Chapter 10 ®)
Application of Multilevel Models e
to International Large-Scale Student
Assessment Data

Maciej Jakubowski and Tomasz Gajderowicz

Abstract This chapter discusses applications of the multilevel modeling to interna-
tional large-scale student assessment (ILSA), focusing on OECD’s PISA and IEA’s
TIMSS. Multilevel models are routinely applied to analyze these data. However,
several methodological issues need to be addressed to use these models in empirical
applications correctly. First, we discuss how plausible values in multilevel modeling
affect estimates of fixed and random components. Second, we discuss how to consider
survey weights to decompose variance and estimate separate within- and between-
school effects. Third, we discuss the use of replicate weights and compare standard
errors estimated with this method to those typically obtained in multilevel modeling
with robust standard errors. Fourth, we discuss applications of more complex multi-
level models, like three-level models and models with cross-level effects. We summa-
rize by providing key points to consider for researchers when applying multilevel
modeling with ILSA data.

Keywords International large-scale assessment - Plausible values + Survey
weight -+ Replicate weight - Three-level model - Cross-level effect

10.1 Introduction

The educational data have a hierarchical structure as students are nested in class-
rooms, and classrooms are nested in schools. Thus, multilevel modeling is a natural
choice for this type of data. Examples of multilevel regressions with school and
student data are presented in most books discussing applications of these statistical
models. Moreover, the whole structure of education systems relies on several nested
layers as schools are often managed by local authorities, governed or supervised by
regional or subnational entities, and finally, education systems are organized at the
subnational or national level.
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Hypotheses in empirical research in education are also often related to interac-
tions between different governance levels. Researchers are usually interested in indi-
vidual, student-level effects and between-school effects and the relationship between-
country-wide policies and associations with outcomes at the local level. One can
imagine adding layers related to language, culture, governance, accountability, or
practices and policies. In psychometric research, models analyzing individual test or
questionnaire items that are nested in students or in time periods are also applied to
address issues related to measurement error.

All large-scale international assessments of students have a hierarchical structure
with students nested in classrooms or schools, and then schools nested in countries.
Additional layers are sometimes added when analyzing regional data, teacher effects,
or item-level responses of students. Multilevel modeling with these data is popular
among researchers and often involves cross-level interactions. However, important
issues related to the statistical design of international large-scale assessment data
need to be addressed to analyze them properly, obtain unbiased population estimates,
and measure their uncertainty. This chapter discusses the usage of plausible values,
survey and replicate weights, assumptions about random effects distribution, and
other issues that often arise in empirical applications but are also often misunderstood
or incorrectly addressed. Throughout the chapter, we provide examples using the
most recent PISA and TIMSS data.

10.2 Example of Typical Use—Modeling Relationship
Between Socioeconomic Background and Student
Achievement in PISA 2018

There are three main advantages of multilevel modeling with large-scale student
assessment data. First, they reflect the sampling structure with schools at the higher
level and classrooms and students at the lower levels. We discuss below the benefits
and costs of applying multilevel models to reflect the complex sampling scheme in
international studies. The second advantage is that multilevel regressions provide a
decomposition of the variance, and the third advantage is that they allow modeling
variance at different levels, including cross-level interactions.

We use PISA 2018 data to demonstrate how to use multilevel models to analyze the
relationship between student socioeconomic background and reading achievement.
In education research, it is a common model used to estimate the effects net of
family background. This is also a model often used in multilevel modeling textbooks,
starting from the popular Raudenbush and Bryk book (2002), which opens with an
example of modeling SES association with achievement. In PISA, the socioeconomic
background is measured through the index of economic, social, and cultural status.
This is an index that combines information about parents’ education and occupation,
and educational, cultural, and material resources available at home (see Avvisati,
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Table 10.1 Example of multilevel analysis with PISA 2018 data—explaining reading achievement
with variance decomposition and student- and school-level slopes of socioeconomic background

(D (2) (3) )
b/se b/se b/se b/se
ESCS slope 16.8
0.66
Between-school ESCS slope 55.1 51.6
242 2.81
Within-school ESCS slope 12.5 12.5
0.70 0.70
Constant 446.0 457.5 481.9 481.1
2.75 2.31 1.76 2.73
Country fixed effects No No No Yes
School-level variance 5578.5 3874.4 22259 1904.2
255.56 199.04 125.04 116.30
Student-level variance 6280.2 6180.8 6176.3 6175.3
80.24 74.87 75.73 75.70
Intraclass correlation 0.47 0.39 0.26 0.24
N of schools 10,180 10,180 10,180 10,180
N of students 249,334 249,334 249,334 249,334

Note Authors’ estimation with PISA 2018 microdata. Results were obtained with ten plausible
values of reading achievement and a sample of all students and countries that have participated in
this assessment. Student and school weights were applied with student-level weights scaled to sum
to the sample size of their school

2020 for a detailed discussion of this index and its comparability across countries
and Pokropek et al., 2015 for a decomposition using structural equation modeling).

Tables 10.1 and 10.2 show results for a multilevel model applied to PISA 2018
data explaining reading achievement with the ESCS index. The index was centered at
the weighted school means to decompose the effects into within- and between-school
effects. The estimates are based on a model with ten plausible values and different
specifications regarding random components and country effects.

Table 10.1 shows results for a model with school-level random intercepts. Column
(1) shows results for the empty model—the model with intercepts only. This model
provides a baseline decomposition of the variance into school and student levels.
One could argue that this is one of the most important findings from large-scale
international assessments, that a substantial part of the total achievement variance is
associated with school-level effects. In this case, for the pooled sample of all countries
that participated in PISA 2018, interclass correlation shows that nearly half of the
total variance is associated with schools. These estimates are obtained for a weighted
sample of students with ESCS data available, so they can be used for comparisons
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Table 10.2 Ex.ample of the (1 @)
random coefficient multilevel
model with PISA 2018 data bise b/se
Between-school ESCS slope 53.97 5517
2.30 243
Within-school ESCS slope 123" 153"
0.74 0.85
Interaction between the school-average ESCS | 5.2
and within-school ESCS slope 0.96
Constant 481.1°" 481.9"
1.76 1.77
ESCS slope variance 1492 1223
20.96 20.10
School-level variance 2250.5™ 2243.2"*
125.74 126.68
Correlation (escs,constant) 0.3 0.3
0.05 0.06
Student-level variance 6070.2°"* 6072.0"
75.14 75.50
N of schools 10,180 10,180
N of students 249,334 249,334

Note Authors’ estimation with PISA 2018 microdata. Results were
obtained with ten plausible values of reading achievement and
a sample of all students and countries that have participated in
this assessment. Student and school weights were applied with
student-level weights scaled to sum to the sample size of their
school

with models incorporating ESCS effects (missing observations constituted less than
4% of the original sample).

Columns (2) and (3) compare results for an approach typical for traditional linear
regression modeling with the one possible with multilevel models that decompose
associations between school- and student-level effects. Column (2) shows results
for a multilevel model with the ESCS index as the only explanatory variable. The
slope is around 17 points meaning that one standard deviation change in the ESCS
index is associated with 17 points improvement in reading scores. Column (3) shows
separate estimates for between- and within-school associations of ESCS. The within-
school association is slightly weaker, but the between-school association is much
stronger, showing that one standard deviation increase in school-average ESCS index
is associated with an improvement of more than 50 points, which is equivalent to
half a standard deviation of the reading achievement distribution for OECD countries
(weighting countries equally). Note also that including the school-average slope of
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ESCS explains 60% of the school-level variance, while at the student level, the
within-school effect explains less than 2% of the variance.

In other words, this simple model shows that socioeconomic background is a
powerful predictor of average school achievement but cannot explain much of the
within-school differences. While this is not a new finding in education research,
international assessment data show that this relationship holds for most schools
around the world. In fact, PISA data are used to compare such associations showing
in which countries school composition of student socioeconomic background is a
more powerful predictor of achievement and how much of the total variance is at
the school level. This is a descriptive but powerful tool for comparing inequalities
related to school and socioeconomic background across countries.

The last column shows a similar model but with country fixed effects. Note that
the estimated coefficients for between- and within-school associations of reading
achievement with the socioeconomic background are similar, so they are not driven
by between-country differences in average achievement. Note also that country fixed
effects are able to explain some of the school-level variance but less the school-
average socioeconomic background. Again that is an interesting finding showing
that differences between schools in their composition and achievement are much
larger and more important than between-country achievement differences.

This model can be further expanded by slopes of explanatory variables to randomly
vary and to explain this variation with, for example, cross-level interactions. Table
10.2 shows results for a model with a random coefficient for the within-school differ-
ences in the ESCS index. The model estimates the variance of intercepts at the school
and student level, but also variance in the slope of the within-school ESCS index and
the covariance of the ESCS slopes and school intercepts. Results show that within-
school association between student ESCS and reading achievement vary significantly
across schools. We hypothesize that this variation might depend on school SES
composition, and this interaction is estimated by the model presented in column (2).
Indeed, the higher is the average socioeconomic background of students in a school,
the stronger is the relationship between within-school ESCS and achievement. This
interaction effect explains around 18% of the within-school ESCS slope variation.

10.3 Applications

The above examples demonstrate the typical use of multilevel models with interna-
tional large-scale student assessment data. Variance decomposition and comparisons
of between- and within-school effects are commonly applied to PISA data and are
similar to the first application of multilevel modeling in education (Aitkin & Long-
ford, 1986; Raudenbush & Bryk, 1986). The approach was partly popularized by
first research using PISA data (for example, Willms, 2010) and PISA OECD reports,
which routinely apply these models to decompose student- and school-level relation-
ships (see for example results presented in OECD, 2019, but also Annex A3 with
notes on the technical application of these models in PISA).
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The most common approach is to study school effectiveness using multilevel
models with sets of school-level and student-level predictors (for a review, see
Klieme, 2013). Interestingly, these models often demonstrate that learning conditions
and practices at the school level are less related to achievement than student-level
opinions about the teaching process. Multilevel modeling provides a unique oppor-
tunity to study this kind of question. For school-related factors, especially for studies
of socioeconomic background, PISA data often provide more detailed information.
For teacher-related factors, however, TIMSS and PIRLS data might be more suit-
able. The sampling scheme in TIMSS and PIRLS is different from whole classrooms
sampled within selected schools. This opens a possibility to collect more meaningful
information about teaching as questionnaires are filled by all students of a particular
teacher, separately for mathematics and science. The clear link between students and
their teachers opens a possibility to model this relationship with multilevel models.

The applications of multilevel modeling with PISA data go beyond typical school
effectiveness research. For example, multilevel models are applied to better under-
stand data on student wellbeing (He et al., 2019; Jakubowski & Gajderowicz, 2020;
Sznitman et al., 2011), sources of bullying (Winnaar et al., 2018; Yavuz et al., 2017),
and attitudes (Lu & Bolt, 2015; Pitsia et al., 2017; Sun et al., 2012). Also, the data
are often combined to provide a broader picture of student achievement and related
factors (for example, see Grilli et al., 2016).

The application of multilevel modeling to international student assessment data
is an obvious choice, but several technical issues need to be addressed to properly
estimate population relationships of interest. As we will see below, these technical
issues can be addressed with a good understanding of the role of plausible values and
complex sampling in deriving conclusions from multilevel models. Many statistical
packages allow taking these issues into account. More complex models, for example,
three-level models, are also applied to these data—however, their raise technical
issues which, as discussed below, are not straightforward to address.

10.4 Plausible Values and Multilevel Models

In publicly available datasets from large-scale student assessments like PISA,
TIMSS, or PIRLS, achievement results are provided as sets of the so-called plausible
values. These variables reflect not only student achievement but also the uncertainty
with which it is measured for the student population. Plausible values are impu-
tations of latent student achievement. Their correct use allows obtaining unbiased
estimates of achievement in student populations, correcting for measurement error
when relating to other variables in standard statistical models, and obtaining proper
uncertainty measures in models with student achievement (see Wu, 2005).

For some researchers, plausible values can be seen as a technical obstacle in
analyzing data like PISA or TIMSS. Analysis with plausible values requires special
software, commands, or the application of formulas to calculate results by hand
from statistical models with separate plausible values. Thus, researchers often try
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to simplify the analysis with plausible values making mistakes that invalidate their
results. Below we show that using plausible is quite straightforward and that common
shortcuts provide highly biased results. We also show how to use plausible values
to obtain initial results faster before deciding about the final model, which is often
helpful in time-consuming multilevel analysis.

First, note that a single plausible value provides an unbiased point estimate. If plau-
sible values are drawn from distributions conditional on other variables involved in
the final statistical model, then correlations with single plausible values also reflect
latent correlations with other variables. For example, if the final statistical model
involves student gender, plausible values should be estimated based on student gender
and correlation. In this case, a simple correlation between one plausible value and
student gender reflects the latent correlation between gender and student achieve-
ment. Thus, estimation with one plausible value provides unbiased point estimates
also for latent correlations. However, it does not capture the effect of measurement
error on the estimated variance. In other words, standard errors will be downward
biased as they will not reflect measurement error.

To correctly estimate point estimates and their standard errors, one needs to run
separate models with each plausible value and then take the average of estimates
across these models as the point estimate and use the so-called Rubin’s formula to
calculate their standard errors (see Rubin, 1987). A researcher can apply Rubin’s
formulas herself by collecting results for each plausible value and then calculating
final point estimates and standard errors. Some software packages allow to use of
plausible values and calculate correct results, or there are user-written packages that
can do it. It is also possible to use solutions developed for multiple imputations of
missing data as the formulas are the same, and correct results can be obtained after
defining each plausible as an imputed variable.

Taking an intuitive uniformed shortcut by calculating first the average of all plau-
sible values and then running statistical models with this average as a measure of
student achievement is the most common mistake done by entry-level researchers.
The intuition behind this approach is that the average of plausible values is still a
good achievement estimate, but in reality, such a variable suffers from an artificially
lower variance. Thus, depending on a model, the final results will be biased as the
overall achievement variance will be underestimated, and correlations with other
indicators will be overestimated (see OECD, 2009, p. 128).

Under most circumstances, it would be more advisable to use the first plausible
value if it is not possible to calculate final estimates by applying Rubin’s formulas to
statistical models run separately with each plausible. For example, if one is mainly
interested in point estimates or, for example, creates graphic illustrations of the data,
using the first plausible value will suffice. Also, when exploring the data and searching
for a final model, it is also advisable to use one of the plausible values to quickly run
multiple models and then do proper calculations when estimating the final model. In
this case, however, one should note that the results of statistical tests will be more
optimistic, so with the final model, some hypotheses might be rejected even if initial
findings suggest statistically significant results.
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Table 10.3 illustrates the above-mentioned issues using PISA 2000 data for Poland
and two-level multilevel models with students nested in schools. Models explain
student reading performance but with four differently defined variables measuring
achievement. The first achievement variable is the so-called Warm estimate (weighted
likelihood estimate) (Warm, 1989). The results for this variable are presented in
columns (1) and (5). In columns (2) and (6), results obtained with one plausible
value are presented. In columns (3) and (7), the models were estimated with the
average of five plausible values as the outcome variable. The columns (4) and (8)
rely on Rubin’s formula to calculate point estimates and standard errors from five
separate multilevel models, each run with a different plausible value.

Table 10.3 Comparisons of multilevel models estimated with different measures of student
achievement (PISA 2000 data for Poland and reading achievement)

(1) 2 (3) “4) (©) (6) (7 (8)
Warm ISPV |Mean |5PVs |Warm I8PV |Mean |5PVs

estimate PV estimate PV

b/se b/se b/se b/se b/se b/se b/se b/se
PISA index 15.7 14.9 16.2 16.2
of reading (1.4) (12 |12 a8
enjoyment
Males 0.4 0.5 0.8 0.7
(females as a (2.6) Q4 |2 s
base group)
ISCED 3B 572 | —602 |—613 |—614
schools (3A (7.2) (7.6) | (74) (1.5
as a base
group)
ISCED 3C —158.7 | —168.6 | —168.3 | —168.3
schools (3A (7.8) 83) |80 |82
as a base
group)

Constant 4649 4636 4627 4628 [5365 539.0 [5385 |5387
(6.7) 7.0 |70 |31 (55 58 |66 |67
School-level |5547.9 |6220.1 |6138.0 |61353 9962 [1170.0 |1100.8 |1095.1

variance (3582) |(398.6) | (392.3) [(400.2) | (72.7) |(82.2) |(76.6) |(85.1)
Student-level |4438.3 |3646.5 [3177.4 |3710.0 |4167.6 |3442.8 |2947.6 |3474.7
variance (529) |@34) |(37.8) [(612) [(50.7) |41.9) |(358) |[(50.2)

Intraclass 0.56 0.63 0.66 0.62 0.19 0.25 0.27 0.24
correlation

N of schools | 127 127 127 127 127 127 127 127
N of students | 3653 3654 3654 3654 3511 3512 3512 3512

Note own calculations using PISA 2000 data for Poland. Standard errors in parentheses
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That point estimates for regression coefficients are highly similar across results
with different achievement measures. The main difference lies in standard errors and
in the estimates of variance components. In general, the Warm likelihood estimate
will overestimate student achievement variance, while the variable calculated as the
average of plausible values will underestimate it. The results with just one plau-
sible value will provide unbiased point estimates and correct achievement variance
estimates, but the standard errors will be underestimated as they do not reflect the
measurement error. The results calculated using Rubin’s formula should be taken as
a reference point for other models. Note that by using standard error estimates from
these methods, the precise value of both measurement and sampling error in the data
can be found.

The so-called empty models presented in columns (1) to (4) show that the student-
level variance is overestimated for the Warm measure and underestimated for the
mean PV measure, as expected. The results with one or five plausible values are
highly similar. For the school-level variance, the results are similar, although the esti-
mate with the Warm likelihood measure of achievement seems to be lower, and the
intraclass correlation is also lower, as it is based on an overestimated variance at the
individual level. The intraclass correlation will be higher for the model with achieve-
ment measured as the average of plausible values as it underestimates individual
variance. Regarding the standard errors, note the estimates for the individual-level
predictors: index of reading enjoyment and gender. The estimates based on only one
plausible value are the lowest as they do not reflect the measurement error.

10.5 Survey Weights Adjustments for Multilevel Models

Large-scale surveys, including student assessments, rely on complex sampling (strati-
fication, two- or more sampling stages) and non-response adjustments. In general, the
probability of sampling a student in school surveys will always vary. This is because
sampling schemes always start with sampling schools first and then students (or whole
classrooms) within schools. In this case, students from smaller schools are more likely
to be selected than those from larger schools. As school size is usually correlated
with important student and school characteristics, datasets obtained through such
sampling schemes require weighting to correct for differences in sampling probabil-
ities. Further corrections are applied to student- and school-level sampling probabili-
ties due to non-response and oversampling of some populations (like private schools
or minority-group students). These corrections vary across countries, and the correct
use of survey weights is crucial for cross-country comparisons.

Without sampling weights, the results of the statistical model show estimates for
the sample but are not representative of the population. However, the use of survey
weights in multilevel modeling is not straightforward. Several methods are available
to adjust for arising biases, but their performance will vary depending on cluster sizes,
sampling schemes, the statistical model applied, and might even vary for various
estimates from the same model (e.g., regression coefficients vs. variance components)
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(see Pfeffermann et al., 1998; Rabe-Hesketh & Skrondal, 2006). A common piece of
advice is to perform robustness checks to compare different approaches empirically
in order to assure that results do not vary importantly, and if they do, to consider
again assumptions made behind these corrections.

The probability weights for each sampling stage are required for multilevel
models, and the multilevel model should reflect the hierarchical structure of the
sampling design. Let’s consider the simplest case with schools sampled first and
then students sampled within schools. In this case, one should know the sampling
probability for each school and calculate the weight as the inverse of this probability.
One should also know the sampling probability after a student’s school was selected
and then calculate the conditional sampling weight as the inverse of this probability.
Only the final combined sampling weight is available in most surveys, which reflects
the inverse probability of being sampled without specifying probabilities at each
sampling stage. In this case, one can calculate the conditional probability weight by
dividing unconditional probability by school probability weight.

Even if sampling probabilities were available at each stage, the scale of weights
at the lowest level (student level in our examples) affects the estimation of multilevel
equations, which is different from standard approaches like linear regression, where
the scale of weights is unimportant. Therefore, re-scaling of survey weights is neces-
sary, but different methods can produce varying results, and it is unknown which
is best fitted for the sampling scheme considered and for the analyzed population.
Below we discuss three weight re-scaling methods, which are commonly applied in
multilevel modeling of survey data.

As an empirical example, we estimate a two-level model with students nested
in schools using the dataset from PISA 2018 with all OECD countries. The model
explains student achievement using the PISA’s economic, social, and cultural status
(ESCS), which is an index combining information on parents’ education, occupation,
and family resources at home. This index highly correlates with student achievement
in all countries, which is a typical finding for educational research. Students with
disadvantaged backgrounds have on average lower achievement than students from
privileged families. However, countries do differ in the extent to which socioeco-
nomic background is related to achievement, which is often interpreted as a measure
of inequality. A stronger relationship with performance shows larger differences in
achievement depending on the socioeconomic background when compared to coun-
tries with a weaker relationship. Moreover, with multilevel models, it is possible
to separate within- and between-school associations, which again can be used as
a measure of segregation within and between schools by students’ socioeconomic
background.

Table 10.4 compares unweighted results with results weighted by student-level
weights only, school-level weights only, and weighted with both student- and school-
level weight with three different adjustment methods. The first method re-scales the
student-level weights to be the sum of the cluster size. The second method re-scales
the student-level weights to be the sum of the “effective” cluster size. These two
methods do not re-scale the school-level weights, but the third method replaces the



10 Application of Multilevel Models ...

195

Table 10.4 Comparison of unweighted and weighted multilevel models with different scaling
methods of student-level weights—example using PISA 2018 data for OECD countries

(1 ) 3) “ ) (6)

No weights | Student | School | Student and | Student and | Student and
final weight | school school school
weights | only, no | weight, weight, weight, GK
only scaling | scaling to scaling to scaling

cluster size | effective method
cluster size

b/se b/se b/se b/se b/se b/se

ESCS index |19.3 37.9 16.9 16.8 16.8 19.3

0.2 0.7 0.7 0.7 0.7 0.7

Constant 484.5 495.0 457.7 457.5 457.5 483.9
0.6 1.1 2.3 2.3 2.3 1.5
School-level | 2766.7 0.0 3860.4 | 3874.4 3873.2 3032.7
variance 46.7 0.0 198.0 199.0 199.0 1333
Student-level | 6721.9 9059.7 | 6178.1 6180.8 6178.4 6791.7
variance 21.1 202.5 74.7 74.9 74.8 92.9
Intraclass 0.29 0.00 0.38 0.39 0.39 0.31
correlation
N of schools | 10,180 10,180 10,180 10,180 10,180 10,180
N of students | 249,334 249,334 249,334 |249,334 249,334 249,334

Note All models are estimated with ten plausible values of reading achievement; dataset includes
all OECD countries that have participated in PISA 2018 and have available reading achievement
data

weights at the school level with the cluster averages of the combined student-level
survey weights (the product of school weight and the conditional student weight) and
then sets student-level weights to 1 (for detailed formulas and estimation methods
see Graubard & Korn, 1996; Rabe-Hesketh & Skrondal, 2006).

The results presented in Table 10.2 demonstrate that the weighting and scaling
of student-level weights play an essential role in interpreting results from the multi-
level models. Column (1) shows a model without survey weights. This model shows
estimates for the sample of students from OECD countries. It has no interpretation
in terms of relationships in the population of OECD students. Model in column (2)
uses student weights only, for which coefficients for fixed effects of ESCS index
and constant are identical to standard linear regression approach. However, this
model cannot properly capture variation at the school level. The multilevel models
with school weights are presented in columns (3) to (6). Using school weight only
provides similar results to those obtained with student weights re-scaled with different
methods. That should not be surprising for PISA-based research as sampling prob-
abilities vary mainly by a school (depending, for example, on school size) and not
within schools. On the other hand, the GK method, which simply assumes that
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weights within schools are equal to one, provides different results with a much lower
estimate of school-level variance.

Based on this example and previous research in this area, one could conclude that
a researcher should use survey weights at both levels and check if different scaling
methods provide similar results or should apply school weights only (see Mang et al.,
2021, for a similar analysis with analogous conclusions). Scaling to cluster size or
effective cluster size should provide similar results for most circumstances. Ignoring
weights or using other methods might be misleading, especially when a researcher
is interested not only in fixed effects but mainly in variance decomposition and
associations at different levels of cross-level effects.

The research also provides little guidance for models with more levels. It is also
disputable how to apply survey weights when, for example, using a three-level model
with countries added as an additional layer. In this case, a typical approach taken by
OECD when analyzing PISA data is to re-scale student-level weights, to sum up to
the same amount for each country. Thus, the final results could be interpreted as the
OECD average, and country-level effects would explain how different policies affect
this average. This is relatively straightforward to apply in a linear regression model,
but as we saw in the above examples, re-scaling of student weights is not trivial in
multilevel models and would affect estimates of variance components.

10.6 Estimation of Standard Errors

One of the reasons for using multilevel models when analyzing international student
assessment data is that they recognize clustering of students within schools (or
classrooms). The so-called robust standard errors that are adjusted for a correla-
tion of student-level observations within education institutions are optional in some
software packages for standard models like linear regression but are automatically
applied in multilevel models. For many researchers, this is an advantage of multilevel
approaches that they also cite as an argument for using such models with international
student assessment data.

Studies like PISA or TIMSS, however, rely on complex sampling schemes and
non-response adjustments. Unfortunately, detailed information on sampling schemes
and survey weights adjustments is not available in the documentation for the reason
of confidentiality. Participating countries often ask to hide key information in this
respect from the public to make it impossible, for example, to estimate achieve-
ment for subnational entities or particular groups of students. Also, many countries’
personal data protection law regulations disallow to provide detailed information
on sampling when it might help identify individuals. Thus, dedicated solutions are
applied in international student assessments to ensure that such requirements are
met. For the same reason, variables used for complex sampling and response adjust-
ments are not provided in the datasets, so it is impossible to correct survey weights
or standard errors to reflect sampling design and non-response.
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In practice, a difference between estimates of standard errors obtained from multi-
level models and those obtained with a methodology developed by assessment orga-
nizers will vary by country and group of students analyzed. Thus, it is an empirical
question, and estimates from linear regressions that fully follow the methodology
developed by IEA or OECD experts can serve as a benchmark for multilevel models.
Inresearch that is based on simpler sampling designs, such discrepancies will usually
be small. However, for complex surveys like PISA or TIMSS, they might be larger
for countries with a lot of non-response, hidden stratification, or oversampling of
some populations.

International large-scale assessments rely on resampling methods to estimate stan-
dard errors as these methods provide several advantages. The most important is that
they can be used with many statistical models, even for which complex sampling
data analytical solutions do not exist. In addition, replicate weights can incorporate
confidential information about sampling and non-response without revealing any
details to the public. Thus, in many surveys where privacy issues are at stake, this
is a method preferred over providing sampling information in the datasets or in the
documentation.

The replicate weights methods developed for educational studies mimic the
sampling process by dropping individual schools (primary sampling units) in each
replication. Thus, they provide standard errors that take into account sampling at
the school level and clustering of student observations within schools. Multilevel
models take that into account by directly modeling school-level effects. Combining
two approaches makes little sense, and there is little research on this topic. In prac-
tice, however, replicate weights provide additional information in studies like PISA
or TIMSS, which cannot be incorporated in the multilevel models. Thus, it is an
important empirical question on how results from these models compare to those
obtained with replicate weights methods. In practice, if both approaches provide
different standard errors, then a researcher should analyze the sampling process and
information incorporated in the survey and replicate weights more carefully. When
standard errors estimated using replicate weights are larger, then caution should be
taken when interpreting results from multilevel models as key information about
sampling or non-response corrections might affect the results.

Table 10.5 provides a comparison of different methods for calculating standard
errors for similar models. As before, the model explains student reading achievement
using PISA 2018 data for all OECD countries. Columns (1) to (3) provide results
for linear regression models, but with fixed effects for school, so the results can
be compared with the multilevel model with random school effects. In column (1),
standard errors are estimated as for simple random sampling, in column (2), standard
errors are corrected for clustering at the school level (sandwich estimator), and in
column (3), standard errors are estimated using the Balanced Repeated Replication
method with Fay’s adjustment as advised in PISA technical reports (see OECD,
2020). These estimates of standard errors can be compared to those in column (4),
which are estimated through the multilevel model with student and school weights
and scaling to cluster size (the same model as in column 4 of Table 10.2).
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Table 10.5 Comparison of standard errors obtained via different methods in linear regression and

in a multilevel model—an example using PISA 2018 data for OECD countries

) @) 3) (G
Linear regression | Linear regression | Linear regression | Student and
with clustered with BRR school weight,
standard errors standard errors scaling to cluster
size
b/se b/se b/se b/se
ESCS index |15.5 15.5 15.5 16.8
0.61 0.75 0.64 0.66
Constant 490.1 490.1 490.1 457.5
0.49 0.20 1.11 2.31
School-level 3874.4
variance 199.04
Student-level 6180.8
variance 74.87
N of students | 10,180 10,180 10,180 10,180
N of schools | 249,334 249,334 249,334 249,334

Note All models are estimated with ten plausible values of reading achievement; dataset includes
all OECD countries that have participated in PISA 2018 and have available reading achievement
data

These results suggest that standard errors estimated with multilevel models
are close to those obtained with the replicate weights method. In our example,
more conservative are estimates with clustered standard errors in linear regression.
However, a similar exercise should be performed in empirical applications to see
if multilevel models provide standard errors that are more conservative than those
obtained with replication weights and use additional, hidden information on the
sampling process.

10.7 Multilevel Models with Additional Layers

Educational data have multiple layers, and depending on the research context and
questions, these additional layers could be analyzed with multilevel models. The
traditional choice of two-level models with students nested in classrooms or students
nested in schools might not be optimal given that research questions might be related
to other levels or interactions between these levels. For example, in research on
education policy that uses international large-scale student assessment data, research
questions often involve policies that are decided at the country level (e.g., the possi-
bility of grade repetition or selection of students to different educational programs)
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but are applied at the school level, depending on individual teacher decisions, and are
affecting relations between student-level variables and their achievement. For such
research questions, it is natural to look at multilevel modeling as a perfect way to
model these relationships. However, as we already saw, taking into account complex
sampling is not straightforward even with two-level models. As countries vary in
size and the number of schools sampled and in the population, a simple application
ignoring survey weights could result in highly biased estimates.

It is questionable if country-level or any other level with a finite number of units
could be modeled as a random effect. One could argue that countries or regions
in which schools are nested represent observations from a superpopulation of all
possible countries or regions (or policies possible to apply at these levels and
randomly varying contexts). With obvious limitations of this approach, applications
with more than two levels, including country or regional data, are interesting as they
provide estimates of variance decomposition at these levels. For example, Grilli et al.
(2016) estimate a four-level model to decompose achievement variance of 4th-grade
students in Italy into the student, classroom, school, and province levels. The results
show that achievement varies mostly at the individual level, and the province level
is associated only with 5% or less of the overall variance. On the other hand, Hippe
et al. (2018), using PISA data, show that achievement differences at the regional
level in Spain and Italy are larger than differences in average achievement between
EU countries. In a related paper, Hippe et al. (forthcoming) show that across the
EU countries, the variance at the regional level is substantial when compared to the
variance at the country level and that regional level predictors are strongly associated
with regional level student achievement.

10.8 Summary

The data collected in large-scale international assessments are hierarchical in nature.
The sampling scheme of these studies follows a general pattern of schools selected
as primary sampling units followed by classrooms and students. Typical multilevel
models applied to these data follow this sampling scheme with students nested in
schools or classrooms. In this chapter, we discuss how to apply two-level models
correctly with plausible values, survey weights at the school or classroom (or teacher)
level, and scaling of survey weights at the student level. We also discuss issues
related to standard error estimation when crucial information on sampling and non-
response is hidden in replicate weights and not available for modeling in multilevel
applications. Finally, we briefly discuss challenges in applying three-level models.
In general, the methodology outlined in this chapter can be easily applied in popular
statistical packages to properly analyze large-scale assessment data with two-level
models. However, applying more complex multilevel models to these data still poses
numerous challenges and requires caution when interpreting results.
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