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Adverse Outcome Pathway
Network-Based Chemical Risk
Assessment Using High-Throughput
Transcriptomics

Pu Xia, Pingping Wang, Wendi Fang, and Xiaowei Zhang

Abstract The lack of adequate toxicity data for the vast majority of chemicals in
the environment has spurred the development of high-throughput transcriptomics
(HTT) to support pathway-based screening of chemicals. The main challenge is how
to decipher molecular response into adverse effects from omics data. This chapter
describes an adverse outcome pathway (AOP) network-based approach for chem-
ical screening using HTT in a compendium of human cells. First, the methodology
for conducting HTT, concentration-dependent modeling analysis and AOP network
analysis is introduced. Two case studies are presented: (1) cross-species compar-
ison of transcriptomic dose–response of short-chain chlorinated paraffins and (2)
high-throughput transcriptomics screening of chemicals with various known modes
of action using human cells, which demonstrate the ability of HTT for chemical
screening, classification and tiered chemical risk assessment by HTT-based AOP
network profiles. In summary, the AOP network-based chemical screening provides
a rapid and efficient omics-based approach for ranking, clustering and assessment of
chemical hazards.

Introduction

Amajor challenge for chemical risk assessment is the lack of sufficient toxicological
information for thousands of chemicals. The numbers of registered chemicals are
approximately 140,000, 85,000 and 45,600 in Europe (ECHA 2016), USA (EPA
2016) and China (MEE 2013), respectively, while the majority of chemicals have
inadequate toxicity data. Toxicology in the twenty-first century has envisioned a
shift from traditional animal-based experiments to the mechanistic understanding of
biological pathways via high-throughput screening (HTS) (Collins et al. 2008; Dix
et al. 2007). In the last decade, in vitro bioassays (e.g., US EPA ToxCast and Tox21
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programs), were extensively applied to characterize the concentration responses of
>10,000 chemicals on hundreds of molecular targets (Richard et al. 2016). However,
in vitro bioassays are limited to the targeted biological endpoints within known toxi-
cological pathways, which cannot capture the molecular signals over comprehensive
biological space (Gaytán and Vulpe 2014; Huang et al. 2018; North and Vulpe 2010).

High-throughput transcriptomics (HTT) that canmeasure global gene expressions
in cellular systems is a transformative phase of HTS to allow large-scale screening
of chemicals (Dai 2018; Harrill et al. 2019; Mav et al. 2018; Zhang et al. 2018).
Concentration-dependent HTT is a powerful approach to characterize chemical
concentration-dependent responses of comprehensive biological pathways, which
can be used to derive transcriptional point-of-departure (PODT) as potency thresh-
olds and estimate putative molecular mechanisms (Farmahin et al. 2017; Thomas
et al. 2007, 2013). Our previous works have developed and applied HTT platforms
in both human cells and zebrafish embryos for the screening of environmental chemi-
cals (Fang et al. 2020;Wang et al. 2018, 2020a, b; Xia et al. 2017, 2020b; Zhang et al.
2018, 2020). US EPA ToxCast Phase III recently demonstrated the ability of HTT to
yield PODT aligned with previous ToxCast high-throughput in vitro screening assays
(Harrill et al. 2021; Ramaiahgari et al. 2019). However, omics has a longstanding
limitation in translating molecular perturbations into apical toxicity, which relies
heavily on expert-based interpretation (Herwig et al. 2016).

The adverse outcome pathway (AOP) framework uses amodular structure to orga-
nize existing knowledge concerning the linkage between a molecular-level pertur-
bation of a biological system and the adverse outcome(s) that the perturbation by
chemicals may cause (Doering et al. 2018). An AOP describes a consecutive chain of
key events (KEs) that link a molecular initiating event (MIE) to an adverse outcome
(AO) across different levels of biological organization (Ankley et al. 2010). Efforts
have been made to incorporate omics data into the description of KEs (Labib et al.
2015; Martens et al. 2018; Nymark et al. 2018). Genome annotations (e.g., Gene
Ontology or GO terms) can be manually curated and assigned to each KE in the
AOPs, and these gene-KE assignments can be used to link AOPs with omics data.
Current applications of using omics data to decipher AOP events have been limited
to only a few specific AOPs (Nymark et al. 2018). However, the application of
deciphering omics data in the context of the entire AOP knowledge base is scarce.

Assemblages of AOPs that share one or more KEs can be interconnected to
generate an AOP network (Knapen et al. 2018). AOP network can capture and extend
the diversity of biological perturbations that may occur in different species and target
organs (Villeneuve et al. 2018). For instance, multiple MIEs may contribute to the
same AO within an AOP network. Importantly, incorporation of concentration or
time-response data into the AOP network can help define the potency values of KEs
that can be ranked to identify KEs sequentially affected across dose and time, which
can quantitatively inform the most plausibly impacted pathways by particular chem-
icals (Pollesch et al. 2019; Song et al. 2020). To date, the use of the AOP network
for chemical screening is still in its infancy.

Here, an AOP network-based approach for chemical risk assessment using HTT
is proposed (Fig. 13.1). Briefly, concentration-dependent HTT was conducted to
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Fig. 13.1 Workflow for AOP network-based analysis of high-throughput transcriptomics (HTT)
data (NoteAOP, adverse outcome pathway; POD, point of departure; KE, key event;MIE,molecular
initiating event; AO, adverse outcome; KER, key event relationship)

profile the concentration–response of thousands of genes and pathways, followed
by deriving PODT values to estimate the transcriptional potency of chemicals. The
perturbed GO terms identified by HTT were matched to AOP KEs to visualize the
specific patterns of perturbed AOP network by chemicals, which can be used to
examine the KEs that were perturbed in a concentration-dependent manner as poten-
tial keymolecular mechanisms. Lastly, the AOP network profiles of chemicals can be
used for chemical classification/read-across. In the following part of this chapter, we
elaborate on the details of conducting, analyzing and applying AOP network-based
chemical risk assessment using high-throughput omics data.
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Pipeline for AOP-Network Chemical Risk Assessment
by HTT

HTT technologies can be categorized into three types by the breadth of genes
measured, including quantitative reverse transcription-polymerase chain reaction
(qRT-PCR) arrays for dozens of genes, e.g., ToxChip array (Crump et al. 2016; Xia
et al. 2020a; Zahaby et al. 2021), reduced transcriptomics using targetedRNA-Seq on
customized panels of hundreds or thousands of genes, e.g., L1000 (Subramanian et al.
2017), S1500+ (Mav et al. 2018) andwhole transcriptome analysis usingmicroarrays
or RNA-Seq (Yeakley et al. 2017). The reduced transcriptomics approach has been
proposed as a cost-effective proxy to whole transcriptome analysis, and it is based
on the principle that a small set of key genes can represent the expression of whole
gene networks (Bild et al. 2006; Dai 2018). Currently, reduced transcriptomics have
been primarily developed for testing chemicals on human cells (Xia et al. 2017) and
zebrafish embryos (Wang et al. 2018). The following sections describe the design,
experimental setup and analysis of reduced transcriptomics for chemical screening.

Design of Reduced Gene Panels

The reduced gene panel should includemaximal coverage of biological pathways and
toxicologically relevant genes (Mav et al. 2018; Zhang et al. 2018). To cover compre-
hensive biological pathways, a data-driven approach is employed by selecting genes
from biological pathway databases (e.g., GO and KEGG), followed by bioinfor-
matic network analysis to extract key genes that play central roles (e.g., biologically-
connected to a majority of genes in a pathway). To select toxicologically relevant
genes, a toxicological-driven approach is used by retrieving genes from existing toxi-
cology testing databases, such as the gene-based endpoints tested in ToxCast and the
genes associated with KEs in AOP Wiki. All the genes collected from data-driven
and toxicological-driven approaches are merged as a reduced gene panel, followed
by validation of the coverage of biological pathways (e.g., whether >95% pathways
were covered by at least three genes of the reduced gene panel). Furthermore, the
ability of the reduced gene panel to represent the whole transcriptomics profiles
should be evaluated by using exiting whole transcriptomics data (e.g., comparing the
performance for clustering different samples by using gene expressions of reduced
genes or whole genome genes). Finally, the panel of reduced genes is submitted
to the targeted RNA-Seq platform to design primers available for next-generation
sequencing. For instance, in the case of amplicon sequencing technology, thousands
of primers for the reduced genes can be synthesized, followed by mixing in one tube.
The mixed primers are optimized for multiplex PCR amplification and the following
transcriptomics sequencing (Li et al. 2015).
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Chemicals and Biologicals

Stock solutions of chemicals are prepared in vehicles (e.g. dimethyl sulfoxide
(DMSO), methanol or water) and stored at −80 °C until used. First, the cytotoxic
concentrations of chemicals need to be determined to ensure that the highest concen-
trations used for HTT testing do not induce secondary effects in cellular systems
(e.g., apoptosis and cytotoxicity). For human cells, cell viability assays are commonly
conducted on cells exposed to chemicals for 24 h. For zebrafish, embryonic toxicity
assays are conducted on zebrafish embryos exposed to chemicals for 120 h.

Concentration-Dependent HTT Experiment

HTT conducted in a broad concentration-dependent manner is necessary to charac-
terize comprehensive concentration–response of genes and pathways for quantitative
estimation of the potency values of chemicals (Fig. 13.1a) (Farmahin et al. 2017;
Thomas et al. 2007, 2013). Serial dilutions (e.g., 5x and 10x) of chemicals in six
to ten concentrations were used to expose cells/embryos for a short time (e.g., 6 h,
12 h or 24 h). After exposure, cells were collected for transcriptomics analysis using
RNA-Seq technology. Currently, a targeted RNA-Seq platform (e.g., amplicon-seq
technology) (Xia et al. 2017) is the primary approach for the HTT experiment. US
EPAhas been applyingTempo-Seq technology that can directlymeasure gene expres-
sion using cell lysis without RNA extraction (Bushel et al. 2018, 2020). Targeted
RNA-Seq has advantages in measuring mRNA expression with extremely low input
RNA, in pg or ng level, by hybridization and sequencing with highly specific detector
oligos. After sequencing, the read counts of each gene can be automatically gener-
ated during genome annotation and quality control (removing low-quality/expressed
genes). A list of expressed genes in amatrix format (each column represents a sample
and each row represents a gene) is used in further analysis.

Concentration–Response Modeling Analysis

Concentration–responsemodeling analysis is used to characterize the concentration–
response curves of genes to derive gene-level POD, followed by deriving pathway-
level POD and transcriptional potency of chemicals (Fig. 13.1b). To avoid confusion
with the AOP pathway, in this section, the pathways are referred to as molecular
pathways in the pathway databases (e.g., GO and KEGG). First, gene-level concen-
tration–response modeling is conducted to identify the trends of genes perturbed at
different toxicant concentrations. The concentration–response models of genes are
fitted into two types, including monotonic and non-monotonic models (Smetanová
et al. 2015). For the monotonic model, linear and non-linear curves are the two
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major graphs that represent the concentration–response relationships of genes. For
the non-monotonic model, gaussian and log-transformed curves are commonly used
for concentration–response modeling. Multiple tools can be used for concentration–
response modeling, including R language-based packages, e.g., drc (Ritz et al. 2015)
andDRomics (Larras et al. 2018) andbenchmarkdose software developedbyUSEPA
(Yang et al. 2007). The best-fitted concentration–response model is assigned to each
gene according to the pre-set criteria (e.g. the model that has the lowest Akaike’s
Information Criterion (AIC) value). Then the gene-level POD values are derived
from the best fitted concentration–response model by plotting toxicant concentra-
tion against the benchmark response (e.g., the mean value + 3 times the standard
derivation of vehicle controls of that gene; 1.5-fold changes).

Pathway-level POD values can be calculated by matching genes to pathways (GO
terms or KEGG pathways), which is important to translate gene-level changes to
higher biological level information of perturbed pathways. The criterium to define a
pathway as a potentially perturbed pathway is that the number of genes matched to
that pathway is at least three. The three-gene cut-off has been widely used because
three is theminimum number required to define themean value and SD for a pathway
(Thomas et al. 2007). The matched pathways can be ranked by pathway-level POD
values to identify potentially sensitive pathways perturbed by chemical exposure.
Moreover, the biological potency of chemicals can be estimated from the pathway-
based profiles, such as the concentrations against the top 20% perturbed pathways,
and the concentrations against the top number of perturbed pathways (Farmahin et al.
2017). The transcriptional potency of chemicals can relatively well distinguish their
low and high potency. However, the accuracy of transcriptional potency needs further
validation, for example, by using an in vivo experiment. In addition, the ability of
transcriptional potency to estimate the potency of apical endpoints is unclear. Some
studies have demonstrated the consistencybetween transcriptional potency and apical
potency by in vivo testing (e.g., liver transcriptomics vs liver histopathology in rats)
(Thomas et al. 2012). However, a limited number of studies have evaluated the ability
of in vitro omics-derived potency to predict in vivo-based potency. The in vitro
omics-derived potency value is usually lower than in vivo-based potency because
the molecular-level responses happen earlier and at lower concentrations than apical
effects. Whether there exists an uncertainty factor between in vitro omics-derived
potency and in vivo-based potency remains to be established.

AOP Network Analysis

AOP network analysis can integrate the above pathway-level information into a
systematic and topological framework. Briefly, the identified pathways (e.g., GO
terms) can be matched to KEs via GO-KE annotation database in AOP Wiki using
the R package AOP (Burgoon 2015). KEs that meet the concentration-dependent
ranks in a connected path in the AOP network indicate a potential key molecular
mechanism of that chemical (Fig. 13.1c). The concentration-dependent KEs may
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be present in an existing AOP, and may also indicate a putative AOP that was not
previously curated in AOP Wiki database. The identified putative AOP may support
the investigation of new potential AOPs, which need further evaluation and validation
such as using in vitro or in vivo bioassays.Moreover, rich network-based information
can be extracted, such as the central KEs that are connected to the largest number of
matched KEs, and the longest path in AOP network that has the largest number of
matched KEs. For instance, the longest path between an MIE and AO may suggest
the most detailed mechanistic description (Pollesch et al. 2019). Lastly, the weight
of edges and nodes in the AOP network can be assigned according to AOP Wiki
database. This is due to the fact that, during the development of AOPs, the KEs
or key event relationships (KERs) are based on sources with different weight-of-
evidence (e.g., in vivo or in vitro studies; validated or not). By assigning weight
values, the identified critical paths in AOP network can be grouped into different
levels of confidence.

The AOP network profiles of chemicals can be integrated into ToxPi for chemical
classification. ToxPi is an interactive graphical user interface developed by the US
EPA, which is a powerful tool for visual interpretation and transparent weight-of-
evidence analysis (Reif et al. 2013). The AOP network profiles can be deconstructed
into a matrix of all possible linear paths and each path can be scored by the mean
values of POD of matched KEs (if there are no matched KEs, the score of that path is
set as ‘NA’, i.e., ‘not available’). The scored AOP network profiles can be submitted
to ToxPi to generate a pie plot. If multiple cell lines are used for HTT testing, the
AOP network profiles from multiple cell lines can be used to generate an integrated
plot (Fig. 13.1d) (Grimm et al. 2016). The AOP network-based ToxPi profiles can be
used for clustering analysis. Chemicals clustered into the same group are assumed
to present similar molecular modes of action, which can be used to guide future
evaluations of the toxicity of these chemicals.

Examples of AOP Network-Based Chemical Screening

Cross-Species Comparison of Transcriptomic Dose–Response
of Short-Chain Chlorinated Paraffins

Short-chain chlorinated paraffins (SCCPs) have attracted ever-increasing attention
because of their toxicological potential in humans and wildlife at environmentally
relevant doses. However, limited information is available regarding mechanistic
differences across species in terms of the biological pathways that are impacted
by SCCP exposure. Here, a concentration-dependent reduced human transcriptome
(RHT) analysis approach was used to evaluate fifteen SCCPs in HepG2 cells and
compared with our previous results using a reduced zebrafish transcriptome (RZT)
analysis approach in zebrafish embryos (ZFE) (Xia et al. 2021). Generally, SCCPs
induced a broader suite of biological pathways in ZFE than HepG2, while all fifteen
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SCCPs were more potent in HepG2 compared to ZFE. Despite these general differ-
ences, the transcriptional potency of SCCPs in both model systems showed a signif-
icant linear relationship (p = 0.0017, r2 = 0.57). C10H14Cl8 was the most potent
SCCP, while C10H17Cl5 was the least potent in both ZFE and HepG2. An AOP
network-based analysis demonstrated model-specific responses, such as xenobiotic
metabolism that may be mediated by different nuclear receptor-mediated pathways
between HepG2 (e.g., activation of the constitutive androstane receptor or CAR and
the aryl hydrocarbon receptor or AhR) and ZFE (e.g., activation of the pregnane
X receptor or PXR) (Fig. 13.2a). Moreover, induced transcriptional changes in ZFE

MIE: Ac va on of AhR (RHT PODGO = 2.21 x 10-6 ppb)

Accumula on of triglyceride (RHT PODGO = 0.56 x 10-5 ppb)

Apoptosis (RHT PODGO = 1.16 x 10-5 ppb)

Topological sor ng

Extract

Increased fa y acid influx (RZT PODGO = 5.30 ppb)

a

Fig. 13.2 A demonstration of AOP networks of SCCPs covered by both reduced human transcrip-
tome (RHT) and reduced zebrafish transcriptome (RZT) analysis (Xia et al. 2021). a 2,3,4,5,6,7,8,9-
Octachlorodecane (C10H14Cl8) b 1,2,5,6,9,10-Hexachlorodecane (C10H16Cl6). Red, green and
white dots represent molecular initiating events (MIE), adverse outcomes (AO) and key events
(KE), respectively. Dots encircled with pink, light blue and orange represent AOP-associated events
matched by only RHT, only RZT, and both RHT and RZT, respectively. Edges in yellow represent
an extracted path starting from anMIE to an AO. AhR, aryl hydrocarbon receptor. nAChR, nicotinic
acetylcholine receptor
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b

Fig. 13.2 (continued)

associated with pathways andmolecular initiating events (e.g., activation of nicotinic
acetylcholine receptor or nAChR) suggest that SCCPs may disrupt neural develop-
ment processes (Fig. 13.2b). This study demonstrated that the cross-model compar-
ison of concentration-dependent transcriptomics represents a promising approach to
assess and prioritize SCCPs.
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High-Throughput Transcriptomics Screening of Chemicals
with Various Known Modes of Action Using Human Cells

The current application of HTT is limited due to the lack of systematic evaluation
of its performance for chemical screening. Concentration-dependent transcriptomics
of 32 chemicals with different modes of action (i.e. genotoxicity, endocrine disrup-
tion and metabolic activity) (Table 13.1) were conducted on HepG2 and MCF7
cells using RHT approach. The pathway-based profiles identified by RHT were
used to group chemicals generally consistent with their known modes of action.
Comparison of the RHT and ToxCast in vitro bioassay profiles demonstrated that
POD values of the pathways associated with DNA repair (i.e., GO:0000729 and
GO:0006287) had a significant linear correlation (p-value < 0.05). Furthermore, the
identified pathways were matched to KEs in an AOP network that arranged biolog-
ical pathways into topological structures, which showed that RHT and ToxCast indi-
cated different potentially perturbed KEs (DNA damage-associated events for RHT;
hormone disruption-associated events for ToxCast). For concentration-dependently
perturbed KEs, RHT and ToxCast both identified paths starting from MIE of AhR
for most chemicals (Fig. 13.3), while RHT specifically identified paths involved in
cellular stress processes, including suppression of constitutive androstane receptor,
activation of phosphatidylinositol-3 kinase (PI3K), an increase in insulin and activa-
tion of transcription factor NRF2 (nuclear factor erythroid-2-related factor 2). The
ToxPi clustering of AOP network-based profiles for chemicals tested in both HepG2
and MCF7 cells showed distinct groups of chemicals with different known modes
of action (genotoxic, endocrine disrupting and metabolic activity) (Fig. 13.4). This
study demonstrated that RHT can provide a novel approach for chemical screening
and classification, which can be complementary to in vitro bioassays.

Challenges and Perspectives

The emergent need for new approach methodologies (NAMs) has been proposed
to accelerate the pace of chemical risk assessment (Harrill et al. 2019; Kavlock
et al. 2018). NAMs aim to provide efficient large-scale information on chemical
hazards by HTS alternatives to animal testing approaches, including a battery of
high-throughput in vitro bioassays and computational models for prioritization and
screening of chemicals (EPA 2018). HTT performed in in vitro test systems is consid-
ered a novel type of NAM, but its application is still in its infancy. The validity of
omics-identified KEs to explain potential apical effects needs to be evaluated by
comparing them to traditional in vitro bioassays or in vivo assays. Besides, multiple
omics approaches (e.g., proteomics and metabolomics) are encouraged to investi-
gate the AOP network profiles of chemicals across broad biological levels, which
also requires the development of a system for biological analysis pipeline to inter-
pret the multiple-omics data. Moreover, omics analysis at different time points is
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Fig. 13.3 Plotting of an AOP network-extracted pathway starting from MIE (AhR activation-
associated KE) to AO (apoptosis-associated KE) that was matched by both RHT and ToxCast
for 13 chemicals. Dots encircled with pink, light blue and orange represent AOP-associated events
matched by only RHT, only ToxCast and both by RHT and ToxCast, respectively. Red, green and
white dots representmolecular initiating events (MIE), adverse outcomes (AO) and key events (KE),
respectively. For an explanation of abbreviations see Table 13.1

needed to identify KEs that become perturbed early. The time-dependent results can
be combined with concentration-dependent omics data to obtain three-dimension
patterns of AOP network profiles. The AOP Wiki database is still being updated
and newly developed AOPs are being added, which will improve the quality of the
currently available AOP network.

Lastly, HTT is proposed to be incorporated into the tiered testing of chemi-
cals (Fig. 13.5). First, concentration-dependent HTT is used to profile the disrupted
biological pathways and transcriptional potency of a group of reference chemicals
with well-known toxicity information, which helps to establish a reference database.



320 P. Xia et al.

Fig. 13.4 ToxPi clustering plot of scores for AOP network-based profiles of chemicals tested by
high-throughput transcriptomics (HTT) in HepG2 and MCF7 cells. The sectors in yellow and red
colors represent the ToxPi scores of HTT pathway profiles in HepG2 and MCF7, respectively. For
an explanation of abbreviations of chemicals see Table 13.1

Then, the effects of emerging chemicals for which there is no toxicological data
are analyzed using HTT, and the results are compared to the HTT-based reference
database to prioritize chemicals with similar profiles to reference chemicals. The
prioritized chemicals are further evaluated by a set of in vitro bioassays that cover
multiple endpoints, including hepatotoxicity, immunotoxicity, developmental toxi-
city, mitochondrial toxicity, and developmental neurotoxicity as proposed by the US
EPA (Patlewicz et al. 2019). The chemicals that are validated to be able to induce
in vitro toxicity are submitted to risk assessment by evaluating themargin of exposure
(Buesen et al. 2017), which is finally applied to chemicalmanagement. In conclusion,
HTT can provide a novel approach for NAM-based chemical risk assessment.
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Reference chemicals

Concentra on-dependent HTT

Reference database

Emergent chemicals

Inquiry data

Disrupted pathways Biological potency

Targeted in vitro bioassays

Risk assessment

Chemical management
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Fig. 13.5 Tiered approach for HTT-based chemical risk assessment
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