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Abstract. Modern unmanned aerial vehicles (UAVs) rely on binocular
ranging modules to complete tasks such as obstacle avoidance, 3D recon-
struction, and terminal strikes. However, the limited computing resources
and high flight speed all put forward requirements for the real-time per-
formance of the ranging algorithm. Thus, in this paper, we focus on how
to make the algorithm dynamically allocate computing resources accord-
ing to the changes of the UAV attitude to improve the system efficiency.
To this end, we propose an improved semi-global matching method based
on adaptive grid for fixed-wing UAVs. Experimental results demonstrate
that the proposed method can effectively adapt to the changes in the
speed and attitude of the UAV, and improve the real-time performance
of the ranging module.
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1 Introduction

The booming development of UAV technology makes it rapidly heat up in the
civilian and military fields. More advanced flight controllers, vision modules, and
energysystemspromotethedevelopmentofUAVsinamulti-purposeandintelligent
direction such as transportation, inspection, reconnaissance, and terminal strikes.

Stereo matching technology has become the core of binocular vision algo-
rithms because it can generate dense disparity maps, and has been widely used
in 3D reconstruction, robot obstacle avoidance, and automatic driving [1]. Stereo
matching algorithms are divided into local [2], global [3], semi-global [4,5] and
deep learning-based algorithms [6]. The semi-global stereo matching algorithm
is an improvement of the global algorithm. By transforming the two-dimensional
image optimization problem into a one-dimensional optimization problem with
multiple paths, the computational complexity is reduced while preserving the
precision of the algorithm. Li et al. [7] used the census transform [8] to calcu-
late the matching cost, and used the image pyramid to perform 8-path SGM [9]
processing on each layer, and established a coarse-fine parallel stereo matching
algorithm to reduce the matching time.
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This paper proposes a stereo matching algorithm to solve the problem of the
poor real-time performance of fixed-wing UAVs to obtain scene depth informa-
tion. Specifically, we divide the image into several grids, and the stereo matching
algorithm will adjust the calculation method according to the attitude of the
UAV, and different calculation methods are assigned to different grids.

2 Problem Formulation and Preliminary Definitions

Classical stereo matching algorithms such as PatchMatch and SGM are not
specifically optimized for UAV platforms. For example, the real-time changes in
the attitude of the UAV are not reflected in the image processing stage. This
paper is interested in making the UAV maintain a high-frequency perception of
obstacles when its attitude changes. Some assumptions are used to simplify the
problem:

• The obstacle is stationary.
• The gimbal is mounted on a fixed-wing UAV.

According to the kinematic constraints on fixed-wing UAVs, we introduce
three influencing factors, namely forward velocity v(t), yaw rate y(t), and pitch
rate p(t). We are interested in finding a strategy to make the UAV subject to
the constraints of these three factors during image processing and produce the
corresponding output. At the same time, we divide the image into nine grids, as
shown in Fig. 1, each of which represents a receptive field. We define the system
as the following states: locked state LS, forward state FS, yaw state Y S, pitch
state PS. The state of the system is derived from the following equation:

state(t) = f(v(t), y(t), p(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

LS, v(t) = 0
FS, v(t) > 0
Y S, v(t) > 0, y(t)/Ymax > σ1

PS, v(t) > 0, p(t)/Pmax > σ2

(1)

where Ymax represents the maximum yaw rate, Pmax represents the maximum
pitch rate, σ1 and σ2 are hyperparameters and need to be adjusted according to
the parameters of the UAV flight controller.

When the system is in the FS state, the computing resources are concen-
trated in the 5th receptive field. In the Y S state, the computing resources are
concentrated in the

{
1, 4, 7

}
or

{
3, 6, 9

}
receptive field, which depends on the

yaw direction. In the PS state, the computing resources are concentrated in the{
1, 2, 3

}
or

{
7, 8, 9

}
receptive field. The system can be in multiple states at the

same time.

3 Improved Semi-global Matching Based on Adaptive
Grid

The stereo matching algorithm is generally divided into 4 steps: cost initial-
ization, cost aggregation, disparity selection, and disparity optimization. The
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Fig. 1. The image is divided according to the receptive field of the UAV, and the
forward speed, yaw rate, and pitch rate determine the system state.

cost initialization of semi-global matching adopts the mutual information algo-
rithm but requires a relatively large amount of calculation. We use a simpler
Census transform to replace this method. At the same time, we added a module
before cost aggregation to dynamically calculate the grid size. This module reads
data from the UAV’s sensors and provides grid width information to the cost
aggregation stage before each frame. The cost aggregation stage is also carefully
designed, multi-path cost aggregation is used to approximate global matching.
The algorithm flow chart is shown as in Fig. 2.
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Fig. 2. Summary of processing steps of Sect. 3.1, 3.2, 3.3, and 3.4.

3.1 Cost Initialization

Census transform compares the pixel gray value in the center pixel domain win-
dow (the window size is n∗m, n and m are odd) with the gray value in the center
of the window, and maps the boolean value obtained from the comparison to a
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bit string. Finally, the bit string value is used as the Census transform value Cs

of the center pixel, as shown in the following equation:

Cs :=
n⊗

i=−n

m⊗

j=−m

ξ(I(u, v), I(u + i, v + j)) (2)

where u, v are pixel coordinates, and ξ operation is defined by

ξ(x, y) =
{

0, x ≤ y
1, x ≥ y

(3)

The matching cost calculation method based on census transform is to cal-
culate the Hamming distance of the census transform value of the two pixels
corresponding to the left and right images, that is, the number of different cor-
responding bits of the two-bit strings. The calculation method is to carry out
NOR operation on two-bit strings, and then count the number of bits that are
not equal to 1 in the result of NOR operation as the initial matching cost. The
equation is as follows:

C(u, v, d) := Hamming(Csl(u, v), Csr(u − d, v)) (4)

where C(u, v, d) is the cost value of pixels (u, v) under disparity d.

3.2 Adaptive Grid Size

The fixed grid size cannot adapt to the speed changes of the aircraft. We hope
that the UAV’s attitude changes can be reflected in the algorithm. We have
designed a module specifically for this purpose. This module obtains data from
the plane’s sensors and aims to provide width and height information of the
grid for subsequent calculations. We calculated the values of the three factors
introduced in Sect. 2 based on the UAV’s accelerometer, magnetometer, gyro-
scope, and equipped GPS module, and determined the system state, and finally
calculated the size of the grid.

When the system is in the FS, YS, or PS state, the width w and height h of
the 5th grid are adaptive and calculated by the following equation:

w = W − 2v(t)/Vmax ∗ W

h = H − 2v(t)/Vmax ∗ H
(5)

where W and H represent the width and height of the input image, Vmax rep-
resents the maximum forward speed. Once the system state and grid size are
determined, we will use this information in the cost aggregation stage to improve
the real-time performance of the algorithm.
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3.3 Grid Based Cost Aggregation

The cost of the pixel p is aggregated from the multi-directional path cost, such as
16-path cost aggregation, 8-path cost aggregation, and 4-path cost aggregation.
The calculation method of the path cost of pixel p along a certain path r is as
follows:

Lr(p, d) = C(p, d) + min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lr(p − r, d)
Lr(p − r, d − 1) + P1

Lr(p − r, d + 1) + p1

min
i

Lr(p − r, i) + P2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

− min
i

Lr(p − r, i) (6)

Among them, the first term is the matching cost value C, the second term
is the smoothing term, the third item is to ensure that the new path cost value
Lr does not exceed the upper limit of the value. The value accumulated to the
path cost takes the least cost value in the three cases of no penalty, P1 penalty,
and P2 penalty. P1 penalty is less severe and punishes the situation where the
disparity change of adjacent pixels is very small (1 pixel). P2 penalty is more
severe, which punishes the situation where the disparity of adjacent pixels varies
greatly (greater than 1 pixel). To protect the discontinuity of disparity in the
real scene, P2 is often dynamically adjusted according to the gray difference of
adjacent pixels, as shown below:

P2 =
P ′
2

|Ibp − Ibq| , P2 > P1 (7)

where the P ′
2 is the initial value of the P2 and is generally set to a value far

greater than that of the P1, Ibp and Ibq represents pixel intensity.

Fig. 3. When the UAV yaws to the left, the left grid adopts 16-path cost aggregation,
and the calculations consumed by the middle and right grids only account for 1/2 and
1/4 of the left.

We decide to use several path cost aggregations based on the system state
and the location of the pixel. As shown in Fig. 3, when the aircraft is in the
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Y S state and yaws to the left, the
{
1, 4, 7

}
receptive field uses 16-path cost

aggregation to obtain more accurate depth information, while
{
3, 6, 9

}
uses 4-

path cost aggregation, which makes the calculation amount of the right area only
1/4 of the left. Our method not only ensures the flight safety of the UAV but
also improves the real-time performance of the algorithm due to the reduction
of the overall calculation amount.

3.4 Disparity Optimization and Disparity Refinement

The disparity optimization step uses the winner-take-all method to calculate the
optimal disparity map. WTA selects the disparity corresponding to the smallest
cost value as the final disparity according to the DSI (Disparity Space Image)
generated after cost aggregation.

We use a variety of methods to refine the disparity. First, the left-right con-
sistency method, the elimination of small connected regions, and the uniqueness
detection are used to reduce the mismatch rate, then the quadratic curve fitting
is used to calculate the sub-pixel disparity, and finally, the 3× 3 median filter
algorithm is used to suppress the noise.

4 Experiments

We evaluated our method on Middlebury [10] datasets. We also used the Air-
Sim [11] simulation environment to evaluate the influence of different system
states and different flight speeds on the performance of the algorithm.

4.1 Datasets and AirSim Simulation Environment

Since the Middlebury dataset is not a picture taken by a UAV in a real scene, we
have pre-defined the parameters of the aircraft. The maximum forward speed of
the UAV supports 20 m/s, the maximum yaw rate is 10 rev/s, and the maximum
pitch rate is set to 8 rev/s. Select Djembe, Hoops, Piano, and Teddy as the test
pictures. AirSim is a cross-platform open-source simulator for drones and other
autonomous mobile devices built on Unreal Engine. We use the built-in virtual
binocular camera of AirSim to test the performance of the algorithm. The size
of the image generated by AirSim is 256 * 144, and the test scene is CityPark.

4.2 Experimental Results and Analysis

According to Fig. 4, when the system is in the FS state, as the speed of the
UAV increases, the size of the 5th grid decreases, the proportion of 16-path
cost aggregation decreases, resulting in a decrease in the running time of the
algorithm. Our improved method is approximately 25% faster than the SGM
algorithm at maximum speed. Table 1 shows the processing time for Teddy
pictures when the system is in different states.

AirSim’s experimental results show that when the UAV is in the Y S state,
the left grid adopts 16-path cost aggregation, and the objects in the red box
show clearer disparity, as shown in Fig. 5.
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Table 1. The running time of our method on Teddy image. We fixed the forward speed
to obtain the comparison result.

State Speed (m/s) Time (ms)

FS 10 663

YS 10 788

PS 10 764

0 2 4 6 8 10 12 14 16 18 20

Forward speed(m/s)

0
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im
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Fig. 4. The test results of the Middlebury dataset show that the running time of the
algorithm can be reduced by up to about 25% as the forward speed increases.

(a) (b)

Fig. 5. The disparity map generated in AirSim. (a) Reference image; (b) Disparity
map. Our method can well adapt to the attitude change of UAVs. The object in the
red box shows high definition when the system is in the Y S state.

5 Conclusions

We propose an improved stereo matching algorithm for fixed-wing UAVs. This
method is based on the adaptive grid, which can dynamically allocate comput-
ing resources to different grids according to the attitude changes of UAV. Our
experimental results on the Middlebury dataset show that this method is faster
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than the SGM algorithm at maximum speed. The experimental results in AirSim
show that our method has good robustness in a simulated environment.
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