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Modified Particle Swarm Optimized
Load Frequency Control of Renewable
Energy Sources-Based Integrated Power
Systems
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Abstract This paper presents the study of a modified particle swarm optimization
algorithm in load frequency control for an integrated power system. The system to
be studied is a two-area system whose generation is covered by a wind turbine unit
in addition to a thermal unit in the first area and a photovoltaic (PV) unit along with a
thermal unit in the second area. Proportional integral derivative (PID) controller has
been taken into consideration to minimize the performance index of integral squared
error (ISE) of the system, which in turn reduces the deviation in frequency of corre-
sponding areas and the tie-line power between those areas using themodified particle
swarm optimization (mPSO) algorithm. This algorithm is compared with some new
optimization techniques as well as some robust optimization techniques like particle
swarm optimization (PSO), genetic algorithm (GA) and ant lion optimization (ALO)
and then efficiency is evaluated for the mPSO algorithm.

Keywords Load frequency control · Interconnected system · Modified particle
swarm optimization · PV · Wind

1 Introduction

The modern electrical system is shifting towards microgrid, interconnected systems
and smart-grid. And with this shift, new generation technologies are coming into
picture. Some of the new methods of generation include renewable energy sources
(RESs) that include PV, wind, biomass, fuel cell, plug-in hybrid vehicles (PHEVs),
etc. Load frequency of multi-hybrid interconnected area is demonstrated by Raju
et al. [1]. Since most of these resources are capable of producing only a few kW
outputs , they are used locally and then interconnected to other resources within
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different areas. However, most of the RESs are non-linear in nature, and generally,
they are linearized using various approximation techniques. Frequency control of
non-linear transfer functions is demonstrated in [2, 3] and that of an approximated
linear transfer function is demonstrated in [4]. Also, the output of most of these
resources is independent of load variation. Because of this reason, generally, they are
connected alongwith a hydro or a thermal power plantwhich is capable of readjusting
their mechanical input to counteract the changes in frequency due to mismatch in
power generation and demand. During load variation in the demand side, excess
load demand is met by increasing the mechanical power input which is regulated
by governor action. Therefore, every area consists of an output-controllable power
plant if there exists an output-uncontrollable power plant (i.e. RESs like PV-based
power plant) in the same area.

This paper deals with controlling load frequency deviation to load variation as
well as power generation variation by using a PID controller [5]. Every system has
the inherent ability to come back to a steady state after a disturbance has occurred on
the system; however, with the help of controllers, the transient and steady-state char-
acteristics can be improved to a great extent. To decide the optimal gain values of the
controllers, the controllers are trained by various algorithms. In this paper, a modified
particle swarm optimization algorithm (mPSO) is discussed. And then, the output
of mPSO approach is compared with some of the new optimization techniques like
ant lion optimization (ALO), arithmetic optimization algorithm (AOA) [6], atomic
search optimization (ASO) [7], Harris hawk optimization (HHO) [8] and two robust
tools for optimization such as particle swarm optimization (PSO) [9] and genetic
algorithm (GA) [10]. PSO is modified and studied in various mathematical studies in
many different fields, and the efficiency of strategies behind all those modifications
is demonstrated by Bansal et al. [11]. In this paper, range of inertia weight is varied
rather than varying the function itself. And the inertia weight function is taken as
“chaotic random”. Table 1 represents the nomenclature of various notations used in
this paper.

This paper is divided into five sections. First section briefly introduces the concept
behind the model. Second section deals with the mathematical model of the systems
under study. Third section briefly introduces the optimization algorithm under study.
Fourth section consists of results and observations. Finally, conclusions are made in
fifth section. Values and various control parameters used throughout this paper are
included in the appendix section.

2 Mathematical Modelling

2.1 Thermal Generator Model

First system in this paper is a standalone conventional thermal generation system
which is modelled as follows [12]:
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Table 1 Nomenclature for
various notations used in this
paper

Notations Nomenclature

Tij Coefficient of synchronization with area j

Pgi Change in output of governor of area i

Pmi Change in mechanical input in area i

PLi Load change

Pci Controlled power of area i

Hi Inertia constant for area i

Di Damping coefficient for area i

Ri Speed droop characteristic for area i

xki Position of ith particle after kth generation

vki Velocity of ith particle after kth generation

pbestki pbest of ith particle for kth generation

gbestki gbest of ith particle for kth generation

vk+1
i Present velocity of ith particle

W Inertial weight for the ith particle

c1 and c2 Constriction factors

rand() Random number between upper and lower bound

presiter Present iteration

maxiter Maximum number of iteration

Ggov = kg
Tgs + 1

(1)

G turb = kt
Tt s + 1

(2)

Grh = kr Tr s + 1

Tr s + 1
(3)

where Ggov, Grh, and Gturb are the first-order transfer functions of the governor, re-
heater and the steam-based turbine and kg, kr and kt are, respectively, the gains of
governor, re-heater and steam-based turbine. The generator transfer function can be
written as follows:

Ggen = kp
Tps + 1

(4)

where kp is the gain of generator.Tg,Tr ,Tp andTt are, respectively, the time constants
in case of governor, re-heater, generator and steam-based turbine.



486 A. Jena et al.

2.2 Wind Turbine Model

Very commonly in wind turbines, doubly-fed induction generators (DFIG) are used,
which operates familiar to synchronous generators but also provides the advantage
of variable speed. The mechanical power output from the wind turbine is dependent
upon the speed of the wind [13]. And it is given as,

Pw = 1

2
ρArCpv

3
w (5)

where ρ, Ar ,Cp and vw are density of air, area swept by the blade of the wind turbine,
power coefficient representing the available power after wind turbine extracts energy
from the wind and velocity of the wind, respectively. The values for the above-
mentioned physical parameters are given in the appendix section. And the equation
to calculate the exact value of Cp is given in [13]. In this paper, the wind speed is
varied to achieve varying mechanical power output. Wind turbine plays a major role
of introducing non-linearity in the system. However, after linearization, the transfer
function of the turbine can be approximately given by,

GWTG = KWTG

TWTGs + 1
(6)

where KWTG and TWTG are the gains of wind generator and the time constant of the
same, respectively.

2.3 Photovoltaic Array Model

Generally, a PV array takes temperature and solar irradiance as input to the system.
Both parameters are non-linear and depend upon the natural factors, so the input to
the solar panel can be considered as a time-varying non-linear input signal. However,
the average output power from the PV array is given by, Eq. (7)

P = AsηsG[1 − 0.005(Ta + 25)] (7)

where As, ηs and Ta are areas of the PV array (in m2), energy conversion efficiency of
one module and ambient temperature (in degree Celsius), respectively, of a PV plant.
And the values of the above-mentioned physical parameters of PV array is taken from
[13] and it is given in the appendix section. G is the irradiance (in kW/m2) which is
considered to be varying in this paper.

After removal of all the non-linearities from the system, the transfer function of
the PV system is roughly approximated as,
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Gs = �Ps
�G

= ks
Tss + 1

(8)

where�Ps is the power output from the PV array and�G is the change in irradiance.
Ks and Ts represent the gain and time constant of the solar plant, respectively.

2.4 Load Frequency Control of Two Area

When there is a sudden change in active power in an area, the region starts feeding
on the power supplies of other regions [4, 10, 12]. Therefore, the main task of
the load frequency control (LFC) of an interconnected system is to make sure the
compensation of the local area frequency and the corresponding tie-line power. The
deviations in frequency, as well as tie-line power, is due to the difference between
generation and load side demand, so for a connected system, tie-line power of every
area has to be taken into consideration. For an area i, the power system is modelled
as:

� ḟi =
(

1

2Hi

)
�Pmi −

(
1

2Hi

)
�PLi −

(
Di

2Hi

)
� fi −

(
1

2Hi

)
�Ptie,i (9)

�Ṗmi =
(

1

Tti

)
�Pgi −

(
1

Tti

)
�Pmi (10)

�Ṗgi =
(

1

Tgi

)
�Pci −

(
1

Ri .Tgi

)
� fi −

(
1

Tgi

)
�Pgi (11)

The change in tie-line power is expressed as follows:

�Ṗtie,i = 2π

⎡
⎢⎢⎢⎢⎢⎢⎣

N∑
j = 1
j �= i

Ti j� fi −
N∑

j = 1
j �= i

Ti j� f j

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

Frequency control in power system is categorized into flat tie-line control (FTC),
fixed frequency control (FFC), and tie-line power frequency deviation control (TBC).
TBC based LFC is used in this paper, regional area control error (ACE) is given by
the following equations:

ACEi = �Ptie,i + Bi� fi (13)
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� fi = 1

2His + Di

∑
�Pi (14)

�Ptie,i = 2π

s

n∑
j = 1
j �= i

Ti, j
(
� fi − � f j

)
(15)

where ΔPtie,i is the total tie-line power deviation between area i and the rest of the
areas andΔf i is the frequency deviation in area-i.Bi is the frequency deviation factor,
expressed in Eq. (13), and it is given by Eq. (16),

Bi = 1

Ri
+ Di (16)

2.5 Control Strategy

To obtain the controller output, the input to the controller is taken as ACEi. In this
paper, PID controller has been put into use. ui is the output of the controller and it is
obtained as,

ui = Kpi (ACEi ) + Kii

∫
ACEidt + Kdi

dACEi

dt
(17)

Equation (17) represents the controller equation for a PID controller.
The objective of the optimization is to reduce the ISE of frequency and tie-line

power deviation obtained from both areas. The objective function, ISE is given by
Eq. (18).

ISE =
∫

(�P2
tie,i +

∑
� f 2i ) (18)

3 Overview of Modification in Particle Swarm
Optimization

Particle swarm optimization algorithm (PSO) is originally developed by Kennedy
and colleague Eberhart in the year 1995. The idea behind this optimization technique
is based on the nature of hunting shown by a school of fish. This technique indulges in
randomly locating a population of search agents in a given search space. The search
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agent closest to the optimum value is called the best agent of that particular iteration.
In the next iteration, all the other search agents are directed towards the direction
of the best search agent obtained in the first iteration by updating the velocity and
position accordingly. However, in the original PSO algorithm, Kennedy and Eberhart
failed to put forward how to direct the search path in the direction of global or a local
optimum. Therefore, PSO was later modified by introducing the parameter “inertia
weight” by Shi and Eberhart [14]. The equation of inertia weight has been modified
over the years in various papers related to different optimization problems. In this
paper, a new approach to calculate inertia weight during successive iteration has
been introduced. The underlying principle of PSO is expressed in the form of the
following equations.

vk+1
i = w × vk

i + c1rand()
(
pbestki − xki

) + c2 rand()
(
gbestki − xki

)
(19)

xk+1
i = xki + vk+1

i (20)

w = wmax − (wmax − wmin) × present_iter

max _iter
(21)

The modification in w is done by changing the range of wmax and wmin in every
iteration to quickly converge to the optimal solution. And the logic applied is if the
local_best > global_best in the second half of optimization then the range of w is
widened to obtain a better global optimum. But if global_best > local_best, then the
range ofw is reduced in steps, for better exploitation. The second half of optimization
starts after the tenth iteration here. And the above logic is mathematically expressed
by the following sets of equations.

wmax = wmax0 −
{
0.3 ×

(
presiter − 10

)
(maxiter −10)

}
(22)

wmin = wmin0 +
{
0.2 ×

(
presiter − 10

)
(maxiter −10)

}
(23)

At the end of the iteration, the optimal gain value is obtained.

4 Results and Observation

Two-area system consisting of a thermal unit and a wind unit in the first area and a
thermal unit and a PV unit in the second area is modelled in MATLAB/Simulink.
The thermal unit is modelled using transfer functions defined in Sect. 2.1 and the
controlled power output from PID controller-1 is fed to the thermal unit of area 1.
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The power output from the wind turbine is connected as a constant power source,
and it is modelled as defined in Sect. 2.3 of the paper. The power output of wind
turbine is varied along with the wind speed. A white band noise input is used to
simulate the time to time-varying wind speed. Since, practically, the wind speed
varies in long intervals, the simulation time for the noise input signal is kept to
around 20 s. On the other hand, the thermal unit of the second area is designed
similar to that of the first area and PID controller-2 regulates the controlled output
and feeds it to the thermal unit. PV unit is modelled using transfer functions given
in Sect. 2.2 of the paper. Again, PV is connected as constant power output and
a white band noise signal is used to describe the varying nature of irradiance. In
this case, the sample time for noise signal is kept to around 5 s, considering the
practical scenario on a cloudy day. And both areas are interconnected using a tie-
line which is already described by equations given in Sect. 2.4. The inputs of both
controllers are the ACE of respective areas, which is defined in Sect. 2.5. A load
disturbance of 4% is introduced at the 20th second of simulation time at the load end
of area 1 and the algorithmswere run.While running the algorithms, the initialization
parameter population andmaximum iteration are taken ranging from 50–200 and 16–
24, respectively. While the definition parameters of various algorithms are varied to
their best potential in obtaining optimal gain. The proposedmPSO algorithm takes in
50 search agents and 16 iterations to converge into the final optimal value. PSO and
ASOworked better with 200 search agents and 16–24 iterations.Whereas for the rest
of the algorithms, total search agents were selected 150–250 and 16–24 iterations.
The algorithm’s purpose was to minimize the ISE value over the limited number of
iterations. Each algorithm is run multiple times, and ISE and time are recorded and
compared with the proposed algorithm. The variation in time ranges from 104 s to
2 × 105 s for various algorithms, while the mPSO consumes time in the range of
5500–7500 s. In the aspect of convergence, every other algorithm converges to their
respective final solution within the tenth iteration, while proposed mPSO converges
within 8th–12th iteration and still searches for a global solution till last iteration.
ISE is reduced to around 9.8 × 10–5 by mPSO whereas the least ISE obtained by the
combined algorithms is 2.1 × 10–4. The model under study is represented by Fig. 1.
The controller parameters along with other observational data are listed in Table 2.
The input to the constant output sources (i.e. wind and PV) and the proposed load
disturbance is shown in Fig. 2. And the output due to various algorithms is depicted
in Figs. 3, 4 and 5.
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Fig. 1 The proposed model of two-area LFC consisting of RESs like wind and solar power. Load
disturbance is injected at area-1. Irradiance and wind speed are considered to be fluctuating

Table 2 Comparison table among various algorithms studied

Algorithms mPSO PSO ASO AOA ALO GA HHO

Kp1 −213.9 −173.6 −90.27 −211.8 −198 −245.5 −51.60

Ki1 −1623 −998.7 −537.7 −557.5 −693.2 −666.7 −491.1

Kd1 −74.16 −56.01 −77.99 −85.72 −49.81 −80.24 −53.14

Kp2 −228.9 −127.1 −130.1 −369.5 −235.5 −733.3 −53.23

Ki2 −2000 −798.2 −1443 −397.5 −351.2 −1163 −975

Kd2 −78.02 −90.32 −28.89 −461.9 −185.5 −570.9 −110.1

ISE 9.8e−5 2.4e−4 2.1e−4 0.015 7.7e−4 7.3e−4 4e−4

Average time per iteration (in
s)

346 618 792 1138 740 921 1394

Total time (in s) 5546.6 9902.7 12,677 18,210 11,854 14,738 22,318
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Fig. 2 Disturbances in the system. Due to natural factors at the source side and due to load variation
at the load end

Fig. 3 Control of change in tie-line power by using various optimizers. Major deviation in the
power is observed at 20 s is caused due to the variation in wind speed and load demand. The rest of
the minor deviations are caused due to irradiance variation
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Fig. 4 Area 1: Control of frequency deviation by various algorithms. Major deviation in the
frequency is observed at 20 s is caused due to the variation in wind speed and load demand.
The rest of the minor deviations are caused due to irradiance variation

Fig. 5 Area 2: Control of frequency deviation by various algorithms. Major deviation in the
frequency of the second area is observed at 20 s, however, at various intervals, irradiance devi-
ation is more effective whenever large fluctuation is there, and can be seen at 10 s, 40 s, 65 s, 70 s
and 75 s
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5 Conclusion

This paper presents the viability of a new modified swarm optimizer mPSO when
incorporated in load frequency control of integrated power system of RESs and
conventional sources. The proposedmPSOstrategy is comparedwith someof the new
optimizers (AOA, HHO and ASO) in the market and some of the robust optimizers
for LFC (PSO, GA and ALO). The algorithm is tested on a basic PID controller.
The aspects of comparison taken into consideration in this paper mainly include the
accuracy of finding optimal gain value by exploration and exploitation, time taken
to converge to final result following minimizing error. After a series of simulations
and iteration, it is found that in every aspect the proposed mPSO technique, while
working on the LFC of two area system, gives better results than the other algorithms
it is comparedwith. The least value of ISE is obtainedwithmPSO,which is 0.000098,
whereas the second-least value obtained using ASO is 0.00021. The total iteration
time taken by mPSO algorithm to obtain optimal gain value is 5546.6 s, which is
the fastest among other algorithms, whereas the next fastest algorithm is PSO and
it consumes 9902.7 s to obtain the optimal gain value. Also, while most of the
algorithms rely on more search agents (50–100) for better exploration, the proposed
mPSO technique requires comparatively lesser search agents (30–50). It is because
in the first half of iteration the algorithm has the widest range of inertia weight (i.e.
wmax = 0.9 and wmin = 0.2) which helps to search for global optimum and in the
second half of the iteration, the algorithm exploits the best global optima for nearby
local optima by reducing the inertia weight in steps as described in Eqs. (22 and 23)
in Sect. 3. By doing this, a considerable amount of accuracy is achieved along with a
significant reduction in search agents required to exploit and time spent per iteration.

Appendix

See Tables 3 and 4.

Table 3 Block parameters for two area control

Parameters Values Parameters Values

Kg 1 Tt 0.3

Tg 0.08 Kp 100

Kt 1 Tp 20

KTWG 1 TTWG 1.5

Rblade (in m) 23.5 ω (in rad/s) 3.14

β (in rad) 0 ρ (kg/m2) 1.25

(continued)
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Table 3 (continued)

Parameters Values Parameters Values

Ar (in m2) 1735 Prated (in kW) 3600

ηs 0.09–0.12 Ta (°C) 25

Kpv 1 Tpv 1.8

As (in m2) 4048 Kr 0.33

Tr 10 T12 0.545

R 2.5 B 0.8

Table 4 mPSO parameters for LFC of 2 area

Parameters Values Parameters Values

No. of particles 100 wmaxo 0.9

No. of generations 16 wmino 0.2

Fitness function ISE c1 and c2 2

ub 0 lb −2000
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