
Detecting Stegomalware: Malicious
Image Steganography and Its Intrusion
in Windows

Vinita Verma , Sunil K. Muttoo , and V. B. Singh

1 Introduction

Steganography, a technique to hide data within digital media, has primarily been used
to communicate secret data, embed watermarks for copyright protection, etc. This
practice, however, has trended into hiding the malware within digital media to evade
detection. Such malware is known as stegomalware. Specifically, the popularity of
seemingly innocuous digital images shows a high potential for the malicious use of
image steganography. Images across the internet, social media, email attachments,
or resources in the applications can be exploited to hide malicious code, config-
uration data, or URL to retrieve the code or other components from an external
server [1]. Such images though stay undetected by intrusion detection systems or
static analysis that typically lack analyzing the steganography in images and thus
anything suspicious within images. Static analysis analyzes opcodes, control flow
graphs, n-grams, etc., within the code without executing it. However, it fails to iden-
tify malicious components other than the code such as images and is thwarted by
code obfuscation. Dynamic analysis unaffected by obfuscation executes the code to
trace malign actions. This analysis is, however, un-scalable for large-scale detection
being time- and resource-intensive. Alternatively, signature-based detection fails to
detect unknown samples which contain new malicious patterns or signatures for
every attack. These factors lead malware developers to a more secure obfusca-
tion technique, a lucrative method of steganography, specifically image for hosting
malware.

The malicious role of steganography is discussed in the McAfee 2017 report
[2]. The years 2011–2017 witnessed steganographic threats [3]. According to the

V. Verma (B) · S. K. Muttoo
Department of Computer Science, University of Delhi, Delhi, India

V. B. Singh
Department of Computer Science, Delhi College of Arts and Commerce, University of Delhi,
Delhi, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
U. P. Rao et al. (eds.), Security, Privacy and Data Analytics, Lecture Notes
in Electrical Engineering 848, https://doi.org/10.1007/978-981-16-9089-1_9

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9089-1_9&domain=pdf
http://orcid.org/0000-0003-1318-8041
http://orcid.org/0000-0001-6450-9592
http://orcid.org/0000-0001-6678-4977
https://doi.org/10.1007/978-981-16-9089-1_9


104 V. Verma et al.

Criminal Use of Information Hiding (CUING) [4], which is an initiative launched in
cooperationwith Europol’s EuropeanCybercrimeCentre, stegomalwarewith respect
to the malware discovered between 2011 and 2016 hiked from 12% to 24%. A survey
of node capture attack inwireless sensor networks [36] and an optimization technique
[37] is presented to escalate its attacking efficiency.

The literature has discussed some methods to detect malicious image steganog-
raphy. A method was proposed to find a URL [5] hidden in LSBs for all kinds of
images. However, only the LSB hiding technique was considered. Anomalous data
appended to GIF images [6] was detected based on locating the end of the file. DCT-
based techniques [7], smart threshold, and anomaly correctionwere proposed against
cyberattacks that exploit images and video streams, applicable for JPEG images and
H.264 I-Frames. It resulted in 80% protection against cyberattacks with 25.74 dB
PSNR for an aggressive attack configuration. Data gathering or kernel tracing-based
[8] stegomalware detection was proposed. Its future scope, however, aims at a more
programmatic approach for tracing execution patterns for stegomalware or specific
covert channels. A study was performed on favicons [9], the icons associated with
webpages or websites, using state-of-the-art steganalysis and features exploiting
flat areas in them. It detected Vawtrak malware’s steganography in favicons though
steganalysis was not found the same as in natural images. It is discussed an image
security technique using cryptography and steganography [38].

Manyworks have been discussed related to stegomalware for Android OS relative
to Windows. Stegomalware for smartphones [10] was demonstrated via an app with
malicious executable components within its assets. However, preliminary results of
detection were not conclusive but revealed a considerable amount of data hidden in
the app assets.AmaliciousAndroid applicationwas hidden inside JPEG/PNG images
[11] followed by storing the images in resources of another application to show the
ease of trivial hiding methods in evading anti-malware. Our work differs from this
approach in a way that the authors [11] indeed created malware by hiding malicious
applications inside images while our work has used a real-world dataset of malicious
images which are not just limited to containing an application but URLs, deviations
from standard image format, statements comprising malicious function, etc. More-
over, no suchwork has been demonstrated for theWindows platform to the best of our
knowledge. Steganography was used as one of the threat models [12] to implement
a malign Android app to pose attacks. As follows in observation, the image chunks
failing to meet file format specification are ignored by the picture viewer, thereby
used to insert malicious codes. A method to detect obfuscated malware components
within smartphone apps [13] was considered for stegomalware detection. It analyzes
behavioral differences between the original app and the modified version with faults
injected. However, the method uses a dynamic approach.

It has, therefore, been observed a lack of effective methods when it comes to
locating malicious data within images. Also, relatively no such work has been found
in the literature that studies or demonstrates stegomalware in Windows applications.
However, this paper has addressed both issues. The remainder of the paper is struc-
tured as follows. Section 2 reviews related work. Section 3 describes the JPEG file
format. Section 4 provides a methodology for the proposed tool and Sect. 5 discusses



Detecting Stegomalware: Malicious Image … 105

the experiment. The results are analyzed in Sect. 6. Section 7 examines the detection
of stegomalware within Windows applications by available antiviruses. Section 8
concludes the paper.

2 Related Work

The first machine learning-based method to detect malicious JPEG images [14] used
ten features derived from the JPEG file structure. It resulted in an FPR of 0.004,
TPR of 0.951, and AUC of 99.7%. However, this method contains no mechanism
to give information on the hidden malicious content or its location within images.
Moreover, no analysis has been performed for the images with non-malicious data
hidden which could also impact the file structure. Steganalysis based on an Artificial
Immune System (AIS) [15] was proposed to detect JPEG images modified with
specific steganography tools. Using haar wavelet, horizontal coefficients attained the
best steganogram detection rate of 94.33% while vertical and diagonal coefficients
reached an average detection rate of 85.71%. Different image entropies-based [16]
a method was proposed to detect stegobot, a social network security threat that uses
images on social networks to spread the malware. It attained almost 80% accuracy
for the images embedded using different JPEG hiding techniques. The method needs
further computations for the network-level defense of botnetswith scalability an issue
in the social networks. A framework identifying malicious JPEG images [17] over
social networking sites consisted of three phases: (a) use of available steganalysis
methods to find steganography artifacts (b) extraction of embedded data to identify
file header (c) uploading that data to VirusTotal [18] to confirm the results. The
method, however, has not used any real-world datasets and the hidden data may
not necessarily be an application with a header part, failing the detection. Fridrich
et al. [19] presented an overview of feature-based steganalysis for JPEG images and
its implications for the future design of stegosystems. A method was proposed to
distinguish legitimate JPEG operations [20] like compression from malicious ones.
However, ‘malicious’ in the context of the work does not refer to an image containing
malicious data, but rather an unauthentic and manipulated image.

Many steganographic threats have been observed in the wild. In July 2013, a back-
door [21] was found that compromised a site. It contained PHP functions within the
JPEG header to read the header part and execute the content. Saumil Shah [22] at the
2015 Black Hat conference introduced the term ‘stegosploit’ referring to an image-
based exploit. The exploits are embedded into JPG and PNG images with HTML and
JavaScript code, producing an HTML+ image polyglot which seems an innocuous
image but triggered in the victim’s browser. Facebook Messenger [23] was reported
in November 2016 for using JPEG images to spread Locky ransomware while in
August 2017 [24], JPEG images spread the SyncCrypt ransomware. In December
2018, Trend Micro [25] reported the use of memes (JPEG) on Twitter to communi-
cate with the malware. A LokiBot malware [26] was noted in August 2019 for an
up-gradation hiding its source code in images. In December 2019, a cybersecurity



106 V. Verma et al.

company reported the use of JPEG of Taylor Swift [27] to hide MyKings crypto
mining botnet.

Given the rising cyber threats via JPEG images, a comprehensive detectionmethod
is needed. The existing works on JPEG images have not exactly focused on revealing
the hiddenmalicious data but rather finding artifacts left behind by the hiding tools or
on feature-based detectionwhich lacks this functionality to reveal the hidden content.
This paper though alongside classification attempts to locate malicious content in
JPEG images and produce that data as the output.

3 JPEG Format

JPEG stands for Joint Photographic Experts Group, named after a committee that
created the JPEG standard in 1992. This file format is used by image capturing
devices such as digital cameras and to store and transmit photographic images on
the web. It is a widely used image format primarily due to its lossy compression
ability. JPEG images have a file extension of .jpg/.jpeg. A JPEG image consists of a
sequence of segments where each segment begins with a two-byte indicator called
a marker. Every marker starts with the 0xFF byte (hexadecimal notation) followed
by another byte that indicates a kind of data the respective segment holds. The
markers are followed by the two bytes indicating the size of the segment-specific
data that follows including two bytes for itself. Few segments though don’t contain
any payload and consist of just two marker bytes. A JPEG image starts with 0xFFD8
marker bytes (SOI_Start of Image), followed by the application-specific 0xFFEn
markers (APPn) holding metadata where n= 0... F. The 0xFFDAmarker (SOS_Start
of Scan) contains the compressed image data where restart markers 0xFFD0 through
0xFFD7 inserted at regular intervals separate independent chunks of the data to
allow parallel decoding. The 0xFFD9 or EOI marker denotes the end of the image.
Table 1 provides JPEG-specific markers with their corresponding bytes and descrip-
tion.

4 Tool Proposed

We have created a tool in python (a python script) to detect malicious JPEG images.
The tool is provided an input—a JPEG image. It reads the image, scanning and
locating specific marker bytes and interpreting the data in respective segments to
find any malicious content or deviation from the JPEG format. Based on this, it
classifies the image into malicious or non-malicious. Besides classification, the tool
contains the functionality of revealing the malign data found within the image along
with its location as part of the output. Concerning the detection of stegomalware
with respect to images, this functionality to the best of our knowledge has not been
found in the available literature. It would enhance insight into the kind of malicious



Detecting Stegomalware: Malicious Image … 107

Table 1 JPEG image markers

Marker Bytes Data Description

SOI 0xFF 0xD8 None Start of image

APPn 0xFF 0xEn, n = 0... F Variable size Application specific

COM 0xFF 0xFE Variable size Comment

SOF0 0xFF 0xC0 Variable size Start of frame (Baseline JPEG)

SOF2 0xFF 0xC2 Variable size Start of frame (Progressive JPEG)

DHT 0xFF 0xC4 Variable size Define huffman table(s)

DQT 0xFF 0xDB Variable size Define quantization table(s)

RSTn 0xFF 0xDn, n = 0... 7 None Restart

DRI 0xFF 0xDD 4 bytes Define restart interval

SOS 0xFF 0xDA Variable size Start of scan

EOI 0xFF 0xD9 None End of image

content hidden within images. The proposed tool flags an image as malicious under
either of the following scenarios and non-malicious in case none of the scenarios are
detected, as also illustrated in a flowchart presented in Fig. 1.

a. The tool reads and checks the starting two bytes in an input JPEG image. If the
image is not found starting with the 0xFFD8 bytes (SOI marker), the image is
reported as malicious for deviating from the JPEG format. It is uncommon and
suspicious for an image to start with any other bytes than the SOI marker.

b. The tool locates application-specific markers by their corresponding bytes and
scans themetadata that follows to find anymalicious content. The corresponding
ASCII code of the bytes comprising the metadata is obtained which is searched
for some suspicious keywords or strings such as ‘script’, ‘eval’, and ‘iframe’
using a string finding function. The ‘script’ keyword has been used to locate
a <script> tag which specifies a JavaScript file to load. Another keyword, a
JavaScript function ‘eval’ has been searched for which is used to evaluate or
execute the arguments passed to it. The argument can be any expression or one
or more JavaScript statements. The ‘iframe’ stands for Inline Frame. Locating
this tag identifies a suspicious action of embedding another document within the
current HTML document. If either of the strings is found, the image is flagged
as malicious.

c. The tool locates 0xFFFE bytes and searches in the respective comment segment
for the suspicious strings in the same way it does for the metadata. The image
is predicted as malicious upon finding either of the strings.

d. The tool searches for the bytes 0xFFD9 indicating the end of the image. If the
image is found missing these bytes (EOI marker), the image raises suspicion
for not following the standard JPEG format, thereby predicted as malicious.

e. The tool on locating the EOI marker, if finds any anomalous data appended to
the end of the image, i.e., finding any data after the 0xFFD9 bytes, flags the
image as malicious. The maliciousness of such data is identified using the same



108 V. Verma et al.

Fig. 1 Working of tool proposed

strings as used for the metadata and comment. Such trailing data is usually hard
to notice for it comprises a few bytes causing a negligible change in the file size.

In cases (b), (c), and (e) as mentioned above that involve locating the hidden
malign data, the tool outputs/produces the found malicious content along with its
location.

5 Experiment

We have collected three types of JPEG images for the experiment: malicious, benign
images hiding no data, and stego images that contain non-malicious data hidden.
Though malicious images hiding malign content are also stego images, the ones



Detecting Stegomalware: Malicious Image … 109

hiding non-malicious data have been referred to as the stego images in the context
of this paper. Therefore, stego images can be categorized into benign images for
they are harmless, not containing any malware. The purpose behind using stego
images is to evaluate the effectiveness of our tool in classifying the images hiding
malicious and non-malicious data. Many existing works have focused on finding
steganography artifacts [9, 15, 17, 19] produced by specific algorithms. However,
the presence of steganography may indicate malware but it is not sufficient enough
to reach conclusions since images can use steganography for legitimate purposes as
well such as copyright protection. Thus, we want to ensure that the tool proposed
doesn’t just rely on steganography artifacts but rather inspects the content of the
hidden data for detection.

We have collected about 5,893 JPEG images, containing 2,620 malicious, 3,185
benign, and 88 stego images.Malicious images have been collected from themalware
repositories [28, 29].Wehave analyzedVirusTotal reports for everymalicious sample
to ensure their maliciousness. The size of malicious images ranges from 22 bytes to
1,358 KB. Besides, 3,185 benign images have been collected from multiple sources
[29–32]. These images range from 1 KB to 13,154 KB in size. Also, we have used
about 40 stego images collected from our previous work [33] which used steganog-
raphy, hiding non-malicious data in JPEG images with improved capacity and imper-
ceptibility. The paper [33] aimed to protect sensitive data in PCs via hiding such data
within image resources present on the systems from anymalicious attempt of stealing
or tampering with data. The stego images collected consist of eight images each with
different embedding rates of 0.2, 0.4, 0.6, 0.8, and 1.0, and vary in size from 32
to 76 KB. These stego images depict spatial domain steganography. Therefore, to
extend the evaluation, about 48 JPEG stego images have been further generated that
hide non-malicious data in the transform domain. For this, we have used the F5
steganography algorithm [34], running it via Java from the command line. The size
of these images lies between 5 and 175 KB. In total, 88 (40+ 48) stego images have
been collected. All the benign and stego images have been analyzed using Virus-
Total to verify if the files are clean. After collecting the samples, we have run the
proposed tool, the python script, via command prompt in Windows for each of the
5,893 images, providing file name as the input.

6 Results

The tool proposed has analyzed every input JPEG image into malicious and non-
malicious as per the procedure mentioned in Sect. 4. The stego images have been
named S1, S2, and so on for convenience. Being harmless as containing non-
malicious data, the stego images have been included in the dataset of benign images
to produce a collective result. Running the tool on 2,620 malicious and 3,273 (3,185
+ 88) benign images, we have observed and noted the results for every image.
Summarizing the results, the precision, a ratio of correctly classified positive (mali-
cious) samples to the total samples predicted as positive, obtained is 0.99. On other



110 V. Verma et al.

Table 2 Comparative analysis of our technique with state-of-the-art techniques

Techniques Detection rate (%) Output the malign data found within images

Entropy-based [16] ~80 ✗

AIS [15] 94.33 ✗

MalJPEG [14] 94.8 ✗

Proposed tool 96.16 ✓

hand, recall (sensitivity) which is a ratio of correctly classified positive samples to
the total positive ones, attained is 0.91. Considering both precision and recall, the F-
measure of 95.50% has been obtained and an accuracy of 96.16% using our method.
Other important measures that evaluate the classification performance are the False
Negative Rate and the False Positive Rate. FNR is defined as a ratio of the positive
samples misclassified as negative (benign) to the total positive ones. FPR is a ratio of
negative samples misclassified as positive to the total negative ones. The lower the
FNR and the FPR, the higher is the performance. The tool has resulted in an FNR
of 0.08 and FPR of 0.001 which are fairly low. Indeed, all the stego images have
been predicted as non-malicious, indicating the effectiveness of the proposed tool
in distinguishing the images hiding malicious and non-malicious data. This can be
attributed to the use of certain strings by the tool for locating malicious data within
images. On the other hand, misclassification of malicious samples can be attributed
to the presence of malware in the locations not covered by the tool such as LSBs.
However, such cases are less likely since JPEG uses a lossy compression technique
which can disrupt the data hidden in LSBs. The easy and more likely JPEG hiding
methods consist of embedding the data in the header, comments, or at the end of
the image file. Therefore, we have focused on finding the suspicious data at these
locations in JPEG images.

A comparison of our result with that of state-of-the-art techniques [14–16] is
presented in Table 2. Unlike our technique, the works [14–16] have used feature-
based analysis for the detection of JPEG images. The table shows that our tool
has relatively obtained a better detection rate with the functionality to output the
malicious content found within images.

Other than the classification results, the distribution of threats in malicious images
used in this paper has been explored as shown in Fig. 2. The figure shows that the
majority of malicious images, i.e., around 94% contain suspicious data appended
to the end of the image file. About 3% of images contained malware in the header
comprising the metadata while the ones with malicious comment segments have
been found with 0.04% distribution. The images found not following the standard
JPEG format in terms of SOI and EOI markers, account for around 1 and 2% of the
distribution, respectively.

Another observation being illustrated in Fig. 3 is regarding the presence of suspi-
cious strings within the malicious images used. The samples have been found
containing the HTML code for malicious purposes. The figure shows that about
53% of images contain the script tag enabling malicious JavaScript and PHP files



Detecting Stegomalware: Malicious Image … 111

3.42%

0.04%

93.78%

0.51%
2.25%

metadata

comments

appended to the end

SOI not at the beginning

EOI missing

Fig. 2 Distribution of threats in malicious JPEG images

53%38%

3%6%
script tag
iframe tag
eval func on
script + iframe

Fig. 3 Presence of suspicious strings within malicious JPEG images

and 38% comprise an iframe tag with hidden visibility while 6% contained both
the tags. About 3% of images contained the JavaScript eval function for executing
malicious string arguments. It could end up running malicious code on the targeted
machine. An instance of the output for malicious and stego images is depicted via a
screenshot provided in Fig. 4.

7 Stegomalware in Windows Applications

The applications have been found one of the convenient mechanisms for stegoma-
lware to intrude into the systems. We have demonstrated the hiding of malicious
JPEG images within Windows applications to evaluate the detection rate of several
commercially available anti-malware scanners toward the stegomalware inWindows
applications. Specifically, we have selected Windows operating system since to the
best of our knowledge, there doesn’t exist any such work or demonstration for the
Windows platform relative to Android [10–13]. Concerning the hiding of malware in



112 V. Verma et al.

Fig. 4 Screenshot representing an instance of the output of the tool proposed

apps using steganography, this is the first work highlighting this issue in Windows.
Moreover, Windows has a large user base which makes it a potential target for
malware attacks than others. To demonstrate, ten most frequently used Windows
applications have been used. On the other hand, ten images have been randomly
selected from the dataset of malicious images used in this paper. To enable hiding,
a tool called Resource Tuner [35] has been used that allows editing the resources in
Windows applications. We have used the ten images randomly, one each for each
application, embedding and replacing the image resources within the applications
used. The apps after hiding the images were scanned via VirusTotal. We intend to
assess whether the applications containing stegomalware are detected by the anti-
malware scanners. Figure 5 presents the number of anti-malware engines used by
VirusTotal which detected these Windows applications containing malicious images



Detecting Stegomalware: Malicious Image … 113

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

App1 App2 App3 App4 App5 App6 App7 App8 App9 App10

no
. o

f a
n�

vi
ru

s s
ca

nn
er

s a
va

ila
bl

e 
on

 
Vi

ru
sT

ot
al

 th
at

 d
et

ec
te

d 
th

e 
sa

m
pl

es

Fig. 5 Detection of Windows applications containing stegomalware

hidden. The figure shows that on average only 3 or 4 antiviruses out of over 70 scan-
ners used by VirusTotal were able to detect such applications. This indicates the role
of malicious image steganography in Windows applications to evade detection. This
highlights a need for more effective Windows malware detectors since thwarting
malware attacks on Windows is a formidable challenge.

8 Conclusion

This paper has proposed an effective tool to detectmalicious JPEG images.Analyzing
three types of JPEG images: malicious, benign, and the stego ones hiding non-
malicious data, a low FNR and FPR with a better detection rate relative to state-
of-the-art techniques have been attained for the 5,893 images. Indeed, the tool has
classified the stego images as non-malicious, indicating the effectiveness of the tool
in classifying the images hiding malicious and non-malicious data. Unlike existing
works that have focused on finding steganography artifacts or used feature-based
analysis which lacks revealing the hidden data, the proposed tool has attempted to
locate malign data within images using certain keywords and produce that data as
the output. This functionality has been found missing in the existing literature where
hidden malicious data is not accessible for analysis. The proposed tool thus can be
integrated with existing tools to enhance detection.Moreover, malicious images have
been demonstratively hidden inWindows applications showing the role of steganog-
raphy in apps to evade several antivirus scanners, indicating a need for more effec-
tive Windows malware detectors. Also, the scope of our algorithm can be extended
in the future for other image formats, requiring the algorithm is modified/adapted
accordingly to read format-specific data.



114 V. Verma et al.

Acknowledgments All the authors have contributed to the work without any conflict of interest.
The authors specifically thank VirusShare.com and Hybrid-Analysis.com for granting access to
their malware collection. To mention, the research has not received any grant from any funding
agency in the public, commercial or not-for-profit sectors.

References

1. Mazurczyk W, Caviglione L (2015) Information hiding as a challenge for malware detection.
IEEE Secur Priv 13:89–93. https://doi.org/10.1109/MSP.2015.33

2. Beek C, Dinkar D, Gund Y, Lancioni G, Minihane N, Moreno F et al (2017) McAfee labs
threats report: June 2017 (2017). https://www.mcafee.com/enterprise/en-in/about/newsroom/
research-reports.html

3. Cabaj K, Caviglione L, Mazurczyk W, Wendzel S, Woodward A, Zander S (2018) The new
threats of information hiding: the road ahead. IT Prof 20:31–39. https://doi.org/10.1109/MITP.
2018.032501746

4. MazurczykW,Wendzel S (2017) Information hiding: challenges for forensic experts. Commun
ACM 61:86–94. https://doi.org/10.1145/3158416

5. Aljamea MM, Iliopoulos CS, Samiruzzaman M (2016) Detection of URL in image steganog-
raphy. In: ICC ’16: proceedings of the international conference on internet of things and cloud
computing. ACM, pp 1–6. https://doi.org/10.1145/2896387.2896408

6. Puchalski D, Caviglione L, Kozik R,Marzecki A, Krawczyk S, ChoraśM (2020) Stegomalware
detection through structural analysis of media files. In: ARES ’20: proceedings of the 15th
international conference on availability, reliability and security. ACM, pp 1–6. https://doi.org/
10.1145/3407023.3409187

7. Amsalem Y, Puzanov A, Bedinerman A, Kutcher M, Hadar O (2015) DCT-based cyber
defense techniques. In: Proceedings of the SPIE 9599, applications of digital image processing
XXXVIII. SPIE. https://doi.org/10.1117/12.2187498

8. Carrega A, Caviglione L, Repetto M, Zuppelli M (2020) Programmable data gathering for
detecting stegomalware. In: 2020 6th IEEE conference on network softwarization (NetSoft).
IEEE, pp 422–429. https://doi.org/10.1109/NetSoft48620.2020.9165537

9. Pevny T, Kopp M, Křoustek J, Ker AD (2016) Malicons: detecting payload in favicons. In:
Electronic imaging symposium, media watermarking, security, and forensics, pp 1–9. https://
doi.org/10.2352/ISSN.2470-1173.2016.8.MWSF-079

10. Suarez-Tangil G, Tapiador JE, Peris-Lopez P (2014) Stegomalware: playing hide and seek
with malicious components in smartphone apps. In: International conference on information
security and cryptology, LNCS. Springer, Cham, pp 496–515. https://doi.org/10.1007/978-3-
319-16745-9_27

11. Badhani S, Muttoo SK (2018) Evading android anti-malware by hiding malicious application
inside images. Int J Syst Assur Eng Manag 9:482–493. https://doi.org/10.1007/s13198-017-
0692-7

12. Cao C, ZhangY, Liu Q,WangK (2015) Function escalation attack. In: International conference
on security and privacy in communication networks, LNICST. Springer, Cham, pp 481–497.
https://doi.org/10.1007/978-3-319-23829-6_33

13. Suarez-Tangil G, Tapiador JE, Lombardi F, Pietro RD (2016) Alterdroid: differential fault
analysis of obfuscated smartphone Malware. IEEE Trans Mob Comput 15:789–802. https://
doi.org/10.1109/TMC.2015.2444847

14. Cohen A, Nissim N, Elovici Y (2020) MalJPEG: machine learning based solution for the
detection of malicious JPEG images. IEEE Access 8:19997–20011. https://doi.org/10.1109/
ACCESS.2020.2969022

https://doi.org/10.1109/MSP.2015.33
https://www.mcafee.com/enterprise/en-in/about/newsroom/research-reports.html
https://doi.org/10.1109/MITP.2018.032501746
https://doi.org/10.1145/3158416
https://doi.org/10.1145/2896387.2896408
https://doi.org/10.1145/3407023.3409187
https://doi.org/10.1117/12.2187498
https://doi.org/10.1109/NetSoft48620.2020.9165537
https://doi.org/10.2352/ISSN.2470-1173.2016.8.MWSF-079
https://doi.org/10.1007/978-3-319-16745-9_27
https://doi.org/10.1007/s13198-017-0692-7
https://doi.org/10.1007/978-3-319-23829-6_33
https://doi.org/10.1109/TMC.2015.2444847
https://doi.org/10.1109/ACCESS.2020.2969022


Detecting Stegomalware: Malicious Image … 115

15. Pérez JDJS, Rosales MS, Cruz-Cortés N (2016) Universal steganography detector based on an
artificial immune system for JPEG images. In: 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE,
pp 1896–1903. https://doi.org/10.1109/TrustCom.2016.0290

16. Natarajan V, Sheen S, Anitha R (2012) Detection of StegoBot: a covert social network botnet.
In: SecurIT ’12: proceedings of the first international conference on security of internet of
things. ACM, pp 36–41. https://doi.org/10.1145/2490428.2490433

17. Kunwar RS, Sharma P (2017) Framework to detect malicious codes embedded with JPEG
images over social networking sites. In: 2017 international conference on innovations in infor-
mation, embedded and communication systems (ICIIECS). IEEE, pp 1–4. https://doi.org/10.
1109/ICIIECS.2017.8276144

18. Virus scanning website. https://www.virustotal.com
19. Fridrich J (2004) Feature-based steganalysis for JPEG images and its implications for future

design of steganographic schemes. In: International workshop on information hiding, LNCS.
Springer, Berlin, Heidelberg, pp 67–81. https://doi.org/10.1007/978-3-540-30114-1_6

20. Lin C-Y, Chang S-F (2001) A robust image authentication method distinguishing JPEG
compression from malicious manipulation. IEEE Trans Circuits Syst Video Technol 11:153–
168. https://doi.org/10.1109/76.905982

21. CidDB (2013)Malware hidden inside JPGEXIF headers. Sucuri Blog,Website SecurityNews.
https://blog.sucuri.net/2013/07/malware-hidden-inside-jpg-exif-headers.html

22. Shah S (2015) Stegosploit—exploit delivery with steganography and polyglots. In: Briefings,
Black Hat Conference. https://www.blackhat.com/eu-15/briefings.html

23. Khandelwal S (2016) Beware! Malicious JPG images on facebook messenger spreading locky
ransomware. In: The hacker news, cybersecurity news and analysis. https://thehackernews.
com/2016/11/facebook-locky-ransomware.html

24. Abrams L (2017) SyncCrypt ransomware hides inside JPG files, appends .KK Extension.
Bleeping computer, Technology News Website. https://www.bleepingcomputer.com/news/sec
urity/synccrypt-ransomware-hides-inside-jpg-files-appends-kk-extension

25. Zahravi A (2018) Malicious memes that communicate with Malware. Trend Micro, IT
security company. https://www.trendmicro.com/en_us/research/18/l/cybercriminals-use-mal
icious-memes-that-communicate-with-malware.html

26. Osborne C (2019) LokiBot malware now hides its source code in image files. ZDNet, Tech-
nology News Website. https://www.zdnet.com/article/lokibot-information-stealer-now-hides-
malware-in-image-files

27. SzappanosG, Brandt A (2019)MyKings botnet spreads headaches, cryptominers, and Forshare
malware. Sophos, cybersecurity company. https://news.sophos.com/en-us/2019/12/18/myk
ings-botnet-spreads-headaches-cryptominers-and-forshare-malware

28. Malware repository. https://virusshare.com
29. Malware analysis service. https://www.hybrid-analysis.com
30. Image database. http://sipi.usc.edu/database
31. Photos and Videos sharing platform. https://www.pexels.com
32. Social networking site. https://www.facebook.com
33. Verma V, Muttoo SK, Singh VB (2019) Enhanced payload and trade-off for image steganog-

raphy via a novel pixel digits alteration. Multimed Tools Appl 79:7471–7490. https://doi.org/
10.1007/s11042-019-08283-9

34. Westfeld A (2001) F5—a steganographic algorithm. In: International workshop on informa-
tion hiding, LNCS. Springer, Berlin, Heidelberg, pp 289–302. https://doi.org/10.1007/3-540-
45496-9_21

35. Visual resource editor. http://www.restuner.com
36. Butani B, Kumar Shukla P, Silakari S (2014) An exhaustive survey on physical node capture

attack in WSN. Int J Comput Appl 95:32–39. https://doi.org/10.5120/16577-6265

https://doi.org/10.1109/TrustCom.2016.0290
https://doi.org/10.1145/2490428.2490433
https://doi.org/10.1109/ICIIECS.2017.8276144
https://www.virustotal.com
https://doi.org/10.1007/978-3-540-30114-1_6
https://doi.org/10.1109/76.905982
https://blog.sucuri.net/2013/07/malware-hidden-inside-jpg-exif-headers.html
https://www.blackhat.com/eu-15/briefings.html
https://thehackernews.com/2016/11/facebook-locky-ransomware.html
https://www.bleepingcomputer.com/news/security/synccrypt-ransomware-hides-inside-jpg-files-appends-kk-extension
https://www.trendmicro.com/en_us/research/18/l/cybercriminals-use-malicious-memes-that-communicate-with-malware.html
https://www.zdnet.com/article/lokibot-information-stealer-now-hides-malware-in-image-files
https://news.sophos.com/en-us/2019/12/18/mykings-botnet-spreads-headaches-cryptominers-and-forshare-malware
https://virusshare.com
https://www.hybrid-analysis.com
http://sipi.usc.edu/database
https://www.pexels.com
https://www.facebook.com
https://doi.org/10.1007/s11042-019-08283-9
https://doi.org/10.1007/3-540-45496-9_21
http://www.restuner.com
https://doi.org/10.5120/16577-6265


116 V. Verma et al.

37. Bhatt R,Maheshwary P, Shukla P, Shukla P, ShrivastavaM,Changlani S (2020) Implementation
of fruit fly optimization algorithm (FFOA) to escalate the attacking efficiency of node capture
attack in wireless sensor networks (WSN). Comput Commun 149:134–145. https://doi.org/10.
1016/j.comcom.2019.09.007

38. Kumar SA, Sinha S, Shukla P (2018) Design and development of image security technique by
using cryptography and steganography: a combine approach. Int J Image, Graph Signal Process
10:13–21. https://doi.org/10.5815/ijigsp.2018.04.02

https://doi.org/10.1016/j.comcom.2019.09.007
https://doi.org/10.5815/ijigsp.2018.04.02

	 Detecting Stegomalware: Malicious Image Steganography and Its Intrusion in Windows
	1 Introduction
	2 Related Work
	3 JPEG Format
	4 Tool Proposed
	5 Experiment
	6 Results
	7 Stegomalware in Windows Applications
	8 Conclusion
	References


