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Abstract The active large-scale deployment of electrical smart meters throughout
the world offers opportunities to analyze smart meter data to generate numerous
innovative applications, Non-Intrusive Load Monitoring (NILM) is one such appli-
cation that goes beyond remote and precise billing. The NILM has been a popular
and growing methodology for monitoring the energy profile of a household building
and disaggregating overall power consumption into individual appliance usage. The
device-level energy consumption information would assist users to understand their
device usage behavior and take required actions to reduce energy consumption. This
paper systematically reviews the NILM approaches exclusively for low-resolution
smart meter data. This review highlighted the low-resolution energy datasets and
their feature measurements, the state-of-the-art algorithms explored and developed
for low-resolution NILM systems. Furthermore, this study discussed the challenges
related to the low-resolution NILM model performance, data scarcity, three-phase
data, etc. Finally, the existing research gaps as well as potential research directions
in the Indian context are described in detail.

Keywords Energy disaggregation · Low-resolution NILM ·Machine learning ·
Deep learning

1 Introduction

India is the world’s third-largest producer and consumer of electricity, as well as
the fourth-largest emitter of CO2 [1]. India’s energy sector accounted for 68.7% of
greenhouse gas emissions. The residential sector’s energy consumption is 24.01%
and is increasing year after year [2]. Electric production and consumption are major
sources ofCO2 emissions. Rapid urbanization causes high energy demand, ultimately
burdened to the limited energy resources, so it is highly essential tomanage the energy
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expenses. One of the solutions is monitoring the load behavior and load energy
consumption patterns for efficient and effective energy utilization. The problem of
effective energy consumption monitoring has attracted a lot of researchers. The prior
work reported in [3] divided the load monitoring system into two categories.

1. Intrusive Appliance Load Monitoring (ILM)
2. Non-Intrusive Load Monitoring (NILM)

The ILM technique utilizes a single measurement device connected to each home
appliance, leading to increased costs and complexity, however in NILM, only one
measuring tool is required to find the individual information about the device [3].
Due to its non-intrusive nature, NILM has a major benefit that it does not require to
modify the existing building infrastructure. NILM finds a better solution to disag-
gregate the total power into the individual device level power consumption. Energy
Disaggregation is generally worked on Software as a Service (SaaS) or sensor-based
solution to classify fine energy consumption data from whole aggregated data. With
the help of customer electricity usage patterns logged by the NILM system, recent
electronics companies such as Samsung Electronics, ABB, LG, Apples, and others
projected that efficient management of electricity demand saves $6 million. Hence,
appliance-centric electricity management andmonitoring have equal importance [4].

The concept behind NILM was first introduced by G.W. Hart in 1992, based
on steady-state active power feature. Many researchers have been proposed several
NILM techniques that are based on Factorial Hidden Markov Model (FHMM), V-I
trajectory, Wavelet Transform, Graph Signal Processing, Neural Network, Machine
Learning, genetic algorithms [5]–[9], additionalmethodologies can be found in [10]–
[12]. Large availability of energy datasets like REDD, AMPds, etc. many of these are
listed in [13] encouraging to the researchers to adopt NILM in various applications
like scheduling appliances to reduce peak hour demand [14], smart home energy
management including ambient parameters [15], anomaly detection in appliances
[16], developing household characteristics [17], non-technical losses reduction[18].

According to the recent development inNILM, a very few reviewarticles onNILM
have been published in the last 15 years. Most of the reviews [12, 19, 20] briefly elab-
oratedwith specific approaches for appliance classification, supervised/unsupervised
learning, event/non-event feature detection/extraction, and performance measure
metrics. Furthermore, articles like [21, 22] reviewed different degrees of freedom
of NILM technique. However, a complete overview of low-resolution NILM is
missing up to now, based on datasets, input features, disaggregation approaches
as well as research challenges particularly in machine learning and deep learning
area of research. Thus, this paper contributes a complete overview of state-of-the-art
NILM techniques based on low-resolution smart meter data. The main contributions
of this work in each section are specified as follow:

1. This paper summarizes the existing status of NILM research in Sect. 1.1,
providing essential details.

2. Sect. 1.2 illustrates a structured review of data acquisition and low-resolution
energy datasets with their specifications and future research directions.
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3. This study describes the feature extraction and detection in terms ofmacroscopic
features and it is presented in Sect. 1.3

4. An overview of state-of-the-art algorithms utilized in the low-resolution NILM
with machine learning and deep learning approaches is discussed in Sect. 1.4.

5. Finally, this paper summarizes the research gap regarding NILM performance
comparison, multiple input features, data scarcity, and three-phase datasets are
discussed in Sect. 1.6. Furthermore, this study also points out the future direction
of research in Indian context.

We hope our contributions will inspire future researchers and lead to new
achievements.

1.1 Smart Meter Rollout and Low-Resolution NILM

India expected to rise in electricity by 79% in next decade, with this energy produc-
tion enhancement, nation needs to cut down Aggregate Technical and Commer-
cial (AT&C) losses below 10% by the year 2027. To achieve this aim, India forms
Advanced Metering Infrastructure (AMI) along with the new range of smart meters.
Under Smart Meter National Programme (SMNP), Government of India has been
working on to replace 250 millions of conventional meters by new Smart meters
[23]. The active large-scale roll-out of electrical smart meters throughout the world
offers opportunities to analyze smart meter data to generate numerous innovative
applications; one of such applications that go beyond precise and remote billing is
Non-Intrusive Load Monitoring (NILM).

It is vital that some usual NILM nomenclature be clarified and how that applies to
the data being utilized. Internally, smart electric meters sample voltage and current
signals at different frequencies. These frequencies categorize as low- and high-
frequency ranges. The raw data can be produced directly, or the averaged value can
be calculated and produced such as, the root mean square (RMS) value of voltage
and current. For better understanding of smart meter data categorization, we cited
low-resolution data as low frequency data.

The high- and low-frequency smart meter data with NILM are discussed briefly
in literature [24]. The low-frequency sampling approaches are the ones that utilize
information generated at rates below theACFundamental frequency (50Hz in India).
However, the high-frequency sampling approach utilizes data generated higher than
AC fundamental frequency usually up to few KHz. The benefits of using high
frequency data should be pretty evident as this preserves all the signals and allows
to extract the greatest amount of information. This is revealed in [25], However,
obtaining high-frequency data is costly in terms of both hardware and installation
time. On the other hand, the loss of information at low frequencies can be compen-
sated without the need for additional hardware installation. In practice, the resolution
of a smart electric meter maintained lower than 1–60 s due to limitations in data
storage, data handling, and privacy protection. This leads to motivate researchers to
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investigate NILMwith low-resolution smart energymeter data with existing building
infrastructure. For more information about NILM with high- and low-frequency
characteristics, researchers can refer [26].

1.2 Fundamentals of NILM

The primary purpose of NILM is to break down or disaggregate the overall amount of
power drawn into its component. The resulting power in a residential building is the
total power consumption of each electrical device. Therefore, the goal is to determine
how much electricity is consumed by each appliance. The aggregated power of N
devices with respective time T is specified in Eq. (1)

P(t) = Pnoise(t) +
N∑

i=1

Pi (t)tε{1, T } (1)

where;

Pi= Power of each appliance.

Pnoise= power of unwanted signal.

In order to solve the problemof power disaggregation,many differentways have been
developed, the most common is to calculate Pi for i = 1, 2, 3, . . . , N , from P(t).
According to Eq. (1), variations of power disaggregation expression are described in
[24, 27]. When an issue is solved using machine learning, particularly deep learning,
it is referred to as a regression problem. Although most publications employ only
the active power component, the aggregation signal may also be solved by other
information such as apparent power, reactive power, and current.

1.3 NILM Framework

From the recent literature review [13, 15], NILM has the following working stages:

1. Data Acquisition: Electrical signals (current, voltage, Active Power, reactive
Power, Harmonic contents) are collected from measuring meter (Smart meter
or by using specific Hardware) at the low or high sampling rate.

2. Feature Extractions and Event Detection: Individual appliance has its own load
signature or feature pattern that leads to differentiate one appliance fromanother.
The Event is nothing but change in electrical signals with respect to time. This
transition includes appliance ON/OFF, operational mode change, and speed
variations.
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3. Load Classification and Energy estimation: By using features extracted from
the above stage, identify which appliance is operated at a given time with power
consumption. This stage includes inference and learning of models.

2 Data Acquisition and Low-Resolution Energy Datasets

The very first stage of NILM system is data acquisition or data collection. This stage
has a significant role in developing NILM algorithms for a specific application. Data
acquisition is associated to electronic measuring devices. Typically, a NILM system
is equipped with a voltage and current sensor module that is connected to the main
power line. Depending upon the data acquisition framework, the communication
devices have the task of transferring measured data over a communication network
[4].Currently,NILMdata havebeen transferredvia differentwireless communication
protocols and stored on the server/cloud. [28].

The market offers a variety of measuring meters with different sample rates [29].
The selection of measuring meters depends on the requirement of application. The
data acquisition is discussed here in terms of the sampling rate of the measuring
equipment. Sampling frequency inHz is referred as low,whereas sampling frequency
in KHz and above is high. Commercial smart meters are capable of capturing low-
frequency energy signals, while high-frequency signals are acquired with special
acquisition boards and equipment, high-frequency data are costlier in terms of hard-
ware and software and requiredmore communication bandwidth to transmit the data.
[25].

Companies like Neurio Technology [30], Smappee [31], ENTERTALK [32], etc.
brought a straightforward solution for data acquisition with plug-in devices. These
provide basic functionality of data acquisition with some considerable drawbacks
regarding sampling rates, flexibility, and cost [29].

Table 1 lists the NILM energy datasets explicitly for low-frequency sampling rate.
From Table 1, datasets such as RAE, I-BLEND collect data from entire domestic
buildings, which are referred to as aggregated data, and Tracebace, Dataport are such
datasets that gather data at both aggregate and appliance levels. On the other hand,
just a few datasets from the business sector are available as shown in Table 1. Due
to higher energy consumption in commercial sector, the implementation of NILM
techniqueswill savemoremoney than in the residential sector. The survey discovered
that the majority of datasets focused on home appliances, with only a few datasets
(such as COMBED) contributed to dataset of office appliances. Table 1 depicts the
differences in electrical features, to the difference in disaggregation results.

Each dataset has a different recording length, ranging from1week to several years.
To adopt a universal cost-cutting strategy, researchers can conduct a comparative
study of different countries’ usage patterns, by recording data in a consistent manner.
Comparing and testing NILM algorithms might be difficult due to differences in
sample frequency between datasets. From Table 1, it is cleared that a very small



106 D. R. Chavan and D. S. More

Ta
bl
e
1

L
ow

-r
es
ol
ut
io
n
da
ta
se
ts
w
ith

da
ta
ca
pt
ur
ed

lo
ca
tio

n,
da
ta
st
or
ed

du
ra
tio

n,
di
ff
er
en
ts
am

pl
in
g
ra
te
s,
m
ea
su
re
m
en
ts
,a
nd

pu
bl
is
he
d
ye
ar

Se
ri
al
nu
m
be
r

D
at
as
et

L
oc
at
io
n

D
ur
at
io
n

N
um

be
r
of

ho
us
es

Sa
m
pl
in
g
ra
te

Pu
rp
os
e

Y
ea
r

M
ea
su
re
m
en
ts

1
R
E
D
D

U
SA

1
m
on
th

6
1
H
z
(a
gg
re
ga
te
),

1/
3
H
z
(a
pp

lia
nc
e)

R
es
id
en
tia

l
20
11

I,
V
,P

2
T
ra
ce
ba
ce

[3
3]

G
er
m
an
y

1
da
y

–
1
H
z
(a
pp

lia
nc
e)

R
es
id
en
tia

l
20
12

P

3
Sm

ar
t[
34
]

U
SA

3
m
on
th
s

3
1
H
z
(a
gg

re
ga
te
d

an
d
ap
pl
ia
nc
e)

R
es
id
en
tia

l
20
12

V
,P
,S

,F

4
H
E
S
[3
5]

U
K

1
an
d
12

m
on
th
s

25
1

2
m
in

an
d
10

m
in

(a
gg
re
ga
te
d
an
d

ap
pl
ia
nc
e)

R
es
id
en
tia

l
20
12

P

5
D
at
ap
or
t[
36
]

U
SA

4
+

ye
ar
s

12
00

+
1
H
z
to

1
m
in

(a
gg
re
ga
te
d
an
d

ap
pl
ia
nc
e)

R
es
id
en
tia

l,
co
m
m
er
ci
al

20
13

P,
S

6
A
M
Pd

s
[3
7]

C
an
ad
a

1
ye
ar

1
1
m
in

(a
gg

re
ga
te
d

an
d
ap
pl
ia
nc
e)

R
es
id
en
tia

l
20
13

f,
V
,p
f,
I,
Q
,S

,P

7
iA
W
E
[1
9]

In
di
a

73
da
ys

1
1
H
z
(a
gg
re
ga
te
),

1
H
z
or

6
s

(a
pp

lia
nc
e)

R
es
id
en
tia

l
20
13

E
,V

,p
f,
I,
Q
,S

,P

8
IH

E
PC

D
S

Fr
an
ce

4
ye
ar
s

1
1
m
in

(a
gg

re
ga
te
d

an
d
ap
pl
ia
nc
e)

R
es
id
en
tia

l
20
13

I,
V
,P
,Q

9
A
C
S-
Fx

Sw
itz

er
la
nd

1
h

–
10

s
(a
pp
lia
nc
e)

R
es
id
en
tia

l
20
13

I,
P,
Q
,p

f

10
B
E
R
D
S

U
SA

1
ye
ar

1
20

s
(a
gg
re
ga
te
d

an
d
ap
pl
ia
nc
e)

C
om

m
er
ci
al

20
13

P,
Q
,S

11
E
C
O
[3
8]

Sw
itz

er
la
nd

8
m
on
th
s

6
1
H
z
(a
gg

re
ga
te
d

an
d
ap
pl
ia
nc
e)

R
es
id
en
tia

l
20
14

I,
V
,P
,p

f (c
on
tin

ue
d)



A Systematic Review on Low-Resolution NILM… 107

Ta
bl
e
1

(c
on
tin

ue
d)

Se
ri
al
nu
m
be
r

D
at
as
et

L
oc
at
io
n

D
ur
at
io
n

N
um

be
r
of

ho
us
es

Sa
m
pl
in
g
ra
te

Pu
rp
os
e

Y
ea
r

M
ea
su
re
m
en
ts

12
G
R
E
E
N
D
[3
9]

A
us
tr
ia
/I
ta
ly

1
ye
ar

9
1
H
z
(a
gg

re
ga
te
d

an
d
ap
pl
ia
nc
e)

R
es
id
en
tia

l
20
14

P

13
R
B
SA

[4
0]

U
SA

27
m
on
th
s

10
1

15
m
in

ag
gr
eg
at
ed

R
es
id
en
tia

l
20
14

V
,P
,Q

,S
,E

14
C
O
M
B
E
D
[4
1]

In
di
a

1
m
on
th

6
30

s
(a
gg
re
ga
te
d

an
d
ap
pl
ia
nc
e)

U
ni
ve
rs
ity

B
ui
ld
in
g

20
14

I,
P

15
D
R
E
D
[4
2]

H
ol
la
nd

6
m
on
th
s

1
1
H
z
(a
gg

re
ga
te
d

an
d
ap
pl
ia
nc
e)

R
es
id
en
tia

l
20
15

P

16
R
E
FI
T

U
K

2
ye
ar
s

20
8
s
(a
gg

re
ga
te
d

an
d
ap
pl
ia
nc
e)

R
es
id
en
tia

l
20
15

P

17
O
PL

D
Si
ng
ap
or
e

-
-

1
H
z
(a
gg

re
ga
te
d

an
d
ap
pl
ia
nc
e)

C
om

m
er
ci
al

20
16

P,
S,

I

18
E
E
U
D
[4
3]

C
an
ad
a

1
ye
ar

23
1
m
in

(a
gg

re
ga
te
d)

R
es
id
en
tia

l
20
17

P

19
E
SH

L
G
er
m
an
y

4
ye
ar
s

–
0.
5–
1
H
z

(a
gg
re
ga
te
d)

L
ab

eq
ui
pm

en
t

20
17

I,
V
,P

20
R
A
E
[4
4]

C
an
ad
a

72
da
ys

1
1
H
z
(a
gg
re
ga
te
d)

R
es
id
en
tia

l
20
18

I,
V
,P
,Q

,S

21
E
N
T
E
R
TA

L
K

[4
5]

K
or
ea

29
–1
22

da
ys

22
15

H
z
(a
gg
re
ga
te
d

an
d
ap
pl
ia
nc
e)

R
es
id
en
tia

l
20
19

P,
Q

22
I-
B
L
E
N
D
[4
6]

In
di
a

52
m
on
th
s

7
1
m
in

(a
gg

re
ga
te
d)

C
om

m
er
ci
al

20
19

V
,I

f,
pf
,P

23
ID

E
A
L
[4
7]

U
K

–
25
5

1
H
z

R
es
id
en
tia

l
20
20

E

24
C
U
-B
E
M
S[
48
]

T
ha
ila

nd
18

m
on
th
s

1
1
H
z
(a
pp

lia
nc
e)

C
om

m
er
ci
al

20
20

P,
E



108 D. R. Chavan and D. S. More

subset of countries (likeUK,USA,Canada, Germany) contributed to energy datasets,
thus it is necessary to develop country or region-specific energy datasets.

3 Appliance Feature Detection and Extraction

Individual appliance has its own load signature or feature pattern that leads to differ-
entiate one appliance from another. The load identification in NILM is highly subject
to the feature uniqueness of the appliances. So, the feature extraction methods have
major role in the NILM system. The feature extraction process involved the extrac-
tion of important information from voltage and current signals through the signal
processing techniques. The unique features are highly dependent on the sampling
frequency of the data; this data rate is nothing but the output bymeasuring instrument.

The data rate separated into two groups depending upon the sampling rate, these
are macroscopic and microscopic, and these are also called as low frequency and
high frequency, respectively [49]. This paper reviews the feature extraction of low-
frequency data rate, further these are divided into very low, low, andmedium,whereas
high-frequency data are categorized into high, very high, extremely high ranges.
Table 2 shows the respective sampling rates with utilized features.

Most of the features employed power variables with respect to time. These power
variables are voltage (V ), current (I), active power (P), reactive power (Q), apparent
power (S), power factor (PF), phase angle, and total harmonic distortion (THD).
Most employed feature is active power and is widely used in [3, 50–54].

3.1 Macroscopic Features

Feature extracted from aggregated low-frequency data (from medium to very low
range) is called macrolevel or macroscopic feature [55]. Generally, the macroscopic
feature includes real power and reactive power variants. The actual power consumed
during operation by an electric appliance is called real energy, However, unused

Table 2 Macroscopic and
microscopic data rate

Parameter Data rate

Very low Slower than 1 min

Low 1 min to 1 s

Medium Faster than 1 Hz to fundamental frequency
(50 Hz in India)

High Fundamental frequency to 2 kHz

Very high 2 kHz to 40 kHz

Extremely high Faster than 40 kHz
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power produced by capacitive and inductive components is reactive power, which
gives further information to simplify appliance identification process [10].

Initially, the macrolevel features were examined by EPRI and MIT institutes [3,
56]. From these investigations, it is possible to detect the occurrence of an appliance
being turned on or off by measuring actual and reactive power in relation to time
and the accompanying positive and negative changes. Later, the MIT researchers
expanded their work to apply to an industrial building’s aggregate load [51]. After
filtering out the sudden peaks, their research found that the appliances would have a
lengthy transient period and low reactive power. As a result, ref.[11] discovered that
employing transitory events as additional signatures can improve appliance detection.
From recent studies, it is observed that all high-frequency data is analyzedwith event-
based feature extraction whereas low-frequency data is analyzed by event as well as
non-event-based approach.

Feature detection in low-frequency NILM complicates the disaggregation process
due to low sampling; however, the key benefit is that low-frequency datamaybe easily
accessedwithout the need for any additional hardware. Considering the low sampling
rate, appliance feature generation using eigenvector and to match the features during
testing time pattern recognitionmethods has been proposed in [57]. Study [58] disag-
gregates total domestic electricity usage into five different categories of load. Here,
evaluation made between various sparse coding algorithms. Furthermore, accuracy
of a Support VectorMachine (SVM) classifier based on features is also suggested but
not demonstrated. In [59], authors considered power levels and ON/OFF duration as
a feature to identify appliances, both features computed with normal distribution and
Weibull distribution, respectively. This work proposed maximum likelihood classi-
fier and subtractive clustering technique, an event-based approach improvised result
by exhibiting temporal relations among appliances features. Various feature extrac-
tion methods have been projected over the period of time, the related literature can
be found in [10, 15].

4 Energy Disaggregation Algorithms

Energy disaggregation finds an effective and efficient solution for extracting
appliance-level data from an aggregate data with an appropriate set of algorithms.
In order to identify individual load data from aggregated consumption data, various
disaggregation algorithmshave been developed. The categorization of disaggregation
algorithms is based on system learning approach and can be classifies into two major
categories, one is supervised and other is unsupervised. Appliances are well labeled
in supervised learning whereas unsupervised learning does not require. The energy
disaggregation algorithms used in this section are heavily influenced by machine
learning and deep learning area in NILM with low-resolution data.
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4.1 Preprocessing

Before using the disaggregation algorithms, the raw data are transformed. The
following section discusses the pre-processing steps.

(1) Resampling

Since datasets have missing values because of the failure in measurement or
transmission equipment, resampling technique is utilized to get sampled data
uniformly. In literature [60, 61], the original dataset has been up-sampled to
the higher frequency. For on/off classification of appliances like TV, washing
machine, and rice cooker, data have been down-sampled to 0.03 Hz from 10Hz
[32]. Furthermore, the study concluded that to avoid performance degradation,
the sampling rate for classification task should be at least 1 Hz whereas and for
regression task, it should be 3 Hz. The effect of resampling on disaggregation
is carried out in numerous studies [32, 62–64].

(2) Normalization

To normalize the data, a variety of approaches have been used, the majority of
methods compute themean over the entire training set in order to normalize the
training data. To reduce the statistical sensitivity of the data to outliers, prior
to normalization, arcsinh employed to transforms the data [44]. Study [34]
carried instance normalizationwhereas [146] revealed that batch normalization
produced better results than instance normalization. The studies [40,147] found
that L2 normalization yielded the best results.

4.2 Post-processing

Post-processing is a strategy for addressing the validity of disaggregation results in
order to improve NILM further. The article [65] presented an optimization-based
strategy to ensure the summing of disaggregated loads is as near to the genuine
aggregate consumption as possible. The authors of [66] discover that partial activa-
tion of neural networks impacts appliance power. As a result of this, the mean also
affects the ground truth. To overcome this, Ref. [66] proposed to use median, which
is relatively unaffected. To improve disaggregation results, Ahmed et al. [67] use
Generative Adversarial Networks (GANs) technique.

4.3 Machine Learning-Based Approach

1. Hidden Markov Model (HMM):

HMM is an example of unsupervised learning model and is widely used for the
disaggregation of load having low-frequency data resolution. HMM has been
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well discovered in the literature [22]. The Hidden MarkovModel is constructed
with data preprocessing stage, then it calculates the hidden events and observed
events using k-means clustering [54]. Hidden events identify appliance on/off
state while the observed events associate with the energy consumption of each
load. The transition matrix is used to identify the state transitions of the appli-
ance. The various versions of HMMexplored inNILMapplication are, Factorial
HMM (FHMM), Conditional (FHMM), Conditional Factorial Hidden Semi-
Markov Model (CFHSMM), Factorial Hidden Semi-Markov Model (FHSMM)
[68].

Numerous algorithms have been developed that make use of various kinds of
HMMs and have proven outstanding outcomes. The fundamental constraints of
classical Markov models, on the other hand, have remained unsolved. Though,
the fundamental constraints of classic Markov models remain unaddressed.
Though several researches have been conducted employing HMM and its vari-
ants, it is observed that as the appliances on the power line increase, the time
complexity exponentially increases. A limitation in the ability to classify multi-
state appliances is a result of the fact that many Markov models are based on
first-order Markov chains [69].

2. Support Vector Machine (SVM)

When it comes to machine learning, SVM has been one of the most powerful
algorithms. Data extraction and classification based on identified patterns are
advantages of this method [9]. To separate the samples, SVMuses either a linear
kernel (which uses the features in original feature space) or a non-linear kernel
(which uses features in higher-dimensional feature space) [70]. Since the data
in this work are from the four CFL lamps in 16 potential electrical network
topologies, the author constructed this as a 16-class problem.

In [71], the SVM learns about a specific electrical appliance’s features. With
good accuracy, the trained network identifies the specified electrical item and
calculates the total household power used.

3. Sparse Viterbi Algorithms

Reference [72] proposed a novel algorithm that addresses the Viterbi algo-
rithm’s efficiency issue. The author demonstrates a strategy created on super-
state Hidden Markov Model (SSHMM) with the Viterbi algorithm variation.
In SSHMM, a super-state represents the power status of appliances, which can
be either on or off. Each combination of appliances has its own super-state,
which results in thedisaggregationof applianceswith complexmulti-state power
features.

4. Decision Tree (DT):

Decision tree-based NILM is a supervised technique with a modest level of
complexity that can be trained with a small amount of labeled data. Decision
trees are rule-based models that are simple and easy to visualize once they
have been constructed. The difference between two successive active power
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measurements, referred to as�P, used as a training feature [73], furthermore, the
system performance improved using active power (P) as additional feature[74].

5. K-Nearest Neighbor (KNN):

Another type of supervised learning is KNN, in order to employ KNN dataset
must be a labeled dataset. The value of K is determined based on the validation
set, which contains 60% of the labeled data. In article [75], KNN demonstrated
on the AMPds2 dataset and shows that KNN has potential to disaggregate appli-
ances like, dishwasher and clothes dryer. The study achieved a classification
accuracy of 95% by considering active and reactive power as an input feature,
whereas the accuracy degraded to 73% by taking only active power as a feature.
Study [73] describes a number of various strategies for pre-processing data in
order to reduce the effects of noisy data. The KNN tested on two datasets,
namely, REFIT and REDD.

4.4 Deep Learning Based

Themajority of NILM systems are based on hand-engineered features taken from the
aggregated power stream.Deep learning algorithms have demonstrated their capacity
to solve numerous complicated problems in a variety of applications in recent years,
including speech recognition, computer vision, and asset status monitoring, among
others. Recently, researchers have been investigating deep learning methods such as
recurrent neural network (RNN), convolution neural network (CNN), and autoen-
coder (AE) in the NILM problem to better classify appliances and disaggregate
energy [70, 76]–[78]. It has been established that deep neural networks (DNN) can
be used as a multi-class classifier for discriminating between different appliances
using deep learning techniques [79].

1. Recurrent Neural Network (RNN):

A neural network implementation that permits connections between neurons of
the same layer is known as a recurrent neural network. Sequential data such as
the readings of power usage in NILM are ideally suited for RNNs [78]. Article
[80] proposed RNN in NILM to disaggregate the appliances. Author compares
CombinatorialOptimization (CO). The results show thatCO lags behindRNN in
those cases, while RNN may operate well in unknown cases. However, signif-
icant progress must be made in order to improve the RNN performance for
multi-state appliances in the near future.

2. Convolution Neural Network (CNN):

For machine vision, image processing, and natural language processing, CNN
has proven to be a very successful modeling system. Motivated by recent
advancements of CNN, ref.[76] used the model to disaggregate appliances from
total household data.When it comes to training themodel, CNNhas a significant
advantage over other methods because it does not require hand-crafted features.
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A supervised (CNN)-based approach was adopted in [81], which is trained on
small subset of aggregated data. To enhance the disaggregation performance of
CNN, author considered time of the day as an additional feature.

3. Long short-term memory (LSTM):

LSTMs have been successfully applied to a number of sequence applications,
such as automatic speech recognition and machine translation. To overcome
vanishing gradient issue rises in RNN, ref.[76] adopted LSTM architecture,
which employs a ‘memory cell’ with all gated input, output, and feedback loops.
Multiple feature with four-layered bidirectional LSTM is adopted in [60]. The
performance evaluation in this work showed that the MFS-LSTM method is
more computationally efficient, scalable, and accurate in a noisy environment, as
well as generalized to unforeseen loads, when compared to standard algorithms.

5 Performance Metrics

The efficacy of NILM algorithms is based on the outcome of the performance eval-
uation metrics. Numerous assessment metrics have been employed to assess the
performance of event detection/classification and energy estimation, as well as to
compare the findings. For the NILM system, first performance evaluation performed
by G. W. Hart [3], in which a fraction of correct event identifications and a fraction
of total energy consumed employed. The effectiveness of energy disaggregation is
assessed by calculating the difference between the estimated and actual consumed
energy. For low resolution energy disaggregation systems, many metrics related to
estimated error, such as standard deviation of error (SDE), root mean square error
(RMSE), average error (AE), energy error, and R-squared are commonly employed
in [27]. As the details of performance measurements are outside the scope of this
article, they can be found in [26] with mathematical expressions.

6 Discussion and Challenges

6.1 Performance Comparison

The NILM algorithm’s performance is evaluated in a variety of ways. In the studied
literature, MAE and F-score were the most commonly used metrics to measure
predicted energy use and appliance on/off condition for low-resolution NILM. The
results have been acquired by a variety of algorithms that are completely distinct.
The following are the opinions associated with model performance comparisons:

• Approaches that are published should provide a set of standard metrics, set of
assumptions and set of constraints.
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• For model cross-validation, there should be a standardized evolution procedure
for defining training and testing conditions.

• Authors shouldmake their code publicly available; thiswill simplify the retraining
of models for comparison with new ways.

• Trained models may be published too, as the computer vision community does in
[82]. Only trained models from [83] have been made publicly available.

6.2 Multiple Features

Numerous authors made advantage of a variety of different input features. The liter-
ature [60, 84] present the findings of a comparison of multiple input features. The
research article [85] specifically makes use of reactive power (Q). According to the
authors, Q has been found to have an impact on the F1-score in both the AMPds and
the UK-DALE datasets. They discover approximately 12.5%, a significant improve-
ment in the seen evaluation situation. Furthermore, an improvement of approximately
8% in the unseen evaluation scenario across all of the investigated appliances.

The observed improvement is minor or negative for pure resistive loads, such as
a kettle or an electric oven, which is unusual. Therefore, hypothesize made in such
instances, reactive power does not give any information, but rather is only background
noise. The features such as P, Q, I, S versus P, using distinct performance metrics,
such as mean absolute error (MAE), normalized root mean square error (NRMSE)
and the root mean square error (RMSE), examined in [86]. The benefits with the extra
features are substantially larger in this work: roughly 40%–50% for all measures.
Depending on the outcomes, conclusion made those additional features other than
P can help disaggregation better. No judgments can be drawn about the amount of
improvement due to the wide range of outcomes. It may be worthwhile to investigate
what aspects, e.g., architectures, can best utilize information from attributes other
than P.

Except for [85], all outcomes are from observed evaluation scenarios. This implies
extra features help to estimate an appliance’s power usage. The amount of accuracy
they can provide to disaggregate type of appliance (Type I, II, III for details refer
[12]) is unknown. It would be fascinating to look into a bigger feature set.

6.3 Data Scarcity

The biggest difficultywith applyingNILM is the scarcity of labeled data. It is possible
to adapt semi-supervised deep learning to low-frequencyNILM, overcoming the data
scarcity problem in practical applications.

In the Netherlands, Net2Grid is a company that assists power utilities with NILM
compliance and management. In a demonstration, they emphasized the fact that
high-quality data are needed for greater accuracy of NILM system [87]. They further
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pointed out that appliance with different program or different settings has different
load patterns, therefore necessitating numerous observed cycles. The authors of [32]
analyze low-frequency NILM approach with the implementation of deep neural
network (DNN), in which disaggregation error depends on different households
utilized for training. They investigate that disaggregation error falls continuously
in proportion to the number of houses added to the training dataset till 40 houses.
Therefore, both literatures show that complicated machines require a high diversity
of training data to generalize fresh data successfully. Both studies conclude that
sophisticated machines require a high degree of diversity in their training data in
order to successfully generalize to previously unseen information. This finding is, at
the fundamental level, known as ‘data scarcity’.

6.4 Data from Three-Phase Appliances

The European countries like Switzerland, three-phase power supply arrives at main
distribution board then it separates into single phases. However, multi-phase elec-
tric appliances like pool pumps, electrical storage heaters, heat pumps, and electric
vehicles charging stations provide a significant challenge to energy conservation
measures. In order to disaggregate information from all three phases, it is necessary
to use the NILM algorithm. Datasets that contributed three-phase appliance data
are: ECO[38] and iAWE [19]. NILM algorithm is required for these three-phase
appliances in order to disaggregate information from all three stages. One of the
most difficult challenges to overcome when developing a method that should work
in every household is the fact that multi-phase equipment can be connected in any
number of different ways. In order to be invariant to these permutations, the outcome
of the low-frequency NILM technique must be consistent.

6.5 Prospect of NILM

Taking future speculation, one can imagine a variety of scenarios and possibilities
for the NILM industry. Considering rapid growth of the Internet of Things (IOT),
in the future, appliances may be programmed to be conscious of their own energy
usage and able to communicate information to the outside world through their own
communication interface. In order to have this, it is necessary to create a business
case for appliance manufacturers and provide the groundwork for interfaces and
protocols. The exponential growth in computing power of edge devices (gateway
devices) will soon enable NILM close to the meter without transmitting data to a
cloud service. In this circumstance, NILM algorithms can learn and improve on local
data. In order to be success in NILM, the learning problem must first be phrased in
such a way that the data from the meter may be used to create future improvements.
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6.6 Indian Outlook Toward NILM

We are seeing changes in power generation, regulatory measures, and consump-
tion patterns in India’s power sector, which is undergoing rapid transformation. This
environment allowsDiscoms (Distribution Company) to transition from being just an
electricity supplier to being an energy service provider by lowering costs, engaging
with customers to help them save energy, and improving the overall customer expe-
rience. The country’s smart metering initiatives are perfectly timed to facilitate this
transition. Discoms should look beyond metering, billing, and collection efficiencies
to get the most out of their smart meter investments with utilizing NILM technology.

Utility companies can use granular data on household electricity usage to assess
and design appropriate mechanisms to manage rising demand at the consumer level.
Many households have insufficient information about their electricity usage because
they tend to over- or under-estimate their appliance usage. Discoms could encourage
consumers to use electricity carefully by providing daily or weekly information
about their usage, as well as assist them in making the best appliance purchase
decisions. For example, discoms could provide individualized advice to households
about the potential savings from switching to amore efficient air conditioner. Routine
feedback to consumers on their own consumption via their electricity bills or via
mobile communication could also help to reduce consumption.

6.7 Conclusion

To summarize, this paper gives an overview of the literature on NILM with low-
resolution smart meter data. NILM is being investigated because it has the potential
to benefit a wide range of applications. This is coupled with the realization that low-
resolution data will almost probably become readily accessible on a large scale in the
near future. This study involved articles that use machine learning and deep learning
approaches to separate appliances from aggregated low-frequency data. The study
reviewed many degrees of flexibility offered by these approaches. The fundamental
study of energy disaggregation is presented and is followed by lists of low-resolution
datasets, shown in Table 1, which provides details of datasets in terms of location,
recorded data at aggregated level as well as appliance level, duration of recorded
data, number of houses, measurement parameters, etc.

Numerous difficulties were identified, related to data scarcity, model performance
comparison, outlook toward NILM in Indian context, three-phase energy datasets
for NILM and many more, these opinions are resulting in valuable conclusions and
recommendations for future studies. Comparingmultiple NILM systems is still time-
consuming, although there are fresh methodologies and mathematical tools that have
not yet been implemented. Although it is still missing in the current literature, this
contribution may prove useful.



A Systematic Review on Low-Resolution NILM… 117

Acknowledgements The research work has been carried out under AICTE Doctoral fellowship
(ADF) scheme, authors are thankful to the All-India Council for Technical Education (AICTE) for
providing fellowship.

References

1. “Each Country’s Share of CO2 Emissions | Union of Concerned Scientists.” https://www.ucs
usa.org/resources/each-countrys-share-co2-emissions (accessed May 30, 2021).

2. GROWTHOF ELECTRICITY SECTOR IN INDIA FROM 1947–2020, GOVERNMENTOF
INDIA , MINISTRY OF POWER, CENTRAL ELECTRICITY AUTHORITY NEW DELHI,
OCTOBER 2020

3. Hart GW (1992) Nonintrusive Appliance Load Monitoring. Proc IEEE 80(12):1870–1891
4. Abubakar I, Khalid SN, Mustafa MW, Shareef H, Mustapha M (2017) Application of load

monitoring in appliances’ energymanagement – A review. Renew Sustain Energy Rev 67:235–
245

5. Kolter JZ, Jaakkola T (2012) Approximate inference in additive factorial HMMs with
application to energy disaggregation. J Mach Learn Res 22:1472–1482

6. L. De Baets, C. Develder, T. Dhaene, and D. Deschrijver, “Detection of unidentified appliances
in non-intrusive load monitoring using siamese neural networks,” Int. J. Electr. Power Energy
Syst., vol. 104, no. December 2017, pp. 645–653, 2019,

7. He K, Stankovic L, Liao J, Stankovic V (2018) Non-Intrusive Load Disaggregation Using
Graph Signal Processing. IEEE Trans. Smart Grid 9(3):1739–1747

8. Gillis JM, Alshareef SM,MorsiWG (2016) Nonintrusive loadmonitoring usingwavelet design
and machine learning. IEEE Trans. Smart Grid 7(1):320–328

9. Basu K, Debusschere V, Douzal-Chouakria A, Bacha S (2015) Time series distance-based
methods for non-intrusive load monitoring in residential buildings. Energy Build. 96:109–117

10. Zoha A, Gluhak A, Imran MA, Rajasegarar S (2012) Non-intrusive Load Monitoring
approaches for disaggregated energy sensing: A survey. Sensors (Switzerland) 12(12):16838–
16866

11. ZeifmanM, RothK (2011) Nonintrusive appliance loadmonitoring: Review and outlook. IEEE
Trans Consum Electron 57(1):76–84

12. A. Faustine, N. H. Mvungi, S. Kaijage, and K. Michael, “A Survey on Non-Intrusive Load
Monitoring Methodies and Techniques for Energy Disaggregation Problem,” 2017,

13. B. Najafi, S. Moaveninejad, and F. Rinaldi, “Data Analytics for Energy Disaggregation:
Methods and Applications,” Big Data Appl. Power Syst., no. January, pp. 377–408, 2018,

14. J. Gao, S. Giri, E. C. Kara, and M. Bergés, “PLAID: A public dataset of high-resolution
electrical appliance measurements for load identification research,” BuildSys 2014 - Proc. 1st
ACM Conf. Embed. Syst. Energy-Efficient Build., pp. 198–199, 2014,

15. Ruano A, Hernandez A, Ureña J, Ruano M, Garcia J (2019) NILM techniques for intelligent
home energy management and ambient assisted living: A review. Energies 12(11):1–29

16. H. Rashid, P. Singh, V. Stankovic, and L. Stankovic, “Can non-intrusive load monitoring be
used for identifying an appliance’s anomalous behaviour?,” Appl. Energy, vol. 238, no. August
2018, pp. 796–805, 2019,

17. Sun G, Cong Y, Hou D, Fan H, Xu X, Yu H (2019) Joint household characteristic prediction
via smart meter data. IEEE Trans. Smart Grid 10(2):1834–1844

18. Buzau MM, Tejedor-Aguilera J, Cruz-Romero P, Gomez-Exposito A (2019) Detection of non-
technical losses using smart meter data and supervised learning. IEEE Trans. Smart Grid
10(3):2661–2670

19. N. Batra, M. Gulati, A. Singh, and M. Srivastava, “It’s Different: Insights into home energy
consumption in India,” Proc. 5thACMWork. Embed. Syst. Energy-Efficient Build., no.August,
pp. 1–8, 2013,

https://www.ucsusa.org/resources/each-countrys-share-co2-emissions


118 D. R. Chavan and D. S. More

20. WangY, ChenQ, Hong T, KangC (2019) Review of SmartMeter Data Analytics: Applications,
Methodologies, and Challenges. IEEE Trans. Smart Grid 10(3):3125–3148

21. R. Gopinath, M. Kumar, C. Prakash Chandra Joshua, and K. Srinivas, “Energy manage-
ment using non-intrusive load monitoring techniques – State-of-the-art and future research
directions,” Sustain. Cities Soc., vol. 62, no. June, p. 102411, 2020,

22. H. Liu, Non-intrusive load monitoring: Theory, technologies and applications. 2019.
23. “about-smart-meters @ eeslindia.org.”
24. L. Nilm, P. Huber, A. Calatroni, A. Rumsch, and A. Paice, “Review on Deep Neural Networks

Applied to,” 2021.
25. Gao J, Kara EC, Giri S, Berges M (2016) “A feasibility study of automated plug-load identifi-

cation from high-frequency measurements”, 2015 IEEE Glob. Conf. Signal Inf. Process. Glob.
2015:220–224

26. K. Basu, A. Hably, V. Debusschere, S. Bacha, G. J. Driven, and A. Ovalle, “A comparative
study of low sampling non intrusive load dis-aggregation,” IECON Proc. (Industrial Electron.
Conf., pp. 5137–5142, 2016,

27. N. Batra et al., “NILMTK: An open source toolkit for non-intrusive loadmonitoring,” e-Energy
2014 - Proc. 5th ACM Int. Conf. Futur. Energy Syst., pp. 265–276, 2014,

28. “index @ dataport.pecanstreet.org.”
29. A. U. Haq and H. A. Jacobsen, “Prospects of appliance-level load monitoring in off-The-shelf

energy monitors: A technical review,” Energies, vol. 11, no. 1, 2018,
30. I. E. Monitor, “The intelligent home monitor .”,
31. “98d12044bdf7c73befa6613fc7173486e3722fec @ www.smappee.com.”
32. C. Shin, S. Rho, H. Lee, and W. Rhee, “Data requirements for applying machine learning to

energy disaggregation,” Energies, vol. 12, no. 9, 2019,
33. A. Reinhardt et al., “On the accuracy of appliance identification based on distributed load

metering data,” 2012 Sustain. Internet ICT Sustain. Sustain. 2012, no. October 2014, 2012.
34. S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht, “Smart*: An Open Data

Set and Tools for Enabling Research in Sustainable Homes,” SustKDD, no. August, p. 6, 2012,
35. J.-P. Zimmermann et al., “Household Electricity Survey: A study of domestic electrical product

usage,” Intertek, p. 600, 2012,
36. C. Holcomb, “Pecan Street Inc.: A Test-bed for NILM,” Int. Work. Non-Intrusive LoadMonit.,

pp. 271–288, 2007.
37. S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V. Bajić, “AMPds: A public dataset for
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