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Abstract A numerical study to analyse the vibration characteristics of the shear
deformable graded beam is presented in this paper. The material properties of the
beam are assumed to be varied in thickness and/or axial direction in accordance with
the power law. The governing differential equations for free vibration analysis of
FGM beam are derived using Hamilton’s Principle. The finite element formulation
is then employed to obtain the numerical solution of derived differential equations.
A convergence study is conducted to fix the number of elements for discretiza-
tion of finite element model of FGM beam. The accuracy of model is verified by
comparing the present results with that available in the literature. Parametric studies
are conducted to investigate the effect of material properties, boundary conditions
and geometrical parameters on the free vibration behaviour of FGM beam. Vibration
characteristics of the FGM beam are presented in the form of natural frequencies and
corresponding mode shapes. It is found that the vibration response of FGM beam is
significantly affected by the material gradation profile.

Keywords Vibration · Functionally graded materials · Finite element method ·
Shear deformable · Mori–Tanaka scheme and power law

1 Introduction

In recent years, a new class of composites namely functionally graded materials
(FGMs) has gained great attention in many modern engineering applications such as
military, aerospace, automotive, biomedical, marine and civil engineering. FGM is
advanced class of composites which combines favourable properties of both ceramic
and metal by providing smooth and gradual spatial variation of its constituents. Due
to its superior properties over composites such as lower transverse shear stresses, high
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resistance to temperature shocks and no interface problems through the layer inter-
faces, the researchers have extensively examined the static, vibration and buckling
responses of these structures.

The literature devoted to predict the structural response of FGMs can be charac-
terized into study of FGM beams, plates and shells. It is also worth to notice that as
compared to FGM plate and shell, a smaller number of studies are available on FEM
study of continuous FGM beam. The literature on FGM beam can be segregated
based on the used beam theories. It is well-known that the classical beam theory,
known as Euler–Bernoulli theory, ignores the effects of shear deformation, is oldest
beam theory. Studies such as [1–3] investigated the response of FGM beams using
classical beam theory. In addition to this researchers [4–11] also used first-order
beam theory or Timoshenko theory, which takes shear deformation into account in
determining the flexural behaviour. For instance, Aydogdu and Taskin [9] examined
the effect of material inhomogeneity on free vibration response of FGM beam using
Timoshenko beam theory. The Young’s Modulus and density were varied along the
thickness of beamwhile Poisson’s ratio was kept constant. Another study by Pradhan
and Chakraverty [4] also investigated the effects of constituent volume fractions,
slenderness ratios and the beam theories on the natural frequencies on FGM beam.
Ziane, Meftah and Belhadj [12] analysed thin and thick functionally graded mate-
rial box beams under free vibration. Chen, Kitipornchai and Yang [11] investigated
the non-linear free vibration behaviour of shear deformable sandwich porous beam
by employing Ritz method and von Kármán type non-linear strain–displacement
relationships. The effects of porosity coefficient, slenderness ratio was observed in
order to improve its vibration behaviour. Sharma [13] developed a generalized beam
theory to study the linear-static behaviour of an Aluminium-Zirconia functionally
graded beam under thermomechanical loading conditions. Celebi et al. [14] used
complementary functions method to convert the problem into initial-value problem
for free vibration analysis of FGM beams. Furthermore, functionally graded beams
were analysed using shear deformation theories of different orders [5, 11, 15]. Li
et al. [16] focused on vibration analysis of a variable thickness beam made of func-
tionally graded materials, which are submerged in water. Babaei et al. [17] examined
the effects of large amplitude free vibrations on FGM shallow arches on non-linear
elastic foundations.

Present study highlights the effects of variousmaterial properties, boundary condi-
tions and geometrical parameters on free vibration behaviour of FGM beam. The
primary objective of the present study is to demonstrate an efficient and accurate
solution method. Material properties, like Young’s Modulus and density, vary in
thickness direction according to Mori–Tanaka scheme and power law. Poisson’s
ratio is kept constant. Hamilton’s principle is used to derive the governing differential
equations. The numerical solution of the derived differential equations is obtained by
employing finite element formulation. Convergence study is conducted and accuracy
of model is verified by comparing the results with that in literature. Also, vibration
characteristics of the FGM beam are displayed in the form of mode shapes of natural
frequencies.



A Numerical Study of Free Vibration Behaviour of Shear … 33

Fig. 1 Material gradation of
FGM beam

FEM Formulation

Material Gradation.A functionally graded beamwith a uniformmaterial distribution
on a Cartesian coordinate system is shown in Fig. 1. The beam has a length L,
width b and thickness he. Material properties of the beam are Young’s modulus E,
Poisson’s ratio, shear modulus G and mass density ρ. It is assumed that the effective
material properties P(z), satisfying all the material properties, vary continuously in
the thickness direction (z) according to the following power law distribution [1, 2]:

P(z) = (Pc−−Pm)Vc + Pm (1)

where Pc and Pm are, respectively, the material properties at the top and bottom
surfaces of the FG beam, Vc is the volume fraction of the top constituent ceramic of
the beam defined as:

Vc =
(

z

he
+ 1

2

)n

for n ≥ 0 (2)

Following governing equations for shear deformable are obtained using
Hamilton’s principle

−I0ν̈ + A0ν
′′ + I1φ̈ − A1φ

′′ = 0 (3)

−I0 + A3w
′′ − A3φ

′ = 0 (4)

I1ν̈ − A1υ
′′ + A3w

′ − I2φ̈ + A2φ
′′ − A3φ = 0 (5)

wherein I i (i = 0, 1, 2) and Aj (j = 0, 1, 2, 3) are defined as:

Ii = ∫ ziρ(z)d A, Ai = ∫ zi E(z)d A(i = 0.1.2) A3 ∫G(z)d A (6)
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2 Convergence Study

Aconvergence study has been conducted to fix the number of elements in FEAmodel
of FGM beam, and the results of convergence study are presented in Tables 1, 2. For
instance, Table 1 shows the variation of the first five natural frequency parameters(
λ = ωL2

he

√
rhom
Em

)
with the corresponding number of elements for FGM beam with

simply supported edges (S–S). Similarly, the effect of number of elements on the
calculated frequency parameters for functionally graded beam with both edges free
(i.e. F–F) is shown in Table 2. It is to be noted that the convergence study is conducted
with 20 slenderness ratios (i.e. L/he = 20) whereas the value of power law exponent
is kept unity.

The frequency parameter (λ) is expressed by normalizing the obtained eigenfre-
quencies using the following expression:

λ = ωL2

he

√
ρm

Em

where

ω = Natural frequency of beam
L = Length of beam
he = Height of beam

ρm = Mass Density of metal

Table 1 Convergence of first five frequency parameters of S–S beam (slenderness ratio = 20;
power law exponent = 1)

ndiv λ1 λ2 λ3 λ4 λ5

2 1.235 29.661 65.846 231.12 233.03

4 1.156 5.105 10.878 26.915 41.708

8 1.121 4.508 10.255 18.548 26.894

16 1.115 4.414 9.770 17.003 25.918

24 1.113 4.393 9.664 16.678 25.147

Table 2 Convergence of first five frequency parameters of F–F beam (slenderness ratio = 20;
power law exponent = 1)

ndiv λ1 λ2 λ3 λ4 λ5

2 11.767 – – – –

4 11.601 32.213 63.909 115.48 378.35

8 6.498 14.540 19.214 24.324 35.440

16 6.456 14.380 19.194 23.832 34.158

24 6.435 14.308 19.184 23.645 33.724
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Em = Young’s Modulus of metal.

By this study, it is found that by increasing the number of discretized elements
of either beam, the difference between the consecutive frequencies for any mode
decreases considerably. This shows that the results obtained would be of higher accu-
racy when the number of discretized elements for FG beam is increased. Thus, it can
be observed that the difference between frequency parameters becomes minimum as
we consider higher values of ndiv. Conclusively, the number of discretized elements
(ndiv) is set as ‘8’ for this complete study.

3 Validation Study

To perform the present study, the accuracy of FEM formulation must be validated
with the results reported in the relevant literature.

In this section, first five frequency parameters for the free vibration of FGM
beam subjected to different sets of boundary conditions are compared. To validate
the analysis, results for simply supported (S–S) as well as Fixed (C–C) beam are
compared with numerical convergence studies of frequency parameters with the
literature published. The results for S–S FGM beam are compared with that reported
by Aydogdu and Taskin [9] and presented in Table 3. Table 4 shows the comparison
of natural frequencies for C–C FGM beam with Pradhan and Chakraverty [4].

Table 3 Comparison of natural frequency parameters for S–S Al/Al2O3FGM beam with Aydogdu
and Taskin [9]

Slenderness ratio Reference of study n = 0 n = 0.1 n = 1 n = 2 n = ∞
L/he = 5 Present study 6.622 6.438 5.095 4.135 2.849

Aydogdu and Taskin [9] 6.847 6.499 4.821 4.251 2.938

L/he = 20 Present study 6.638 6.454 5.107 4.135 2.849

Aydogdu and Taskin [9] 6.951 6.599 4.907 4.334 2.983

Table 4 Comparison of natural frequency parameters for F–F Al/Al2O3FGM beam with Aydogdu
and Pradhan and Chakraverty [4]

Slenderness ratio Reference of
study

n = 0 n = 0.1 n = 1 n = 2 n = ∞

L/he = 5 Present study 15.048 14.231 13.128 11.579 9.375

Pradhan and
Chakraverty[4]

15.460 14.001 12.450 10.909 9.629

L/he = 20 Present study 15.048 14.231 13.128 11.579 9.375

Pradhan and
Chakraverty[4]

15.754 14.268 12.689 11.161 9.864
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Material and geometrical parameters for FGM beam are taken from references
[9, 10] and mentioned below for ready reference.

Al : Em = 70 GPa,

rhom = 2702 kg/m3

Al2O3 : Ec = 380 GPa

rhoc = 3800 kg/m3

The Poisson’s ratio for both materials is kept constant as 0.3. From Tables 3 and
4, a good agreement between the results of the frequency parameters for different
values of the power law exponent can be observed.

4 Present Study

In the present study, the first five frequency responses of a functionally graded (FG)
beam for three different scenarios are investigated and presented. Functionally graded
material of the beam is basically composed of Silicon Carbide at the top of the beam
(i.e. z = +h/2) and Titanium Aluminide (Ti48Al2Cr2Nb) at the bottom of the beam
(i.e. z= −h/2) with the following properties varying or as per the power law through
the thickness of the beam.

Silicon Carbide : Ec = 410 GPa

ρc = 3100 kg/m3

Titanium Aluminide : Em = 160 GPa

ρm = 3600 kg/m3

For the first study, the behaviour of frequency parameters against various values
of power law exponent is observed as shown in Table 5. The value of L/he is set as
20 and boundary condition taken as simply supported. It can be clearly seen that the
natural frequency of the FG beam for irrespective of mode shapes decreases with the

Table 5 Effect of material inhomogeneity on the first five natural frequencies parameters for a
TiAl/SiC S–S FG beam with slenderness ratio = 20

Mode n = 0 n = 0.1 n = 0.2 n = 1 n = 5 n = 10 n = ∞
λ1 5.115 4.967 4.829 4.013 2.927 2.851 2.849

λ2 20.467 19.874 19.323 15.059 11.711 11.409 11.399

λ3 46.099 44.762 43.521 36.171 26.378 25.697 25.674

λ4 82.171 79.790 77.577 64.476 47.020 45.805 45.765

λ5 113.540 110.249 107.191 89.089 64.970 63.290 63.236
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Fig. 2 Variation of
frequency parameters for
different power law
exponents

increase in the value of n. This behaviour has been portrayed by a 1-D plot graph as
shown in Fig. 2.

For the second study, the behaviour of frequency parameters for four different
boundary conditions is examined as shown in Table 6. Similar to the previous condi-
tion, the value of L/he is set as 20 and the value of power law exponent n is 1. Out
of all four boundary conditions, the value of normalized frequency of C–C beam for
any mode shapes is the largest.

For the third study, the behaviour of frequency parameters for different values of
slenderness ratio is examined as shown in Table 7. By keeping power law exponent
as n = 1 and boundary condition as simply supported beam, the eigen frequencies
(f ) and respective dimensionless frequency parameters (λ) are evaluated for variable
slenderness ratios.Values of eigenfrequencies vary considerably for this part of study.

Table 6 Effect of boundary conditions on the first five natural frequency parameters of TiAl/SiC
FG beam (slenderness ratio = 20; power law exponent = 1)

Frequency parameters Boundary conditions

S–S C–C C-F C-S

λ1 4.013 9.099 1.429 6.270

λ2 15.059 25.097 8.961 20.328

λ3 36.171 49.287 25.107 42.471

λ4 64.476 81.789 44.331 72.864

λ5 89.089 89.089 49.280 89.089
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Fig. 3 Variation of displacements for first five-mode shapes

5 Conclusion

Afinite element formulation for free vibration analysis of FGMbeam is carried out in
the present study. The accuracy of model is verified by comparing the present results
with that available in the literature and various numerical studies are conducted to
investigate the effect of material properties, boundary conditions and geometrical
parameters on the free vibration behaviour of FGM beam. Based on the present
study, following important conclusions can be drawn:

• The behaviour observed in the first study showed the variation in the frequency
parameter λ with respect to the power law exponent n for our parametric consid-
erations. It is observed that with the increase in n, a subsequent decrease in λ is
depicted. We can thus imply that when the volumetric fraction starts leaning more
towards metal, then the corresponding natural frequency for the FG beam also
increases.

• It is found that out of four boundary conditions the highest natural frequency was
attained by the C–C beam whereas the lowest natural frequency was attained by
the C–F beam. This indicates that for lowest probability of resonance condition,
an FG beamwith highest possible natural frequency for any mode should be used,
i.e. the C–C FG beam.
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• It is observed that the values of eigenfrequency for respective mode shapes were
decreasing with increase in L/he ratio. This proves that a thin or slender beam
has lower natural frequency compared to that of a thick or rigid beam and more
susceptible towards failure.
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