
Chapter 8
Health-Based Geographic Information
Systems for Mapping and Risk Modeling
of Infectious Diseases and COVID-19
to Support Spatial Decision-Making

Xiao Huang, Renyi Zhang, Xiao Li, Bahar Dadashova, Lingli Zhu,
Kai Zhang, Yu Li, and Bairong Shen

Abstract Infectious diseases remain an essential global challenge in public health.
For instance, novel coronavirus (COVID-19) has resulted in significant negative
impacts on public health, infecting more than 214 million people and causing 4.47
million deaths worldwide as of August 2021. Geographic Information Systems have
played an essential role in managing, storing, analyzing, and mapping disease and
related risk information. This article provides an overview of a broad topic on appli-
cations of GIS into infectious disease research. Our review follows the framework of
human–environment interactions, focusing on the environmental and social factors
that cause the disease outbreak and the role of humans in disease control, including
public health policies and interventions such as social distancing/face covering
practice and mobility modeling. The work identifies key spatial decision-making
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issues where GIS becomes valued in the agenda for infectious disease research and
highlights the importance of adopting science-based policies to protect the public
during the current and future pandemics.

Keywords Infectious disease · COVID-19 · Geographic information system
(GIS) · Social distancing · Spatial decision-making · Public health policy

8.1 Introduction

Environmental pollution, disasters, urbanization, global warming, and rapid pop-
ulation growth have become the significant factors that cause infectious disease
outbreaks [1–3]. Infectious diseases remain an essential global challenge in public
health, causing over 13 million deaths each year. According to statistics, viral
hepatitis, influenza, and tuberculosis stand among the leading causes of illness and
death in the United States [4]. Since 2019, novel coronavirus (COVID-19) started to
be detected from humans, which rapidly developed into a global pandemic, infecting
more than 214 million people, and causing 4.47 million deaths worldwide as of
August 2021 [5]. COVID-19 has changed human production and life behavior not
only affected the water system, but also had a strong impact on a wider range of
energy systems and food systems under the global background of high coupling of
food, energy, water, and environment, and then affects the process of sustainable
development of economy, society, and environment in the whole region. For the
energy system, the reduction of power demand and the decline of fossil fuel use
caused by the economic recession during COVID-19 have significantly reduced the
carbon dioxide emissions of the global power sectors [6–8].

The development of computer-based geographic information systems (GIS) for
integrating and analyzing spatially referenced data has provided new tools for
medical geographic research on infectious disease control. Infectious diseases have
revealed strong spatial patterns, where Geographic Information Systems (GISs)
played a central role in managing, storing, analyzing, and mapping disease informa-
tion. The Coronavirus Resource Center established by the Johns Hopkins University
is one of the noteworthy examples of this practice (see https://coronavirus.jhu.
edu/map.html). Disease cartography began with Koch’s work, including the spatial
mapping of pandemics such as the European plague and yellow fever [9]. Later, the
GIS-based disease mapping tools also leveraged many other kinds of data such as
demographic, social media, and environmental data to improve disease surveillance
and decision-making [10–12].

Spatial decision-making and spatial decision support systems have been widely
discussed in the GIS research for solving real-world problems such as disaster
management, environmental and water resources management, agriculture risk
management, and public health surveillance [13–22]. The existing literature describ-
ing GIS-based public health applications suggests that GIS diffusion into infectious
diseases research and public health practice has moved beyond the early innovation
phase [23]. Such publications can be identified in an extensive range of outlets,

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
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including multidisciplinary journals on public health, environmental science, social
science studies, GIS conference proceedings, and government reports. For instance,
numerous COVID-19 related research articles have been published since 2019 in
the journals (or proceedings) of environmental science, geography, geosciences,
infectious diseases, computer science, and multidisciplinary studies. Nevertheless,
it is unclear to what extent and depth GIS has been utilized in infectious disease
studies. For instance, which types of infectious diseases research have attracted
most GIS applications? What kinds of GIS-based methodologies have been used
in analyzing infectious diseases? Some infectious diseases such as COVID-19 are
highly contagious, where public health policies (e.g., social distancing), human
behavior, and mobility analysis have been extensively analyzed with the help of
GIS-based data and methodologies in infectious disease studies.

This review article tends to systematically review and inductively summarize
the influential literature on applications of GIS into infectious disease research.
Figure 8.1 illustrates the workflow of the article. Our review follows the framework
of human–environment interactions, where the term “environment” represents the
environmental and social factors that contribute to disease outbreak and trans-
mission. The term “human” represents the role of humans in disease control,
including public health policies and interventions such as social distancing practice
and mobility modeling. This reminder of this review paper is structured into the
following sections. Section 8.2 systemically reviewed and summarized the typical
applications of four types of GIS techniques in infectious disease-related research,
including spatial clustering and statistics, spatial interpolation, WebGIS and spatial
visualization, and spatial modeling. In Sect. 8.3, we conducted an in-depth review
of COVID-19 related research works. We paid particular attention to an emerging

Fig. 8.1 Use of GIS in infectious disease research for spatial decision-making
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geographic data source—fine-grained mobility data, reviewed, and summarized
the existing efforts about how to use mobility data to assess different COVID-
19 protective measures (e.g., social distancing) and how to use mobility data to
facilitate decision-making during different stages of the pandemic.

8.2 Environmental Distribution of Infectious Disease
and GIS-Related Research

This article first developed a search strategy with terms relating to “GIS/Geographic
Information Systems” and “Infectious Disease.” This search was developed through
an iterative process of incorporating new terms and refining those included based on
results returned and identification of relevant citations. We conducted an electronic
search on the Web of Science database with no restriction on the date or language of
publication. We found 1944 peer-reviewed articles that focus on infectious disease
and involved GIS or spatial analysis. Figure 8.2 illustrates the number of identified
articles by different publishers, with Springer Nature publishing the most GIS-
related infectious disease research, followed by Elsevier and Willey.

In the next step, we used the keyword “GIS” combined with different types of
infectious disease keywords such as “HIV,” “Influenza,” and “COVID-19” to group
the articles by different disease types. Table 8.1 illustrates the number of articles
(with their corresponding citations) that applied GIS and spatial analysis for each
type of infectious disease. According to Table 8.1, Malaria, COVID-19, and Human
Immunodeficiency Virus (HIV) are the top three diseases that mostly utilized GIS
and spatial analysis in their relevant research works.

Fig. 8.2 Illustration of publishers for GIS-related infectious disease articles
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Table 8.1 Illustration of several articles and citations that are related to applying GIS in infectious
disease research

Infectious disease Number of articles Number of citations

Malaria 430 7233
COVID 226 1132
HIV/AIDS 212 2972
Escherichia Coli 193 3396
Tuberculosis 178 2299
Influenza 153 2213
West Nile virus 119 2153
Lyme 113 2554
Viral hepatitis 76 1202
Salmonella 57 1184
Severe acute respiratory syndrome 46 847
Pneumonia 36 716
Hand-foot-mouth disease 33 322
Measles 20 415
Meningitis 17 176
Whooping cough (pertussis) 11 139
Poliomyelitis 7 58
Diphtheria 6 561
Tetanus 5 75
Chickenpox 2 102
Giardiasis 1 12
Infectious mononucleosis 1 10
Mumps 2 11
Total 1944 39, 987

8.2.1 Use of Spatial Clustering and Spatial Statistics
in Identifying Disease Hotspots

Spatial clustering and spatial statistics are two of the mostly used spatial analysis
techniques for evaluating infectious diseases’ geographic distribution (see Table
8.2). In this section, we searched for articles with keywords “infectious disease,”
“GIS,” and “spatial clustering and statistics” in the Web of Science database. Results
have returned with 49 articles. We removed duplicated and un-relevant articles and
selected ten articles for analysis. Spatial clustering is used to partition spatial data
(e.g., disease data) into a series of meaningful subclasses called spatial clusters,
where spatial objects that are within the same cluster are similar to each other
[36]. Spatial autocorrelation is often used in the GIS to identify how well objects
correlate with other nearby objects across a spatial area [36]. As listed in Table 8.2,
spatial autocorrelation was used in five articles for studying the spatial distribution
of Hepatitis, Tuberculosis, HIV, Mumps, and SARS diseases. Spatial clustering
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methods such as Kulldorff’s spatial scan and self-organizing maps were used in
seven articles. In these articles, the spatial scan statistic identified statistically
significant hotspots based on the number of disease cases by systematically scanning
circular windows using varying sizes across the study area [26–28]. A space-time
scan was used to test the statistically significant clusters of the disease cases across
space and time [35]. Other spatial statistical models such as Local Moran’s I are
global clustering statistics that measure the tendency for points to occur closer
together in space by chance across the entire study area [25, 31]. In contrast, the
Kulldorff spatial scan statistic identifies local clusters in a particular region. Local
clusters can exist in either the absence or presence of global clustering [26, 27].

8.2.2 Use of Spatial Interpolation in Estimating Disease
Pattern

Another focused area of using GIS technology in infectious disease mapping is to
create “heat maps’‘using data gathered in a limited number of locations to estimate
values in unmeasured locations. Spatial interpolation is the process of using points
with known values to estimate values at other points [36]. Traditional spatial interpo-
lation methods include kriging interpolation, trend surface interpolation, and inverse
distance weighted interpolation. As illustrated in Table 8.3, the kriging interpolation
method has been used in six articles studying Burkholderia Pseudomallei, foot-
and-mouth disease, norovirus, Tuberculosis, rotavirus, and influenza-like illness.
Inverse distance weighted interpolation was used in four articles studying Malaria,
Tuberculosis, Kala-azar disease, and Hepatitis. In these articles, spatial interpolation
methods were often combined with spatial statistics to analyze spatial transmission
patterns of infectious disease ([37, 40];). Spatial interpolation is often used to
convert discrete data into continuous data for comparison with the spatial trend
of infectious diseases [44, 45]. Others may consider spatial interpolation as a data
processing method for spatial analysis [39, 40].

8.2.3 Spatial Visualization and Web-Based GIS Dashboard

With the advancement of web-based technologies (e.g., ArcGIS online), various
web-based GIS platforms have been developed to visualize the infectious disease
risks at different space-time scale. Some of the well-known dashboards include the
WHO Coronavirus dashboard [46], John Hopkins University COVID-19 dashboard
[47], the UK National Health Service (NHS) COVID-19 app [48], and CDC
COVID-19 data tracker [5]. Spatial interpolation methods have often been combined
with web-based geovisualization tools to predict the infectious disease spread
patterns [37, 44, 45]. WebGIS and ESRI products such as ArcGIS dashboard are
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Table 8.2 Selected studies using cluster detection and spatial statistics to characterize the spatial
distribution of infectious disease

References Study Country Methods Key findings

Stopka et al. [24] United States Hepatitis C
virus/spatial
autocorrelation
Getis-Ord Gi* statistics

Largest clusters in Boston,
New Bedford, Worcester,
and Springfield
HCV is positively
associated with the race of
the population

Rao et al. [25] China Tuberculosis
Moran’s I and spatial
panel data model

The disease accidents are
positively associated with
temperature, precipitation,
and wind speed

Gwitira et al. [26,
27]

Zimbabwe HIV/AIDS and malaria
Moran’s I and
space-time clustering
Kulldorff’s spatial scan

Identify risk areas based
on clusters

Aturinde et al.
[28]

Uganda HIV-TB
Moran’s I and spatial
scan statistics

Two clusters were
identified in Lake Victoria
and the presence of
refugee camps

Yu et al. [29] China Mumps/spatial
autocorrelation and
Kulldorff space-time
scan

Several clusters have been
identified

Lai et al. [30]
Lee and Wong
[31]

Hongkong, China SARS/spatial
clustering,
spatiotemporal
clustering, global
Moran’s I

Origin-and-destination
plots showed the
directional bias and radius
of the spread of
superspreading events

Lantos et al. [32] United States Lyme/spatiotemporal
cluster analysis

Northern Virginia
experienced
intensification and
geographic expansion of
Lyme disease cases.

Yang et al. [33] Taiwan HIV/spatial statistics Spatial patterns of
different HIV risk
behaviors significantly
differed in both local
clustering patterns and
global geographic
distribution

Basara and Yuan
[34]

United States Infectious
diseases/self-
organizing
maps

Identified positive
relationship between
environmental conditions
and health outcomes in
communities

Dong et al. [35] China Influenza
(H7N9)/retrospective
space-time permutation
scan statistic

The epidemic moved from
east to southeast coast,
and hence to some central
regions of China
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Table 8.3 Use of spatial interpolation in infectious disease research

Reference Country Methods Key findings

Saengnill et al. [37] Thailand Burkholderia
Pseudomallei/Mann–
Whitney U test, chi
test, semivariogram
model, and indicator
kriging

Burkholderia Pseudomallei is not
significantly associated with
spatial soil factors. The lag
distance between positive case is
90.51 m

Perez [38] Pakistan Foot-and-mouth
disease/probability
co-kriging

A higher risk of disease is
associated with increased contact
with infectious animal migration

Siya et al. [39] Uganda Malaria/inverse
distance weighted
interpolation (IDW)
and Mann-Kendall
trend test

Malaria is declining during the
study period; rainfall plays an
important role in malaria burdens.
Altitudes can affect the key
factors

Bhunia et al. [40] India Kala-azar disease/IDW,
Moran index,
Getis-Ord Gi*

Southeastern and northwestern
part of the study area are with
higher incidence rate; Kala-azar
incidences are positively
correlated for five consecutive
years; the spatial trend of disease
diffusion is shown

Liu et al. [41] China Hepatitis E/trend
surface, IDW,
spatial-temporal
analysis

Higher incidences in northwestern
counties of the study area; suggest
the need for strengthened
supervision and surveillance of
sanitary water, sewage treatment,
and food in high-risk areas

Inaida et al. [42] Japan Norovirus/kriging Incidences increase in southern
areas at first and extend to
northern areas in Japan

Ding et al. [43] China Multidrug-resistant
tuberculosis/kriging

The proportion of MDR-TB cases
in all TB cases are higher during
2006–2009 and lower during
2010–2012

Török et al. [44] USA Rotavirus/kriging Confirm the trends of rotavirus
activity and identify the
variability in the timing of peak
disease activity

Sakai et al. [45] Japan Influenza-like
illness/kriging

Two spreading patterns are
observed

commonly used technology for geographical data sharing, visualizing [49]. WebGIS
techniques were used in three articles for establishing visualization platforms [50,
51]. Google Maps were used in two articles for visualizing infectious disease
information [50, 51]. As one of the most representative WebGIS platforms, ArcGIS
Online provides various mapping and analysis functions, geographic data sources,
and web-based applications, allowing users to effectively build up web applications
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Table 8.4 Use of WebGIS techniques and geovisualization in infectious disease monitoring

Reference Country Methods Key findings

Lu [52] China Infectious disease in
general/WebGIS, J2EE
based architecture is
applied to construct a
distrusted system
infrastructure

A platform that contains
georeferenced data can convert
disease information into
graphical and visual form

AI Manir et al. [53] Global Malaria/dashboard Prototype of surveillance
platform for accessing
distributed disease data sources

Li et al. [50] China Infectious disease in
general/WebGIS, Google
maps

The platform can display
infectious disease emergencies
information and transfer
information between workers in
the field and decision-makers
through the internet

Yang et al. [51] China Schistosomiasis/Google
earth, WebGIS

A WebGIS platform that can
operate search, evaluation, risk
analysis and prediction. This
platform can help identify early
high-risk areas and provide
detailed information

Patrick et al. [54] USA HIV/calculate the
proportion of ever tested,
tested positive and newly
positive in the past year;
chi-square test for trend

This dashboard can be used to
complement the HIV care
continuum

USA COVID-19/dashboard An online dashboard that can
display COVID-19 data for
every county of 188
metropolitan areas in the USA

Cheng et al. [55] China Influenza/dashboard An influenza surveillance
dashboard with several data
streams and indicators for
monitoring disease activities

Ravinder et al. [56] India COVID-19/dashboard A web-based dashboard that
provides a 3-week prediction of
COVID-19 incidences

without coding. Meanwhile, it also provides different GIS tools and APIs used by
developers while it is not as functional as ArcGIS Desktop. The Google Maps API
provides embedded Google Maps into web pages through JavaScript. The APIs
provide many utilities to generate maps and customize the map content by adding
additional information services. However, these APIs do not support complicated
analysis functions. Table 8.4 illustrates selected articles that have used WebGIS
techniques and geovisualization in infectious disease monitoring.
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8.2.4 Exploring Environmental and Social Factors Using
Spatial Regression Analysis

Several articles are focused on investigating the key factors that affect the occurrence
and spread of infectious diseases. Geographically Weighted Regression (GWR) has
a high utility in epidemiology, particularly for examining the relationship between
the spread of infectious disease with different social, political, and environmental
factors (e.g., built environment, health policies, and interventions). GWR is a local
form of linear regression used to model spatially varying relationships [57]. Table
8.5 illustrates the key social and environmental factors that have been explored in
infectious disease research. According to Table 8.5, environmental factors such
as temperature, humidity, precipitation, wind speed, air pressure, altitude, and
socioeconomic factors such as child population density and per capita Gross
Domestic Product (GDP) are associated with Hand, Foot, and Mouth Disease
(HFMD). Other environmental factors such as air pollution, brickfield density, land
use, and public transportation facilities significantly impact on COVID-19 cases.
Other sociodemographic factors such as gender, nationality, employment status, and
occupation types are associated with malaria and tuberculosis.

8.3 Human-Centered Efforts to Address COVID-19
Challenges

Novel coronavirus (COVID-19) has significant negative impacts on public health,
infecting more than 214 million people and causing 4.47 million deaths worldwide
as of August 2021. The COVID-19 pandemic is much more pronounced than
many of the previous outbreaks of infectious diseases, including the 2002/2003
SARS. The enormous scope and magnitude of the COVID-19 outbreak reflects a
highly contagious nature and exceedingly efficient transmission for SARS-CoV-2.
There exists two primary pathways for respiratory viruses to be transmitted from
person to person (Fig. 8.3a). Virus-bearing particles are produced from breathing,
talking, coughing, or sneezing by an infected person. Interhuman transmission
occurs by the direct (deposited on persons) or indirect (deposited on objects)
contact route via respiratory droplets (>5 µm) or the airborne route via respiratory
aerosols (<5 µm). While large respiratory droplets readily settle out of air to cause
person/object contamination, small virial-bearing respiratory aerosols are efficiently
dispersed in air and inhaled by human to lead direct deposition along the respiratory
tract and to cause infection [13, 14, 19]. Well-established public health measures
to prevent interhuman transmission include face covering, social distancing, and
testing/quarantine (Fig. 8.3b). There exists now compelling scientific evidence for
the importance of airborne transmission in spreading the COVID-19 disease and
face covering in preventing interhuman [11, 13, 14, 19]. Also, increasing ventilation
in an enclosed community setting has been shown to effectively reduce viral
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Fig. 8.3 Transmission, science-based intervention, and application of GIS. (a) Illustration of viral
transmission routes (adopted from Zhang et al. 2020). (b) Mitigation for preventing interhuman
transmission and the application of GIS in decision-making. The boxes denote mitigation
measures, and the circles depict the disease evolution

transmission [66]. Vaccination is commonly believed to mitigate viral transmission,
albeit for the occurrence of break-through infections [67]. The effectiveness of
vaccination has been clearly documented to significantly reduce hospitalization,
severe syndromes, and mortality [68].

As the COVID-19 outbreak grew to an epidemic, and various GIS systems have
been developed and implemented, leading the response to COVID-19 in many ways.
For instance, Johns Hopkins University launched its COVID-19 dashboard using
ESRI technology [47]. So far, social distancing plays an important role in controlling
the spread of coronavirus. Governments issued different level of restrictions on
traveling, institutions canceled gatherings, and citizens socially distanced them-
selves to limit the spread of the virus. Social distancing measures have significantly
influenced the mobility patterns, which have been widely discussed in various
COVID-19 related GIS applications. On the other hand, those literature are also
tightly related to public health policy and social equity issues, which are worthy
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of future research. This article illustrates the key findings of using GIS in mobility
and policy analysis during the COVID-19 pandemic. We structured our reviews by
different stages of pandemic control, i.e., early stage, controlling stage, reopening
stage, and post-pandemic recovering stage. We found 228 articles related to the
topic. In the following four subsections, we discuss human-centered efforts that
leverage mobility data in addressing COVID-19-related challenges.

8.3.1 Early in the Pandemic: Contact Tracing and Initial
Control

At the early stage of the COVID-19 pandemic, location-based intelligence has been
widely adopted to provide situational awareness for policy-makers and researchers.
Human mobility records retrieved from cell phone users’ location data (by way
of GPS, cell phone towers, and/or Wi-Fi), electronic wristbands, credit card
transactions, and closed-circuit television (CCTV) systems can assist in tracking
disease spread and enforcing social isolation measures [69]. In China, Alipay and
WeChat, two big providers of mobile payment systems, released apps that combine
users’ health, location, and financial data to generate a personal infection risk
rating [70]. Other government-backed apps were also used in the early stage of
the pandemic to collect users’ essential information, and necessary user scanning
was required at checkpoints to better gauge people’s moving patterns. Besides
efforts and guidelines by the officials, crowdsourcing efforts are also popular, as
citizens themselves can contribute to contact tracing and surveillance by voluntarily
sharing their whereabouts online. For instance, Private Kit (https://privatekit.mit.
edu/), released by the Massachusetts Institute of Technology, is a crowdsourcing
application that stores GPS location records from users every 5 min for up to
28 days. Users have the option to share their location data and notify health officials
if they test positive for COVID-19. Numerous studies have proved that human
mobility records with fine spatiotemporal granularity are essential for disease spread
control, as reconstructed trajectories of individuals who have been tested positive
can be used to alert those who may have been put at risk of infection [71, 72].
Zhang et al. [13, 14, 19] studied the relationship between human mobility and the
cross-space infection in the early stage of the pandemic, based on which a variety
of counterfactual analyses is developed to examine the necessity of lock-down and
the other containment approaches.

https://privatekit.mit.edu/
https://privatekit.mit.edu/
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8.3.2 During Control Measures: Compliance Monitoring

To contain the COVID-19 pandemic, one of the non-pharmacological epidemic con-
trol measures is to reduce the transmission rate of SARS-COV-2 in the population
via social distancing or other similar quarantine measures [11, 73]. Besides the
proof from epidemiologic simulations, many pieces of evidence have been found
in numerous studies that the implementation of mobility-restricting measures is
responsible for the declined transmission rates (e.g., [74, 75]). In certain cases,
however, different countries, states/provinces, counties/towns, and other adminis-
trative units choose to handle COVID-19 in different ways, with great disparity in
the implementation of policies and guidelines. Even in regions under the same level
of restrictions, disparities in compliance tend to occur. Human mobility records,
either at the individual level or aggregated to certain geographic units, can reflect
how people adjust their travel patterns under the COVID-19 pandemic and whether
policies are implemented in an effective manner. There are some notable efforts that
Huang et al. [76] analyzed over 580 million tweets worldwide to investigate how
people follow mobility-restricting measures at the global, country, and U.S. state
levels. Their results revealed great discrepancies in responsiveness, evidenced by
the contrasting mobility patterns in different epidemic phases at their investigated
scales. Taking advantage of Google’s COVID-19 mobility reports, Bargain and
Aminjonov [77] investigated how policy compliance is linked with political trust
at the regional level in Europe. Their findings indicate that high-trust regions
decrease their mobility significantly more than low-trust regions, and the efficiency
of policy stringency in terms of mobility reduction significantly increases with
trust. Other efforts coupled mobility-related indices with sociodemographic factors,
aiming to reveal the determinants that potentially lead to the disparity in policy
compliance (e.g., [78]; Chiou and Tucker). The general findings point to the luxury
nature of mobility-restricting measures (e.g., working from home and other virtual
working conditions) with which socioeconomically disadvantaged groups cannot
afford to comply. Zhu et al. [79] utilized network optimization to identify how the
geographical centers of the pandemic moved spatially over time across the USA
in the context of various intervention policies. The pandemic has also witnessed
much mis- and dis-information. Network reconstruction methods can be employed
to measure the interaction between the information diffusion and the outbreak
of COVID-19 across space, and identify both positive and negative impact of
information on the pandemic [12, 15]. The above evidence reveals the essential role
of mobility data in policy compliance monitoring during the COVID-19 pandemic,
which benefits further policymaking in terms of adjusting controlling measures and
mitigating compliance disparity.
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8.3.3 Reopening: When, How, and Where

After the implementation of mobility-restricting measures, federal and local govern-
ment officials have been investigating reopening strategies, such as when and where
to reopen borders and business, and how much activities are allowed in certain
places. These reopening strategies, however, should be determined in a scientific
manner with the assistance of epidemiological models that consider human mobility
dynamics. Many studies have been conducted to assist in reopening decision-
making taking advantage of fine-grained human mobility data. One notable effort
is by Chang et al. [80], who built enormous mobility networks containing 5.4
billion hourly edges from mobile phone data that cover hourly movements of 98
million people from 56,945 U.S. census block groups to 552,758 points of interest
(POIs). The results suggested that, coupled with detailed mobility records, their
simulation can estimate the effects of specific reopening strategies in the USA.
Using the same dataset, Andersen et al. [81] examined U.S. college reopenings’
association with changes in human mobility within campuses and in COVID-19
incidence in the U.S. counties of the campuses over a 10-week period around college
reopenings. They found that college reopenings were associated with increased
campus mobility, responsible for the increased COVID-19 incidence by 2.7 cases
per 100,000. Xiong et al. [82] investigated the partial reopening phases in the
USA by leveraging anonymized mobile device location data from over 100 million
monthly active users procured from multiple third-party data providers. The detailed
mobility records coupled with their models revealed the high likelihood of a second
spike in coronavirus in many early-opening regions. The above examples highlight
the necessity of human mobility data in optimizing reopening decisions.

8.3.4 Post-Pandemic: Recovery and Transition Gauging

Human mobility data can be used to tell stories regarding how different regions
recover after the lifting of strict mobility-restricting orders and the implementation
of reopening policies by comparing the human moving patterns in post-pandemic
situations to the ones in pre-pandemic situations. While some of the changes are
temporary, such as the disruptive social, physical, and economic activities in urban
and rural landscapes during the stay-at-home orders (most of which have largely
recovered after the reopening), others seem to be permanent impacts that force
multiperspective transitions in an irreversible manner. Human mobility data that
cover multiple stages are expected to benefit the investigation of the dynamic,
intertwining, long-term societal effects of the COVID-19 pandemic, filling the
knowledge gaps in our understanding of how spatial and social interactions have
shifted and transitioned in the post-pandemic world, and informing better adapting,
responding, and recovering strategies that reduce inequalities and vulnerabilities.
Despite the fact that it is difficult to decide when the post-pandemic era really
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starts, numerous efforts have been made to gauge recovery and transition when
society functions resume. Kupfer et al. [83] investigated park visitation recovery
by mapping and analyzing the spatiotemporal patterns of visitation for six national
parks in the western USA, taking advantage of large mobility records sampled
from mobile devices and released by SafeGraph as part of their Social Distancing
Metric dataset. Huang et al. [78] leveraged multi-source mobility datasets from
Google, Apple, Descartes Labs, and Twitter to investigate how people reduced their
travels during the mobility-restricting period and how mobility recovered after the
reopening at the county level in the USA. Their results revealed a great disparity
in mobility dynamics in the recovery phase, as the poor countries tended to gain
earlier and greater upward momentum than the wealthy counties. Such disparity in
recovery has been noted by many studies that take advantage of mobility records
(e.g., [76, 83]).

8.4 Conclusion and Discussion

Adopting science-based policies are paramount in protecting the public during the
current and future pandemics. This article provides an overview and a summary
on applying applications of GIS into infectious disease research, and application
of GIS tools for analyzing and maintaining COVID-19. We paid special attention
to COVID-19 related research in terms of human-environment interactions. The
term “human” represents the role of humans in disease control, including public
health policies such as social distancing practice and mobility modeling. A total of
1944 peer-reviewed GIS-based infectious disease research articles were identified,
where Springer Nature published the most articles, followed by Elsevier and Willey.
Spatial analysis methods such as spatial clustering, spatial statistics, and spatial
interpolation (e.g., Kriging), and GWR analysis have been discussed in detail in
those articles to demonstrate the important value of using GIS and spatial analysis in
infectious disease monitoring. The article also provides the summary of web-based
portals (e.g., GIS dashboards) in visualizing infectious disease risks.

The article also includes a review on human-centered methods for COVID-19
research, including the analysis of social distancing and mobility in COVID-19
disease control and policymaking. We structured this section by different pandemic
stages, including early-pandemic, under strong control measures, reopening, and
post-pandemic recovery. In the early stage, several articles discussed using human
mobility records derived from emerging geo-data sources (e.g., cell phone location
data, electronic wristbands, credit card transactions, and closed-circuit television
(CCTV) to assist in tracking disease spread and enforcing social isolation mea-
sures. In the disease controlling stage, much evidence has been found that the
implementation of mobility-restricting measures is responsible for the declined
transmission rates. Later in the reopening and recovery stages, human mobility data
has demonstrated effectiveness in determining how different regions recover after
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lifting social distancing orders by comparing the human moving patterns in post-
pandemic situations to those in pre-pandemic situations.

According to the literature review performed in this study, GIS has been fre-
quently used to prevent and control of infectious diseases to facilitate the appropriate
spatial decision-making. By identifying spatial hot spots/patterns and potential risk
factors of infectious diseases as well as vulnerable populations, the governmental
and public health agencies, health care organizations, and other stakeholders, can
put more efforts and resources into those regions and develop effective prevention
strategies and mitigation actions. Furthermore, spatiotemporal disease modeling
(e.g., Geographically and Temporally Weighted Regression) could also advance the
understanding of spatiotemporal variation characteristics of the environmental and
sociodemographic factors on the disease incidence and prevalence. Leveraging GIS
techniques in COVID-19 research may produce broad impacts in spatial decision-
making such as health care facility planning, public health policymaking, business
intelligence, and health equity solutions.
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