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Abstract This chapter presents an overview of solid biomass produced by different
sectors in Malaysia. Malaysia is renowned as a tropical country that is rich with
diverse biodiversity. The tropical climate is favourable for the production of various
crops, fruits, and vegetables in the agricultural sector. The major contributor of
biomass is the agricultural sector mainly oil palm, rice, sago, and others. Oil palm
biomass is produced abundantly at plantations and mills in their daily operation.
Therefore, biomass management at the source and exploitation of the biomass into
biofuel and value-added products are essential for the sustainability of the national
agricultural sector. Agricultural biomass is composed of lignocellulosic components
comprising an interwovenmesh of three primary lignocellulosic components namely
cellulose, hemicellulose and lignin possess a crucial determination of a physical and
chemical characteristic of the biomass. Hence, the characteristic of the lignocellu-
losic biomass is a vital key in considering the pretreatment steps, utilization, and
final products. Globally, the significant depletion of fossil fuels (oil, coal, and gas)
drives many countries to generate clean renewable energy in order to provide for
the increasing trend of national energy consumption. Malaysia is also committed
to generating renewable energy from local bioresources using biomass from the
agricultural sector. This chapter discusses the potential and challenges of biomass

S. Shamsudin
Centre of Excellence for Biomass Utilization, Faculty of Chemical Engineering Technology,
Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia

E. K. Bahrin (B)
Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor,
Malaysia
e-mail: ezyana@upm.edu.my

Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia (UPM), 43400
Serdang, Selangor, Malaysia

M. A. Jenol
Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences,
Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

N. S. Sharip
Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM),
43400 Serdang, Selangor, Malaysia

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
H. Shukor et al. (eds.), Renewable Energy from Bio-resources in Malaysia, Green Energy
and Technology, https://doi.org/10.1007/978-981-16-9314-4_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9314-4_2&domain=pdf
https://orcid.org/0000-0002-8538-9005
https://orcid.org/0000-0002-5214-225X
https://orcid.org/0000-0002-3934-0059
https://orcid.org/0000-0003-3322-9592
mailto:ezyana@upm.edu.my
https://doi.org/10.1007/978-981-16-9314-4_2


22 S. Shamsudin et al.

as feedstock for renewable energy utilization in Malaysia in terms of government
assistance, sustainability certification scheme, logistics, and technology feasibility.
A strategic plan of biomass utilization, as well as good cooperation between govern-
ment and private sectors, will improveMalaysia in achieving the target for renewable
energy generation in the future.

Keywords Biomass characteristics · Agricultural biomass · Biomass utilization

1 Categories and Types of Biomass Resources in Malaysia

Biomass is extremely valuable for the generation of new, structurally complex, bioac-
tive compounds, and clean energy sources. Biomass-dendromass and phytomass
of lignocellulose is a natural material consisting of complex heterogeneous cell-
structuredmacromolecules (lignin, hemicellulose, and cellulose) and various organic
and inorganic structures of low molecular weight [1]. Biomass can be consid-
ered into several main types; agricultural biomass (phytomass grown on agricul-
tural land), forest biomass (firewood, residual from forestry and wood industry),
and residual biomass (by-products of agriculture and manufacturing industry) [2].
Malaysia is a tropical country (warm and wet weather year-long) that has large
areas of natural arable land for crop production. The annual production of important
crops including the plantation in Malaysia is presented in Table 1. Major biomass
resources inMalaysia can be categorized into different sectors: residues from agricul-
ture (palm oil mill waste, paddy straw, rice husk, banana stems, sugarcane bagasse,
etc.), forestry (wood from pulp, paper industries, and logging activities), and munic-
ipalwaste (Fig. 1). In linewith themajor crop produced inMalaysia, oil palmbiomass
contributes the largest amount of biomass. Each year about 168 million tonnes of
biomass is generated in Malaysia as a prospective bioenergy resource and long-term
solution to the nation’s energy demand [3].

Table 1 Production and
planted area of important
crops in Malaysia 2019

Crops Production
(Tonnes)

Area planted
(Hectares)

References

Palm oil 19,858,367 5,900,157 [4]

Paddy 2,348,931 671,870 [5]

Rubber 639,830 1,083,992 [4]

Coconut 536,605 86,466 [4]

Sago 199,370 41,082 [4]

Pepper 34,294 7,375 [4]

Sugarcane 20,761 1,403 [6]

Herb 9,018 2,315 [7]

Cocoa 1,004 15,008 [4]
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Fig. 1 Biomass availability in Malaysia [9]

Palm oil is majorly produced in Malaysia and served as a long-term agriculture
investment in Malaysia [8]. Substantial total agricultural wastes in Malaysia are
derived from oil palm plantations [9]. The lignocellulose of oil palm wastes can be
converted into value-added products, for example, glucose which could be further
fermented into biofuel. Presently, feedstocks of cellulose-based biomass for conver-
sion into biofuels are larger in volume than any other carbohydrate source. Lignocel-
lulose biomass refers to plant materials that are mainly composed of cellulose and
hemicellulose that are bound together by lignin (Fig. 2). Each year, the production
of rice in Malaysia (Kedah, Penang, Perak, Kelantan, Selangor, and Terengganu) is
approximately up to 75% to supply local demand with the remaining sourced out
from Southeast Asia countries such as Thailand, Vietnam, and Indonesia [11]. Rice
cultivation activities are expected to grow due to increased demand and population.
Rice producing industry generates three main by-products: rice straw, rice husk, and
rice bran. When the grain had been harvested, the rice straw became the vegetative
residue. Rice husk is the hard-protecting coating of grains that is broken up from the
brown rice grain. Rice bran is the residues from the milling process that has been the
profitable vegetative waste as a protein supplement in livestock farms. In contrast
with rice straw and rice husk wastes remain unutilized. On the other hand, sago is
also deemed to be one of the most potential feedstocks for the production of value-
added products. In brief, sago hampas is a solid by-product resulting from the sago
starch extraction process. It is made up of 58% of starch, 32% of cellulosic materials
as well as 4% of lignin [12, 13]. It is interesting to mention that the considerably
low amount of lignin content in sago hampas suggests no pretreatment process is
required before fermentation. Several studies identified sago hampas as a substrate
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Fig. 2 The simplified general plant cell wall structure [10]

for the production of sugars [14, 15], bioenergy, and biofuels, including biohydrogen
[12], bioethanol [16], biobutanol [17], and bioelectricity [18, 19].

1.1 Palm Oil Industry

The commercial oil palm (Elaeis guineensis) cultivated in Malaysia originated from
Africa. It was introduced into Malaya (later named Malaysia) in 1875 as an orna-
mental plant and only in 1917; it was first cultivated for commercial purposes in
Tennamaran Estate, Kuala Selangor [20]. Since the 1960s, oil palm plantings in
many parts of the world including Malaysia have seen significant expansion (Fig. 3).
Over the past 50 years (1970–2018), the production of palm oil on the world market
has been 35 times higher and the consumption in producing countries themselves
has also increased dramatically [21]. Malaysia is the world’s second-largest palm oil
producer and the largest exporter in the international market [22]. Malaysia’s palm
oil production is almost 50% of the world’s total production (crude palm oil and
palm kernels oil) and the industry also produces millions of tonnes of residues or
by-products which contain valuable resources yet to be fully utilized. Currently with
about 5.9 million hectares of oil palm are cultivated in Malaysia, these plantations
produce over 11.9 million tonnes of oil and more than 100 million tonnes of biomass
residues per year [23]. This huge quantity of biomass includes the empty fruit bunch
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Fig. 3 World major producers of oil palm (1960–2018)

(EFB), pressed fruit fibre (PFF) or mesocarp fibre (MF), palm kernel shell (PKS),
palm oil mill effluent (POME), oil palm trunks (OPT), and fronds (OPF). Until now
the major portion of resources used is mesocarp fibre and kernel shells as main
thermal energy sources in generating process steam and electricity in the palm oil
mill. However, only 60% of these resources are used as fuel in boilers [24].

More than 10 million tonnes of EFB are generated from more than 30 million
tonnes per annum of fresh fruit bunches (FFB) [23]. Only 10% of the EFB is used as
mulching material to protect the soil surface, conserve soil water and nutrients and
the rest are burnt in incinerators in the palm oil mills to produce bunch ash or dumped
in areas adjacent to the mill which generate environmental problems such as air and
odour pollution in the nearby localities [25]. Another barrier that hindered the use
of EFB as mulching material is their bulkiness with high moisture content resulting
in transportation difficulties [26]. OPF and OPT are other biomass generated in oil
palm plantations. OPF is available daily during harvesting of ripe fruit bunches by
pruning of fronds and is traditionally used as mulching materials in plantations. OPT
becomes available during the felling of old trees and replanting of the oil palm trees
every 25 years. Previously, the burning of the OPT was carried out for fast disposal
until stringent open burning regulations prevented this method of trunk disposal.
The OPT is shredded and left in the field to decompose naturally. Overall, much
of palm biomass remains as waste and awaits commercial exploitation. The total
production and possible uses of the palm biomass are presented in Table 2. Oil palm
biomass enriched with holocellulose can be converted into fermentable sugars and
subsequently used for various bioproducts (bioethanol, biomethanol, biohydrogen,
polyhydroxyalkanoates, polylactic acid, and others).
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Table 2 Production and potential uses of palm biomass for biofuels

Oil Palm biomass Production Current uses Potential uses

Empty Fruit
Bunch (EFB)

15.8 million tonnes
per annum [30]

• Mulching materials
[31]

• Ash (Organic
fertilizer) and soil
conditioner in the
plantation [25, 32–34]

• Kraft pulping and
bioethanol [35]

• Polyhydroxyalkanoates
(PHAs) or Polylactic
acid (PLA) [36]

• Glucose [37, 38]
• Bioethanol [39–42]
• Biogas [43]
• Cellulase enzyme [44]

Pressed Fruit
Fibre (PFF)

9.66 million tonnes
per annum [45]

• Fuel boilers [24, 46] • Fillers in
thermoplastics and
thermoset composites
[36]

• Oil palm ash (OPA) is
produced after the
combustion of oil palm
fibre and shell as an
adsorbent for toxic gas
and heavy metal
removal [47]

• As a support carrier for
ethanol production
by Candida
shehatae TISTR5843
in immobilization
system [48]

• Briquettes [46]

Palm Kernel Shell
(PKS)

5.20 million tonnes
per annum [45]

• Fuel boilers [24]
• Road surfacing on
estates [25, 49]

• Activated carbon [50]
• Charcoal derived from
oil palm shells can be
coated with chitosan
[51]

• Briquettes [46]

Oil Palm Trunk
(OPT)

2.515 tonnes of oil
palm trunks per
hectare after 25 years
growth before
replanting [32]

• Mulch • Sugars for bioethanol
production [52]

Oil Palm Frond
(OPF)

10.88 tonnes of oil
palm fronds per
hectare [32]

• Mulch • Oil palm frond based
ruminant pellet [36]

(continued)
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Table 2 (continued)

Oil Palm biomass Production Current uses Potential uses

Palm Oil Mill
Effluent (POME)

40 million tonnes of
POME per annum
[53]

• Organic fertilizer in
oil palm areas [25]

• Methane [49, 54]
• Biohydrogen [54]
• Polyhydroxyalkanoates
(PHAs) [55]

1.2 Rice Biomass

Malaysia has contributed 3.1 million tonnes of rice straw and 0.48 million tonnes of
rice husk annually [27]. Rice straw is separated from the grains after being threshed
either manually, using stationary threshers, or combined harvesters. The rice husk
or rice hull is the coating on a seed or grain of rice. It is formed by hard materials
comprising silica and lignin to protect the seed during the growing season. Each
kilogramme of milled white rice resulted in approximately 0.2 kg of rice husk during
milling and 1–1.5 kg rice straw depending on varieties, cutting height of the stubbles,
and moisture content during harvest [28, 29]. Common products from rice husks are
solid fuel (loose form, briquettes, and pellets), carbonized rice husk produced after
burning, and the remaining rice husk ash after combustion.

1.3 Sago

Sarawak, Malaysia is known to be one of the largest sago starch exporters in the
world which accounted for 55,000–65,000 tonnes/year [56]. With that matter, it
has generated approximately 50–100 tonnes per day of sago hampas, especially
in Sibu and Mukah division [57] and it is expected to exponentially increase over
the year due to the demand. It is fascinating to note that due to the presence of
lignocellulosic fibrous components in the sago hampas, it has been used as animal
feed [58], mushroom culture’s medium [59, 60] as well as particleboard manufacture
[61].

2 Biomass Characteristics and Compositions

In general, about 30–60% cellulose, 20–40% of hemicellulose, and 10–30% of lignin
are available in different kinds of lignocellulosic biomass sources [62]. These differ-
enceswithin this range either for the same species or betweendifferent biomasswould
depend on the growing location, season, harvesting methods as well as analytical
procedures used [63]. Cellulose and hemicellulose are carbohydrate polymers that
are built up by long chains of sugar monomers. Therefore, they are potential sources
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Fig. 4 Partial structure of cellulose molecules showing the β-linkage of glucose units [70]

of fermentable sugars but are not readily available for hydrolysis without pretreat-
ment [64]. Lignin is a phenolic polymer in the plant cell walls. This compound binds
cellulose and hemicellulose, imparts further strength, offers rigidity, and provides
resistance against pests and diseases [65]. Besides these major constituents, the
plant cell wall also contains pectic substances, proteins, waxes, cutin, suberin, and
sporopollenin in smaller portions [66].

2.1 Cellulose

Cellulose is a linear polymer of homopolysaccharide (an unbranched polymer)
composed of repeating glucose monomers that are linked together by β-1-4-
glycosidic bonds or in short it is a highly crystalline polymer of glucose. The basic
structure of cellulose is (C6H10O5)n. Based on structural characteristics, cellobiose
is the repeating subunit in cellulose, in which each glucose unit is rotated 180º rela-
tive to its neighbour [67]. The individual cellulose chains are packed together and
weakly bound through hydrogen bonding into ‘elementary fibrils’ [68, 69]. These
‘elementary fibrils’ about 3–4 nm wide (about 36 chains) are bundled together into
organized parallel cellulose-fibrils called crystalline microfibrils which make up the
core of a cellulose microfibril and are difficult to degrade [69]. Within the microfib-
rils, cellulose in plants is also found in the form of an amorphous structure, where
the elementary fibrils are attached or cross-linked together by hemicelluloses, with
the amorphous polymers of different sugars as well as other polymers such as pectin
and covered by lignin [67, 69]. Generally, hydrolysis can reduce the cellulose to a
cellobiose repeating unit (C12H22O11) and ultimately to a glucose (C6H10O5) unit by
cellulase. The partial structure of a cellulose molecule is illustrated in Fig. 4.

2.2 Hemicellulose

Hemicellulose, non-cellulosic structural polysaccharides, or sometimes also called
polyose are branched heteropolysaccharides that exist in association with cellulose
and lignin in the plant cell wall [62, 67]. Hemicellulose is composed of shorter chain
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Fig. 5 Schematic illustration of sugar units of hemicelluloses [75]

polysaccharides which act as a linkage between lignin and cellulose. In general,
hemicellulose may contain pentoses (β-D-xylose, α-L-arabinose), hexoses (β-D-
mannose, β-D-glucose, α-D-galactose) and/or uronic acids (α-D-glucuronic, α-D-4-
O-methylgalacturonic and α-D-galacturonic acids) [65, 69, 71, 72]. It is a lowmolec-
ularweight compound that ismuch easier to hydrolyze than cellulose [62]. According
toMiller et al. [67], hemicelluloses are typically composed of main-chain backbones
of xylan which consists of β-1,4-linked-D-glucopyranose and β-D-mannopyranose
units with α-1,6 galactose residues. Other non-cellulosic structural polysaccharides
like arabinogalactan are also commonly found in the plant cell wall. Many side-chain
constituents namely arabinofuranosyl, acetyl, feruloyl, andmethylglucoronyl groups
branch off the main backbone. The most important hemicelluloses are xylans and
glucomannans, with xylans being the most abundant component of hardwoods and
herbaceous plants [71]. Xylose is one of the major building blocks of hemicellu-
lose or fermentable sugars present in lignocellulosic biomass and the second most
abundant carbohydrate polymer in nature after glucose [73, 74]. Within the plant cell
wall structure, the hemicelluloses are thought to coat the cellulose-fibrils resulting
in reduced accessibility of the cellulose-fibrils. Therefore, pretreatment and enzy-
matic hydrolysis of the hemicellulose component is essential to facilitate complete
cellulose degradation [65]. The sugar units of hemicelluloses are illustrated in Fig. 5.

2.3 Lignin

Lignin is a phenolic aromatic macromolecule that is primarily formed by free-radical
polymerization of ρ-hydroxy cinnamyl alcohol units with varying methoxyl contents
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Fig. 6 Schematic illustration of building units of lignin [79]

commonly known as phenylpropane units [65]. The three monomeric unit precursors
of lignin are based on: coniferyl alcohol, sinapyl alcohol, andρ-coumaryl alcohol, and
they vary among species [76] (Fig. 6). Lignin, in general, is an important structural
component serving as a supporting agent and gives strength to the cell biomass. It
glues together the other fractions in the complex phenolic polymers and assists in the
resistance of biomass against microbial attack and decay [77, 78]. Therefore, lignin
is considered an important barrier to polysaccharide utilization such as hydrolysis
by cellulases. It is believed that the existence of strong carbon–carbon (C − C) and
ether (C − O − C) linkages in lignin affect its susceptibility to chemical disruption.

2.4 Empty Fruit Bunch: Production, Structural
Characteristics and Uses

The EFB is abundant solid biomass or residue from the palm oil industry which are
produced in large amounts from the FFB of oil palm. According to Tan et al. [39],
FFB comprises 21% palm oil, 7% palm kernel, 14% PPF, 7% PKS, and 23% EFB. It
has been estimated that for every kilogramme of palm oil produced roughly 4 kg of
dry biomass is generated [80]. Hence, every year approximately 15 million tonnes of
EFB are produced in Malaysia and about 37.7 million tonnes are produced globally
[34]. In short, EFB is the largest residual product of the palm oil milling process.
EFB is the residual bunch remaining after the reddish palm oil is removed from the
FFB by the thresher during oil extraction [39]. The process flow of the palm oil mill
demonstrates the types of oil palm biomass available and the EFB generated (Fig. 7)
[54, 55, 80, 81]. The typical palm oil milling process in Malaysia is the wet process
which uses a lot of water in the sterilization and extraction process.

Themilling process generates vast amounts of wastewater effluent (POME)which
are from three main sources, namely sterilizer condensate, sludge separator, and the
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Fig. 7 Process flow diagram of fresh fruit bunch processing and biomass generation in palm oil
mills

hydro-cyclone [53]. Sterilization of FFB at high temperature (140 °C) under pressur-
ized steam (0.28 MPa) for 75–90 min is the beginning stage of the milling process.
The sterilization process introduces moisture into the nuts, causes the detachment of
the kernel from the shell wall, and loosens kernels within their shells. The sterilized
FFB is then fed into a rotary drum thresher for stripping the fruits and conveying the
empty wet bunches called EFB to the dumping ground. EFB is categorized as fibrous
crop residue or known as the lignocellulosic residue. EFB consists of almost 70%
of water and 30% solids which comprise lignocellulosic materials [82]. Based on
composition EFB is comparable to those of hardwoods (Table 3). The main compo-
nents of EFB are cellulose, hemicellulose, and lignin. It is estimated that EFB is
composed of 43–60% cellulose, 19–34% hemicellulose, and 12–24% lignin. Cellu-
lose is a polymer of the hexose sugar glucose, while hemicellulose is a pentose
sugar-containing mainly xylose.

These sugars can be used as substrates for the production of a wide variety of
compounds by chemical and biochemical processes. Since the solid EFB bunches are
rich in cellulose and hemicellulose that are cross-linkedwith ligninwhich is not easily

Table 3 Chemical composition of empty fruit bunch, hardwood, and softwood

Biomass residues Chemical composition (%)

Cellulose Hemicellulose Lignin References

Empty fruit bunch 43–60 19–34 12–24 [38, 83–86]

Hardwood 40–55 24–40 18–25 [87]

Softwood 45–50 25–35 25–35 [87]
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decomposed, degraded, or hydrolyzed into their monomers, these bunches must be
subjected to pretreatment involving physical, chemical, or biological processes to
cleave the chains or dissolve the lignin before production of useful chemicals and
biofuels.

2.5 Rice Husk and Rice Straw: Production, Structural
Characteristics and Uses

A low bulk density rice husk is produced off-site during grain processing and
is normally 20–25% of the overall weight of milled paddy [29]. A rice husk is
yellowish in colour, convex shape, and consists of rigid materials such as opaline
silica and lignin acting as seed protection. Rice husk has become a source for
many silicon compounds, including silica (SiO2), silica carbide (SiC), silicon (Si),
silica nitride (Si3N4) meanwhile for the chemical composition contains 74% organic
and 26% of inorganic [88]. When rice husk is burned or carbonized rice husk is
formed, it generates 17–26% of rice husk ash which is another important product
that can be obtained from rice husk [89]. Table 4 shows the chemical composition of
rice husk and Table 5 shows the composition of organic compounds in rice husk. Rice
husk has a global potential as a renewable feedstock for the generation of biofuels.
Moreover, the estimated additional revenue can also be improved by high calorific
value lignin after the production of biofuels. Thus, rice husk is an excellent potential
raw material, economical, and abundant source for future biofuels production and
has the potential to provide a high yield of biofuels [90].

Rice straw is awaste from the collection of rice grains. A substantial large quantity
of waste and the fact that it is non-food, this lignocellulosic waste was promoted as a
possible source of material for global ethanol production [96]. The quantity of straw

Table 4 Lignocellulosic composition of rice husk

Constituents Composition (%)

Cellulose 35.6 34.4 40.0 35.23

Hemicellulose 29.3 29.3 15.0 24.39

Lignin 20.0 19.2 20.0 12.92

References [91] [92] [93] [94]

Table 5 The composition of
the rice husk organic
compound [95]

Content Percentage (%)

Carbon 39.8–41.1

Hydrogen 5.7–6.1

Oxygen 0.5–0.6

Nitrogen 36.6–37.4
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Table 6 Chemical
composition of rice straw
[100]

Biomass Rice straw (%)

Cellulose 32.0

Hemicellulose 35.7

Lignin 22.3

Extractive matter 10.0

Table 7 Characterize
monomers of each component
in rice straw [101]

Cellulose Hemicellulose Lignin

D-glucose Pentose
Xylose
Arabinose

Phenolic monomers
Coniferyl alcohol
Coumaryl alcohol
Sinapyl alcohol

Hexose
Mannose
Galactose
Glucose

Uronic acids
4-o-methyl glucuronic acid
D-glucuronic acid
D-galacturonic acid

that can be collected from year to year, such as the annual variability in straw produc-
tion, the yield of straw varies greatly between regions and countries, themodern grain
harvesting method, and also the cereal breeding directly towards the development of
short stem varieties [97]. The processing of rice straw sugars by enzymatic reaction
attracts manufacturing attention due to the light reaction conditions used and the
fairly pure formulation of products [98]. The important components of the rice straw
are cellulose, lignin, hemicellulose, phenol fraction, and silica [99]. Table 6 shows the
composition of rice biomass and Table 7 is the characterization of monomers of each
component. Components of lignocellulosic biomass are the polysaccharides that are
built up by different types of monomers. To alter the structure of the polysaccharides,
a pretreatment method is required to improve the accessibility of hemicellulose and
cellulose in enzymatic hydrolysis or fermentation.

2.6 Sago Hampas: Production, Structural Characteristics
and Uses

Generally, based on Table 8, sago hampas is made up of 58% of starch, 32% of
cellulosic materials as well as 4% of lignin [12, 13]. The considerably low amount of
lignin content in sago hampas and valued as energy feedstock since no pretreatment
is needed before the fermentation process.
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Table 8 Chemical
composition of sago hampas

References [19] [18] [16]

Composition (%) (Dry basis)

Starch 58.0 ± 0.02 54.6 55.4

Cellulose 21.0 ± 0.71 21.4 23.6

Hemicellulose 13.4 ± 0.94 10.3 9.1

Lignin 5.4 ± 0.55 3.3 4.0

Ash 3.13 ± 0.13 ND 2.2

ND: Not detected

3 Potential of Biomass Utilization as a Feedstock
for Renewable Energy in Malaysia

Renewable energy alternatives in Malaysia are primarily solar, biogas, biomass, and
mini-hydro. In the recent decades, the utilization of biomass as renewable feedstock
increased as theMalaysian government implemented national policies and strategies
such as the National Green Technology Policy (2009), National Renewable Energy
Policy and Action Plan (2010), New Energy Policy (2010), Renewable Energy Act
(2011) and National Biomass Strategy 2020 (2011) [102]. The objectives of these
policies are to reduce the national dependency on fossil fuel and promote renewable
energy initiatives tomeet the national energy requirement that increases yearly which
is projected will be 103 million tonnes of oil equivalent (Mtoe) by 2035 [103].

3.1 Government Assistance

Malaysia also pledged and assured to reduce its greenhouse gas emissions of Gross
Domestic Product by 45% by 2030 under the Paris Agreement as compared to inten-
sity in 2005 at the 2015 United Nations Climate Change Conference (COP 21) [104].
The recent report from IPCC [105] indicates that the globalmean surface temperature
which ranged from 1.8 to 4.0 °C would rise sharply in the next century and beyond
if existing patterns of human activity are left unchecked. To achieve this voluntary
target, an agency inMalaysia such as the Sustainable Energy Development Authority
(SEDA) is responsible to execute the action plan to enhance the activity and project
related to renewable energy by managing the implementation of the Feed-in Tariff
(FiT) mechanism. Figure 8 exhibits that renewable energy generation from biomass
is the second-highest contributor after solar photovoltaic from 2012 until 2018. This
remarkable potential of biomass utilization in Malaysia should be increased in the
coming years as Malaysia has abundant biomass resources that can be utilized to
generate electricity.
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Fig. 8 Renewable energy generation projects that have achieved commercial operations since 2012
in Malaysia [106]

3.2 Environmental Sustainability

In the eco-awakening era, the dramatic rise of concern towards the environment drives
the Malaysian government to reduce its greenhouse gas (GHG) emissions from the
palm oil industry through the Malaysian Sustainable Palm Oil (MSPO) certification
scheme. Figure 9 shows the annual carbon dioxide emission reduction from the
commercial operation of solar photovoltaic energy, biomass, biogas, and small hydro
in Malaysia. A promising option for renewable energy from biomass is vividly seen
as it records the second-highest carbon dioxide reduction after solar photovoltaic
energy. The entire oil palm industry (plantation and mill operators) is mandatory to
apply theMSPOscheme starting from31December 2019 [107]. Currently, 437 out of
455 palm oil mills (96.04%) in the country have been certified as MSPO compliant
[108]. MSPO-certified palm oil mills are required to generate renewable energy
sources to reduce national GHG emissions. With the vital principle of protecting the
environment, the MSPO certification helps to promote and encourage all palm oil
millers to generate electricity by their own produced solid biomass. This sustainable
certification scheme should be extended to other agricultural sectors in Malaysia to
initiate renewable energy from other crops such as rice straw, rice husk, landscape
waste, and others.
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Fig. 9 Annual CO2 emissions reduction from renewable energy projects that have achieved
commercial operations (2012–2018) in Malaysia [106]

3.3 Biomass Availability and Logistic Facilities

The agricultural sector contributed 7.1% to the national Gross Domestic Product
(GDP) in 2019 with oil palm being the largest contributor at 37.7% [109]. Hence,
biomass from the agricultural sector is abundantly produced at the mill and available
all year round. The main challenges to utilizing Malaysian biomass as a feedstock
for biofuel are collection, transportation, and storage issues. For instance, OPF is the
largest biomass produced during pruning in the oil palmplantation area. However, the
OPF is not collected and transported out of the oil palm plantation [110]. Eventually,
the OPF biomass is left for the plantation nutrient recycling purpose. Another case
example is EFB which has a high moisture content of around 50–60%. The biomass
undergoes a sterilization step in a digester at the beginning of the FFB processing in
the palm oil mill. The water molecule from the steam is locked by oil residue and this
contributes to the high moisture content of EFB. Consequently, this condition is very
favourable for fungal degradation which caused a serious issue in further exploration
of EFB utilization. The EFB is produced abundantly at the palm oil mill and needs
to be transported rapidly to the operator or buyer. Some of the palm oil millers have
shredded the EFB and increased their opportunity to sell the EFB to other parties. By
referring to the module of other developed countries on this issue, for example in the
United States, the facility of biomass drying, grinding and briquetting is centralized
for a certain number of mills [111]. Therefore, the facility can be shared by the mills



Characteristics and Potential of Renewable Bioresources 37

and it is considered a cost-effective strategy. This collective effort is essential to
achieve the ideal cost of feedstock, quantity, and quality for the future of renewable
energy from biomass.

3.4 Technology Feasibility

Lignocellulosic biomass is directly incinerated from the source as solid biofuel for
electricity. The biomass power plant at Prolific Yield Palm Oil Mill in Sandakan,
Sabah uses EFB as primary fuelwith oil palm shells andmesocarp fibres as secondary
fuels. The biomass power plant is capable of generating 12 Megawatt of electricity
[112]. Meanwhile, liquid biofuel production requires a pretreatment step, sacchar-
ification, and fermentation. An efficient pretreatment method is required to release
all monomers from lignocellulosic biomass for conversion into biofuels. The ineffi-
ciency of pretreatment conversion facility, core technology, and equipment shortage
may hinder the production of biofuel. The pretreatment step and hydrolytic enzyme
possess a domino effect on the subsequent steps in biofuel production, technically and
economically [113]. Moreover, high energy consumption and high capital cost in the
pretreatment process lead to the high risk of investment. In the Malaysian scenario,
most of the small and medium enterprises (SMEs) in the oil palm industry are oper-
ating at a small financial budget and hardly venture into value-added bioproduct
from the biomass [114]. Nevertheless, OPF juice exhibited a promising potential as
a feedstock for bioethanol production as the OPF only required a pressing machine
to obtain the juice and directly can be fermented into bioethanol [115].

4 Conclusion

The utilization of renewable bioresources has become a more promising technology
due to the main concern of high dependency on non-sustainable resources. Biomass
is one of the best potential candidates to be an alternative source for renewable
energy. Hence, Malaysia is blessed with abundant biomass resulting from agricul-
tural sectors, including oil palm, rice, and sago. The biomass generated from each
sector has it is before fermentation which is further used in different applications.
In this chapter, we have critically summarized each biomass produced from the oil
palm, rice, and sago industry in Malaysia. Furthermore, we have details about indi-
vidual biomass from respective agricultural industries, related to their production,
structural characteristics as well as uses. In addition, we also have critically discussed
other potential factors contributing to the utilization of biomass in renewable energy
production in Malaysia. All in all, Malaysia is deemed to have a strong platform in
implementing the biomass utilization strategy and further developing the next new
era in renewable energy development.
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