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Abstract

Environmental pollution has become a major issue of concern. With the rapid
growth of industrialization, agricultural practices, and energy generation pro-
cesses, the exploitation of natural resources has occurred. The result of which is
the pollution of air and soil. To get rid of it, several practices are applied one of
which is the bioremediation. This requires microbes, which have potential and
enzymatic capability to undergo complete transformation or mineralization into
harmless end products. To aid this process at a faster rate, bioinformatics has
emerged as an advantageous approach. It helps in diversification and implemen-
tation of bioremediation in a productive way by employing the computational
tools and software packages. This in silico approach of studying the bioremedia-
tion is very efficient by giving knowledge and understanding of the pathways and
structural and functional aspects of microorganisms involved in biodegradation.
Thus, this chapter gives the detailed complete idea of tools and software that
bioinformatics provide toward improvement of bioremediation.
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27.1 Background

With the rapid industrialization, thousands of chemical compounds are produced
causing air and soil pollution. Out of which, some are very toxic in nature and remain
in the environment possessing a major threat to life of living organisms. Hence,
therefore it is important to look for the techniques that can be employed for either the
removal of these contaminants or to convert them into nonhazardous products that
are eco-friendly to the environment. This is achieved by the use of enzymatic
capabilities of microorganisms that break down toxic chemical compounds into
end products or metabolites, which are not toxic anymore, and this whole process
is known as bioremediation. Thus, such degradation is carried out by particular
microbes, and to know more about it, the knowledge about the properties of these
toxic chemicals such as classification, identification, environmental properties, tox-
icity, and distribution can enhance the biodegradation process. This technique has
potential to restore the contaminated environment effectively with low cost and
labor. But the information for the factors that control the growth and metabolism is
still not known completely, making the implementation of it bit restricted.

Bioinformatics, which has now become the essential part of every life science-
related research, has given new direction in view of bioremediation technique also.
With the development of software packages and tools with the help of computational
biology, bioinformatics has revolutionized the integration of it with bioremediation.
In last few decades, branches of bioinformatics like genomics, proteomic,
transcriptomics, or metabolomics have given a lot of contribution in exploration of
bioremediation process.

Hence, bioinformatics with its multidisciplinary approach has assisted in under-
standing the bioremediation by unveiling the pathways, chemistry of toxic chemicals
that are undisclosed for making it a process for control of environmental contamina-
tion. The aim of this chapter is to provide a complete overview of the bioinformatic
approaches and its applications present in relation to bioremediation.

27.2 Introduction

Bioremediation is the deliberate use of microorganisms, which act as biological
catalysts for removing pollutants from the environment. In general, we can say that it
is an environmental science approach where natural biological actions are used to
remediate the polluted groundwater and contaminated soil. A variety of pollutants
like xenobiotics, polycyclic aromatic hydrocarbons known as PAHs, and chlorinated
and nitro-aromatic compounds are present, which can be cancer-causing and muta-
genic to all the present life forms (Zhang and Bennett 2005; Samanta et al. 2002).
With the use of these microbes for biodegradation, the natural environmental
conditions can be maintained efficiently. So, the role of these microorganisms
(bacteria, fungi, insects, worms, etc.) in bioremediation technique has proven to
maintain our planet with its greenery.
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The general microbial mode of action to perform bioremediation activity is done
by metabolization of a compound to another metabolite, which is not harmful to the
environment. The basic principle involved in biodegradation of pollutants is either
biotic or abiotic conditions. It can be done by number of known processes, such as
bioventing, biopiles, bioaugmentation, biostimulation, and bioattenuation. So, the
bioremediation can be effective only where environmental conditions permit micro-
bial growth and activity, and its application often involves the manipulation of
environmental parameters to allow microbial growth and degradation to proceed at
a faster rate (Kumar et al. 2011; Abatenh et al. 2017).

Being the natural process, it is cheap, harmless to the ecosystem, needs less labor
requirement, eco-friendly, and sustainable (Dell Anno et al. 2012).

Thus, the use of bioremediation technique is an environmental-friendly approach
for restoring and sustaining the contamination-free environment for future
generations.

27.2.1 Introduction to Bioinformatics

Bioinformatics is the combination of biology and information technology. It
involves the knowledge of both. The field of bioinformatics does the computer-
based analysis of biological datasets followed by its interpretation. This is done by
using statistical tools and algorithms.

In understanding the bioinformatics and its applications, it is important to know
about the various approaches used for performing analysis. This includes genomics,
proteomics, data mining, biological databases, phylogenetic analysis, and
(trancriptomics, metabolomics) system biology. All of it together plays a significant
role. Figure 27.1 below shows its various branches.

27.2.2 Integrating Bioinformatics with Bioremediation

The role of microbes in soil and water-based biodegradation and cleaning of the
environment has shown us the way to maintain and sustain a greener earth. The use
of bioinformatic domain for the study of bioremediation has shown in the past the
suggested promising results. With the help of bioinformatic-based applications only,
it has been made possible to perform the in silico studies and analyzation of data. For
uplifting the technique of bioremediation and the study of specific microbes at the
molecular level including the gene-to-gene interactions, pre-requirement of
conditions needed to be used for the changes at genetic level can be done only
with bioinformatic strategies. Also, the bioremediation process can be enhanced
using databases for gene identification and microbial degradation pathways of
compounds (Ellis et al. 2001).

Thus, bioinformatics along with its branches is revolutionizing and will continue
to do so in its future prospects. The pictorial representation above in Fig. 27.2 is
depicting the use of bioinformatic approach for the improvement of bioremediation
process.
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27.3 Bioinformatics in Improving Bioremediation

Although microbes are known for their potential to perform biodegradation, still the
process has its own limitation. And this is because of scarcity of data for factors,
which control the growth and metabolism of microbes with bioremediation potential
(Dua et al. 2002). Therefore, bioinformatics aids in using microarray data by
enhancing the structural characterization of microbial proteins with contamination
degradable capabilities (Singh 2006).

Hence, by understanding the microbial process at the molecular level with use of
bioinformatic analyses we can learn about the following below mentioned aspects of
bioremediation in more depth.

1. Prediction of Degradation Pathways
2. Omic-Based Approaches
3. Prediction of Toxicity of Chemicals
4. Databases

27.3.1 Prediction of Degradation Pathways

For the bioremediation process, a microbe undergoes enzymatic reactions to change
the pollutant into a metabolite, which is not harmful. For all this, the study of
enzymatic kinetic aspect is important. This includes the physical and chemical
characteristics of the degradation pathway (Okoh 2006).

Fig. 27.1 Branches of bioinformatics
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But for the prediction of products and pathways associated with microbial
degradation by in silico methods, classification approach is required (Wicker et al.
2010). This classification can be done as knowledge-based and machine learning-
based approach. Both of which have some limitations and strengths. Taking into
account the machine learning approach:

Firstly, this approach does prediction for a biotransformation when it has a quite a
general class (Gomez et al. 2007) or whether it is the substrate of some broad
reaction class, e.g., oxidoreductase catalyzed reactions (Mu et al. 2006).

Next is knowledge-based approach:

META: META is a knowledge-based expert system that simulates the biotransfor-
mation of xenobiotics. It operates with the help of a dictionary (knowledge base)
to seek target fragments in a compound and transform them to products (Klopman
et al. 1997).

Fig. 27.2 Pictorial representation of integrated approach of advanced technologies in biodegrada-
tion of xenobiotic compounds. (Source: Mishra, S., Lin, Z., Pang, S., Zhang, W., Bhatt, P., & Chen,
S. (2021). Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading
Microorganisms and Microbial Communities. Frontiers in bioengineering and biotechnology,
9, 632059. https://doi.org/10.3389/fbioe.2021.632059. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC-BY). The use, distribution, or
reproduction in other forums is permitted, provided the original author(s) and the copyright owner
(s) are credited and that the original publication in this journal is cited, in accordance with accepted
academic practice)
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METEOR: It is a knowledge-based expert system for prediction of metabolism
(Marchant et al. 2008).

CATALOGIC: It is a platform for models targeting environmental fate of
chemicals. It explicitly aims at probability estimates (Dimitrov et al. 2010).

UM-PPS: It stands for the University of Minnesota Pathway Prediction System
(UM-PPS) and comes under the UM-BBD (University of Minnesota Biocataly-
sis/Biodegradation Database). It is available at http://umbbd.msi.umn.edu/
predict/. Presently, it contains information on almost 1200 compounds, over
800 enzymes, almost 1300 reactions, and almost 500 microorganism entries
(Gao et al. 2011).

The UM-PPS predicts plausible biodegradation pathways for organic compounds
on the basis of sets of biotransformation rules derived from the UM-BBD database or
from the scientific literature (Fenner et al. 2008). The user can predict both aerobic
and anaerobic degradation pathways of chemicals and can select whether they will
view all or only the more likely aerobic transformations. Users can also obtain the
most accurate prediction for those compounds similar to compounds with biodegra-
dation pathways that have been reported in the scientific literature (Gao et al. 2011;
Arora and Bae 2014).

Usage
1. Prediction can be made both for aerobic and anaerobic degradation pathways of

chemicals, and it can be selected that whether the user will view all or only the
more likely aerobic transformations.

2. Also, we can obtain the most accurate prediction for those compounds similar to
those biodegradation pathways that have been reported in the scientific literature.

3. For the prediction, users may enter a compound into the system by either drawing
the structure and generating SMILES or entering SMILES directly.

4. For example, the degradation pathways of 4-nitrophenol have been thoroughly
investigated, while those of 2-fluro-4-nitrophenol and 2-bromo-4-nitrophenol
have not. However, the structures of 2-fluro-4-nitrophenol and 2-bromo-4-
nitrophenol are similar to 4-nitophenol. Therefore, PPS can provide very accurate
predictions for degradation of 2-flouro-4-nitrophenol and 2-bromo-4-nitrophenol
(Arora and Bae 2014).

27.3.1.1 PathPred
It is a knowledge-based prediction system, which uses data derived from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) in the form of KEGG REACTION
and KEGG RPAIR database. The KEGG RPAIR database has collection of bio-
chemical structure transformation patterns, called RDM patterns, and chemical
structure alignments of substrate–product pairs (reactant pairs) in all known
enzyme-catalyzed reactions taken from the enzyme nomenclature and the KEGG
PATHWAY database (Moriya et al. 2010).

It is a web-based server available at http://www.genome.jp/tools/pathpred/. It
predicts plausible pathways of multi-step reactions starting from a query compound,
based on the local RDM pattern match and the global chemical structure alignment

636 S. Khanna and A. Kumar

http://umbbd.msi.umn.edu/predict/
http://umbbd.msi.umn.edu/predict/
http://www.genome.jp/tools/pathpred/


against the reactant pair library. The server provides transformed compounds and
reference transformation patterns in each predicted reaction and displays all
predicted multi-step reaction pathways in a tree-shaped graph (Moriya et al. 2010).
It basically aims at predicting pathway for microbial biodegradation of environmen-
tal compounds and biosynthesis of plant secondary metabolites.

Usage
The PathPred server can be used for predicting microbial biodegradation pathways
of xenobiotics in bacteria and biosynthesis pathways of secondary metabolites in
plants. This can be done by

1. Selecting Reference Pathway—the user is requested to choose the reference
pathway for either of biosynthesis and biodegradation, which determines the
subset of RDM patterns to be utilized.

2. Query Format—the query can be inputted as a query compound in the MDL mol
file format, in the SMILES representation, or by the KEGG compound/drug
identifier (C/D number). This compound, termed initial compound, corresponds
to the compound to be degraded or the compound to be synthesized.

3. Output—The output of the PathPred server shows the prediction results as tree-
shaped graph. For example, the biodegradation prediction of glycolate (C00160)
from 1,2,3,4-tetrachlorobenzene. The output tree graph predicts the other possible
pathways including biodegradations through known compounds such as 3,4,6-
trichlorocatechol (C12831), 6-chlorobenzene-1,2,4-triol(C06328), and 1,2,4-
trichlorobenzene (C06594) (Fig. 27.3).

27.3.1.2 BNICE
It stands for Biochemical Network Integrated Computational Explorer, a computa-
tional approach developed to generate every possible biochemical reaction based on
a set of enzyme reaction rules of the enzyme commission (EC) and starting
compounds (Finley et al. 2009). In general, it predicts whether a particular com-
pound is biodegradable and whether alternate routes can be engineered for
compounds already known to be biodegradable.

The BNICE screens out all possible pathways for thermodynamic feasibility
based on the Gibbs free energies of the reaction and selects feasible novel thermo-
dynamic pathways (Soh and Hatzimanikatis 2010). Hence, it is used to (1) study the
combinatorial nature of polyketide synthesis (Gonzalez-Lergier et al. 2005), (2) to
provide systematic framework for linking of enzymatic chemistry and reactive sites
of metabolic compounds (Hatzimanikatis et al. 2004), and (3) for the prediction of
biodegradation pathways of compounds, which represent various classes of
xenobiotics.

Further, it has been also suggested by Soh and Hatzimanikatis et al. that the
pathways generated by BNICE can be further evaluated using established pathway
analysis approaches, such as thermodynamic-based flux balance analysis (FBA)
Grow match allows investigation of the overall effects of these novel pathways on
metabolic network performance in host organisms. FBA can help predict maximum
yield, phenotypic changes, effects of gene knockouts, changes in bioenergetics of the
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system for metabolic engineering, and synthetic biology (Soh and Hatzimanikatis
2010).

Usage
The BNICE framework searches for pathways by considering the starting compound
and/or products, the requested length of the pathway, and the range of reactions to
search over (Henry et al. 2010; Medema et al. 2012).

The user can also choose to search for a number of possibilities, either by
searching for a pathway using enzyme reactions from known pathways, by combi-
nation of multiple pathways, or the whole metabolic network (Henry et al. 2010;
Hatzimanikatis et al. 2005). A set of molecules is given as an input and every
molecule is evaluated to determine whether it has the appropriate functionality to

Fig. 27.3 Example of the predicted pathway tree of tetrachlorobenzene biodegradation (a) and the
detail of the top green pathway from the query compound (query) to the final compound (C00160)
(b). Structure images popup when the mouse is moved over nodes and edges in the tree if JavaScript
is enabled in the web browser. (Source: Moriya Y, D. Shigemizu, M. Hattori, T. Tokimatsu,
M. Kotera, S. Goto, Minoru Kanehisa, PathPred: an enzyme-catalyzed metabolic pathway predic-
tion server, Nucleic Acids Research, Volume 38, Issue suppl_2, 1 July 2010, Pages W138–W143,
https://doi.org/10.1093/nar/gkq318. Reused with Licence Number 5125780225626 dated August
11, 2021)
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undergo reactions corresponding to the specified reaction classes (Bashir Sajo and
Mohd 2015).

While predicting the possible pathways the BNICE predicts more than 10,000
different pathways for the biosynthesis and degradation of the compound of interest,
due to the fact that the system relies on few criteria. However, Henry et al. had
pioneered a prioritization approach in this framework, in which generated pathways
are ranked according to four criteria: pathway length, thermodynamic feasibility,
maximum achievable yield, and maximum achievable activity.

Output: The output of the BNICE is a graph-theoretic matrix representation of
biochemical compound, enzyme reaction rules, and molecules. It is represented
using the bond-electron matrix (BEM) where each atom in a molecule is represented
by a row and column. The BEM is characterized by diagonal elements, which denote
the non-bonded valence electrons and non-diagonal elements, which give the con-
nectivity via bonding between different atoms and the bond order between atoms
(Hatzimanikatis et al. 2005).

27.3.1.3 DESHARKY
It is a Monte Carlo algorithm, which finds a metabolic pathway from a target
compound by exploring database of enzymatic reactions. It predicts a possible
route connecting the specified target metabolism with the host metabolism, instead
of using pathway selection by enumeration of possible metabolic routes. It finds
pathway within shortest possible time by computing its associated genetic burden.
Also, it can be used also in distributed computing to sample most of the solution
spaces (Rodrigo et al. 2008).

Usage
The algorithm is implemented in C/C+ +, and it is easily compiled and runs in UNIX
environment (e.g., in Linux or in Windows using Cygwin). The algorithm calculates
thermodynamic favorability and energy loss in transcription and translation.

The input of the algorithm is usually the target compound, while its output is the
designed metabolic pathway together with quantification of the transcriptional,
translational, and metabolic load (Rodrigo et al. 2008). This framework also
provides the sequence of amino acids of the enzyme involved in the pathway.

Output: The output is the designed metabolic pathway together with the quantifi-
cation of the transcription, translation, and metabolic load. It provides the sequence
of amino acids of the enzymes involved in the pathway. These amino acid sequences
provided are usually the closest phylogenetically to Escherichia coli according to
KEGG classification of organisms (Rodrigo et al. 2008).

27.3.1.4 FMM
It stands for from metabolite to metabolite, a web server. It is available freely at
http://FMM.mbc.nctu.edu.tw/. It can reconstruct metabolic pathways from one
metabolite to another metabolite among different species, based mainly on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database and other integrated
biological databases (Chou et al. 2009). Even though KEGG maps utilized in many
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metabolic tools, none of them can connect metabolites from different KEGG maps.
FMM supports the connection of different KEGG maps.

FMM has many applications in synthetic biology and metabolic engineering. For
example, the reconstruction of metabolic pathways to produce valuable metabolites
or secondary metabolites in bacteria or yeast is a promising strategy for drug
production. FMM provides a highly effective way to elucidate the genes from
which species should be cloned into those microorganisms based on FMM pathway
comparative analysis (Chou et al. 2009).

Usage
1. Data collection and Integration:

Reaction definitions, species-specific reactions, reaction maps, and enzyme list
can be obtained from KEGG/LIGAND and KEGG/PATHWAY databases recent
releases. Information such as gene names, enzyme commission numbers, and
species-specific enzymes can be retrieved from UniProtKB/Swiss-Prot and NCBI
taxonomy databases. Additionally, the data in FMM are usually updated on a
regular basis.

2. Construction of reaction matrix information on reactions and enzymes can be
obtained from KEGG maps and the equation of each reaction can be determined.
Therefore, reaction matrices can be constructed based on maps, reactions, and
enzyme data.
The workflow of FMM in above Fig. 27.4 shows the reaction matrix, which was
developed to identify numerous reaction processes from one metabolite to
another. Enzyme annotations from UniProtKB/Swiss-Prot (Boutet et al. 2007)
were employed to identify enzymes from different species in comparative
analysis.

3. Reconstruction of metabolic pathway from various KEGG pathway maps: After
all possible reaction paths were identified, the number of pathway maps was
calculated. Usually, found paths occurred not in only a single pathway map, but
also in a complicated fashion in several maps. Pathway maps that contain the
most paths are selected and the one pathway map that has only one reaction is
avoided. A matrix of maps versus reactions was employed to reconstruct meta-
bolic pathway from different KEGG maps.

4. Comparative Analysis: Comparative analysis provided in FMM is useful in
synthetic biology. Comparative analysis provides an easy way to elucidate
which genes from which species should be cloned into those microorganisms.
First, the enzymes identified in the reconstructed pathway were processed to
search for orthologous encoding genes from various species. Then, the presence
or absence of the pathway in a particular species can be known.

27.3.1.5 RetroPath
It is a server, which applies a retrosynthetic approach, a concept originally proposed
for synthetic chemistry, which uses reverse chemical transformations (reverse
enzyme-catalyzed reactions in the metabolic space) starting from the desired target
compound to identify the reactants (precursors) that are indigenous to the selected
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host (Carbonell et al. 2012). It is available at http://www.issb.genopole.fr/~faulon/
retropath.php.

This method of metabolic pathway design is unique because it addresses the
complexity problem by coding substrates, products, and reactions into molecular
signatures. The approach used by RetroPath is characterized by metabolic maps,
which are represented in hypergraphs. The complexity involved in the reactions is
controlled by varying the specificity of the molecular signature. Each signature has
different “heights,” h, that correspond to levels of structural detail. The height can be
varied, which reduces the number of reactions that can be generated (Carbonell et al.
2011).

The proliferation of several metabolic databases with rich information is consid-
ered to be a significant breakthrough. KEGG that is a database resource integrated
with chemical and systematic functional information and genomics is linked to
RetroPath, where information on the reactions predicted using this framework can
be found in KEGG. BRENDA (Schomburg et al. 2013) is another database that
contains one of the largest collections functional enzyme data. Incomplete knowl-
edge or gaps still exist in many cases, especially when looking for novel ways to
synthesize a target compound of interest (Carbonell et al. 2013).

Fig. 27.4 Workflow of FMM. (Source: Chou, C. H., Chang, W. C., Chiu, C. M., Huang, C. C., &
Huang, H. D. (2009). FMM: a web server for metabolic pathway reconstruction and comparative
analysis. Nucleic acids research, 37(Web Server issue), W129–W134. https://doi.org/10.1093/nar/
gkp264. Reproduced with License no 5125960782113 dated August 11, 2021)
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To successfully achieve a heterologous pathway design, the process needs to be
rationalized by following the principles of synthetic biology: modeling of the
biological system of interest, modular design through standardization, goal-oriented
optimization, and experimental validation (Carbonell et al. 2013).

Usage
In the research study done by Carbonell et al. (2013), they have suggested that for
retrosynthetic design of heterologous pathways, the following steps will be required:
(1) host chassis selection, (2) in silico model selection for the chassis from BiGG
(Schellenberger et al. 2010) or biomodels (Le Novere et al. 2006), (3) definition of
the metabolic space, (4) pathway enumeration, (5) gene selection, (6) estimation of
yields by metabolic analysis software, e.g., COBRA, OptFlux (Rocha et al. 2010),
and COPASI (Hoops et al. 2006; Schaber 2012), (7) toxicity prediction of pathway
metabolite, (8) definition of an objective function to select the best pathway to
engineer, and (9) pathway implementation and validation (Fehér et al. 2014).

27.3.1.6 Metabolic Tinker
It is a web tool used to design synthetic metabolic pathways between user-defined
target and source compounds. The interface is available at http://osslab.ex.ac.uk/
tinker.aspx. It uses a tailored heuristic search strategy to search for thermodynami-
cally feasible paths in the entire known metabolic universe. The program contains a
directed graph known as universal reaction network (URN), which represents the
entire set of known reactions and compounds from the Rhea database (McClymont
and Soyer 2013). Nodes and edges on this graph represent metabolites and reactions,
respectively, and thus, the entire graph represents the current known metabolic
universe. This tool searches possible biochemical paths between two compounds
within this URN using standard search algorithms developed in computer science
and graph theory (McClymont and Soyer 2013). To complete the search, the Rhea/
CHEBI identification codes of both the source and target compounds are needed.

27.3.1.7 Carbon Search
It is an algorithm-based approach, which identifies pathways within existing meta-
bolic networks by tracking the conservation of atoms moving through them. On the
basis of this approach, two algorithms are developed that find metabolic pathways by
using atom mapping data to track the movement of atoms through metabolic
networks. One algorithm finds linear pathways, and the other algorithm finds
branched pathways. They both take as input atom as mapping data, a start com-
pound, a target compound, and a minimum number of atoms to conserve and a
maximum number of pathways to return (Heath et al. 2010). In the output, a set of
metabolic pathways, which conserve at least given number of atoms from the start
compound to the target compound, are returned. They have also demonstrated that
this carbon search tool based on the algorithms has efficiently identified both linear
and branched metabolic pathways, in which a certain threshold of atoms is
conserved. The resulting metabolic pathways are validated on known functional
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pathways. The algorithms are having the potential to find novel or alternative
pathways that may span multiple organisms (Heath et al. 2010).

Using this atom tracking approach, earlier Pitkänen et al. in 2009 have also
enabled graph theoretical-based method for finding biologically meaningful linear
and branched metabolic pathways in genome-scale metabolic networks.

27.3.1.8 The Furusawa Platform
It is an in silico platform that uses a developed algorithm for finding feasible
heterologous pathways by which non-native target metabolites are produced by
microorganisms, using Escherichia coli, Corynebacterium glutamicum, and Saccha-
romyces cerevisiae as templates (Chatsurachai et al. 2012).

Usage
The usage of this platform for heterologous pathway design comprises of following
four steps:

1. Construction of an in-house database of metabolic reactions—This is done by
considering known metabolic reactions from KEGG ligand section database and
BRENDA. These metabolic reactions are considered as candidate heterologous
reactions that could be added to the host metabolic networks (Chatsurachai et al.
2012). All metabolic reaction information regarding genes, enzymes, pathways,
and organism in the KEGG database can be collected into the database. The
information collected the information in a constructed database using
PostgresQL. The enzymatic information employed can be retrieved from
BRENDA, and python script can be used to access the constructed in-house
database (Chatsurachai et al. 2012).

2. Genome-scale metabolic models of host microorganisms—The microorganisms
that are widely used in industry were adopted as chassis templates to demonstrate
the viability of it on in silico platform. This includes Escherichia coli,
C. glutanicum, and S. cerevisiae, which were selected based on a number of
criteria such as having high growth activity under various conditions, ease of
genetic manipulation, and hence are considered as ideal hosts for bioengineered
products (Chatsurachai et al. 2012).

3. Heterologous pathway identification for target production—The developed plat-
form can be used to screen all producible target metabolites listed in the database
by adding heterologous reactions to host microorganisms. For all producible
target metabolites, the user can estimate the production yields using FBA,
assuming steady-state conditions and the maximum biomass production rate
(Chatsurachai et al. 2012). The entire list of producible target metabolites in
different hosts can be analyzed, and a set of rational heterologous pathways and
hosts can be selected that will likely produce the desired targets.

4. Flux balance analysis (FBA)—FBA is based on a genome-scale metabolic model
and optimization of a specific objective flux by linear programming. One can use
FBA to estimate the metabolic flux profile of metabolic networks expanded with
heterologous reactions. All FBA simulations in this framework can be performed
under the MATLAB interface (Chatsurachai et al. 2012).
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27.3.2 Omic-Based Approaches

27.3.2.1 Proteomics
According to Keller and Hettich (2009) and Aslam et al. (2017), proteomics has
emerged as an interesting and fruitful technology for the study of protein expression
(it includes post-translational modifications, protein turnover, proteolysis, and
changes in the corresponding gene expression) of the microbial world. Proteomics
has been used to identify microbial communities/microorganisms in various
ecosystems including soil and sediment, activated sludge, marine and groundwater
sediment, acid mine biofilms, and wastewater plants (Williams et al. 2013;
Colatriano et al. 2015; Grob et al. 2015; Bastida et al. 2016; Jagadeesh et al.
2017). Thus, the inclusion of a proteomic approach helps to identify related enzymes
and their metabolic pathways in the bioremediation of xenobiotics from various
contaminated sites (Liu et al. 2017; Wei et al. 2017). Studies also revealed important
and hidden information related to protein synthesis, gene expression stability,
mRNA turnover, and protein–protein interaction networks in microbial communities
in stress environments Aslam et al. (2017). Hence, the studies related to proteomic
analysis plays important role for bioremediation process.

Protein Analysis: Generally, there are four primary steps that involve proteomic
analysis of microbial communities:

1. preparation of a biological sample;
2. extraction and separation of proteins by using two-dimensional gel electrophore-

sis (2D-GE);
3. protein gel images are examined by means of image analysis software such as

ImageMaster 2D or PDQuest; and
4. proteins are identified by using mass spectroscopy (MS)/MALDI-TOF/MS or

LC-MS (Yates et al. 2009; Chakka et al. 2015; Velmurgan et al. 2017).

The workflow of proteomic analysis is shown below in Fig. 27.5.

Applications of Proteomics in Bioremediation
1. The bioremediation of compounds done by microorganisms has shown involve-

ment of several proteins. This is demonstrated by the study done by Vandera et al.
(2015). In their study, they have done comparative proteomic analysis of
Arthrobacter phenanivorans Sphe3 on aromatic compounds phenanthrene and
phthalates. The proteomic approach confirmed the involvement of several
proteins in aromatic substrate degradation by identifying those mediating the
initial ring hydroxylation and ring cleavage of phenanthrene to phthalate. This
study also revealed the presence of both the ortho- and meta-cleavage pathways
for the degradation of these aromatic compounds, and it also identified all
proteins that take part in these pathways and are highly upregulated upon
phthalate growth in comparison with phenanthrene growth.

2. The proteomic analysis of pyrene-degrading bacterium Achromobacter
xylosoxidans PY4 done by Nzila et al. (2018) has identified a total of 1094
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proteins. Out of which, 95 proteins were detected in glucose supplementation,
and 612 proteins were detected in the presence of pyrene. Furthermore, they have
found 25 upregulated proteins to be involved in stress response and the progres-
sion of genetic information. Two upregulated proteins, 4-hydroxyphenylpyruvate
dioxygenase and homogentisate 1,2-dioxygenase, are implicated in the lower
degradation pathway of pyrene. Enzyme 4-hydroxyphenylpyruvate dioxygenase
may catalyze the conversion of 2-hydroxybenzalpyruvic acid (metabolite of
pyrene) to homogentisate. Homogentisate 1,2-dioxygenase is involved in the
incorporation of 2 oxygen atoms to produce 4-maleyacetoacetate, which is an
intermediate in several metabolic pathways (Nzila et al. 2018).

3. Lee et al. (2016) have performed proteomic analysis of PAH-degrading bacterial
isolate Sphingobium chungbukense DJ77. This strain exhibited outstanding deg-
radation capability for various aromatic compounds. With this study, it was
demonstrated that the degradation of three xenobiotic compounds, i.e., phenan-
threne, naphthalene, and biphenyls (PNB), and their associated proteins was
analyzed by 2-DE and MALDI-TOF/MS analysis. During PNB biodegradation
by bacterial cells, an alteration was observed in protein expression to cope with
the stress condition.

Fig. 27.5 Workflow of proteomic analysis. (Source: Chandran, H., Meena, M., & Sharma,
K. (2020). Microbial Biodiversity and Bioremediation Assessment Through Omics Approaches.
Frontiers in Environmental Chemistry, 1, 9. https://doi.org/10.3389/fenvc.2020.570326. Frontiers
is fully compliant with open-access mandates, by publishing its articles under the Creative
Commons Attribution Licence (CC-BY))
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4. In year 2019, Chen et al. have investigated a biodegradation mechanism of
tetrabromobis-phenol (TBBPA) in Phanerochaete chrysosporium by using a
proteomic approach. With aid of this approach, they have found that compared
to control TBBPA, stress caused 148 differentially expressed proteins in
P. chrysosporium, among which 90 proteins were upregulated and 58 proteins
were downregulated. The upregulation of cytochrome p450 monooxygenase,
glutathione-S-transferase, O-methyltransferase, and other oxidoreductases is
responsible for the biotransformation of TBBPA via oxidative hydroxylation
and reductive debromination.

5. Another bioremediation study with proteomic analysis was performed by Yu
et al. (2019). It was of decabromodiphenyl ether (BDE-209). It was explored in
Microbacterium Y2 in a polluted water-sediment system. The results of study
have shown that the overexpression of haloacid dehalogenases, glutathione S-
transferase, and ATP-binding cassette (ABC) transporter might occupy important
roles in BDE-209 biotransformation. Moreover, heat-shock proteins (HSPs),
ribonuclease E, oligoribonuclease (Orn), and ribosomal proteins were activated
to counter the BDE-209 toxicity. Thus, it is suggested that these proteins are
implicated in microbial degradation, antioxidative stress, and glycolysis.

6. Another application of proteomics in bioremediation is researched by Gregson
et al. (2020). It was reported that LC–MS/MS shotgun proteomics is used to
determine variations in the proteome of hydrocarbon-degrading psychrophile
Oleispira antarctica RB-8 when grown on n-alkanes in cold temperatures.

27.3.2.2 Genomics and Metagenomics
Genomics is the powerful computer technology used to understand the structure and
function of all genes in an organism based on knowing the organism’s entire DNA
sequence. This field includes intensive efforts to determine the entire DNA sequence
of organisms and in-depth genetic mapping efforts (Fulekar and Sharma 2008).

Whereas metagenomic studies unblock the traditional ways of uncultured
microorganisms and explore their genetic advantages in the process of bioremedia-
tion (Rahimi et al. 2018; Nascimento et al. 2020). It uses the pool of environmental
genomes of microorganisms, which increases the probability to discover unique
genes and diverse pathways with new enzymes containing highly specific catalytic
properties (Scholz et al. 2012; Yergeau et al. 2017; Awasthi et al. 2020). This
technology gives a new parade to microbiologists for understanding unculturable
microbiota with a genetic variability of microbial communities (Devarapalli and
Kumavnath 2015; Zhu et al. 2018; Awasthi et al. 2020). Hence, metagenomic
information will enable researchers to integrate pure culture study with genomics
(Hodkinson and Grice 2015). Current metagenomic practices allow for identifying
the whole-genome structure of microorganisms and specifying particular genes that
are attributed to encode degradative enzymes for the mineralization of xenobiotics
(Zafra et al. 2016; Zhu et al. 2020). This clearly highlights the crucial role of novel
genes in connecting the entire microbial population with functional diversity and
structural identity. Based on it, the metagenomics involves the manufacturing of
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metagenomic libraries. With the help of these, biological information can be
retrieved from these metagenomic libraries by two types of analysis:

1. Sequence-Driven Analysis: This analysis is based on the sequencing of clones
with phylogenetic anchors or conserved DNA sequences, which is the plausible
origin of the DNA fragment (Wu et al. 2010; Felczykowska et al. 2015; Wong
2018). This type of analysis is increasingly used owing to the availability of
several software packages for data analysis and the ease to assess metagenomic
sequencing data. This approach is predominantly influenced by the precision of
genome annotation, the integrity of the available data, algorithms, and facts in
databases to ascertain the function of novel genes (Ferrer et al. 2009).
The complete genome analysis or sequence analysis is progressed through three
technical transformations:
(a) First-Generation Sequencing—Frederick Sanger and Allen Maxam Walter

Gilbert sequencing techniques were categorized as the first-generation DNA
sequencing methods. Sanger sequencing uses denatured DNA template,
radioactively labeled primer, DNA polymerase, and chemically modified
nucleotides called di-deoxynucleotides to generate DNA fragments with
various lengths.

(b) Next-Generation Sequencing—It is also called high-throughput sequencing.
Next-generation sequencing involves library preparation, sequencing, base
calling, alignment to the established genome, and assorted annotation.
Library preparation begins with the fragmentation of DNA into multiple
fragments by sonication, enzymatic digestion, or transposase followed by
ligation with adaptor sequences. The prepared library is then amplified using
clonal amplification and PCR methods to generate DNA replicas. DNA
replicas are then sequenced using different approaches (Samorodnitsky
et al. 2015). The major platforms used for microbiome studies in next-
generation sequencing are pyrosequencing (Roche/454 sequencing),
Illumina, SOLiD, Ion Torrent, PacBio RS, etc.
These are high-throughput sequencing techniques of ribosomal genes that
quantify community structures and functions at a higher resolution, e.g., 16S
rRNA in prokaryotes, and 5S or 18S rRNA genes, or the internal-transcribe-
spacer (ITS) region in eukaryotes (Luo et al. 2012). The effectiveness of such
NGS technologies in analyzing microbial communities from diverse
environments was elucidated, validated, and documented in many studies
(Brown et al. 2013; Shokralla et al. 2014; Zhou et al. 2015; Niu et al. 2016;
Scholer et al. 2017).

(c) Third-Generation Sequencing—It is also called single-molecule long-read
sequencing. It offers lower sequencing charge and contented sample prepa-
ration without PCR amplification. The two most widely used sequencing
platforms in third-generation sequencing are Pacific Biosciences, Oxford
Nanopore Technology, and Helioscope technology.

The competitive analysis of platforms used in second and third-generation
sequencing is discussed below in Table 27.1.

27 Bioinformatics Toward Improving Bioremediation 647



Ta
b
le

27
.1

C
om

pa
ra
tiv

e
an
al
ys
is
of

di
ff
er
en
t
pl
at
fo
rm

s
us
ed

fo
r
se
co
nd

-
an
d
th
ir
d-
ge
ne
ra
tio

n
S
eq
ue
nc
in
g.

S
ou

rc
e:

C
ha
nd

ra
n,

H
.,
M
ee
na
,
M
.,
&

S
ha
rm

a,
K
.(
20

20
).
M
ic
ro
bi
al
B
io
di
ve
rs
ity

an
d
B
io
re
m
ed
ia
tio

n
A
ss
es
sm

en
tT

hr
ou

gh
O
m
ic
s
A
pp

ro
ac
he
s.
F
ro
nt
ie
rs
in
E
nv
ir
on

m
en
ta
lC

he
m
is
tr
y,
1,
9.
ht
tp
s:
//d

oi
.o
rg
/1
0.

33
89

/f
en
vc
.2
02

0.
57

03
26

.F
ro
nt
ie
rs
is
fu
lly

co
m
pl
ia
nt

w
ith

op
en
-a
cc
es
s
m
an
da
te
s,
by

pu
bl
is
hi
ng

its
ar
tic
le
s
un

de
r
th
e
C
re
at
iv
e
C
om

m
on

s
A
ttr
ib
ut
io
n
L
ic
en
ce

(C
C
-B
Y
)

S
N
o:

O
m
ic
s

te
ch
no

lo
gi
es

P
ri
nc
ip
le

A
dv

an
ta
ge
s

D
is
ad
va
nt
ag
es

A
pp

lic
at
io
ns

I
S
ec
on

d
ge
ne
ra
tio

n
se
qu

en
ci
ng

pl
at
fo
rm

s

1.
P
yr
os
eq
ue
nc
in
g

S
eq
ue
nc
in
g
by

sy
nt
he
si
s

es
ta
bl
is
he
d
on

th
e

id
en
tifi

ca
tio

n
of

py
ro
ph

os
ph

at
e
di
sc
ha
rg
ed

af
te
r
nu

cl
eo
tid

e
am

al
ga
m
at
io
n
in

th
e
ne
w
ly

sy
nt
he
si
ze
d
D
N
A

st
ra
nd

F
as
t
an
d
fi
rm

m
et
ho

d
w
ith

re
al
-t
im

e
re
ad

ou
t

ap
pr
op

ri
at
e
fo
r
se
qu

en
ci
ng

sh
or
tf
ra
gm

en
ts
of

D
N
A
,l
ow

co
st
,n

uc
le
ot
id
e
di
sp
en
sa
tio

n
ea
si
ly

pr
og

ra
m
m
ab
le
,

al
te
ra
tio

ns
in

th
e
py

ro
gr
am

pa
tte
rn

re
ve
al
m
ut
at
io
ns
,

de
le
tio

ns
an
d
in
se
rt
io
ns

G
en
er
at
io
n
of

lo
ng

ho
m
op

ol
ym

er
s
ge
ne
ra
tin

g
se
qu

en
ci
ng

er
ro
rs
,d

if
fi
cu
lty

in
de
ci
di
ng

th
e
qu

an
tit
y
of

in
te
gr
at
ed

nu
cl
eo
tid

es
in

ho
m
op

ol
ym

er
ic
ar
ea
s

Id
en
tifi

ca
tio

n
of

m
ic
ro
be
s,

w
ho

le
ge
no

m
e
se
qu

en
ci
ng

2.
Il
lu
m
in
a

S
eq
ue
nc
e-
by

-s
yn

th
es
is

m
et
ho

d
C
el
ls
no

t
re
qu

ir
ed
,h

ig
he
st

th
ro
ug

ho
ut
,p

ro
du

ce
re
la
tiv

el
y
sh
or
t
re
ad
s
w
ith

le
ng

th
up

to
30

0
bp

,l
ow

es
t

co
st
pe
r
ba
se

ou
tp
ut

co
m
pa
tib

le
w
ith

m
os
t

ap
pl
ic
at
io
ns

S
lo
w
,s
ho

rt
re
ad
s,
hi
gh

co
st

of
re
ag
en
ts
,a
be
rr
an
t

in
co
rp
or
at
io
n
of

in
co
rr
ec
t

dN
T
P
s
by

po
ly
m
er
as
es

G
en
e
ex
pr
es
si
on

st
ud

ie
s
to

id
en
tif
y
is
of
or
m
s,
no

ve
l

tr
an
sc
ri
pt
s,
ge
ne

fu
si
on

s,
ex
oc
ri
ne

se
qu

en
ci
ng

,w
ho

le
ge
no

m
e
se
qu

en
ci
ng

3.
Io
n
T
or
re
nt

S
eq
ue
nc
in
g
es
ta
bl
is
he
d

th
ro
ug

h
th
e
re
co
gn

iti
on

of
hy

dr
og

en
io
ns

re
le
as
ed

du
ri
ng

po
ly
m
er
iz
at
io
n
of

D
N
A

P
ro
du

ce
s
re
ad
s
up

to
40

0
bp

le
ng

th
,l
es
s
ru
n
tim

e,
re
lia
bl
e

an
d
co
st
-e
ff
ec
tiv

e
to
ol
,h

ig
h

ac
cu
ra
cy

an
d
sh
or
tr
un

tim
e

H
ig
h
er
ro
r
ra
te
s
fo
r
sp
ec
ifi
c

re
gi
on

s
T
o
st
ud

y
m
ic
ro
bi
al
di
ve
rs
ity

in
co
m
pl
ex

ec
os
ys
te
m
s,

ta
rg
et
ed
,e
xo

m
e,

tr
an
sc
ri
pt
om

e,
de

no
vo
,s
m
al
l

R
N
A

se
qu

en
ci
ng

4.
A
B
I
S
O
L
iD

sy
st
em

S
eq
ue
nc
in
g
te
ch
no

lo
gy

ba
se
d
on

lig
at
io
n
of

D
N
A

fr
ag
m
en
ts

H
ig
h
ac
cu
ra
cy

si
nc
e
ea
ch

ba
se

is
re
ad

tw
ic
e

re
la
tiv

el
y
sh
or
tr
ea
ds

an
d
lo
g

ru
n
tim

es
W
ho

le
ge
no

m
e
se
qu

en
ci
ng

,
ta
rg
et
ed

se
qu

en
ci
ng

,
tr
an
sc
ri
pt
om

e
re
se
ar
ch
,

ep
ig
en
om

e
an
al
ys
is

648 S. Khanna and A. Kumar

https://doi.org/10.3389/fenvc.2020.570326
https://doi.org/10.3389/fenvc.2020.570326


II
T
hi
rd

ge
ne
ra
tio

n
se
qu

en
ci
ng

pl
at
fo
rm

s

1.
P
ac
ifi
c

bi
os
ci
en
ce
s

S
M
R
T

se
qu

en
ci
ng

S
eq
ue
nc
in
g
th
ro
ug

h
sy
nt
he
si
s
m
et
ho

d
an
d
re
al

tim
e
de
te
ct
io
n
of

in
te
gr
at
ed

fl
uo

re
sc
en
tly

la
be
lle
d

nu
cl
eo
tid

es

L
on

g
re
ad
s,
hi
gh

ac
cu
ra
cy
,

un
if
or
m

co
ve
ra
ge
,s
in
gl
e-

m
ol
ec
ul
e
re
so
lu
tio

n

L
on

ge
r
re
ad
s
m
ak
e
cr
ea
te

sc
af
fo
ld
s
in

re
pe
at
re
gi
on

s
W
ho

le
ge
no

m
e
se
qu

en
ci
ng

ta
rg
et
ed

se
qu

en
ci
ng

,R
N
A

se
qu

en
ci
ng

,e
pi
ge
ne
tic

st
ud

ie
s,
st
ud

y
co
m
pl
ex

po
pu

la
tio

ns

2.
O
xf
or
d

na
no

po
re

se
qu

en
ci
ng

M
ea
su
re
m
en
t
of

ph
ys
ic
al

ch
an
ge
s
w
he
n
D
N
A

se
qu

en
ce

tr
an
sl
oc
at
es

th
ro
ug

h
na
no

m
et
er
si
ze

po
re
s

un
de
r
in
fl
ue
nc
e
of

el
ec
tr
ic

do
m
ai
n

C
he
ap
,f
as
ta
nd

ac
cu
ra
te

D
N
A

se
qu

en
ci
ng

,l
on

ge
r

re
ad
s,
be
tte
r
re
so
lu
tio

n,
sm

al
l

si
ze

B
as
ed

er
ro
rs
,h

ig
h
co
st
pe
r

re
ad

D
N
A
,R

N
A
or

pr
ot
ei
n

an
al
ys
es

3
H
el
iS
co
pe

S
in
gl
e-
m
ol
ec
ul
e
se
qu

en
ci
ng

pl
at
fo
rm

us
in
g
a
hi
gh

ly
se
ns
iti
ve

fl
uo

re
sc
en
ce

de
te
ct
io
n
sy
st
em

L
ar
ge

nu
m
be
r
of

si
ng

le
m
ol
ec
ul
es

re
ad
,t
o
re
du

ce
hi
gh

er
ro
r
ra
te
s

S
ho

rt
re
ad
in
g
se
qu

en
ce
,t
he

se
qu

en
ci
ng

pr
oc
es
s

de
te
ri
or
at
e
fr
om

nu
m
er
ou

s
bi
as
es

du
e
to

in
ad
eq
ua
te

cl
on

el
am

pl
ifi
ca
tio

n
an
d

D
N
A

ex
te
ns
io
n
de
va
st
at
io
n

R
e
se
qu

en
ci
ng

,t
ra
ns
cr
ip
t

co
un

tin
g

27 Bioinformatics Toward Improving Bioremediation 649



Shotgun Sequencing
It is also called shotgun metagenomic sequencing. It is a powerful technique in

microbial ecology because it provides a vigorous and reliable evaluation of
microbial diversity (Hillmann et al. 2018). It does not depend on PCR amplifica-
tion and is used to examine the functional potential and microbial composition of
the community.

Importance of shot-gun sequencing in bioremediation
(a) It is the only way to study the microbial community with no markers like

viruses (Quince et al. 2017; Vermote et al. 2018).
(b) It allows strain-level remodeling in the taxonomic analysis and pathway

predictions for the functional annotation of the microbiome under study
(Han et al. 2020).

(c) It is an emerging molecular method to bridge the gap amid community
structure and functional competence.

(d) It also helps in understanding the strategies adopted by microorganisms to
thrive in adverse conditions (Sharpton 2014; Peabody et al. 2015; Ranjan
et al. 2016).

(e) This techniques workflow for taxonomy analysis consists of quality pruning
and evaluation of a reference database involving whole genomes or specifi-
cally designed marker genes to create a taxonomy profile. Since it contains all
genetic information in a sample, the information can be used for supplemen-
tary analyses like metagenomic assembly and binning, metabolic function
profiling, and antibiotic-resistant gene profiling (Chandran et al. 2020).

(f) Shotgun metagenomic analysis of microbial communities from deep seabed
petroleum seeps in the Eastern Gulf of Mexico revealed the presence of
diverse communities of chemoheterotrophs and chemolithotrophs (Dong
et al. 2019).

(g) Whole-genome shotgun sequencing was engaged to identify the taxonomic
diversity and gene repertoire of bacteria isolated from tannery effluents and
petrol-polluted soil samples for degradation of persistent organic pollutants
like naphthalene, toluene, petrol, and xylene (Muccee and Ejaz 2020).

2. Function-Driven Analysis: The function-driven analysis is based on the identifi-
cation of clones that express their functional activity. If the sequence analogy
does not complement to a functional association or the original gene has less
analogy to some genes whose products have been investigated biochemically or a
specific gene is capable to accomplish diverse tasks in the cell (Hallin et al. 2008),
then in such cases, function-driven screening is preferred to discover genes with
novel functions or to explore the sequence variation of protein families (Singh
et al. 2009; Meena et al. 2016). The workflow below is showing the general
methodology used for metagenomic research in Fig. 27.6.

Applications of Metagenomics
1. With metagenomic analysis, research area has increased to analyze microbial

communities, their genetic diversity, and metabolic pathways. It has provided
opportunities to discover microbial consortia and genes involved in the
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bioremediation of xenobiotic compounds. For example, phenol-degrading
pathways of uncultivated bacteria in activated sludge were studied using
metagenomics (Sueoka et al. 2009).

2. The metagenomic approach was used by Silva et al. (2013) to characterize genes
and metabolic pathways associated with the degradation of phenol and other
aromatic compounds in sludge from a petroleum refinery wastewater treatment
system.

3. Also, Jeffries et al. in 2018 have employed metagenomic analysis to outline the
functional potential and taxonomic community composition, and to predict the

Fig. 27.6 Workflow of Metagenomic Research. (Source: Chandran, H., Meena, M., & Sharma,
K. (2020). Microbial Biodiversity and Bioremediation Assessment Through Omics Approaches.
Frontiers in Environmental Chemistry, 1, 9. https://doi.org/10.3389/fenvc.2020.570326. Frontiers
is fully compliant with open-access mandates, by publishing its articles under the Creative
Commons Attribution Licence (CC-BY))
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breakdown of chemical compounds of soils with organophosphorus pesticide
exposure.

4. A combined physical and chemical analysis along with metagenomics was done
by Gaytán et al. (2020) to explicate probable metabolic pathways associated with
polyurethane-degrading to alleviate plastics and xenobiotic pollution.

5. Studies are done by Aubé et al. (2020), using metagenome and enriched mRNA
metatranscriptome sequencing on the persistent impact of petroleum pollutants on
the taxonomic and metabolic structure of microbial mats.

6. Auti et al. (2019) have demonstrated that 16S rRNA gene sequencing analysis is a
highly recommended cost-effective technique for the phylogenetic resolution and
taxonomic profiling of microbial communities. As 16S rRNA gene sequence
similarity between two strains provides a simple yet robust criterion for the
identification of newly isolated strains, whereas phylogenetic analyses can be
used to elucidate the overall evolutionary relationship between related taxa
(Johnson et al. 2019).

7. Using metagenomic approach, Zhu et al. (2020) have explored microbial assem-
blage and functional genes potentially involved in upstream and downstream
phthalate degradation in soil. Results of which indicate that bacterial taxon
Actinobacteria (Pimelobacter, Nocardioides,Gordonia, Nocardia, Rhodococcus,
and Mycobacterium) was a major degrader under aerobic conditions, and bacte-
rial taxa Proteobacteria (Ramlibacter and Burkholderia), Acidobacteria, and
Bacteroidetes were involved under anaerobic conditions.

8. By metagenomic analysis, Hidalgo et al. (2020) in their research have exposed
that the members of Geobacteraceae and Peptococcaceae microbiota present in
the jet-fuel-contaminated site could be exploited for their remarkable metabolic
potential for the mitigation of toluene and benzene.

27.3.2.3 Transcriptomics
Transcriptomics is the study of an organism’s transcriptome, i.e., the sum of all of its
RNA transcripts. The information content of an organism is recorded in the DNA of
its genome and expressed through transcription. Here, mRNA serves as a transient
intermediary molecule in the information network, while noncoding RNAs perform
additional diverse functions. A transcriptome captures a snapshot in time of the total
transcripts present in a cell (Lowe et al. 2017).

It is also called gene expression profiling because it provides the understanding of
up- or downregulation of genes under various environments in microbial
communities. mRNA analysis provides a direct vision of cell and tissue-specific
gene manifestation like (1) the existence, nonexistence, and assessment of transcript,
(2) assessment of alternative splicing to foresee protein isoforms, and (3) quantitative
evaluation of genotype impact on gene expression via expression assessable trait loci
analysis or allele-specific expression (Chandran et al. 2020). Thus, transcriptomic
analysis provides a large amount of gene information about the potential function of
microbial communities in adaptation and survival in extreme environments (Singh
et al. 2018).
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There are a number of techniques in transcriptomics that supports in reviewing
and evaluating mRNA expression of an organism. This includes the following:

1. Microarrays: DNA microarray is a powerful technique in transcriptomics that
supports in reviewing and evaluating mRNA expression of every single gene
existing in an organism. The technique has been employed to evaluate variance in
metabolic and catabolic gene expressions, to analyze the microbial community
physiology from diverse environments, identify new bacterial species, etc.
(Dennis et al. 2003; Greene and Voordouw 2003).

2. RNA Sequencing: RNA sequencing uses next-generation sequencing to deter-
mine the amount of RNA in a sample. It is very extensive as it facilitates different
types of RNA at a much-advanced coverage and broad discovery studies
(Shendure 2008; Nagalakshmi et al. 2010).
The generation of raw transcriptome data involves purification of fine RNA of
interest followed by transformation of RNA to complementary DNA (cDNA),
fragmenting cDNA to build a library using sequence by synthesis (RNA sequenc-
ing), running the microarray or sequence through superior software platform and
carrying out ad hoc QC (Chandran et al. 2020). Thus, it a better approach to
understand the basic nature and mechanism of differently expressed genes in the
host and symbiotic microbes at a time (Kaur and Kaur 2016).

3. GeoChip: It is a high-throughput tool, which analyzes microbial community
composition, structure, and functional activity. It uses key enzymes or genes to
spot various microbe-mediated mechanisms for biogeochemical cycles, resis-
tance mechanism for heavy metals, and degradation pathways of xenobiotics
(He et al. 2010; Xiong et al. 2010; Xie et al. 2011).

4. DNA and RNA-SIP: These are both stable isotope probing technologies. They are
used for probing hydrocarbon degraders. They are also valuable to uncover the
microbial taxa and catabolic genes that are important for the bioremediation of
polluted environments (Lueders 2015).

5. microRNAs: The regulation of gene expression can be studied also by the
collective analysis of mRNA and microRNA levels. MicroRNAs (mRNAs) are
short, noncoding RNA molecules that control transcription of mRNA. The
precise binding of mRNAs to a target mRNA (by sequence homology) either
impedes mRNA binding to the ribosome or targets it for degradation. mRNA
profiling along with miRNA expression can be used to explore variations in the
transcriptome profile, particularly to identify the miRNA transcripts that are
subjected to regulation, emphasizing the probable molecular pathways supporting
a particular trait or condition (Chandran et al. 2020).

Applications of Transcriptomics
1. Comparative transcriptomics have been used to reveal highly upregulated degra-

dation pathways and putative transporters for phenol to improve phenol tolerance
and utilization by lipid-accumulating Rhodococcus opacus PD630 (Yoneda et al.
2016).
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2. Hong et al. in year 2016 have studied hydrocarbon-degrading bacterium
Achromobacter sp. using transcriptomics. The species was isolated from seawater
and indicated that the upregulation of enzymes such as dehydrogenases,
monooxygenases, and novel genes associated with fatty acid metabolism is
responsible for its enormous capability for hydrocarbon degradation and survival.

3. The investigation done by Lima-Morales et al. in year 2016 using transcriptomic
approach on the microbial organization and catabolic gene diversity. They have
worked on three types of contaminated soil under continuous long-term pollutant
stress with benzene and benzene/toluene/ethylene/xylene (BTEX). The results
obtained have shown shifts in community structure and the prevalence of key
genes for catabolic pathways. Moreover, de novo transcriptome synthesis gives
new insights into and reveals basic information about nonmodel species without a
genome reference.

4. Metatranscriptomic analysis of the wheat rhizosphere identified dominant bacte-
rial communities of diverse taxonomic phyla, including Acidobacteria,
Cyanobacteria, Bacteroidetes, Streptophyta, Ascomycota, and Firmicutes, hav-
ing functional roles in the degradation of various xenobiotic pollutants (Singh
et al. 2018).

5. Transcriptomic along with genomic approaches was used by Sengupta et al. in
year 2019 for studying mechanistic insights of 4-nitrophenol (4-NP)-degrading
bacterium Rhodococcus sp. strain BUPNP1. The study identified a catabolic
43 gene cluster named nph that harbors not only mandatory genes for the
breakdown of 4-NP into acetyl co-A and succinate by nitrocatechol, but also
for other diverse aromatic compounds.

6. Transcriptome analysis of activated sludge microbiomes decoded the role of the
nitrifying organisms in heavy oil degradation (Sato et al. 2019).

7. Also, studies done by Das et al. in year 2020 using transcriptome analyses of
crude oil-degrading Pseudomonas aeruginosa strains revealed the significance of
differentially expressed genes implicated in crude oil degradation.

27.3.2.4 Metabolomics
Ametabolome is the total metabolites in an organism, and the study of the metabolite
profile of a cell within a given condition is called metabolomics (Beale et al. 2017).
Metabolomics explores the relationships between organisms and the environment,
such as organismal responses to abiotic stressors, including both natural factors such
as temperature, and anthropogenic factors such as pollution, to investigate biotic–
biotic interactions such as infections, and metabolic responses (Lindon et al. 2006;
Griffiths 2007; Mallick et al. 2019).

Metabolomics analyzes the metabolites produced by the cell in response to
changing environmental conditions, which in turn provide information about the
regulatory events in a cell (Krumsiek et al. 2015). A metabolomic analysis workflow
starts with sample acquisition and preparation followed by separation and detection
of analytes. Detection and quantification of metabolites are normally accomplished
through an amalgamation of chromatography techniques (liquid chromatography
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and gas chromatography) and detection systems like mass spectrometry and nuclear
magnetic resonance (Aldridge and Rhee 2014).

Applications of Metabolomics
1. Seo et al. in 2013 have investigated the degradation mechanism of carbaryl and

other N-methyl carbamates pesticides in Burkholderia sp. strain C3 by using
metabolomic approach. The result of this study has shown that the metabolic
adaptation of Burkholderia sp. C3 to carbaryl in comparison with glucose and
nutrient broth. The metabolic changes were notably associated with the biosyn-
thesis and metabolism of amino acids, sugars, PAH lipids, and cofactors. Thus,
this metabolomic study could provide detailed insights into bacterial adaptation to
different metabolic networks and the metabolism of toxic pesticides and
chemicals.

2. Wang et al. in 2019 have applied comparative metabolic approach for studying
the microbial degradation of cyfluthrin by Photobacterium ganghwense. This
approach has explored the biotransformation pathway of cyfluthrin with the
identification of 156 metabolites during the biodegradation process.

3. In 2018, Li et al. on the basis of interactions of indigenous soil microorganisms to
PAH-contaminated soil have that the majority of microbial metabolic functions
were adversely affected to cope with PAH pollution. This study includes the
combined study of enzyme activity and sequencing analysis with metabolomics,
which further exposed the specific inhibition of soil metabolic pathways
associated with carbohydrates, amino acids, and fatty acids due to microbial
community shifting under PAH stress.

4. High-throughput sequencing and soil metabolomics were used by Song et al. in
2020 for investigating the differential structures and functions of soil bacterial
communities in the pepper rhizosphere and bulk soil under plastic greenhouse
vegetable cultivation (PGVC). In the study, a total of 245 metabolites were
identified, among which 11 differential metabolites were detected between rhizo-
sphere and bulk soil, including organic acids and sugars that were positively and
negatively correlated with the relative abundances of the differential bacteria. A
starch and sucrose metabolic pathway was the most differentially expressed
pathway in rhizospheric soil. The main functional genes participating in this
pathway were predicted to be downregulated in rhizosphere soil.

5. Wright et al. in 2020 also evaluated the metabolomic characterization of two
potent marine bacterial isolates, Mycobacterium sp. DBP42 and Halomonas
sp. ATBC28, capable of the degradation of phthalate and plasticizers such as
ATBC, DBP, and DEHP. This research study presented the molecular analysis of
metabolites generated during biodegradation. It also confirmed that DBP
and ATBC were degraded through the sequential removal of ester side chains
and generated monobutyl phthalate and phthalate in the case of DBP degradation
and citrate in the case of ATBC degradation in Mycobacterium species.

6. Metabolite pathway databases and repositories are there, which can be used to
supervise and investigate the information about metabolites and their pathways.
They provide a databank on metabolic information and help in the unification of
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complex data into metabolic pathways. These databases and repositories also help
in modeling metabolic pathways that can be investigated and prompted using
mathematical modeling techniques (Chandran et al. 2020).

27.3.3 Prediction of Chemical Toxicity

Determination of chemical toxicity level, which is lethal for the survival of the
degrading microbes, is very important. Several tools and computational models are
present, which can predict the toxicity of chemicals involved.

QSAR-Based Models: It stands for quantitative structure regulatory activity
relationship. This calculates toxicity based on the physical characteristics of the
structure of chemicals such as the molecular weight or the number of benzene rings
(molecular descriptors) using mathematical algorithms (Eriksson et al. 2003). There
is number of tools based on QSAR:

1. VirtualToxLab—It is for prediction of the toxic potential of drugs, chemicals, and
natural products. This includes endocrine and metabolic disruption, and some
aspects of carcinogenicity and cardiotoxicity (Vedani et al. 2009).

2. Toxicity Estimation Software Tool (TEST)—This tool is for prediction of the
acute toxicity of organic chemicals based on their molecular structures. It allows a
user to estimate toxicity without requiring any external programs. Users input a
chemical to evaluate by drawing it in an included chemical sketcher window,
entering a structure text file, or importing it from an included database of
structures. Once entered, the toxicity is estimated using one of several advanced
QSAR methodologies (http://www.epa.gov/nrmrl/std/qsar/qsar.html).

3. Sarah Nexus—It is a statistical-based model used for prediction of the mutage-
nicity of chemicals (Barber et al. 2016).

4. TOPKAT—It is for prediction of the ecotoxicity, mutagenicity, and reproductive
or developmental toxicity of chemicals (Prival 2001).

5. Ecological Structure–Activity Relationships (ECOSAR)—The Ecological
Structure–Activity Relationships (ECOSAR) Class Program is a computerized
predictive system that estimates aquatic toxicity. The program estimates a
chemical’s acute (short term) toxicity and chronic (long term or delayed) toxicity
to aquatic organisms, such as fish, aquatic invertebrates, and aquatic plants, by
using computerized structure–activity relationships (SAR) (http://www.epa.gov/
oppt/newchems/tools/21ecosar.htm). This software is available for free.

6. Estimation Programs Interface (EPI)—The Estimation Programs Interface (EPI)
Suite is a Windows-based suite of physical/chemical property and environmental
fate estimation programs. It is a screening-level tool. It uses a single input to run
the following estimation programs: KOWWIN, AOPWIN, HENRYWIN,
MPBPWIN, BIOWIN, BioHCwin, KOCWIN, WSKOWWIN, WATERNT,
BCFBAF, HYDROWIN, KOAWIN, and AEROWIN, and the fate models
WVOLWIN, STPWIN, LEV3EPI, and ECOSAR (http://www.epa.gov/opptintr/
exposure/pubs/episuite.htm).
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7. CAESAR—The CAESARQSARmodel is developed for assessment of chemical
toxicity under the REACH (Cassano et al. 2010).

8. ToxinPred—It is a web server available for prediction of aqueous toxicity of
small chemical molecules in Tetrahymena pyriformis. It is available at http://crdd.
osdd.net/raghava/toxipred. It is used for environmental risk assessment of small
chemical compounds based on quantitative structure–toxicity relationship
(QSTR) model (Mishra et al. 2014).

9. ACD/TOx suite—It is a tool for potential bacterial system to be employed in
textile dye decolorization and degradation studies (Srinivasan et al. 2017).

27.3.4 Databases

In relation to bioremediation, the number of databases has been developed to provide
information regarding chemicals and their biodegradation. Given below is the list of
chemical databases:

1. TOXNET—It is developed by the National Library of Medicine (NLM), is a
Web-based system of databases providing information on toxicology, hazardous
chemicals, and the environment. Databases fall under the general headings of
Toxicology Data, Toxicology Literature, Toxic Releases, and Chemical Identi-
fication/Nomenclature (Wexler 2001). There are various databases under it, and
this includes:
(a) CCRIS—It stands for Chemical Carcinogenesis Research Information Sys-

tem. The database contains chemical records with carcinogenicity, mutage-
nicity, tumor inhibition test results. It was developed by the National Cancer
Institute (NCI). Data are derived from studies cited in primary journals,
current awareness tools, NCI reports, and other sources. Test results have
been reviewed by experts in carcinogenesis and mutagenesis (http://toxnet.
nlm.nih.gov/cgibin/sis/htmlgen?CCRIS).

(b) Developmental and Reproductive Toxicology Database (DART)—It
provides references related to developmental and reproductive toxicology
literature (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?DARTETIC).

(c) Genetic Toxicology Data Bank (GENE-TOX)—It provides genetic toxicol-
ogy (mutagenicity) test data from expert peer review of open scientific
literature for more than 3000 chemicals from the United States Environ-
mental Protection Agency (EPA). It was established to select assay systems
for evaluation, review data in the scientific literature, and recommend
proper testing protocols and evaluation procedures for these systems
(http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX).

(d) Integrated Risk Information System (IRIS)—This program supports the
mission by identifying and characterizing the health hazards of chemicals
found in the environment. Each IRIS assessment can cover a chemical, a
group of related chemicals, or a complex mixture. IRIS assessments are an
important source of toxicity information used by EPA, state and local health
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agencies, other federal agencies, and international health organizations
(http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?IRIS).

2. Biodegradative Strain Database (BSD)—It is a Web-based database that
provides detailed information about biodegradative bacteria and the hazardous
chemicals that they degrade (Urbance et al. 2003). It is available at http://www.
bsd.cme.msu.edu/.

3. MetaRouter—It maintains varied information regarding biodegradation
networks, predicting biodegradative pathways for chemical compounds (Pazos
et al. 2005). It is available at http://pdg.cnb.uam.es/MetaRouter.

4. ECHA Classification & Labeling Inventory—It gives the information about the
classification and labeling of substances reported and registered by
manufacturers and importers (Schöning 2011).

5. N-CLASS—It stands for the Nordic N-Class Database on Environmental Haz-
ard Classification. It provides information describing chemicals that have been
or are currently being considered by the European Commission on classification
and labeling for environmental effects (http://apps.kemi.se/nclass/default.asp).

6. International Toxicity Estimates for Risk (ITER)—It provides risk information
for 600 chemicals from authoritative groups worldwide (Wullenweber et al.
2008).

7. ProteoWizard—It is used for rapid proteomic analysis (Kessner et al. 2008). It is
available at http://proteowizard.sourceforge.net/

8. SuperToxic—It is a Web database having collection of about 60,000 toxic
compounds and their structures. With the aid of implemented similarity
searches, it can provide information about possible biological interactions.
Also, connections to the Protein Data Bank, UniProt, and the KEGG database
are available, to allow the identification of targets and the pathways, the
searched compounds that are involved in Ref. Schmidt et al. (2009). This
database is available online at http://bioinformatics.charite.de/supertoxic.

9. Acutoxbase—It aims to optimize and prevalidate an in vitro testing strategy for
predicting acute human toxicity. The database consists of two principal parts for
archiving in vitro and in vivo data, respectively. The in vitro part, designed
following the principles of Good Cell Culture Practice (GCCP), provides a
standard format for collection of in vitro data, together with detailed descriptions
of methodologies (Standard Operating Procedures, SOPs), generated by
research laboratories participating in the project (Kinsner-Ovaskainen et al.
2009).

10. Biodegradation Network-Molecular Biology (Bionemo)—The Bionemo data-
base is available at http://bionemo.bioinfo.cnio.es. It was developed by the
structural Computational Biology Group at the Spanish National Cancer
Research Center. Bionemo is a manually curated database that provides infor-
mation regarding proteins and genes involved in biodegradation metabolism.
The protein information involves sequences, domains, and structures for
proteins, whereas the genomic information involves sequences, regulatory
elements, and transcription units for genes (Carbajosa et al. 2009). It
complements UM-BBD, which focuses on the biochemical aspects of
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biodegradation. Bionemo has been developed by manually associating sequence
database entries to biodegradation reactions based on the information extracted
from published articles.

11. OxDBase—It is an enzymatic database that contains all literature-cited informa-
tion related to oxygenases (Arora et al. 2009). It is available at www.imtech.res.
in/raghava/oxdbase/.

12. PAHbase—The PAH database contains significant information on
PAH-degrading bacteria, their occurrence phylogeny, metabolic pathways,
and the genetic basis of their biodegradation capability (Surani et al. 2011). It
is available at http://www.pahbase.in.

13. BioRadBase—It is a comprehensive knowledge database that provides detailed
information about the bioremediation of radioactive waste through
microorganisms (Reena et al. 2012). It is available at http://biorad.igib.res.in.

14. BiofOmics—It is a novel, systematic, and large-scale database for the manage-
ment and analysis of biofilm data from high-throughput experiment studies of
microorganisms (Lourenco et al. 2012). It is available at www.biofomics.org.

15. Kyoto Encyclopedia of Genes and Genomes (KEGG)—It provides information
regarding genetic, metabolic, enzymatic, and cellular progressions of
microorganisms (Kanehisa et al. 2017). It is available at http://genome.ad.jp/
kegg/

16. Proteomics Identifications (PRIDE)—It is a world’s largest database for analysis
of mass spectrometry-based proteomic data. It includes generic standard-based
format that can be annotated to capture data generated using any proteomic
pipeline (Vizcaino et al. 2016). It is available at http://www.ebi.ac.uk/pride/.

17. MetaboLights—It is a database for metabolomic studies that provide primary
research data and metadata for cross-platform and species metabolomic studies
(Kale et al. 2016). It is available at http://www.ebi.ac.uk.

18. MetaCyc—It is a database of metabolic pathways derived from the scientific
experimental literature that comprises more than 2097 experimentally deter-
mined metabolic pathways from more than 2460 different organisms. This is the
largest curated database of metabolic pathways of all domains of life. This
database provides information regarding the metabolic pathways involved in
primary and secondary metabolism with associated compounds, enzymes, and
genes (Capsi et al. 2016). This database is freely available at http://metacyc.org/.
It provides multiple scientific applications:
(a) provide reference data for computational prediction of the metabolic

pathways of organisms from their sequenced genomes,
(b) support metabolic engineering,
(c) facilitate comparison of biochemical networks, and
(d) serve as an encyclopedia of metabolism.

19. BioCyc—This database was developed and curated by the BioCyc group at SRI
international. It is available at BioCyc (http://biocyc.org/). It is a collection of
more than 2988 organism-specific Pathway/Genome Databases (PGDBs). Each
PGDB contains the full genome and predicted metabolic pathway of a single
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organism. The pathway tool software predicts pathways using MetaCyc as a
reference database.
The BioCyc PGDBs contain information about predicted operons, transport
systems, and pathway hole fillers. BioCyc pathway tool-based websites offer
multiple tools for querying and analysis of PGDBs, including analysis of gene
expression, metabolomics, and other large-scale datasets (Capsi et al. 2016).

20. Molecular Evolutionary Genetic Analysis (MEGA 7.0)—It is used for sequence
alignment, hierarchical classification, and constructing phylogenetic trees
(Kumar et al. 2016). It is available at www.megasoftware.net.

27.4 Conclusion and Future Prospective

With the advent of bioinformatics, the application area of bioremediation has
increased. The progressive increase in research from last few decades to present
has changed the scenario a lot. The applications of genomics, proteomics,
transcriptomics, and metabolomics have given in-depth knowledge of genes,
proteins, and enzymes with which the ability to understand the cellular mechanism
of microbes has widened. Hence, it can be concluded that this interdisciplinary
approach would be supporting the bioremediation by providing distinctive and
comprehensive knowledge to build new biodegradative pathways at the molecular
level, new hypotheses, postulations, and paradigm for the bioremediation of
contaminated living habitat. But in view of future prospective, still research is
required for recognition of specific genes and protein sequences of microbes for
efficaciously eliminating contamination. Also, studies related to homogeneity shared
by genes and proteins involved in bioremediation practice.
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