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Abstract The research proposed in this paper shows application of the sine cosine
swarm intelligence algorithm for feature selection problem in the machine learn-
ing domain. Feature selection is a process that is responsible for selecting datasets’
features that have the biggest effect on the performances and the accuracy of the
system. The feature selection task performs the search for the optimal set of features
through a enormous search space, and since the swarm intelligence metaheuristics
have already proven their performances and established themselves as good opti-
mizers, their application can drastically enhance the feature selection process. This
paper introduces the improved version of the sine cosine algorithm that was utilized
to address the feature selection problem. The proposed algorithm was tested on ten
standardUCL repository datasets and compared to othermodern algorithms that have
been validated on the same test instances. Finally, the proposed algorithm was tested
against the COVID-19 dataset. The obtained results indicate that the method pro-
posed in this manuscript outperforms other state-of-the-art metaheuristics in terms
of features number and classification accuracy.
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1 Introduction

Rapid developments in information science have resulted in a dramatic increase in
dataset dimensions over the past decade. Potential dimension reduction algorithms
are needed to remove redundant or irrelevant information from these datasets, since
these features can lead to reduced performance of learning algorithms [22].

Typically considered a mechanism for preprocessing, feature selections are used
for decreasing the total number of input variables, as well as finding themost relevant
subset from a complete features set. Feature selection reduces the dimensionality of
data by removing the noise and irrelevant attributes. This challenge is very impor-
tant, especially when the real-time classification is needed by finding optimal or
near-optimal subset of features, the training process can be shortened and classi-
fication accuracy can be improved. It is applied so as to increase the precision of
prediction results given by the machine learning model, by reducing complexity, and
diminishing redundant and irrelevant features in the dataset. This can be crucial in
case of some critical applications, such as medical diagnostic [10]. Feature subset
evaluation and search strategy are the two primary stages of preprocessing. Search
strategy uses techniques for subset feature selection, while feature subset evaluation
utilizes a classifier for evaluating the quality for the selected feature subset. All meth-
ods for feature selection, according to reviewed literature, are defined as either filter
based or wrapper based.

Metaheuristic algorithms are considered themost reliable and efficient techniques
for optimization and show great results when applied to problems considered more
challenging or with higher-dimensional datasets. As a result, these algorithms show
great promise and have been applied to many real-world problem that require opti-
mization and performance improvements [3, 4, 25, 32, 34, 36]. Although these
algorithms are often nature inspired, this is not necessarily always the case as shown
in the sine cosine algorithm (SCA) [20].

Because of the high accuracy results achieved, as well as the reduced compu-
tational times when compared to traditional discrete methods, the metaheuristic
approach has been employed by researchers, in wrapper-based methods, when solv-
ing the problem of feature selection. A Gaussian mutational chaotic fruit fly opti-
mization algorithm’s [31] application has been suggested for tackling the problem
of feature selection, specifically to classification tasks. An augmented model of the
dragonfly algorithm (DA), the hyper-learning binary dragonfly algorithm (HLBDA),
has been implemented for feature evaluation and utilized on coronavirus (COVID-19)
datasets [28].

SCA is a population-based algorithm, named after its use of the sine and cosine
functions in its formulation, originally intended for use in solving optimization prob-
lems [20]. The algorithm initially creates a collection of multiple randomized solu-
tions requiring them tofluctuate toward the best solution during the exploitation phase
or outwards to encourage exploration employing a mathematical model formed from
the sine cosine functions.
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Some deficiencies were observed in the original SCA while performing practical
empirical simulations with standard unconstrained benchmarks. Because of this, we
have attempted to improve the basic SCA by performing hybridization with the
well-known ABC algorithm. The mSCA is benchmarked using ten datasets form the
University of California, Irvine (UCI) repository, and Arizona State University, as
well as a single dataset of the coronavirus disease (COVID-19).

Themain contribution of this conducted research can be outlined in the following:

• Proposal of a mSCA applied to the problem of feature selection elements of the
ABC algorithm is integrated into the SCA to improve exploratory behavior.

• Testing the mSCA on ten standard benchmark datasets with low medium and high
dimensions sets represented.

• Comparing the mSCA to other advanced feature selection algorithms and demon-
strating the improvements made.

• Applying the proposed mSCA to solving a case study of COVID-19.

The remainder of this article is organized according to the following order: Sect. 2
shows a summary of the reviewed literature. Section3 consists of a description of
the original SCA. Section4 shows experimental results and discusses the findings
based on said results. Section5 summarizes the findings and presents proposals for
the direction of further work in this field.

2 Literature Review

When we have large datasets that are too difficult to classify, the use of swarm
intelligence-based algorithm is suggested. Each large dataset contains features that
are insignificant and irrelevant which can prove to be difficult when trying to analyze
and interpret data. Swarm intelligence algorithm’s purpose is to reduce dimension-
ality (feature selection) by keeping only useful features and those containing rich
information. As a result of using dimensionality reduction technique, we have better
understanding and interpretation of data, as well as higher accuracy of the results.
There are two main steps in dimensionality reduction process, extracting features
and selecting features. Before any further explanation of those features, we should
give a short overview of swarm intelligence algorithms.

Swarm intelligence algorithms are part of the artificial intelligence (AI) field, and
they are so-called nature-inspired metaheuristics [29]. Many groups of animals form
collective intelligence which means that every member acts independently, but they
mutually exchange information. That information eventually takes the group toward
the optimal solution of their problem. Such animal colonies are ants, birds, hawks,
fish, and more [16, 21, 29]. Nature-inspired metaheuristics are not that efficient at
finding the most optimal solutions inside the search area, but they are efficient at
finding the candidate solutions. Furthermore, they are especially good at finding
possible solutions inside very large search areas. Because they take unreasonable
amount of time to find the most optimal solution, swarm intelligence algorithms
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are also classified as NP-hard problems [15]. Many diverse problems can be solved
with swarm intelligence algorithms such as wireless sensor network optimization [4,
32], cloud computing [6, 8, 35] and optimization of neural networks [2, 5, 12, 24],
machine learning, and COVID-19 prediction [33], all the way to solving complicated
problems in the field of medicine [7].

In order to prepare raw and unprocessed data, feature extraction is used [17]. A
new dataset is formed by keeping some of the core features after which new features
can be derived. Eventually, we have a new dataset that is cleaner, containing only
features relevant to the specific problem and with fewer dimensions compared to the
original dataset.

Since we have our most relevant and important data after feature extraction, the
next step is feature selection. With feature selection, we select attributes previously
defined in original dataset. This step is extremely important since the combination of
the right attributes can improve the model’s performance and accuracy. A common
example of feature selection, alongside feature extraction, is image processing and
analysis. Large amount of statistical features can be retrieved from the image, but a
combination of only a few gives satisfactory results.

A side effect of feature selection is a possible loss of a certain amount of infor-
mation, but, due to achieving simplicity of the model and significant performance
improvement, it is well worth it. There are three distinct categories of techniques for
selecting features, the wrapper, filter, and embedded technique [9].

Filter techniques choose the features that should contain the most information,
without taking into consideration whether there are any relationships between the
features or not. Wrapper techniques choose features that are most accurate to our
machine learningmodel by going through all feature combinations.As for the embed-
ded technique, the features are chosen while the model is still being constructed [9].
With these techniques, a decent performance can be achieved on relatively small
datasets, but, for larger datasets, because of the decline in performance, a differ-
ent method should be used such as swarm intelligence algorithm. In a reasonable
amount of computational time, satisfactory results on large datasets are provided by
the algorithm.

3 Original and Proposed Modified Sine Cosine Algorithm

SCA originally designedwith the purpose of solving optimization problems, and first
introduced by Seyadali Mirjalili [20], is a generally new population-based algorithm.
The algorithm stochastically looks for the most optimum solution to our problems.
At the very beginning, it starts with a randomized set of solutions, then repeatedly
evaluates this set against an objective function, and follows a given ruleset that forms
the core of the given optimization technique. As such, finding the most optimal
solution in the first iteration is not guaranteed; however, given enough iterations
and a large enough collection of randomized solutions, the probability of the global
optimal solution being found increases.
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Fig. 1 Sine and cosine
effects on the upcoming
position from Eq. 1

The process of optimization in the stochastic population-based approach, regard-
less of the algorithmbeing applied, can be split across twodistinct phases: exploration
phase and exploitation phase. In the exploration phase, the algorithm quickly, in a
very random manner, combines solutions from a given random set, looking through
the search space for the most favorable regions. With the exploitation phase, the
changes are gradually made, however, noticeably less severe than those from the
exploitation phase.

Theoriginal SCAproposes the use of the following equations for position updating
in both phases Eq (1):

Xt+1
i = Xt

i + r1 × sin(r2) × |r3Pt
i − Xt

i |
Xt+1
i = Xt

i + r1 × cos(r2) × |r3Pt
i − Xt

ii |
(1)

where X represents the current solution’s position in the i-th dimension after the t-th
iteration, Pi represents the point of destination in the i-th dimension, r1, r2 and r3
are random numbers, and || indicates an absolute value.

In Eq. (2), a combination of these two Eq. (1) can be seen:

Xt+1
i =

{
Xt+1
i = Xt

i + r1 × sin(r2) × |r3Pt
i − Xt

i |, r4 < 0.5

Xt+1
i = Xt

i + r1 × cos(r2) × |r3Pt
i − Xt

ii
|, r4 ≥ 0.5

(2)

where r4 represents a random value in [0,1].
The four major parameters of the SCA are r1, r2, r3, and r4, as shown in the

equations above. Parameter r1 defines region of the following position. Said position
signifies one of the two possible spaces: the space between the solution and desti-
nation or the space outside of the two. Parameter r2 dictates the movement away
from or toward the destination, or more precisely, how distant the movement is. The
role of parameter r3 is to stochastically diminish (r3 < 1) or emphasize (r3 > 1)
the distribution effects on distance definition. Lastly, parameter r4 plays the part of
switching between the sine and cosine components in Eq. (2).

The effects of the sine and cosine functions on Eqs. (1) and (2) are depicted in Fig.
1. The search space in between the two solutions is dictated by these two equations as
depicted in said figure. These two equations can also be expanded to include higher
dimensions; however, Fig. 1 depicts a two-dimensional model.



20 M. Zivkovic et al.

Fig. 2 Sine and cosine with the range in [−2, 2] allow a solution to go around (inside the space
between them) or beyond (outside the space between them) the destination

The sine and cosine functions cyclic pattern allows for solution repositioning
around a different solution. This can provide a guarantee of exploitation in the defined
space enclosed by the two calculated solutions. Altering the range of sine and cosine
function enables the solutions to search outside the space that is defined by the
corresponding destinations, and this is done so as to ensure exploration.

While changing the function range, as shown in Fig. 2, it is necessary to update the
new position of the solution taking into account positions of the existing solutions.
The updated position is attained by choosing a random value in range [0, 2π ] for
r2 from Eq. 2, and it can be either on the outside or on the inside. This mechanism
ensures both exploitation and exploration of the search space.

The algorithm needs to have the ability to balance both exploration and exploita-
tion when searching for promising regions inside a given search space. This is done
to eventually converge on a global optimum. The SCA does this by changing range
of the sine and cosine adaptively in Eq. 2 according to Eq. 3:

r1 = a − t
a

T
(3)

where a represents a constant, T represents the maximum amount of allowed repe-
titions, and finally t represents the active iteration.

Through many repetitions of Eq. 2, we get a decreasing range of sine and cosine
as shown in Fig. 3.

By taking into consideration both Figs. 2 and 3, it can be deduced that the SCA
focuses on exploitation when the given ranges are in [−1, 1], and on exploration
when the ranges are in between (1, 2] and [−2,−1).

Finally, the pseudocode for theSCAare shown inFig. 4.As depicted, the algorithm
begins the process of optimization with randomized set of solutions. Every time the
algorithm encounters a solution, it considers the most optimal so far, and it assigns
it as a target point. The algorithm then, in regard to the most optimal solution,
updates other solutions. During this process, the iteration counter is increased, and
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Fig. 3 Decreasing range of sine and cosine (a = 3)

initialize a randomized of search agents (X)
do

evaluate each of the search agents by the objective function
update the best solution obtained so far (P = X∗)
update r1, r2, r3, r4
update the positions of search agents

while t < maximumnumberofiterations
return the best solution obtained so far as the global optimum

Fig. 4 General steps of the original SCA algorithm

the ranges of sine and cosine function are, after every iteration, updated emphasizing
exploitation of the defined search space. When the counter reaches the maximum
allowed amount of iterations, the optimization process of the original SCA stops.
Other conditions for termination can be implemented as well, including the total
number of functional evaluations or reaching a desired global optimum accuracy.

3.1 Proposed Modified SCA Approach

Notwithstanding the fact that the basic SCAmetaheuristics establish excellent results
for standard benchmark instances [20], based on additional conducted experiments
with basic congress on evolutionary computation (CEC) benchmark suites, it was
concluded that the basic SCA can be further improved.

As many other swarm intelligence approaches, original SCA may be stuck in
non-optimal regions of the search domain in early iterations of execution. In this
early phase, due to the lack of exploration power, if the search process is not “lucky”
and if does not register optimal domain of the search space, algorithm may stuck in
sub-optimal domain for many iterations. As a consequence, worse mean values are
generated, and performance of the metaheuristic is seriously degraded.
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Without adding complexity to the algorithm, abovementioned drawback of orig-
inal SCA can overcome by introducing simple mechanism in the search process as
follows: after every iteration, 5% of worst solutions from the population are replaced
with the randomly generated individuals within the boundaries of the search space
in the first 50% of iterations:

X j
rnd = L j + φ · (U j − L j ), (4)

where X j
rnd is j-th component of the newly generated random solution, phi is the

value derived from the uniform distribution, and U J and L j are upper and lower
boundaries of j-th parameter, respectively.

Based on conducted simulations, it was concluded that in approximately first 50%
of iterations described exploration mechanism should be triggered. However, in later
iterations, this mechanism is not needed, and it would only represent an obstacle in
performing a fine-tuned search around the promising domain of the search region.
Proposed method is named modified SCA (mSCA), and its pseudocode is shown in
Algorithm 1.

Algorithm 1 Pseudocode of proposed mSCA
Initialization. Generation of the starting random population of N individuals X within the boundaries of the search
space and calculation of its fitness.
Initialize the maximal number of iterations T .
do

for all X in the generated population do
Evaluate utilizing the fitness function.
if f (X) better than f (P) then

Update the position of the best solution so far (P = X∗).
end if

end for
Update r1 parameter
Update r2, r3, and r4 parameters.
Update the positions of search agents
if t < T · 0.5 then

Replace 5% worst solution with random one using Eq. (4)
end if

while (t < T )
return P the best solution found.

4 Experiments and Discussion

In the research presented in this manuscript, the proposed mSCA algorithm was
tested on ten basic datasets and one additional COVID-19 dataset. The experimental
simulations in this research were executed through 20 independent runs, while each
run consisted of 70 iterations. The size of the population was set to 8, and a mixed
initializer was utilized to randomly select 2/3 from the available amount of features.
The suggested improved optimization method’s performance has been tested on ten
UCI datasets that are very popular among researchers and used as a benchmark in
Table 1.



Feature Selection Using Modified Sine Cosine Algorithm… 23

Table 1 List of experimental simulation datasets

No. Name Features Samples

1 Glass 10 214

2 Hepatitis 19 155

3 Lymphography 18 148

4 Primary tumor 17 339

5 Soybean 35 307

6 Horse colic 27 368

7 Ionosphere 34 351

8 Zoo 16 101

9 Musk 1 166 476

10 Arrhythmia 279 452

11 COVID-19 15 TBD

The performance of mSCAwas evaluated on a computer with a central processing
unit (CPU) with a clock frequency of 2.90GHz, additionally with 16.0G of available
random access memory (RAM) and programmed in the language of Python with
Anaconda framework using machine learning libraries including NumPy, SciPy and
scikit-learn. The performance is judged based on five calculated evaluation metrics.
The evaluation metrics include optimal fitness value, average fitness value, fitness
value normal divination, precision of classification, and the ratio of feature selection
with each method executed and evaluated 20 times. The repetition is performed to
better represent results and avoid bias caused by optimization algorithms stochastic
nature. The result averages are logged and presented after the last iteration of the 20
individual runs.

The mSCA in tested against ten standard datasets and COVID-19 dataset. And
its performance is then evaluated. The datasets are acquired from the UCI reposi-
tory [11] and Arizona State University [18]. Table 2 represents best overall fitness
while Table 3 represents the mean fitness metric. Tables 4 and 5 each represent
standard deviation, average classification accuracy and feature selection of already
referenced ten datasets. The best results aremarked in bold in each table, except in the
case of tie, where none of the results are marked. Tests of the proposed mSCA have
been conducted on different structures, so as to provide evidence of the algorithms
efficiency and performance in differing dimension.

The obtained results fromTables 2, 3, 4 and 5 from conducted experiments proved
the efficiency and efficacy of mSCA proposed algorithm. Based on the empirical
analysis, a deduction can be made that the proposed mSCA can yield higher-quality
results than the algorithms it has been tested against. The eight algorithms tested in
this paper are (BDA) [19], binary artificial bee colony (BABC) [14], binary mul-
tiverse optimizer (BMVO) [1], binary particle swarm optimization (BPSO) [30],
chaotic crow search algorithm (CCSA) [23], binary coyote optimization algorithm
(BCOA) [27], evolution strategy with covariance matrix adaptation (CMAES) [13]
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and success history-based adaptive differential evolution with linear population size
reduction (LSHADE) [26] algorithms.

Based on the presented results, it can be concluded that the proposedmSCAmeta-
heuristics clearly outperformed the original SCA approach for all observed metrics.
In general, when compared to other approaches included in the simulations, mSCA
obtained the best performances. Based on the results from Table2, the proposed
mSCA approach obtained the best results for best fitness metrics on five out of the
ten UCI datasets. When the statistical mean fitness metric is observed, from Table3,
it can be concluded that the mSCA obtained the best results on six out of ten UCI
datasets. In case of the standard deviation, Table4 shows that the mSCA obtained the
best results on four datasets and tied the best results on the Glass dataset. In Table5,
comparative analysis between proposed mSCA and other approaches in terms of
selected features (expressed as ratios of total number of features in the datasets)
is presented. From results, it can be seen that proposed mSCA in average utilizes
a smaller number of features than other methods which means that it managed to
substantially reduce the problem dimensions, which makes the training process of a
classifier much faster (Figs. 5 and 6).

Fig. 5 Average classification accuracy over ten datasets included in the comparative analysis

Fig. 6 Accuracy and feature size of the proposed SCA and mSCA on the COVID-19 dataset
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5 Conclusion

The conducted research that is presented in this manuscript proposes a novel feature
selection method. The implemented mSCAmetaheuristics address the drawbacks of
the original SCA method that are observed from the results of the conducted experi-
ments. The proposed mSCA approach was later used to help find the crucial features
for the classification process. The presented algorithmic method of optimization was
validated on ten benchmark datasets, and the results are represented in comparison
with other swarm intelligence metaheuristics. Finally, the mSCA method was used
on COVID-19 dataset. The conducted experiments results indicate that the mSCA
approach outperformed other methods included in the comparative analysis. Based
on defined research contributions, the novelty of proposed research can be summed
as follows: more efficient SCA metaheuristics are devised, solving feature selec-
tion challenge was improved in terms of classification accuracy, and the number of
employed features and classification for the most recent and important COVID-19
dataset was performed.

The future research in this area will be focused on including additional datasets to
the experimental simulations. Also, the future work will deal with adaptation of other
swarm intelligence metaheuristics, with a goal to further enhance the classification
accuracy.
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