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Abstract. The air traffic controllers always use air-traffic control instructions
(ATC instructions) to command aircrafts. The ATC instruction consists of some
situation mentions such as flight number, status, and target location etc. The deep-
learning based approach can extract such information for situation awareness. In
practice, it is difficult to prepare huge amount of labelled ATC instructions for
training the deep-learning model due to expensive costs of handcraft annotations.
The large scale pre-trainedmodel (PTMs) can solve this problem by “pre-training”
and “fine-tuning”. This paper proposes: 1) pre-trained models to extract informa-
tion from few scale ATC instructions; 2) the probing task to find which layer of
model achieves the best performance of information extraction task.
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1 Introduction

The radiotelephony communication is a kind of voice communication mode between
air-traffic controller and aircraft. The air-traffic controllers always use ATC instruc-
tions in radiotelephony communication to command aircrafts. It is important to use the
correct ATC instructions during communication because incorrect or ambiguous ATC
instructions would cause aviation unsafe incidents. The ATC instruction always con-
sists of some situation mentions such as flight number, status, location etc. Analysing
these mentions can help ATM systems to avoid the potential accidents. However, the
practical ATC instruction occurs in text style and ATM systems cannot apply directly.
Named Entity Recognition (NER) is kind of method to extract the situation information
in ATC instructions. Then the ATM systems can predict some potential accidents with
such situation information and other air-traffic management systems’ information such
as ADS-B, A-CDM, ASMGCS, etc.

NER [1] aims to recognize mentions of rigid designators from text belonging to
predefined semantic types such as person, location, organization etc. The input of NER
system is sequence of tokens, and its output is sequence of corresponding labels. NER
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plays an essential role in aviation text understanding. There are fourmain streams of tech-
niques applied in NER: 1) rule-based approaches, 2) feature-based supervised machine
learning based approaches, 3) supervised deep-learning based approaches, 4) pre-trained
model based approaches [2].

Applying supervised machine learning approaches, NER is regard as sequence
labelling task. Some machine learning algorithms are proposed such as hidden Markov
model (HMM) [3] and conditional random field (CRF) [4]. These approaches train the
model by a large annotated corpus, memorize lists of entities, and creates disambigua-
tion rules based on transition probability. Feature engineering is critical in supervised
machine learning approaches. HMM and CRF needs feature vector representation to be
inputs.

Deep learning composed ofmultiple processing layers to learn useful representations
of data automatically. Compared with shallow models of machine learning, the deep-
learning models learn complex and intricate features from data. The traditional deep-
learning models such as Long Short-Term Model (LSTM) is able to capture the non-
linear mappings between input and output. Hammerton et al. [5] attempted NER with
LSTM, which can capture long distance dependence of input text. Lample et al. [6]
proposed LSTM-CRF for NER, where BiLSTM layer computes the deep contextual
word embedding andCRF layer outputs tagging sequence via viterbi decoding.Although
applying whole sentence information to infer the global optimum sequence of tagging,
CRF layer cannot explicitly capture dependency between any two labels due to Markov
assumptions. In order to break the limitation, Cui et al. [7] proposed the hierarchically-
refined label attention network to replace CRF in inference layer. In Cui’s model, the
multi-headed self-attention [8] can help NER models learn dependency between any
labels. The convolutional neural networks (CNN) are also applied in NER models due
to its ability of modelling character-level information, such as LSTM-CNNs [9] and
BiLSTM-CNNs-CRF [10]. Deep-learning based approach is still a kind of supervised
learning approach, which needs large scale labelled data for training. However, it is
difficult to satisfy such requirement of training data due to expensive costs of handcraft
annotations.

The pre-trained model based pre-trained models are effective for low-resource NER
via fine-tuning. The PTMs learn language knowledge from large amount of unlabeled
data in pre-trained stage, then use few scales labelled data of downstream tasks to train
the models in fine-tuning stage [11] and let model adapt to any downstream tasks.
Radford et al. [12] proposed Generative Pre-trained Transformer (GPT) for language
generating task. Devlin et al. [13] proposed Bidirectional Encoder Representations from
Transformers (BERT), which encodes tokens by joint conditioning on both left and right
context in all layers.

In this paper, the PTMs-CRFmodel is presented to extract the situation information of
ATC instructions. Thepre-trainedmodel is defined to be embedding layer andCRFmodel
to be inference layer. There are two contributions in the paper: 1) choose the pre-trained
models to solve low-resource problem; 2) apply probing task to search which layer of
pre-trained models can obtain the best performance. Finally, we verify PTMs-CRF on
practical ATC instructions datasets and discuss the experiment results.
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2 Related Work

Pre-trained Models. In the past decade, the technologyof pre-trainedmodels has devel-
oped rapidly. The technology development is divided into two generations. First gen-
eration is to learn pre-trained word embedding, PTMs learn words representation from
large scale unlabeled data. Second generation is pre-trained contextual encoder, PTMs
learn contextual word embedding by building language model.

In order to capture syntactic and semantic information of words, word embedding via
neural network language model is proposed [14]. Mikolov et al. [15] proposed Continu-
ous Bags-of-Words (CBOW) and Ship-Gram (SG)models to represent words.Word2vec
can learn high-quality word embedding to capture the latent sematic similarities among
words. Glove et al. [16] obtains the global vectors for word representation by word-word
cooccurrence matrix. Although improving the performance in different NLP tasks, the
pre-trained word embeddings are context-independent and do not apply information of
the entire input sentence for representing words.

The pre-trained contextual encoder can represent the word semantic depending on its
context. Peters et al. [17] proposed a type of deep contextualized word representation by
using stacked BiLSTM and pre-trained on a large text corpus. ULMFiT [18] attempted
to fine-tune pre-trained language model for text classification. After Transformer was
proposed, the vast majority of PTMs are made up of its encoder or decoder, such as GPT
and BERT. Moreover, some advanced models were proposed to improve performance
such as Roberta [19], ALBERT [20], XLNET [21]. Compared with pre-trained word
embedding, these PTMs can learn more knowledge from large scale text corpora by
self-supervised training.

Probing Task. The PTMs are hierarchical structure, which are stacked by multi-layer
transformer. The probing task is an approach to find what knowledge do each layer of
PTMs learn. Jawahar et al. [22] proposed that BERT’s lower layers capture the phrase-
level information, intermediate layers learn the linguistic information and higher layers
encode the sematic information of. Wallace et al. [23] apply probing task to search
BERT’s representing ability for numbers, which shows that BERT only uses sub-word
units and is less exact.

3 PTMs-CRF Model

This section will describe the PTMs-CRF model. The architecture of PTMs-CRF model
includes embedding layer and inference layer, which is similar to the one presented by
Lample et al. [6]. In this paper, BERT and its advanced versions are applied in model’s
embedding layer due to their excellent natural language encoding performance.

3.1 BERT Family

BERT has some advanced versions: RoBERTa trains longer with bigger batches and
over more data; and ALBERT, a lite version of BERT.
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3.1.1 Original BERT

BERT is a stack of Transformer encoder layers which consist of multi-headed self-
attention, fully-connected, layer normalization and residual connection. Every token of
input is defined as query, key and value vectors, each head self-attention creates the
weighted representation by them. Then fully-connected layer is used to combine the
outputs of all heads in the same layer. The residual connection makes model deeper, and
layer normalization can improve the performance by reducing gradient disappearance
and explosion (Fig. 1).

Fig. 1. The architecture of BERT

The traditional workflow for BERT includes two stages, first stage is pre-training
by large scale text corpora with two semi-supervised tasks: masked language model-
ing (MLM) and next sentence prediction (NSP); the second stage is fine-tuning for
downstream applications by supervised training via few scales labelled data.

For every word of input sequence, BERT first tokenize it into word-pieces. The final
input embeddings are combined by token embedding, position embedding and segment
embedding. The special token [CLS] represents the whole sentence and [SEP] is used
for separating input segments.

Define the input sequence of ATC instruction as x1, x2,…, xn and the output sequence
as y1, y2,…, yn, where N is the instruction’s length, xi means ith token of input sequence
and yi means ith label. Denote L to be number of layers, and H to be hidden size of
model. Then input embeddings of BERT is computed as:

Ei = Wexi + Wp + Ws (3.1)

where Ei ∈ RH×1 represents the ith token, equals to the sum of token embeddingWexi,
position embedding Wp and segment embedding Ws.

The output of BERT can be computed by following equations:

hl+1
i = transformer_encoder(hli), where h0i = Ei, yi = hLi (3.2)
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The transformer_encoder denotes the encoder of Transformer and A is the number
of self-attention heads in one layer of encoder. The hil is hidden state of the lth layer.
BERT has two model sizes: BERT-base (L = 12, H = 768, A = 12, total parameters =
110 M) and BERT-large (L = 24, H = 1024, A = 16, total parameters = 340 M).

3.1.2 RoBERTa

The performance of BERT is not excellent because of significantly undertrained when
pre-training. In order to develop it, fourmodificationswere applied: 1) training themodel
longerwith bigger batches and overmore data; 2) using onlymasked languagemodelling
(MLM) pre-training task; 3) training on longer sentence and 4) changing the masking
pattern dynamically when pre-training. RoBERTa is trained following the BERT-large
with L = 24, H = 1024, A = 16, total parameters = 255 M.

3.1.3 ALBERT

Increasing the model size can always improve performance on downstream tasks. How-
ever, it also needs large GPU/TPU memory and longer training time. ALBERT is a kind
of lite BERT due to reducing some parameters. It incorporates factorized embedding
parameterization and cross-layer parameter sharing to scale the pre-trained models. Fur-
thermore, ALBERT uses sentence-order prediction (SOP) task in pre-training instead of
next sentence prediction (NSP). ALBERT has three model sizes: ALBERT-large (total
parameters = 18 M), ALBERT-xlarge (total parameters = 59 M) and ALBERT-xxlarge
(total parameters = 233 M).

3.2 CRF Tagging Model

In NER task, the dependencies across output labels are strong. The NER model can
joint use CRF to capture dependency between any two labels. The input of CRF is the
hidden state sequence of BERT’s last layer hL = (h1L, h2L, …, hnL), the corresponding
prediction output sequence of is y = (y1, y2, …, yn).

Consider P ∈ Rn×k to be the matrix of scores output from BERT networks, where k
is the number of labels, and Pi,j means the corresponding score of the jth label of the ith
token of input sequence.

Define the score of CRF as:

S(h, y) =
N∑

i=0

Ayi,yi+1 +
N∑

i=1

Pi,yi (3.3)

where A is a matrix of transition scores, Ai,j represents the score of the transition from
label i to label j. The start and end of label sequence y are “start” label and “end” label,
the number of labels should be k + 2 and the size of square matrix A becomes k + 2.

A softmax over all possible tag sequences yields a probability for the sequence y:

p(y|h) = eS(h,y)
∑

ỹ∈Yh e
S(h,ỹ)

(3.4)
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where Yh denotes all possible labels of input h. Maximizing the log-probability of the
correct label sequence during training. While decoding, the model predicts the correct
output sequence by obtaining the maximize score as:

y∗ = argmax
ỹ∈Yh

s(h, ỹ) (3.5)

The viterbi algorithm is used to compute the optimal output sequence y* in (3.5)
during decoding.

4 Experiments

In this section, we deal two works: 1) comparing the performance of BERT-CRF,
ALBERT-CRF and RoBERTa-CRF; 2) applying probing task to find which layer obtains
the best performance of three models in entity extraction task.

4.1 Datasets

In practical, the whole procedure of ATC operation is: 1) if any flight wants to leave
the stand, the pilot needs to apply for push-back, after agreeing, 2) the flight enters
the taxiway and then taxing to waiting point and 3) holds for take-off clearance. When
ATC controller giving clearance, 4) flight enters runway and 5) takes off, and then ATC
controller will command the flight to 6) depart from the airport. During these stages,
ATC controller may adjust the 7) height and 8) speed of the fight. The flight 9) contacts
the approach when it arrives the target airport, then it 10) lands the runway and taxis
into the stand.

Therefore, the practical data consists of 12 parts: 1) push-back (short for p-b), 2)
taxi, 3) holding, 4) line up, 5) take-off (short for t-off), 6) departure (short for dept), 7)
height adjust (short for h-adj), 8) speed adjust (short for s-adj), 9) approach (short for

Fig. 2. Distribution of training data
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appr), 10) landing, 11) into stand (short for stand), and 12) contact between controller
and pilot (short for contact). The distribution of data is shown in Fig. 2.

The practical data includes more than 5000 ATC instructions with average length of
15 words. The longest instruction has 41 words and the shortest one has only 6 words.
Experiments choose 90% to be training data and 10% to be testing data. There are 10
types of pre-defined entity: flight number, organization, action, status, location, height,
speed, weather, time and other.

4.2 Performance

In this section, we use BERT-CRF, ALBERT-CRF and RoBERTa-CRF to extract the
entities of ATC instructions. Table shows their parameters.

Table 1. Model parameters

Models Total layers Hidden size Attn heads Total parameters

BERT 12 768 12 110 M

ALBERT 12 768 12 59 M

RoBERTa 24 1024 16 255 M

As Table 1 shown, experiments choose BERT-base, ALBERT-base and RoBERTa-
large in NER models and Adam to be optimizer. The experiment is done by applying
one NVIDIA GeForce GTX 1060 GPU to train the models and the major parameters are
shown following (Table 2).

Table 2. Parameter settings

Batch size 32

Max sentence length 45

Adam learning rate 0.01

Number of epochs 30

Dropout rate 0.1

Define the label of entity by using “BOI” format for data, where “B_” means begin-
ning word of phrase, “I_” means the word belongs to phrase and “O_” means the word
does not belong to any entity (Fig. 3).

As Fig. 3 shown, after 30th epochs, the error of three models converges below 3% .
Among them, ALBERT obtains the best performance, which achieves less than 2% error
rate. However, these results are based on full layers of each model, it is necessary to find
which layer of model can achieve the best performance in order to further optimize the
model.
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Fig. 3. Performance of BERTs-CRF models for entity extraction

4.3 Probing Task

In this section, probing task will investigate the effectiveness of features from different
layers for extracting entities.

In entity extraction task ofATC instructions, it shows that themiddle layers ofmodels
obtain the best performance. The 6th layer of BERT achieves 0.72% testing error, the 5th
layer of ALBERT achieves 1.32% testing error and the 7th layer of RoBERTa achieves
1.15% testing error (Table 3).

Table 3. Error rate of models

Models Num of layer Testing error

BERT 6 0.72%

ALBERT 5 1.32%

RoBERTa 7 1.15%

There are two findings: 1) entity extraction task is more depend on syntactic feature
of ATC instructions, and 2) ATC instruction is a kind of short text and it has simple
semantic feature, so the models depend less on semantics feature.

5 Conclusions

This paper proposes PTMs-CRF model for extracting the information of ATC instruc-
tions and conducts experiments to investigate different versions and layers of BERT for
entity extraction task. There are some experiments findings: 1) BERT achieves excellent
performance, 2) the middle layers of BERT outperform other layers, and 3) The ATC
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instruction has simple semantic feature so the model depends more on syntactic feature
of instructions.
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