
Image Processing: Impact of Train
and Test Sizes on Custom Image
Recognition Algorithms

Luis Marques, Luca Lopes, Miguel Ferreira, Cristina Wanzeller,
Pedro Martins, and Maryam Abbasi

Abstract This paper intends to demonstrate results on applying machine learning
algorithms to process image recognition to identify professions. This kind of project
points us to a relation between humans and machines, so in a way, we might say
that the human brain and vision process are being passed to a machine in order to
bring us many benefits in our daily life. In this paper, we decided to compare how
different parameters influence the performance and accuracy of the following neural
networks: EfficientNetB0, NASNetMobile, MobileNetV2, ResNet50, InceptionV3,
and DenseNet121.

Keywords Machine learning · Image recognition · ResNet · InceptionV3 ·
MobileNetV2 · DenseNet · NASNetMobile · EfficientNet

L. Marques · L. Lopes ·M. Ferreira
Polytechnic of Viseu, Viseu, Portugal
e-mail: estgv5989@alunos.estgv.ipv.pt

L. Lopes
e-mail: stgv13082@alunos.estgv.ipv.pt

M. Ferreira
e-mail: estgv7447@alunos.estgv.ipv.pt

C. Wanzeller · P. Martins (B)
CISeD—Research Centre in Digital Services, Polytechnic of Viseu, Viseu, Portugal
e-mail: pedromom@estgv.ipv.pt

C. Wanzeller
e-mail: cwanzeller@estgv.ipv.pt

M. Abbasi
CISUC—Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal
e-mail: maryam@dei.uc.pt

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
J. L. Reis et al. (eds.), Marketing and Smart Technologies, Smart Innovation, Systems
and Technologies 279, https://doi.org/10.1007/978-981-16-9268-0_30

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9268-0_30&domain=pdf
mailto:estgv5989@alunos.estgv.ipv.pt
mailto:stgv13082@alunos.estgv.ipv.pt
mailto:estgv7447@alunos.estgv.ipv.pt
mailto:pedromom@estgv.ipv.pt
mailto:cwanzeller@estgv.ipv.pt
mailto:maryam@dei.uc.pt
https://doi.org/10.1007/978-981-16-9268-0_30


366 L. Marques et al.

1 Introduction

Image classification is used in various applications, such as security, educational, and
promotional systems. In recent years, much research has been done to design auto-
mated systems to extract fundamental features from images. Convolutional neural
network (CNN) is an effective method for image classification which uses convo-
lutional, pooling, and fully connected layers for the learning process [11]. CNN
has redefined the state of the art in many real-world applications, such as facial
recognition, image classification, human pose estimation, and semantic segmentation
[19]

The training of machine learning models for image processing is a process that
consumes many resources [10]. Despite the computational power we currently have
at our disposal in personal computers, especially in graphics processing units (GPU)
[5], this power is still limited for usage in computer vision,mainly inCNNs.This class
of application usually relies on heavy computations on massive datasets. Therefore,
parallel computing is traditionally considered to run the training process in a feasible
time using the GPU [2]. Acquiring these hardware implies risks under and over-
utilization, depreciation of the hardware, and failures. There are also costs related
to maintenance, energy, and human resources [2]. However, there are solutions in
the cloud in all significant providers, Amazon AWS [16], Microsoft Azure [1], and
Google Cloud [3], that can aid in this process, making the machine learning process
more accessible. The researcher/developer does not take the risk of acquiring hard-
ware that can quickly become obsolete and only pay for the resources that he will
use [10]. However, some free alternatives in the cloud, namely Google Colabora-
tory (commonly referred to as “Google Colab” or just “Colab”) [6] and Paperspace
Gradient [14], are the ones used in thiswork.Computational resources are not the only
requirement for training machine learning models; in-depth knowledge of applied
mathematics and deep learning libraries is also required [10].While this might pose a
problem, there are, however, libraries that simplify this challenge, namely ImageAI.
ImageAI is a Python library built to empower developers, researchers, and students
to build applications and systems with self-contained deep learning and computer
vision capabilities using simple and few lines of code [13].

This study aims to compare some of the ImageAI provided algorithms ResNet50,
MobileNetV2, InceptionV3, DenseNet121, and two more EfficientNetB0, NASNet-
Mobile, which were made available through some custom code, on the IdenProf [12]
dataset and two customizations of it, with different train and test sizes in order to
recognize professions in images, using Paperspace Gradient and Google Colab as
research environments. This document is organized into five sections. In Sect. 2,
we discuss related work in the area. Section 3 presents the method applied in study.
Section 4 shows the obtained results. Finally, in Sect. 5, conclusions are drawn,
followed by future work guidelines.



Image Processing: Impact of Train and Test Sizes … 367

2 Related Work(s)

This paper focuses on the topic of computer vision and its technology. It is easy for
humans to describe and understand the objects that we see from the world. Our visual
system can perceive a three-dimensional structure with enough information, such as
the objects’ shape, appearance, and color. However, this is not easy for a computer
[20]. Researchers in this field try to mimic the capacity of how human vision works
using computers. However, it is not an easy task, and literature on artificial visual
processing is usually categorized into visual processing algorithms, which consist
in the recreations of the human vision, and classifiers, which are remodeling of the
human decision techniques [4].

Computer vision is a vast research fieldwheremathematics, geometry, and physics
are applied [20]. However, some tasks are commonly accomplished with computer
vision, object detection, recognition, and classification. This paper is focused on the
classification part. Image classificationwas once a task that required domain expertise
and the use of problem-specific models. Much of this has changed with the emer-
gence of deep learning as a general-purpose modeling technique for predictive tasks
in computer vision. Both the machine learning literature and image classification
contests are now dominated by deep learningmodels that often do not require domain
expertise since such models identify and extract features automatically, eliminating
the need for feature engineering [9].

Usage of libraries like ImageAI allows us to train and generate image classification
models with CNN without extensive knowledge of the inner network workings.
However, it allows us to use its potential as this kind of algorithm is broadly used
in computer vision. However, the requirements of computation for training models
with these algorithms are high. With our experimentation, we used ResNet50 [7],
DenseNet121 [8], and InceptionV3 [17] as these are also used by the majority of
studies related to image object recognition, and we also used MobileNetv2 [15],
NASNetMobile [21], and EfficientNetB0 [18]. CNNs provide high accuracy. The
main reason for this is because the number of features increases dramatically. The
research done about computer vision relies on the accuracy of the validation and
improving that accuracy. Also, studies are showing us that if we keep training our
model with thousands of pictures, we can reach into overfitting issues. There is a
balance that needs to be respected when training models [10] Last but not least, as
shown by some studies, the quality of the datasets impacts creating and training a
model.

Setting up an on-premises solution to research and build models from machine
learning algorithms can be expensive and not the only available option. All major
cloud providers offer services in the cloud for the same purpose with access to a huge
computing capacity. Some of these offers are Amazon Sagemaker [16], Microsoft
Azure Machine Learning [1], Google Cloud AI infrastructure [3], and also free
options like Google Colab [6] or Paperspace Gradient [14]. These last two platforms
used in the experiment.



368 L. Marques et al.

3 Experimental Setup

This project’s architecture consists of using Paperspace Gradient provided Docker
containers, which provided the necessary infrastructure for the code developed in
Jupyter Notebooks and the base storage. Google Colab was also used (and inte-
grated with Google Drive) in the final work for collecting graphics and metrics of
TensorBoard logs.

The Paperspace Gradient free supplied containers include dedicated NVIDIA
Maxwell GPU with 8 GB of GPU memory, 30 GB of memory, 8vCPU, and 5 GB of
storage space. These resources are all free but with a limit of the run session of 6 h
maximum. For Google Colab, the type of GPUs available in Colab varies over time,
often including Nvidia K80s, T4s, P4s, and P100s. The standard available RAM in
Colab is 12 GB. It should be noted that these resources are shared between users of
the platform, so the available capacity of the resources varies over time.

3.1 Datasets

The author of ImageAI [13] Python library also created a dataset IdenProf [12],
which was used as the base for this study, but we also created two custom datasets
from it. The IdenProf dataset contains 11,000 images that span over ten categories
of professions. Each profession category consists of 1100 images, 900 of which are
used for training and the remaining 200 for testing. Our custom datasets consist of
the same 1100 as the base dataset. However, the training and test sizes are different,
800 and 300 for one dataset and 1000 and 100. These datasets will be referenced as
DS100, DS200, and DS300, matching the respective test sizes from now on.

The images in the dataset have a resolution of 224 * 224 pixels and represent
subjects dressed in uniforms of their respective professions. The dataset distribution
as of represented subject is as follows, 19.4% female an 80.6% male, 91.1% white,
and 8.9% dark skins.

The process of acquisitions of the dataset images, as the dataset author describes
it “The images in the dataset were obtained from Google Image search. The images
were searched and collected based on the 15 most populated countries in the world.
The dataset does not comply with EU GDPR has the individuals whose images were
contained were not explicitly contacted for consent” [12].

3.2 Parameters

ImageAI library provides several algorithms that can be used for image classifica-
tion, namely ResNet50, DenseNet121, MobileNetV2, and InceptionV2. Other two



Image Processing: Impact of Train and Test Sizes … 369

Table 1 Setup parameters

Training cycle

Epochs 25

Per Epoch iterations

DS100 DS200 DS300

Batch size Train Validation Train Validation Train Validation

16 625 62 562 125 500 187

32 312 31 281 62 250 93

64 156 15 140 31 125 46

algorithms not present in ImageAI were also used, namely NASNetMobile and Effi-
cientNetB0. All algorithms were used to train models from the datasets during 25
epochs in three different image batch sizes 16, 32, and 64 for the three datasets.

A preliminary test using a batch size of 128 was additionally thought, but due to
resources limitations and time constraints was not carried over. In Table 1, we can
observe a resume of setup parameters.

4 Results and Analysis

From the facts gathered, accordingly to Table 2 InceptionV3 was the algorithm that
lost less trainable parameters followed by ResNet50, all other algorithms had losses
over 1%. Both algorithms also detect more parameters, being, in this case, ResNet50
has more parameters detected, which translates into more significant model sizes.
MobileNetV2 algorithm was the one that lost most parameters that could be trained;
also, this was the one that detected fewer parameters, which translates to smaller size
models. A final fact we can observe from analyzing all algorithms, as the number of
parameters detected grows, so does the model sizes grow proportionally.

As we can observe in Table 3, related to temporal data, the faster algorithm in
dataset DS100 was MobileNetV2 for batch sizes 16 and 64; however, for a batch
size of 32, it was EfficientNetB0. For dataset DS200, MobileNetV2 was faster for
batch size 16, in batch size 32, it was EfficientNetB0, and in batch size 64, it was
NASNetMobile. For dataset, DS300 EfficientNetB0 was faster in batch size 16 but
slowest in batch size 32, where InceptionV3 was faster with batch size 64.

In other facts gathered, for dataset DS100, there was a reduction in the train
time from a batch size of 16 to a batch size of 64. As of dataset DS200, that only
happened with NASNetMobile and EfficientNetB0, from batch size 16 to batch size
32, there was an overall reduction excluding MobileNetV2. In dataset DS300, only
NASNetMobile had time reduction from batch size 16 to batch size 64, and all others



370 L. Marques et al.

Ta
bl
e
2

A
lg
or
ith

m
s
fa
ct
s
co
lle

ct
ed

R
es
N
et
50

D
en
se
N
et
12
1

In
ce
pt
io
nV

3
M
ob
ile
N
et
V
2

N
A
SN

et
M
ob

ile
E
ffi
ci
en
tN

et
B
0

To
ta
lp

a
ra
m
s

23
,6
08
,2
02

7,
04
7,
75
4

21
,8
23
,2
74

2,
27
0,
79
4

4,
28
0,
28
6

4,
06
2,
38
1

T
ra
in
ab
le
pa

ra
m
s

23
,5
55
,0
82

6,
96
4,
10
6

21
,7
88
,8
42

2,
23
6,
68
2

4,
24
3,
54
8

4,
02
0,
35
8

N
on

tr
ai
na
bl
e
pa

ra
m
s

53
,1
20

83
,6
48

34
,4
32

34
,1
12

36
,7
38

42
,0
23

O
f
pa
ra
m
s
m
od
el
(%

)
0.
23

1.
19

0.
16

1.
50

0.
86

1.
03

Si
ze

(M
B
)

90
.5

27
.8

83
.9

9
17
.9

16



Image Processing: Impact of Train and Test Sizes … 371

Ta
bl
e
3

T
ra
in
in
g
tim

es
fa
ct
s

D
at
as
et

B
at
ch

si
ze

R
es
N
et
50

D
en
se
N
et
12
1

In
ce
pt
io
nV

3M
ob
ile

M
ob
ile
N
et
V
2

N
A
SN

et
M
ob

ile
E
ffi
ci
en
tN

et
B
0

D
S1

00
0

16
52
m
46
s

48
m
07
s

47
m
50
s

46
m
59
s

58
m
38
s

47
m
22
s

32
55
m
46
s

50
m
21
s

50
m
27
s

56
m
00
s

51
m
24
s

50
m
11
s

64
43
m
09
s

42
m
49
s

43
m
06
s

41
m
46
s

47
m
45
s

42
m
49
s

D
S2

00
0

16
40
m
5s

41
m
23
s

42
m
11
s

38
m
4s

40
m
5s

51
m
11
s

32
36
m
43
s

36
m
38
s

35
m
53
s

39
m
45
s

40
m
32
s

36
m
17
s

64
54
m
02
s

47
m
23
s

46
m
45
s

50
m
43
s

46
m
22
s

46
m
20
s

D
S2

00
16

50
m
01
s

42
m
56
s

45
m
37
s

53
m
13
s

52
m
54
s

40
m
13
s

32
48
m
55
s

46
m
15
s

45
m
58
s

46
m
46
ss

47
m
11
s

52
m
48
s

64
53
m
26
s

51
m
11
s

47
m
01
s

53
m
32
s

48
m
04
s

47
m
48
s



372 L. Marques et al.

had time increased. For DenseNet121 and InceptionV3, as the batch size increased,
so did the train time.We can extract from the facts that the best training time obtained
across all datasets and all batch sizes was for InceptionV3 in dataset DS200 and batch
size of 32.

According to Tables 4 and 5, we can observe that for all datasets and all batch
sizes, the training accuracy is slightly better than validation accuracy; however, for
NASNetMobile algorithm only for batch sizes of 16, this difference is slight for other
batch sizes, validation accuracy is much lower, and the same behavior occurs with
MobileNetV2 for dataset DS100 on a batch size of 32 and remaining datasets in batch
size 64.Also for an expected behaviorwith all algorithms across all datasets and batch
sizes, accuracy tends to increase with batch size increase, as for validation accuracy
that tendency is inverse, meaning with batch size increase validation accuracy tends
to decrease, but for some batch sizes and algorithms that is not always the case.
Analyzing Table 4, another result was gathered, for all algorithms without exception,
in dataset DS100 higher accuracies were achieved than those of DS200, and these
were greater than DS300.

Table 6 is relative to the training loss. This is a metric worth analyzing, as this can
indicate how good the predictive model is, as lower the loss, the better the predictions
are. Observing these values, we see some similarities between some algorithms. In
datasets, DS200 and DS300, all algorithms excluding EfficientNetB0 decreased loss
as the batch size increased, as for EfficientNetB0 decreased from batch size 16–
32 and increased slightly from batch size 32–64, still lower than batch size 16.
EfficientNetB0 and MobilNetV2 for dataset DS100 decreased loss as the batch size
increased, while all other algorithms had the same behavior, decreasing from batch
size 16–32 and increasing from 32 to 64. NASNetMobile had the lower loss in all
datasets, in DS100 was in batch size 32, as for the others was with 64.

Observing the values in Table 7, relative to the validation loss, we saw some simi-
larities between some algorithms, and MobileNetV2 and NASNetMobile stand out
as having much higher losses than the rest in all datasets for the majority of batch
sizes. For EfficientNetB0, the loss behavior was the same per batch size across the
datasets, increasing loss as the batch size increased. ResNet50 for dataset DS100
and DS200 performed the same with loss decrease from batch size 16–32, but with
an increase in 64, while for dataset DS300, as the batch size increased, the loss
decreased. DenseNet121 and InceptionV3 had the same behavior as ResNet50 in
dataset DS100, while in dataset DS200, InceptionV3 maintained the same behavior,
and DenseNet121 increased loss as batch size increased for DS200 and DS300
datasets. The lower loss was obtained with DenseNet121 for dataset DS100 and
batch size of 64, while for the remaining datasets, InceptionV3 had a lower loss with
batch size 32.

Table 8 represents the difference between the losses from training and from vali-
dation. This is a fundamental metric to pay attention to, as we can check if the
models trained might be overfitting or underfitting. Ideally, this difference should
be zero, or as close as we could get, but usually, some overfitting occurs. At first
glance, NASNetMobile stands out as having a more significant difference than the



Image Processing: Impact of Train and Test Sizes … 373

Ta
bl
e
4

T
ra
in

ac
cu
ra
cy

on
da
ta
se
ts
ac
ro
ss

ba
tc
h
si
ze
s

D
at
as
et

B
at
ch

Si
ze

R
es
N
et
50

D
en
se
N
et
12
1

In
ce
pt
io
nV

3
M
ob
ile
N
et
V
2

N
A
SN

et
M
ob

ile
E
ffi
ci
en
tN

et
B
0

D
S1

00
16

0.
82
93

0.
88
77

0.
86
7

0.
83
21

0.
91
8

0.
84
81

32
0.
89
8

0.
91
11

0.
92
58

0.
84
71

0.
94
44

0.
85
86

64
0.
83
92

0.
90
44

0.
90
45

0.
85
7

0.
92
97

0.
86
69

D
S2

00
16

0.
82
51

0.
86
59

0.
85
75

0.
80
8

0.
91
54

0.
82
31

32
0.
86
95

0.
88
84

0.
89
8

0.
83
88

0.
92
96

0.
85
53

64
0.
87
04

0.
90
41

0.
92
6

0.
84
99

0.
93
35

0.
84
94

D
S3

00
16

0.
79
79

0.
85
24

0.
83
56

0.
80
26

0.
91
45

0.
81
55

32
0.
81
29

0.
87
1

0.
88
45

0.
82
85

0.
91
25

0.
83
95

64
0.
86
96

0.
88
35

0.
92
4

0.
84
36

0.
93
81

0.
84
44



374 L. Marques et al.

Ta
bl
e
5

V
al
id
at
io
n
ac
cu
ra
cy

ac
ro
ss

ba
tc
h
si
ze
s
an
d
da
ta
se
ts

D
at
as
et

B
at
ch

Si
ze

R
es
N
et
50

D
en
se
N
et
12
1

In
ce
pt
io
nV

3
M
ob
ile
N
et
V
2

N
A
SN

et
M
ob

ile
E
ffi
ci
en
tN

et
B
0

D
S1

00
16

0,
80
34

0,
83
67

0.
82
86

0.
81
05

0.
80
24

0.
80
54

32
0.
81
15

0.
83
13

0.
84
06

0.
1

0.
19
17

0.
79
27

64
0.
78
53

0.
83
27

0.
84
68

0.
80
75

0.
26
01

0.
79
23

D
S2

00
16

0.
78
45

0.
82
1

0.
81
4

0.
78
35

0.
70
55

0.
78
4

32
0.
79
74

0.
81
96

0.
83
11

0.
72
63

0.
20
41

0.
78
23

64
0.
79
18

0.
81
4

0.
81
91

0.
10
03

0.
12
6

0.
77
77

D
S3

00
16

0.
77
84

0.
81
42

0.
80
31

0.
78
78

0.
63
97

0.
78
41

32
0.
77
79

0.
80
95

0.
82
22

0.
46
94

0.
20
23

0.
77
69

64
0.
79
52

0.
80
77

0.
81
73

0.
10
05

0.
13
45

0.
77
48



Image Processing: Impact of Train and Test Sizes … 375

Ta
bl
e
6

T
ra
in

lo
ss

ac
ro
ss

ba
tc
h
si
ze
s
an
d
da
ta
se
ts

D
at
as
et

B
at
ch

Si
ze

R
es
N
et
50

D
en
se
N
et
12
1

In
ce
pt
io
nV

3
M
ob
ile
N
et
V
2

N
A
SN

et
M
ob

ile
E
ffi
ci
en
tN

et
B
0

D
S1

00
16

0.
49
73

0.
34
27

0.
38
34

0.
49
56

0.
23
85

0.
43
51

32
0.
30
66

0.
27
74

0.
22
4

0.
44
27

0.
17
05

0.
41
28

64
0.
45
83

0.
28
82

0.
27
49

0.
42
27

0.
20
75

0.
37
72

D
S2

00
16

0.
58
81

0.
39
81

0.
41
5

0.
55
56

0.
25
27

0.
51
01

32
0.
37
3

0.
33
25

0.
29
43

0.
47
64

0.
21
56

0.
41
17

64
0.
36
66

0.
28
79

0.
21
95

0.
43
16

0.
19
9

0.
43
2

D
S3

00
16

0.
58
14

0.
43
8

0.
47
36

0.
57
34

0.
26
1

0.
53
73

32
0.
53
38

0.
38
79

0.
33
52

0.
50
06

0.
24
91

0.
46
54

64
0.
37
84

0.
33
97

0.
22
48

0.
46
19

0.
18

0.
45
04



376 L. Marques et al.

Ta
bl
e
7

V
al
id
at
io
n
lo
ss

ac
ro
ss

ba
tc
h
si
ze
s
an
d
da
ta
se
ts

D
at
as
et

B
at
ch

Si
ze

R
es
N
et
50

D
en
se
N
et
12
1

In
ce
pt
io
nV

3
M
ob
ile
N
et
V
2

N
A
SN

et
M
ob

ile
E
ffi
ci
en
tN

et
B
0

D
S1

00
16

0.
61
64

0.
50
86

0.
51
51

0.
57
27

0.
65
52

0.
62
03

32
0.
58
03

0.
53
32

0.
58
9

2.
92
4

4.
90
7

0.
66
32

64
0.
66
83

0.
49
19

0.
53
27

0.
60
25

3.
72
1

0.
68
32

D
S2

00
16

0.
64
01

0.
55
07

0.
54
91

0.
62
52

0.
97
49

0.
64
99

32
0.
63
86

0.
55
14

0.
54
29

0.
77
16

3.
91

0.
65
25

64
0.
67
2

0.
54
4

0.
61
54

3.
22
7

4.
24
7

0.
69
19

D
S3

00
16

0.
65
01

0.
54
31

0.
55
33

0.
62

1.
17
9

0.
63
6

32
0.
64
69

0.
54
97

0.
53
78

1.
63
2

3.
32
9

0.
64
39

64
0.
62
39

0.
55
38

0.
58
35

3.
52
4

4.
56
1

0.
69
43



Image Processing: Impact of Train and Test Sizes … 377

Ta
bl
e
8

D
if
fe
re
nc
e
be
tw

ee
n
va
lid

at
io
n
lo
ss

an
d
tr
ai
ni
ng

lo
ss

ac
ro
ss

ba
tc
h
si
ze
s
an
d
da
ta
se
ts

D
at
as
et

B
at
ch

Si
ze

R
es
N
et
50

D
en
se
N
et
12
1

In
ce
pt
io
nV

3
M
ob
ile
N
et
V
2

N
A
SN

et
M
ob

ile
E
ffi
ci
en
tN

et
B
0

D
S1

00
16

0.
11
91

0.
16
59

0.
13
17

0.
07
71

0.
41
67

0.
18
52

32
0.
27
37

0.
25
58

0.
36
5

2.
48
13

4.
73
65

0.
25
04

64
0.
21

0.
20
37

0.
25
78

0.
17
98

3.
51
35

0.
30
6

D
S2

00
16

0.
05
2

0.
15
26

0.
13
41

0.
06
96

0.
72
22

0.
13
98

32
0.
26
56

0.
21
89

0.
24
86

0.
29
52

3.
69
44

0.
24
08

64
0.
30
54

0.
25
61

0.
39
59

2.
79
54

4.
04
8

0.
25
99

D
S3

00
16

0.
06
87

0.
10
51

0.
07
97

0.
04
66

0.
91
8

0.
09
87

32
0.
11
31

0.
16
18

0.
20
26

1.
13
14

3.
07
99

0.
17
85

64
0.
24
55

0.
21
41

0.
35
87

3.
06
21

4.
38
1

0.
24
39



378 L. Marques et al.

rest for all datasets, which indicates a case of overfitting. MobileNetV2 also gener-
ated models overfitting in all datasets, for batch size 32 in DS100 and batch sizes 32
and 64 for DS300; as for batch size 16 in all datasets, this algorithm trained some of
the best-adjusted models. Overhaul as the batch size increases, so do the generated
models overfitting. The less overfitting models for datasets DS100 and DS300 were
MobileNetV2 with a batch size of 16, as for DS200, it was ResNet50 also with a
batch size of 16.

5 Conclusions and Future Work

After testing the six algorithms and observing the results, we can conclude that all
algorithms tend to achieve higher accuracy when the dataset train size increased
and test size increased. Another conclusion we extract is that accuracy is achieved
between algorithms and batch sizes are similar, with slight differences. The best
algorithm does not exist; they all tend to adapt to the datasets.

For the three datasets, the algorithm which achieved higher accuracy under
25 epochs was InceptionV3. Excluding NASNetMobile and MobileNetV2, which
presented overfitting, all the other algorithms had validation/training loss differences
lower, meaning slightly less overfitting than InceptionV3. Considering accuracy and
validation/training loss difference, DenseNet121 appears to be a better algorithm for
the datasets in the study.

EfficientNetB0 in all datasets showed that increasing batch size, the accuracy
decreased slightly; the same happened to ResNet50 and DenseNet121. This result
makes us believe that increasing batch sizes are not beneficial for these algorithms.
MobileNetV2, contrary to previous ones, seems to increase accuracy slightly, which
seems that increasing batch size might benefit this algorithm. Given its generated
smaller model size, this algorithm might be worth exploring in situations where
limited resources are available.

As cloud platforms allow developers, scientists, and researchers to use free
resources formachine learning, despite its limitations, these solutions proveworth the
time exploring, as it would be in-viable carrying out this study on typical household
computers. Paperspace Gradient proved us to be a powerful and versatile platform
for carrying out these tests.

5.1 Future Work

Our tests showed a slight tendency for more accurate models trained on datasets
with more extensive train sets. Another tendency was that bigger batch sizes reduce
both train time and accuracy. Similar tests could be done on different datasets and
adaptations from the same dataset to validate and improve this study, trying to test
bigger batch sizes and more extensive datasets to see if these findings still hold valid.



Image Processing: Impact of Train and Test Sizes … 379

Acknowledgements “National Funds fund this work through the FCT—Foundation for Science
and Technology, IP, within the scope of the project Ref UIDB/05583/2020. Furthermore, we would
like to thank the Research Centre in Digital Services (CISeD), the Polytechnic of Viseu, for their
support.”

References

1. Azure, M.: Azure machine learning—ml as a service—microsoft azure, June 2021. URL:
https://azure.microsoft.com/en-us/services/machine-learning/. Retrieved: 2021–06–29

2. Carneiro, T., Medeiros Da No´Brega, R. V., Nepomuceno, T., Bian, G.-B., De Albuquerque,
V. H. C., Filho, P.P.R.: Performance analysis of google colaboratory as a tool for accelerating
deep learning applications. IEEE Access, 6, 61677–61685 (2018)

3. Cloud, G.: Ai infrastructure ml and dl model training—google cloud, June 2021. URL: https://
cloud.google.com/ai-infrastructure. Retrieved: 2021–06–29

4. Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C.M., Dario,
P.: Visual-based defect detection and classification approaches for industrial applications—a
survey. Sensors 20(5) (2020)

5. Farber, R.: Chapter 2—cuda for machine learning and optimization. In: CUDA Application
Design and Development (pages 33–61). Morgan Kaufmann, Boston (2011)

6. Google.: Colaboratory: Frequently asked questions, June 2021. URL: https://research.google.
com/colaboratory/faq.html. Retrieved: 2021–06–26

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)
8. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional

networks (2018)
9. Hull, I.:Machine Learning for Economics and Finance in TensorFlow2:DeepLearningModels

for Research and Industry, 1st edn. Apress (2021)
10. Martins, M., Mota, D., Morgado, F., Wanzeller, C., Martins, P., Abbasi, M.: Imageai: compar-

ison study on different custom image recognition algorithms. In: Rocha, A., Adeli, H.,
Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds.), Trends and Applications in Infor-
mation Systems and Technologies (pp. 602–610). Springer International Publishing, Cham
(2021)

11. Momeny, M., Latif, A.M., Sarram, M.A., Sheikhpour, R., Zhang, Y.D.: A noise robust
convolutional neural network for image classification. Results Eng. 10, 100225 (2021)

12. Olafenwa, M.: Idenprof, June 2021. URL: https://github.com/OlafenwaMoses/IdenProf.
Retrieved: 2021–06–26

13. Olafenwa, M.: Imageai, June 2021. URL: https://github.com/OlafenwaMoses/ImageAI.
Retrieved: 2021–06–26

14. Paperspace.: Gradient—effortless deep learning at scale, June 2021. URL: https://docs.papers
pace.com/gradient/ Retrieved: 2021–06–26

15. Sandler,M.,Howard,A., Zhu,M., Zhmoginov,A.,Chen,L.-C.:Mobilenetv2: Inverted residuals
and linear bottlenecks (2019)

16. Services, A.W.: Amazon sagemaker—machine learning—amazon web services, June 2021.
URL: https://aws.amazon.com/sagemaker/. Retrieved: 2021–06–29

17. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception
architecture for computer vision (2015)

18. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks
(2020)

19. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional neural
networks using imagestars. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification,
pp. 18–42. Springer International Publishing, Cham (2020)

https://azure.microsoft.com/en-us/services/machine-learning/.
https://cloud.google.com/ai-infrastructure.
https://research.google.com/colaboratory/faq.html.
https://github.com/OlafenwaMoses/IdenProf.
https://github.com/OlafenwaMoses/ImageAI.
https://docs.paperspace.com/gradient/
https://aws.amazon.com/sagemaker/


380 L. Marques et al.

20. Zhang, Y.B.B.X.M.: Genetic Programming for Image Classification: An Automated Approach
to Feature Learning, Volume 24 of Adaptation, Learning, and Optimization, 1 edn. Springer
International Publishing (2021)

21. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable
image recognition (2018)


	 Image Processing: Impact of Train and Test Sizes on Custom Image Recognition Algorithms
	1 Introduction
	2 Related Work(s)
	3 Experimental Setup
	3.1 Datasets
	3.2 Parameters

	4 Results and Analysis
	5 Conclusions and Future Work
	5.1 Future Work

	References




