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1 Introduction

All the technological advancements of the future that seem impossible right now can
indeed become a reality by the discoveries of today. These discoveries in the field of
nanotechnology have a very promising future where the arrangement of atoms in the
desired way can show some amazing results. There are a large number of pieces of
evidence that show how the world’s smallest materials are changing our lives including
the nano-machines that defeat the cancer cells, tiny computer chips, a few inches long
high definition cameras and others. Synthesis of these nanomaterials is in itself a huge
topic of research where the change in a single parameter like temperature can also make a
difference in the structure and morphology of the product [1]. There are various synthesis
techniques with different working principles that give very different products at specific
conditions [2]. The hunt for new tiny gadgets creates a need for new and better synthesis
techniques to get products of high purity and controlled dimensions. Initially, it was
believed that 2-D materials are not stable but after the successful synthesis of graphene
as a 2-D material, the search for the other 2-D materials with enhanced properties like
wider band-gap began. We got other potential materials in the form of Transition Metal
Dichalcogenides (TMDs) with wonderful electronic and optical properties [3]. Amongst
these, MoS, and WS, have attracted considerable attention because of the peculiar
layered structure, an impressive rate of electron transfer and layer-dependent band-gap.
Various applications of these materials include solid lubrication, optical devices, gas
sensing, and others [4, 5]. The schematic structure of WS, is shown in Fig. 1.

1.1 Hydrothermal and Solvothermal Method

These are two promising inorganic synthesis methods that involve the synthesis via
chemical reaction as shown in Fig. 2a. These are the green processes as the reaction
takes place in a sealed reactor known as autoclave shown in Fig. 2b. The autoclave is
generally made up of metal and is employed with Teflon or alloy lining to protect it from
highly corrosive solvent. These processes offer numerous advantages over other tech-
niques apart from being the green processes: (a) these are relatively low-cost processes,
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Fig. 1 The schematic layered structure of WS,

(b) an environment-friendly process as it takes place inside a sealed reactor and (c) high
purity products are formed [6]. In the hydrothermal method, the solvent used is water
while the solvothermal process uses aqueous and non-aqueous organic solvents like
ethylenediamine, ethanol, diethylenetriamine [7], polyethylene glycol [8], etc. Further-
more, the solvothermal process has some additional advantages over the hydrothermal
process: (a) it requires relatively low temperature and pressure, (b) precursors which are
sensitive to water can be used in this process and (c) the crystallinity of products formed
is very well controlled in this process.
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Fig.2 a A diagrammatical representation of hydrothermal/solvothermal synthesis b A dia-

grammatical representation of an autoclave in nanomaterials research laboratory (NRL), DTU,
India

1.2 Sonochemical Method

This is a method which neither requires high temperature and pressure nor long reaction
times. In this process, the precursors are mixed and put together in solution form and then
the sonochemical treatment is given. It involves passing ultrasonic waves through the
solution using an ultrasonicator as shown in Fig. 3. In this way, the hotspots are generated
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which can achieve very high pressure and temperature. The hotspots are the places
where the reaction takes place at sufficiently high temperature and pressure conditions
and the products are formed [9]. It is a powerful tool for synthesis or modification of
nanomaterials where even a little variation in the reaction conditions can lead us to the
change in morphologies and compositions of the product formed.

Ultrasonic transducer
(to produce ultrasonic waves)

Bubbles formed by
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Reactants
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Beaker

Fig. 3 A diagrammatical representation of the sonochemical method

1.3 Chemical Vapour Deposition (CVD)

It is a vacuum deposition method that involves a chemical reaction inside a vacuum
chamber. It is used for the production of various materials like alloys, carbides, oxides,
nanoparticles, etc. Layers of materials are deposited on a solid surface called substrate
below atmospheric pressure, i.e. vacuum. There are many types of CVD’s namely,
Thermal CVD, Metal-Organic CVD (MOCVD), Plasma Enhanced CVD (PECVD),

Atomic Layer CVD (ALCVD), etc. [10, 11]. Amongst these CVD variants, Double
Zone Thermal CVD and PECVD are present in our Lab at DTU whose diagrammatical
images are as shown in Fig. 4a, b, respectively. The technical details and working of
the above two instruments are reported in detail in our previous work, ‘Double Zone
Thermal CVD and Plasma Enhanced CVD Systems for Deposition of Films/Coatings
with Eminent Conformal Coverage’. This bottom-up approach involves the deposition of
one or more stable solid films on a substrate at high temperatures by a suitable chemical
reaction as shown in Fig. 5.

1.4 Sol-Gel Method

The Sol-Gel method or Chemical Solution Deposition Method is a low-temperature,
nanomaterial synthesis process in which solid materials are produced from small
molecules. It is a bottom-up approach for material synthesis whose working princi-
ple is shown in Fig. 6. The sol-gel method, as is evident from the name, involves two
materials, i.e. ‘sols’ (solid particles suspended in liquid) and ‘gels’ (porous network of
particles having liquid between the pores). First, sols are formed inside a liquid which
are then connected after some process to form a network of gels. The liquid then gets
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Fig. 4 a Labelled diagram of Double Zone Thermal CVD at NRL, DTU, Delhi, India. b Labelled
diagram of PECVD in NRL, DTU, Delhi, India

evaporated and we are left with the powder or thin-film formation. This method requires
less energy consumption leading to less pollution and is generally used to generate highly
pure and well-contained ceramic materials [10, 12].

1.5 Chemical Exfoliation Method

It is a top-down nanomaterials synthesis process where the reduction of interlayer forces
takes place followed by the formation of intercalated compounds and then exfoliation
occurs by rapid heating and sonication. This synthesis mechanism (as shown in Fig. 7)
is mainly done for graphene as the process produces a large amount of graphene at low
temperatures [13]. Exfoliation is a phase transition, which takes place when there is a
layer to solvent molecule charge transfer and a minimum mixing enthalpy at well-defined
elevated temperatures.
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Fig. 5 A diagrammatic representation of the working principle of the CVD process
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Fig. 6 A diagrammatical representation of the working principle of the Sol-Gel process

2 Experimental

2.1 Chemicals and Materials

Tungsten Hexa-chloride (WClg) and Thioacetamide or TAA (C,H5NS) were purchased
from Sigma Aldrich. Acetone was purchased from Rankem. Ethanol was purchased from
Merck. We have used Milli-Q water, (18.2 M2 cm) as the solvent during our synthesis.
All the chemicals used here had an analytical grading and were taken without any further
purifications being done.
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2.2 WS, Nanostructure Synthesis

WS nanostructures were synthesized via the hydrothermal method and their phase was
checked using XRD characterization. Figure 8 gives an outline of the hydrothermal
process used for WS, nanomaterial synthesis in NRL lab, DTU, Delhi, India.

Autoclave (sealed Teflon lining
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g S Hydrothermal containing mixture
Magnetic Stirring of precursors solution

Fig. 8 A diagrammatical representation of the general hydrothermal process used for sample
preparation in NRL, DTU, Delhi, India

We first weighed the salts/precursors, i.e. Tungsten Hexa-chloride and TAA, and
added them to two different beakers containing water as solvent. Beakers were then
kept for magnetic stirring at room temperature (27-30 °C) with varied revolutions per
second for 1 h for mixing of salts in water. Two different approaches were followed for
the synthesis of WS, nanostructures. In one approach of synthesis, the TAA solution
was added dropwise into WClg solution after one hour while in the other approach,
the WClg solution was added into TAA solution. After this, the mixed solutions were
kept for stirring for 1 h. The pH of the solutions was regulated and optimized to the
values ranging from 6 to 8 which was initially 2 by adding liquor ammonia drop by
drop. The solution mixtures were then transferred to Teflon lined autoclaves of different
capacities and kept in the oven for 20-24 h at 220 °C. Then centrifugation and washing
of samples was done using De-ionized water (DI) and ethanol, 3 times with each. Drying
of samples was done at 60 °C in an oven for 24 h. Then the samples were sent for XRD
analysis. We tried 5 reaction attempts to synthesize the materials at varied conditions.
In the following Table 1, we have summarised all 5 reaction attempts and their physical
optimization conditions.

After 24 h, samples were cooled down to room temperature. Then the samples
were collected via centrifugation at 7,000 rpm for 7 min after washing with DI water
and ethanol before drying at 60 °C for 24 h. We then collected the formed samples in
Eppendorfs after crushing and named them ‘S4’and ‘S5’, respectively.

3 Results and Discussions

In the first three attempts, no sample was obtained at the bottom of the Teflon as shown
in Fig. 9a but in the 4th attempt, as shown in Fig. 9b and 5th attempt, as shown in
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Table 1 Reaction attempts summary for WSy synthesis

Sample Precursor name | Amount (g) | DI water (mL) | Stirring pH
conditions
S1 WClg 0.522 30 stirred at Initial: 2
(TAA into 250 rpm, 30 °C | Final: 6
WCle) TAA 0.6 30 stirred until
fully dissolved
TAA was added into WClg and the mixture was stirred at 350 rpm at 30 °C
Solution mixture kept at 220 °C for 24 h in a 100 mL Teflon-lined autoclave
S2 WClg 0.522 18 stirred at Initial: 2
(WClg into 350 rpm, 27 °C | Final: 8
TAA) TAA 1.000 17 stirred at
250 rpm, 27 °C

WClg was added into TAA and the mixture was stirred at 350 rpm at 27 °C

Solution mixture kept at 220 °C for 24 h in a 50 mL Teflon-lined autoclave

S3 (TAA into
WClg

WClg 1.044 18 stirred at

400 rpm, 27 °C
TAA 2.000 17 stirred at

250 rpm, 27 °C

Initial: 2
Final: 8

TAA was added into WClg and the mixture was stirred at 400 rpm at 27 °C

Solution mixture kept at 220 °C

for 24 h in a 50 mL Teflon-lined autoclave

S4 WClg 0.632 18 stirred at Initial: 2
(TAA into 400 rpm, 27 °C | Final: 6
WCle) TAA 1211 17 stirred at
250 rpm, 27 °C
TAA was added into WClg and the mixture was stirred at 400 rpm at 27 °C
Solution mixture kept at 220 °C for 20 h in a 50 mL Teflon-lined autoclave
S5 WClg 1.566 17 stirred at Initial: 2
(TAA into 280 rpm, 27 °C | Final: 6
WCls) TAA 3.000 18 stirred at
400 rpm, 27 °C

TAA was added into WClg and the mixture was stirred at 400 rpm at 27 °C

Solution mixture kept at 220 °C for 20 h in a 50 mL Teflon-lined autoclave
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Fig. 9c, an impressive amount of greyish coloured samples were formed. The suspected
reason for failures is the manual or incomplete stirring of precursors due to unoptimized
conditions. Here, we have included the XRD results of our 4th and 5th reaction attempts
of the synthesis of WS, nanomaterial. The phases of the resultant nanomaterials obtained
in the last 2 reactions are checked for the confirmation of WS, phase as can be interpreted
from the preliminary XRD results.

(a) (b) (c)

Fig. 9 a No sample obtained in first three attempts b sample formed in the fourth attempt ¢ sample
formed in the fifth attempt

3.1 Characterization

XRD patterns were recorded using Bruker 8-D Advance System using CuK{alpha) A =
1.54 Angstrom at 40 kV voltage and 20 mA current with a scan rate of 1 °per minute
to study the phase of the as-prepared samples. In our results, we present the diffraction
patterns as recorded within the 26 scanning range of —5 to 90 degrees.

3.1.1 XRD

XRD results of the prepared WS, sample numbers 4 (S4) and 5 (S5) are as shown in
Fig. 10a, b. The crystal structure of these samples was interpreted using XRD spectra.
In the XRD results of sample 4, diffraction peaks are obtained at 26 angles of 15.05 °,
28.87°,32.12°,37.36 °,46.20 °, 50.80 °and 71.26 ° whereas, for sample 5, the diffraction
peaks are more prominent and are obtained at 20 angles of 8.81 °, 13.80°, 15.29 °,29.00 °,
29.63°,30.63°,31.12°,37.23°,53.43 ° and 64.89 °. The diffraction peaks corresponding
to these samples were plotted and labelled and using OriginPro-2021 software.

4 Conclusions

There are many physical and chemical synthesis techniques for the preparation of
nanoparticles namely hydrothermal, solvothermal, sonochemical, CVD, sol-gel and
chemical exfoliation techniques. Some are top-down approaches while others are
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Fig. 10 XRD of a sample 4 (S4), b sample 4 (S5)
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bottom-up approaches. Both types of techniques have their advantages and disadvan-
tages offering a variety of options to the users. Different types of nanomaterials like
metal oxides, TMDs, etc. can be prepared by these approaches. Here, various attempts
of preparation of WS, via facile hydrothermal method are reported with XRD results.
In some of the materials, no sample was formed while in some other attempts greyish
coloured powder was obtained after centrifugation and washing. This material can be
used for a variety of applications in which solid lubrication is a famous one. The adhe-
sion between sulphur layers is relatively weak which results in the sliding of layers over
each other.
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