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Abstract As of more recently, deep learning-based models have demonstrated
considerable potential, as they have outperformed all traditional practices. When
data becomes high dimensional, extraction of features and compression of data
become progressively significant. In this paper, we describe the autoencoder deep
learning algorithm. Autoencoder is primarily a neural network-based feature extrac-
tion methodology that accomplishes outstanding victory in producing highlights of
high-dimensional data.Autoencoder assumes aprincipal job in unsupervised learning
which targets to rework inputs into outputs with minimal reconstruction error.

Keywords Autoencoder · Convolutional autoencoder · Denoising autoencoder ·
Unsupervised learning

1 Introduction

While unaided learning of amapping that generates “good” intermediary illustrations
of the input appears to be the key, little is comprehended in regards to what comprises
“good” illustrations for initializingdeeper network architectures, orwhat unequivocal
criteria may direct learning such intermediary illustrations. Gaining insights from
an expansive sum of information could be a difficult job. Several dimensionality
reduction strategies that are all around concentrated in the writing intend to acquire
an understanding of an easier representation from the dataset.

Although numerous methods have been proposed to deal with dimensionality
reduction, outcomes from models dependent on deep architectures are encouraging.
Autoencoder has been taken to the forefront of generative modeling with the emer-
gence of deep learning science. Autoencoders are basic learning systems that intend
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to recast inputs into outputs with the slightest possible distortion. The notion of
autoencoders has been widespread within the discipline of neural networks for a
considerable length of time.

However, recently, the idea of autoencoders has been extensively utilized for
mastering generative models of data. Autoencoders are commonly trained with a
solo layer encoder and a solo layer decoder; however, utilizing deep autoencoders
offers favorable points of interest.

In this paper, we proposed an approach to an autoencoder model which can extract
features based on both data itself and the correlation among the data. Provided
data relationships, reconstruction error can be diminished and, therefore, generate
more powerful features. This paper presents a comprehensive survey on autoencoder
architecture and its various variants. The various issues and challenges have been
addressed for autoencoders.

We organize the paper as described. Section II describes the literature study of
autoencoders. Section III begins with a simple autoencoder architecture and its basic
components. Variants of autoencoder are explained in Section IV. Section V presents
challenges and issues of autoencoders. Section VI presents conclusions and future
work.

2 Literature Review

Autoencoders grasp a condensed representation of data by mapping the data into a
smaller spatial dimension. The foremost precept of autoencoder follows from the
name: “auto” favors that this technique is unsupervised and “encoder” signifies it
learns encodings of data. Autoassociator or diabolo network are other names of
autoencoder. In particular, encoded latent space features of data are learned by
an autoencoder, which tries to limit the error between original data and output
decoded from the encodings. The latent space representation carries fundamental
characteristics of data.

In [1], autoencoder was developed as a neural network tool and that could be
a successful solution for unsupervised learning using neural networks. This was
presented as a strong replacement for the current approaches that were conducting a
function close to that of principal component analysis (PCA) at the time.Ananalytical
model [2] has been developed based on the minimal description duration (MDL)
concept for the training of autoencoders. Their purpose was to lessen the knowledge
needed to describe both the vector of code vector and the error in reconstruction.

In [3], the authors suggested the usage of deep autoencoder as a promisingmethod
for minimizing dimensionality. Experimentally, they demonstrated that the compres-
sion of deep autoencoders is significantly stronger than the equivalent shallow or
linear autoencoders. In [4], the authors defined a novel algorithm for learning sparse
representations and compared it with a related probabilistically trained machine,
namely restricted Boltzmann machine (RBM), theoretically and experimentally. In
[5], autoencoder is proposed as a means of directing supervised learning by the usage
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of autoencoding in conjunction with supervised learning as a tuning denoisingmech-
anism. The authors discussed a deep networking approach focused on piling layers
of denoising autoencoders that were trained to denoise noisy forms of the inputs.
This prompted them to address a conceptual flaw of conventional autoencoders,
namely their failure to understand effective overcomplete code. The resulting algo-
rithm of stacked denoising autoencoder for deep network training has proven capable
of bridging the functional gap with deep belief networks, resulting in equal or finer
classification results.

In [6], the authors demonstrated that a gradient of an autoencoder offers esti-
mation to restricted Boltzmann machines’ analogous divergence preparation. The
authors in [7] proposed an innovative method to train deterministic autoencoders.
They demonstrated that by applying a well-selected penalty term to the cost function
of reconstruction, results can be obtained that equal or outclass those produced by
denoising autoencoders and other regularized autoencoders on a number of datasets.
In addition, they demonstrated that this penalty term has connection with both regu-
larized and denoising autoencoders, and it can be interpreted as a bridge between
deterministic and non-deterministic autoencoders.

In [8], a very efficient sparse coding system named k-sparse autoencoder was
introduced by Makhzani and Frey, which attains good sparsity in the hidden repre-
sentation. They also addressed how to use the k-sparse autoencoder for pretraining
architectures that are shallow and deep. Bowman et al. [9] developed and analyzed
a generative model focused on RNN variational autoencoder, which implements
distributed latent space representations of complete sentences and can be utilized
for natural language sentences. In [10], the authors described autoencoders and its
variants and introduced a deep neural generative model that would merge varia-
tional autoencoders (VAEs)with comprehensive attribute discriminators to efficiently
implement semantic structures.

In [11], the authors useddeep autoencoders and feedforward networks for anomaly
detection. NSL-KDD dataset has been considered for testing and comparing of the
models.

In the literature, autoencoders have been utilized for information retrieval and
dimensionality reduction. Backpropagation learning is employed for updating the
weights within the network. Optimization algorithms such as stochastic gradient
descent, root mean square prop, and Adam are employed for the learning of
autoencoders.

The literature review recommends that autoencoders are acceptable candidates to
find out spatial and temporal features and determine anomalies. There have also been
numerous experiments undertaken on current state-of-the-art deep learning architec-
tures present in the literature. Table 1 presents preliminary prominent contributions to
the proposed architecture. To sum up the literature review concerning autoencoders,
the accompanying table is offered for ease of access:
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Table 1 Literature review on autoencoders

Contribution Papers

Autoencoders Hinton and Zemel (1994)

Denoising autoencoders Gallinari et al. (1987), Vincent and Larochelle (2008)

Convolutional autoencoders Erhan et al. (2010), Masci et al. [7], Du et al. (2017)

Sparse autoencoders Olshausen and Field (1997), Ranzato (2007), Mairal et al. (2009),
Makhzani and Frey (2014)

Stacked autoencoders Bengio et al. (2007), Vincent et al. (2010)

Contractive autoencoders Rifai et al. (2011)

3 Architecture

This sectionbeginswith a descriptionof the simple autoencoder architecture followed
by its basic components.

Basic Autoencoder and its Components. An autoencoder is a class of neural
networks that attempts to recreate the output relative to the input by estimating the
identity function. To attenuate the reconstruction error which can be evaluated using
loss functions, the model parameters are optimized.

Autoencoder [3] focuses on learning a compact and distributed representation for
a collection of data. Using a fewer hidden units than inputs powers the autoencoder
to memorize a condensed approximation.

Autoencoder comprises of three main components: an encoder network, a code
and a decoder network. The encoder encodes the input image as a compressed repre-
sentation in a reduced dimension; the code resembles the latent space encoding, i.e.,
the compressed input fed to the decoder; the decoder rebuilds input back to the initial
dimension from the code (Fig. 1).

Fig. 1 Basic components of an auto encoder
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When the size of the hidden layer in a basic autoencoder is larger than the size
of the input layer, this is considered an overcomplete autoencoder. When the size of
the hidden layer in a basic auto encoder is less than the size of the input layer, it is
considered an undercomplete autoencoder.

An autoencoder makes use of a series of “recognition weights” to transform a
vector of input to a vector of code. It then makes use of a collection of “generative
weights” to transform the vector of code into an estimated reconstruction of the
vector of input.

The autoencoder calculation and its profound variant has been a remarkable
accomplishment as of late. An autoencoder’s training procedure is based on cost-
function optimization. The autoencoders are nonlinear by nature and can learn more
intricate relations and more powerful features.

4 Variants of Autoencoder

Denoising Autoencoder. The basic principle behind denoising autoencoder (DAE)
is to compel the autoencoders to no longer gain proficiency from the identity function,
butmore robust features, by reestablishing the input froma corrupted version of itself.
An autoencoder can retrace a distorted input by capturing the statistical dependencies
between the inputs.

Training denoising autoencoders requires learning to recover clean input from
an adulterated sample, a task called denoising. Denoising autoencoders anticipate
that well denoising can be accomplished if the model obtains highlights that seize
valuable structure in the input distribution.

Denoising autoencoder’s key idea is to corrupt a portion of the input characteristics
of a given dataset X before submitting it to an autoencoder model, train the network
to rebuild a fair “restored” input from the adulterated input X ′ and then reduces the
error between the reconstructed Y and original X (Fig. 2).

Fig. 2 Denoising autoencoder
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The training operation of a denoising autoencoder works as follows:

• Stochastic mapping is bring into play to contaminate the initial input X into X ′.
• The corrupted input X ′ is then mapped to a hidden encoding by using function

E(X ′).
• From the hidden encoding, the model reestablishes the input through mapping

D(E(X ′)).

The loss function minimizes error not from the original but the corrupted input
and takes the following form:

L
(
X, D

(
E

(
X ′))) (1)

where D(E(X ′)) is the decoder output, E(X ′) is the encoder output encoded from the
corrupted input X ′.

ConvolutionalAutoencoder. Convolutional autoencoders (CAEs) are focused on
convolutional neural networks (CNN). A CNN comprises of convolutional, pooling,
and deconvolutional layers optionally accompanied by a fully connected layer. The
convolutional operation is applied by extracting native receptive fields around the
entire image to create an activity map from the inputs. Each ensuing layer increases
the intricacy of the realized activity map. This activity map is also known as a feature
map. The middle subsampling layer is connected to the decoder in unsupervised
learning and then proceeds to restore the input image again with the convolutional
process.

The convolution operator permits filtering an input signal to extract a considerable
phase of its content. Convolutional autoencoders utilize the convolution operator to
take advantage of the survey that a signal can be seen as an entirety of other signals.
Convolutional autoencoders figure out how to encipher the contribution of inputs to
a set of basic signals and afterward attempt to remake the contribution from those
signals. We let the convolutional autoencoder model gain proficiency with optimal
filters that lessen the error in the reconstruction. Once learned, these filters are applied
to related input to retrieve information.

CAEs are a subset of CNNs: the key distinction between the frequent under-
standing of CNN and CAE is that the former are qualified end-to-end to master filters
and integrate features to categorize their input. In addition, CNNs are generally clas-
sified as supervised learning algorithms [6]. CAEs are only equipped to comprehend
optimal filters that can extract features and can be used for input recreation.

Convolutional autoencoder is a conventional autoencoder stacked with convolu-
tion layers. Convolutional autoencoder broadens the standard autoencoder’s funda-
mental structure by altering the fully connected layers to convolution layers. The
encoder network is modified to convolutional layers and the decoder network is
modified to transpose convolutional layers in convolutional autoencoders. In the
event that we use image data, the convolutional layer is smarter to catch the spatial
statistics in the image (Fig. 3).
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Fig. 3 Convolutional autoencoder

As opposed to utilizing one hidden layer in a basic autoencoder, a convolu-
tional autoencoder uses numerous layers to extract significantly high-level features
appearing in the image. The quantity of unbound parameters in the fully connected
layer is bigger than the quantity of unbound parameters in a multi-convolution layer,
which makes the basic autoencoder arduous to train and time exorbitant.

Convolutional autoencoders can scale rigorously to realistic-sized high-
dimensional images as a result of their convolutional character. Therefore, convo-
lutional autoencoders are well acknowledged as “Feature Extractors” for general
purpose functionality.

SparseAutoencoder. A sparse autoencoder (SAE) incorporates additional hidden
activation nodes than input nodes, but only a few nodes are dynamically active at
once. The loss function penalizes the activation nodes present in the hidden layers,
with the end goal that only a few nodes are actuated when the network is trained.

It is considered that if a sparsity penalty is upheld on the hidden layer activa-
tion nodes, at that point, the autoencoder would still discover captivating designs
and statistical patterns within the data. The sparsity constraint permits the sparse
autoencoder to figure out distinctive characteristics and features within the dataset.
By enforcing constraint on a number of hidden layer activations, one can flatten the
input to an optimally contracted latent space.

Sparse autoencoder is mathematically constrained, such limitations are added to
the learning optimization handles using regularizers. Sparsity is extended to autoen-
coders as a mathematical constraint by means of several conceptualizations. It has
been noted that sparse regularization prompts higher learning performance in many
applications by improving the standard of encoding.

The network is driven to acquire representations in which only a minimal number
of neurons are triggered. There are two different ways to impose sparsity constraint:
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• L1 Regularization—It adds “absolute value of magnitude” of coefficients as a
penalty term. A term can be added to the loss function that penalizes the absolute
value of the vector of activations within the hidden layers.

• Kullback Leibler Divergence—It is the degree of contrast between two proba-
bility distributions. A sparsity parameter ρ is defined, which indicates the average
activation of a node.

The k-sparse autoencoder [8] is an improvement over sparse autoencoder. Here,
k nodes with the most elevated activation functions are picked.

5 Challenges and Issues

When addressing real-world data, existing algorithms dependent on autoencoders
experience the ill effects of various issues which hinder their robustness and ease-
to-use, such as

Weights Initialization—with huge introductory weights, autoencoders usually
realize poor local minima; with tiny initial weights, the gradients within the early
layers are little, creating it infeasible to train autoencoders with many hidden layers.
Instantiating the weights with random values can add randomness to the obtained
results.

Model Architecture—the model’s configuration, i.e., number of layers and their
width, causes the network to seek a specific portrayal of the data while retaining the
relevant details.

Hyperparameters—there are a few essential hyperparameters that are tough to be
set; learning rate, weight-cost, dropout fraction, batch size, the number of epochs,
the number of layers, the number of nodes in each of the encoding layers, kind of
activation functions, number of nodes in each of the decoder layers, network weight
initialization, optimization algorithms, and the number of nodes in the bottleneck
layer.

Studying autoencoders in depth empowers one to achieve a general understanding
of autoencoders, characterize key properties that are shared by different autoencoders
and that should be checked consistently in any new form of autoencoder. The utiliza-
tion of autoencoder encodings might offer a decent solution for errands that require
more steady performance under the noise.

The key drawback of the autoencoders lies in the fact that they are data-driven or
data-specific, and thus, their utility is restricted to the data that share similar properties
with the training data.

Another principal constraint is that the compression by an autoencoder is lossy.
Autoencoders do not flawlessly restore the original information. This essentially
implies that compression and decompression operation degrades the output of the
network, generating a less precise representation contrasted with its input. It should
be noted that autoencoders do not perform noticeably better than the JPEG algorithm
at encoding images.
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6 Conclusion and Future Work

Autoencoders are broadly utilized for a diversity of tasks such as information
retrieval, reverse image search, classification, anomaly detection, dimensionality
reduction, image compression, image denoising, image blending, feature extraction,
and plenty more. A smart idea for future work is to apply autoencoders in medical
image analysis. Medical imaging including X-rays, MRI, CT, etc., are susceptible
to noise. Reasons incorporate the use of different image acquisition techniques.
Image denoising is a crucial preprocessing step inmedical image analysis. Denoising
autoencoders can be utilized here for efficient denoising of medical images.

Another potential future application is an encoder–decoder model capable of
capturing temporal structure, such as long short-termmemory (LSTM)-based autoen-
coders, which can fixmachine translation issues. It can be used to determine a video’s
next frame. Besides the simple autoencoder, denoising autoencoder and convolu-
tional autoencoder; variational autoencoder (VAE) is another autoencoder variant
that is worth investigating. It would be fascinating to explore its potential in future
work.

In short, autoencoders create a representation at the intermediate bottleneck layer
to preserve only the components that are useful, and to reject not useful segments
and noise. In the modern era, autoencoders are turning up to be a hot field of research
and exploration in numerous aspects. This paper has successfully introduced autoen-
coders driven by the objective of learning intermediate representations of the input
that are robust to small irrelevant changes in the input and much better suited for
subsequent learning tasks.
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