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1 Introduction

In energy and water management systems, the planning (regulation) of reservoir
operation is usually limited to a period of 1–3 months. Such a planning horizon for
the hydroelectric power plant is associated with the extreme complexity of long-term
forecasting of water inflows into reservoirs and low reliability of forecasts even for
an indicated period. Currently, the Hydrometeorological Center of Russia gives a
probable (interval) inflow forecast for the coming month—at the end of the previous
month and for 3 months—once a quarter. There are no forecasts for a more distant
period. However, planning and forecasting in the electric power industry are made
for the time horizon of up to one year or more. This is due to the need to plan long-
term operating conditions and forecast the balance of electricity and capacity in the
power system. This issue is especially relevant for power systems with a large share
of hydroelectric power plants. Such power systems include the interconnected power
system of Siberia, in which hydroelectric power plants account for about 50% of the
total electricity generation.

The main feature of energy systems with a high share of hydroelectric power
plants is the considerable dependence of electricity generation on a natural factor,
i.e., natural fluctuations in water inflows into reservoirs. For example, the devia-
tion in the power output of the Angara–Yenisei HPPs cascade from the long-term
average values can reach up to 30% in some water years [1, 2]. This circumstance
highly complicates the planning of electricity and heat output at thermal power plants
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(TPPs), the creation of fuel reserves, the planning of repairs of power equipment and
electrical networks, and the solving of other problems. In addition, when regulating
the regimes of HPPs many water management restrictions and environmental condi-
tions are often required, for example, level regime regulation in Lake Baikal, which
is the reservoir of the first stage of the Angara cascade (Irkutsk HPP) [3, 4].

In the absence of forecast indices of water inflows into reservoirs for more than
three months, the long-term planning of operation and prospective energy balances,
as a rule, relies on past period statistical data in the form of average long-term and
monthly average indices. Such planning and forecasting provide acceptable results
under normal conditions (close to the long-term average) but are not appropriate in
other contexts, especially during extreme water periods [5–7].

Recent years have seen significant changes in global and regional climate and
changes in the previously established trends, which makes it ineffective to use the
average long-term and monthly average indices for forecasting [8–12]. It is therefore
advisable to use new approaches to plan the long-term energy balances and operating
conditions of power plants. In particular, one can use prognostic scenarios of water
inflows into reservoirs for a period of up to 1 year and more, based on the data from
global climate models and multivariate neural networks.

2 Materials and Methods

2.1 Global Climatic Models

Over the past two decades, significant progress has been made in the creation and use
of global climatemodels for long-term forecasting of natural processes. They can also
be used to make long-term assessments of water inflows into reservoirs for one year.
One of the best-known models is the global climate model CFSv2 (Climate Fore-
cast System version 2), developed by the international organization NCEP (National
Centers for Environmental Prediction) [13–16]. This model is employed daily to
update the prognostic ensembles of the state of the atmosphere and the ocean with a
time interval from several hours to 9 months for the entire globe. The ensemble fore-
casting method used in global climate models allows making probabilistic estimates
of the atmospheric state in the long term.

To increase the reliability of long-term projected estimates of water conditions
and temperatures under current conditions, the Energy Systems Institute SBRAS has
developed a long-term forecasting system GeoGIPSAR, which is used in energy and
water management studies [17, 18]. The system includes various methods designed
to analyze spatially distributed climatic data (Reanalyses, GPCC), which can serve
as a basis for quickly calculating long-term estimates of precipitation, temperature,
pressure, geopotential, and other indices on the territory of the river basins, and for
periodically updating them (in a week, a decade, a month, a quarter, a season). To
refine the prognostic estimates, one can also use the data from meteorological and
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gauging stations, various geo- and heliographic indices, such as solar activity, lunar
cycles, and others.

The estimates of the indices of individual predictive ensembles obtained from
different sources can vary within wide limits, which complicates their direct use
in practice. The method developed in the GeoGIPSAR system for processing a set
of individual forecast ensembles makes it possible to form, through their aggre-
gation (with different weights), the most probable spatial distributions of meteo-
hydrological indices for given periods. For example, we can create climatic maps of
absolute and relative indices for each month that show the boundaries of river catch-
ment areas. For specific points and individual territories, there are tools developed
to process the data on dynamics of changes in studied indices. The data obtained
from the ensemble projections based on the global climate model and monitoring
the data from global centers are used to determine the most probable characteristics
of meteorological indices in the region under consideration and build the scenarios
of inflows into the reservoirs of hydroelectric power plants in the form of ranges of
probability distributions.

Figure 1 shows a schematic diagram of building long-term scenarios of water
inflows into reservoirs of hydroelectric power plants and temperature conditions.
Scenarios are based on the synthesis of two approaches (1) based on the projected
estimates obtained by approximate and probabilistic methods, including neural
network; (2) based on prognostic maps of meteo-hydrological indices, created
through the processing of individual sets of prognostic ensembles, for example,
averaged statistical indices over a selected time interval.

By regularly monitoring the ensembles of predictive data on the state of the atmo-
sphere, converting, accumulating, and subsequently processing them, we create the
most probable maps of the distribution of a selected index (surface temperatures,

Fig. 1 Scheme of building long-term prognostic scenarios of water inflows into reservoirs of
hydroelectric power plants and temperature conditions
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precipitation rates, pressure, geopotential, etc.) with the assignment of variousweight
coefficients of their significance.

2.2 Multivariate Neural Network

In the GeoGIPSAR system, there is a multivariate neural network developed, first
of all, to make the interval estimates of the index under study, for example, the net
inflow of water into reservoirs for individual months or the temperature for specific
points or a selected region. The use of the interval estimation method is associated
with the inaccuracy of measurements of the actual inflow indices.

Figure 2 shows a neural network with an input layer (xi ), output layer (ys), and
with two hidden layers. The neurons of each layer include signal adderswith different
weighting coefficients (wm,n

i, j ) and sigmoid functions (ϕm
x (p)) with varied parameter

p. The coefficients are determined by the back-propagation method. For interval
estimates according to a given algorithm, the interval of admissible values of the
studied process is divided into k intervals. Then, instead of the value of the time
series index, the number of the interval to which this value belongs is substituted.

Figure 3 shows a methodology for building interval projected estimates of the
process under study.A set of potential predictors (�) affecting the projected estimates
is determined from the global GeoGIPSAR database. Sets of internal parameters (�)
andpredictors are determined through the block forminimizing the error of deviations
in prognostic and actual indices for a given verification sample. It is worth noting
that once any parameter has changed complete training and verification cycle is
performed.

Fig. 2 An example of a core of a 2-layer multivariate neural network
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Fig. 3 Methodology for calculating interval projected estimates

Since the verification usually generates a significantly larger error compared to
the training sample, the parameters of a multivariate neural network (MNN) are
selected to satisfy the criterion of minimum verification error (for example, a devi-
ation of no more than one interval from actual indices), and are then recorded in
special storage. The developedMNNwith the interval estimate method allows large-
scale studies for various indices: water inflows into reservoirs of hydroelectric power
plants, temperature conditions, and other stochastic natural processes.

3 Results and Discussion

A methodological approach that employs the data of global climate models and
multivariate neural networks was used to build predictive scenarios of water inflows
into Lake Baikal and reservoirs of the Angara–Yenisei cascade HPPs for the period
from January 2021 to April 2022.

As an example, Fig. 4 shows the distributions of average temperatures in July and
average daily deviations of precipitation rates in the catchment basins of Lake Baikal
and the reservoirs of the Angara–Yenisei cascade HPPs in months 6–9 of 2021.

Temperature conditions are expected to be close to normal, while the increased
precipitation is likely in the basin of the Selenga River, especially in its eastern
tributaries (the Chikoi, Khilok, and Uda). Naturally, these are probabilistic indices
as of the beginning of February 2021. In the case of significant disturbances (changes)
in the atmosphere, the prognostic indices may also change, given the processing of
new ensembles of the global CFSv2 model. The generated most probable predictive
distributions of meteorological indices are used to determine the closest analogous
years based on which (according to the available statistics of inflows) the predictive
scenarios are synthesized for the future of up to 2 years with a time resolution of a
month or a decade. For the period of over nine months, only neural networks and
approximate long-term forecasting methods are employed.

Generally, the most probable scenario for the period under consideration is an
increased water level in the Baikal and Angara basins and an average and low water
level in the Yenisei basin.
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Fig. 4 An example of the distribution of predicted indices in the Lake Baikal, Angara River, and
Yenisei River basins in the summer of 2021: a temperatures for July; b average daily precipitation
rate deviations from the norm for months 6–9

Based on the predictive scenarios of water inflows into Lake Baikal and the reser-
voirs of the Angara–Yenisei cascade HPPs, and using the system of HPP control
models developed by a research team of ESI SB RAS [19, 20], we obtained the esti-
mates of projected electricity generation by individual hydroelectric power plants
for the minimum, maximum and most probable inflow scenarios (Table 1).

The results of modeling the operation of the Angara–Yenisei cascade HPPs
for 2021–2022 show that the electricity generation index can change significantly,
depending on the inflow scenario. The range of fluctuations over the summer period
can reach 11 200 million kWh, and in winter—9200 million kWh, which is compa-
rable to the operation of one large HPP of the cascade. In the summer, there is also
a risk of idle discharges in the Angara cascade under the maximum inflow scenario
because the Bratsk reservoir is full, and there are large snow reserves accumulated
in the basin during the winter. Therefore, planning the HPP operation should factor
in the long-term most probable forecast scenarios of water availability.

4 Conclusion

A long-term forecasting system GeoGIPSAR was developed to increase the reli-
ability of long-term projected estimates of water availability and temperatures to
model long-term operating conditions of a cascade of HPPs. This system employs
the data from various sources of information, including global climate models and
multivariate neural networks. These tools help quickly obtain long-term estimates of
precipitation, temperature, pressure, geopotential, and other indices on the territory
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of the considered basins, and refine them periodically (in a week, decade, month,
quarter, season).

Processing the data of predictive ensembles obtained by global climate models,
other data and forecasting methods, as well as a multivariate neural network, enables
us to build the scenarios of average monthly net inflows and dynamics of changes in
operating conditions. It also allows us to estimate the amount of electricity generation
by individual HPPs and the Angara–Yenisei cascade as a whole for up to one year
or more.

The research was carried out under State Assignment Project (no. FWEU-2021-
0003, reg. number AAAA-A21-121,012,090,014-5) of the Fundamental Research
Program of Russian Federation 2021–2025.
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