics of nonlinear Rossby waves in zonally varying
flow with spatial-temporal varying topography. Appl. Math. Comput. 346, 666–679 (2019)

34. Zhang, R., Liu, Q., Yang, L., Song, J.: Nonlinear planetary-synoptic wave interaction under
generalized beta effect and its solutions. Chaos, Solitons Fractals 122(2019), 270-C280 (2019)

35. Wang, J., Zhang, R., Yang, L.: A gardner evolution equation for topographic Rossby waves
and its mechanical analysis. Appl. Math. Comput. 385, 125426 (11pages) (2020)

36. Wang, J., Zhang, R., Yang, L.: Solitary waves of nonlinear barotropic-baroclinic coherent
structures. Phys. Fluids 32, 096604 (2020)

37. Eckart, C.: Hydrodynamics of Oceans and Atmospheres. Pergamon Press (1960)
38. Phillips, N.: The equations of motion for a shallow rotating atmosphere and the “traditional

approximation”. J. Atmos. Sci. 23(5), 626–628 (1966)
39. Veronis,G.: Comments onPhillips’s (1966) proposed simplification of the equations ofmotion

for a shallow rotating atmosphere. J. Atmos. Sci. 25(6), 1154–1155 (1968)
40. Philips, N.: Reply to G. Veronis’s comments on Phillips (1966). J. Atmos. Sci. 25(6), 1155–

1157
41. Wangsness, R.: Comments on “The equations of motion for a shallow rotating atmosphere

and the traditional approximation”. J. Atmos. Sci. 27(3), 504–506 (1970)
42. Beckman, A., Diebels, S.: Effects of the horizontal component of the Earth’s rotation on

waves propagation on the f-plane, Part I: Barotropic Kevlin waves and amphidromic systems.
Geophys. Astrophys. Fluid Dyn. 76(1–4), 95–119 (1994)

43. Gerkema, T., Shrira, V.: Near-inertial waves on the “nontraditional” β plane. J. Geophys. Res.
110, C01003 (2005)

44. Gerkema, T., Shrira, V.I.: Near-inertial waves in the ocean: beyond the—traditional approxi-
mation. J. Fluid Mech. 529, 195–219 (2005)

45. White, A.A., Bromley, R.: Dynamically consistent, quasi-hydrostatic equations for global
models with a complete representation of the Coriolis force. Q. J. R. Meteorol. Soc. 121,
399–418 (1995)

46. Hayashi, M., Itoh, H.: The importance of the nontraditional coriolis terms in large-scale
motions in the tropics forced by prescribed cumulus heating. J. Atmos. Sci. 69, 2699–2716
(2012)

47. Yasuda, Y., Sato, K.: The effect of the horizontal component of the angular velocity of the
earth’s rotation on inertia-gravity waves. J. Meteorol. Soc. Jpn. 91(1), 23–41 (2013)

48. Kasahara, A.: The roles of the horizontal component of the earth’s angular velocity in non-
hydrostatic linear models. J. Atmos. Sci. 60, 1085–1095 (2003)

49. Kasahara,A.,Gary, J.:Normalmodes of an incompressible and stratifiedfluidmodel including
the vertical and horizontal components of Coriolis force. Tellus 8A, 368–384 (2006)

50. Kasahara, A.: A mechanism of deep-ocean mixing due to near-inertial waves generated by
flow over topography. Dyn. Atmos. Ocean 49, 124–140 (2009)

51. Davies, T., Cullen, M., Malcolm, A., et al.: A new dynamical core for the Met Office’s global
and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 131, 1759–1782 (2005)

52. Reznik, G.: Linear dynamics of a stably-neutrally stratified ocean. J. Mar. Res. 71, 253–288
(2013)

53. Reznik, G.: Geostrophic adjustment with gyroscopic waves: barotropic fluid without the
traditional approximation. J. Fluid Mech. 743, 585–605 (2014)

54. Reznik, G.: Geostrophic adjustment with gyroscopic waves: stably neutrally stratified fluid
without the traditional approximation. J. Fluid Mech. 747, 605–634 (2014)

55. Reznik, G.M.: Wave motions in a stably-neutrally stratified ocean. Oceanology 55, 789–795
(2015)

56. Itano, T., Kasahara, A.: Effect of top and bottom conditions on symmetric instability under
full-component Coriolis force. J. Atmos. Sci. 68, 2771–2782 (2011)



Semi-analytical and Numerical Study on Equatorial Rossby Solitary Waves … 91

57. Tort, M., Ribstein, B., Zeitlin, V.: Symmetric and asymmetric inertial instability of zonal jets
on the f -plane with complete Coriolis. J. Fluid Mech. 788, 274–302 (2016)

58. Maas, L., Harlander, U.: Equatorial wave attractors and inertial oscillations. J. Fluid Mech.
570, 47–67 (2007)

59. Wang,D., Large,W.,Mecwilliams, J.C.: Large-eddy simulation of the equatorial ocean bound-
ary layer: diurnal cycling, eddy viscosity, and horizontal rotation. J. Geophys. Res. 101,
3649–3662 (1996)

60. Yano, J.: Inertial gravity waves under the non-traditional f-plane approximation: singularity
in the large-scale limit. J. Fluid Mech. 810, 47–488 (2017)

61. Zhang, R., Yang, L.: Theoretical analysis of the equatorial near-inertial solitary waves under
complete Coriolis parameters. Acta Oceanologica Sinica 40(1), 1–8 (2021)

62. Salmon, R.: New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461–477 (1985)
63. Tort, M., Dubos, T.: Usual approximations to the equations of atmospheric motion : a varia-

tional perspective. J. Atmos. Sci. 2452–2466 (2014)
64. Dellar, P., Salmon,R.: Shallowwater equationswith a completeCoriolis force and topography.

Phys. Fluids 17(10), 106601 (2005)
65. Kadomtsev, B., Petviashvili, V.: On the stability of solitary waves in weakly dispersive media.

Sov. Phys. Dokl. 15, 539–541 (1970)
66. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press,

Cambridge (2001)
67. Groves, M., Sun, S.: Fully localised solitary-wave solutions of the three-dimensional gravity-

capillary water-wave problem. Arch. Rat. Mech. Anal. 188, 1–91 (2008)
68. Zakharov, V., Kuznetsov, E.: On three-dimensional solitons. Sov. Phys. 39, 285-C286 (1974)
69. Munro, S., Parkes, E.: The derivation of a modified Zakharov-CKuznetsov equation and the

stability of its solutions. J. Plasma Phys. 62(3), 305–317 (1999)
70. Ablowitz, M., Clarkson, P.: Nonlinear Evolution Equations and Inverse Scattering Soliton.

Cambridge University Press, New York (1991)
71. Gottwalld,G.A.: TheZakharov-Kuznetsov equation as a two-dimensionalmodel for nonlinear

Rossby wave (2009). http://arxiv.org/abs/nlin/031
72. Zhang, R., Yang, L., Song, J., Liu, Q.: (2+1) Dimensional nonlinear Rossby solitary waves

under the effects of generalized beta and slowly varying topography. Nonlinear Dyn. 90,
815–822 (2017)

73. Zhang, R., Yang, L., Song, J., Yang, H.: (2+1) dimensional Rossby waves with complete
Coriolis force and its solution by homotopy perturbation method. Comput. Math. Appl. 73,
1996–2003 (2017)

74. Liu, Q., Zhang, R., Yang, L., Song, J.: A new model equation for nonlinear Rossby waves
and some of its solutions. Phys. Lett. A 383, 514–525 (2019)

75. Zhang, R., Liu, Q., Yang, L.: New model and dynamics of higher dimensional nonlinear
Rossby waves. Modern Phys. Lett. B 33(28), 1950342 (14 pages) (2019)

76. Fu, L., Chen, Y., Yang, H.: Time-space fractional coupled generalized Zakharov-Kuznetsov
equations set for Rossby solitary waves in two-layer fluids. Mathematics 7, 41 (2019)

77. GuoM, Dong H, Liu J, Yang H.: The time-fractional mZK equation for gravity solitary waves
and solutions using sech-tanh and radial basic function method. Nonlinear Anal. Modell.
Control 24, 1–19 (2019)

78. Wazwaz, A.: Exact solutions with solitons and periodic structures for the Zakharov-
CKuznetsov (ZK) equation and its modified form. Commun. Nonlinear Sci. Numer. Simul.
10, 597–606 (2005)

79. Hirota, R.: Exact solution of the korteweg-devries equation for multiple collision of solitons.
Phys. Rev. Lett. 27, 1192 (1971)

80. Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-
type bilinear equations. J. Math Phys. 28(8), 1732–1742 (1987a)

81. Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. II.
mKdV-type bilinear equations. J. Math. Phys. 28(9), 2094–2101 (1987b)

http://arxiv.org/abs/nlin/031


92 R. Zhang et al.

82. Feng, Z.S.: On explicit exact solutions to the compound Burgers-CKdV equation. Phys. Lett.
A 293, 57-C66 (2002)

83. Zhang, Z.Y., Li, Y.X., Liu, Z.H., Miao, X.J.: New exact solutions to the perturbed nonlinear
Schrodinger’s equation with Kerr law nonlinearity viamodified trigonometric function series
method. Commun. Nonlinear Sci. Numer. Simul. 16, 3097–3106 (2011)

84. Wazwaz, M.: The tanh method: solitons and periodic solutions for the Dodd-Bullough-
Tzikhailov and the Tzitzeica-Dodd-Bullough equations. Chaos Solitons Fractals 25, 55–63
(2005)

85. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput.
147, 499–513 (2004)

86. Fan, E.G., Jian, Z.: Applications of the Jacobi elliptic function method to special-type non-
linear equations. Phys. Lett. A 305(6), 383–392 (2002)

87. Khani, S., Hamedi-Nezhad, M., Darvishi, T., Sang, W.R.: New solitary wave and periodic
solutions of the foam drainage equation using the Exp-function method. Nonlinear Anal. Real
World Appl. 10, 1904–1911 (2009)

88. Miao, X.J., Zhang, Z.Y.: The modified (G ′/G)-expansion method and traveling wave solu-
tions of nonlinear the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity.
Commun. Nonlinear Sci. Numer. Simul. 16, 4259–4267 (2011)

89. Wazwaz, A.: Explicit travelling wave solutions of variants of the K(n, n) and the ZK(n, n)
equations with compact and noncompact structures. Appl. Math. Comput. 173(1), 213 (2006)

90. Biswas, A., Zerrad, E.: Solitary wave solution of the Zakharov-CKuznetsov equation in plas-
mas with power law nonlinearity. Nonlinear Anal. Real World Appl. 11, 3272–3274 (2010)

91. Kudryashov, A.: Modified method of simplest equation: powerful tool for obtaining exact and
approximate travelling-wave solutions of nonlinear PDEs. Commun. Nonlinear Sci. Numer.
Simul. 16, 1176–1185 (2011)

92. Wazwaz, A.M.: Multiple kink solutions for two coupled integrable (2+1)-dimensional sys-
tems. Appl. Math. Lett. 58, 1–6 (2016)

93. Zeidan, D., Zhang, L.T., Goncalves, E.: High-resolution simulations for aerogel using two-
phase flow equations and godunov methods. Int. J. Appl. Mech. 12, 2050049 (2020)

94. Zeidan, D., Bhär, P., Farber, P., Gräbel, J., Ueberholz, P.: Numerical investigation of a mixture
two-phase flow model in two-dimensional space. Comput. Fluids. 181, 90–106 (2019)

95. Zeidan, D., Romenski, E., Slaouti, A., Toro, E.F.: Numerical study of wave propagation in
compressible two-phase flow. Int. J. Numer. Meth. Fluids. 54, 393–417 (2007)

96. Goncalves, E., Zeidan, D.: Simulation of compressible two-phase flows using a void ratio
transport equation. Commun. Comput. Phys. 24, 167–203 (2018)

97. Goncalves, E., Hoarau, Y., Zeidan, D.: Simulation of shock-induced bubble collapse using a
four-equation model. Shock Waves 29, 221–234 (2019)

98. Goncalves, E., Zeidan, D.: Numerical study of turbulent cavitating flows in thermal regime.
Int. J. Numer. Methods Heat Fluid Flow 27, 1487–1503 (2017)

99. Karl, R.,Melville,W.,Miles, J.: On interfacial solitary waves over slowly varying topography.
J. Fluid Mech. 149, 305–317 (1984)

100. Caillol, P., Grimshaw, R.H.: Rossby elevation waves in the presence of a critical layer. Stud.
Appl. Math. 120, 35–64 (2008)

101. Omer, A., Yildiray, K.: Reduced differential transform method for (2+1) dimensional type of
the Zakharov-Kuznetsov ZK(n,m) equations (2014). arXiv:1406.5834

102. Zhang, Z.Y., Xia, F.L., Li, X.P.: Bifurcation analysis and the travelling wave solutions of the
Klein-Gordon-Zakharov equations. Pramana-J Phys. 80, 41–59 (2013)

http://arxiv.org/abs/1406.5834

	 Semi-analytical and Numerical Study  on Equatorial Rossby Solitary Waves Under Non-traditional Approximation
	1 Introduction
	2 Nonlinear Equatorial Wave Model
	2.1 Basic Mathematical Model
	2.2 Model Derivation by Multiple-Scale Method

	3 Solutions and Simulations
	3.1 Solutions of the New Modified mZK Equation
	3.2 Results and Discussions

	4 Conservation Laws and Dynamical Analysis
	5 Conclusions
	References


