
Advances in Experimental Medicine and Biology 1368

Bairong Shen   Editor

Translational 
Informatics
Prevention and Treatment of Viral 
Infections



Advances in Experimental Medicine and Biology

Volume 1368

Series Editors

Wim E. Crusio, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine,
CNRS and University of Bordeaux, Pessac Cedex, France

Haidong Dong, Departments of Urology and Immunology, Mayo Clinic, Rochester,
MN, USA

Heinfried H. Radeke, Institute of Pharmacology & Toxicology, Clinic of the Goethe
University Frankfurt Main, Frankfurt am Main, Hessen, Germany

Nima Rezaei, Research Center for Immunodeficiencies, Children’s Medical Center,
Tehran University of Medical Sciences, Tehran, Iran

Ortrud Steinlein, Institute of Human Genetics, LMU University Hospital, Munich,
Germany

Junjie Xiao, Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular
Science, School of Life Science, Shanghai University, Shanghai, China



Advances in Experimental Medicine and Biology provides a platform for scientific
contributions in the main disciplines of the biomedicine and the life sciences.
This series publishes thematic volumes on contemporary research in the areas of
microbiology, immunology, neurosciences, biochemistry, biomedical engineering,
genetics, physiology, and cancer research. Covering emerging topics and techniques
in basic and clinical science, it brings together clinicians and researchers from
various fields.
Advances in Experimental Medicine and Biology has been publishing excep-
tional works in the field for over 40 years, and is indexed in SCOPUS, Med-
line (PubMed), Journal Citation Reports/Science Edition, Science Citation Index
Expanded (SciSearch, Web of Science), EMBASE, BIOSIS, Reaxys, EMBiology,
the Chemical Abstracts Service (CAS), and Pathway Studio.
2020 Impact Factor: 2.622



Bairong Shen
Editor

Translational Informatics
Prevention and Treatment of Viral Infections



Editor
Bairong Shen
Institutes for Systems Genetics,
Frontiers Science Center for
Disease-Related Molecular Network,
West China Hospital, Sichuan University,
Chengdu, Sichuan, China

ISSN 0065-2598 ISSN 2214-8019 (electronic)
Advances in Experimental Medicine and Biology
ISBN 978-981-16-8968-0 ISBN 978-981-16-8969-7 (eBook)
https://doi.org/10.1007/978-981-16-8969-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-16-8969-7


Contents

1 Databases, Knowledgebases, and Software Tools for Virus
Informatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Yuxin Lin, Yulan Qian, Xin Qi, and Bairong Shen

2 Detection and Prevention of Virus Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Ying Wang and Bairong Shen

3 Bioinformatics for the Origin and Evolution of Viruses . . . . . . . . . . . . . . . . . 53
Jiajia Chen, Yuxin Zhang, and Bairong Shen

4 In Silico Drug Discovery for Treatment of Virus Diseases . . . . . . . . . . . . . . 73
Shikha Joon, Rajeev K. Singla, and Bairong Shen

5 Vaccines and Immunoinformatics for Vaccine Design . . . . . . . . . . . . . . . . . . . 95
Shikha Joon, Rajeev K. Singla, and Bairong Shen

6 Predicting the Disease Severity of Virus Infection . . . . . . . . . . . . . . . . . . . . . . . 111
Xin Qi, Li Shen, Jiajia Chen, Manhong Shi, and Bairong Shen

7 Modeling the Virus Infection at the Population Level . . . . . . . . . . . . . . . . . . . 141
Cong Wu, Xuemeng Fan, Tong Tang, and Bairong Shen

8 Health-Based Geographic Information Systems for Mapping
and Risk Modeling of Infectious Diseases and COVID-19
to Support Spatial Decision-Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Xiao Huang, Renyi Zhang, Xiao Li, Bahar Dadashova, Lingli Zhu,
Kai Zhang, Yu Li, and Bairong Shen

9 5G, Big Data, and AI for Smart City and Prevention of Virus
Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Shumin Ren and Bairong Shen

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

v



About the Editor

Bairong Shen is professor and executive director general of the Institutes for
Systems Genetics, West China Hospital, Sichuan University. He received his PhD in
chemistry from Fudan University in 1997. Dr. Shen was appointed Associate Profes-
sor of Physical Chemistry at Fudan University in 1999 for his accomplishments in
theoretical and computational surface chemistry. In the early 2000s, Dr. Shen started
his new exploration into biomedical informatics and related computational biology
in his postdoctoral research at the University of Tampere, Finland. His success in
the new paradigm of biological research won him a competitive faculty position in
the European university as an Assistant/Associate Professor of Bioinformatics since
2004. He joined the Soochow University by founding the University’s Center for
Systems Biology in 2008. In Finland and China, Dr. Shen has taught more than 10
different courses in biomedical informatics and systems biology and published more
than 100 peer-reviewed articles in competitive journals which covered the medical
genetic areas including cancer biomarker discovery, biomedical informatics and the
basic exploration in physics, chemistry, biology, and computational science. His
recent researches focus on biomedical informatics and systems biology of complex
diseases and healthcare.

vii



Chapter 1
Databases, Knowledgebases,
and Software Tools for Virus Informatics

Yuxin Lin, Yulan Qian, Xin Qi, and Bairong Shen

Abstract Virus infection is a common social health issue. In the past decades,
serious virus infectious events have caused great loss in people’s life and the
economics. The nature of rapid widespread and frequent variation increases the
difficulty for precision viral prevention and treatment. In the era of big data and arti-
ficial intelligence (AI), advances in bioinformatics techniques bring unprecedented
opportunities for virus informatics study, which contribute to the systems-level
modeling of virus biology. In this chapter, data resources including virus-related
databases and knowledgebases are introduced. Bioinformatics models and software
tools for multiple sequence alignment, evolutionary analysis, and genome-wide
research of viruses are summarized and emphasized. Translational applications
of recently developed data-driven and AI-assisted methods to viral cases such as
SARS-CoV-2, HBV/HCV, and influenza virus are discussed. Finally, the concept
and significance of virus informatics are highlighted for both virus surveillance and
health promotion.
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Keywords Virus informatics · Databases and knowledgebases · Bioinformatics
tools · Precision medicine · Systems health

1.1 Introduction

Viruses are composed of a core of nucleic acid (either DNA or RNA, but never
both) surrounded by a protein shell or coat. They are extremely small and may
have a variety of structural shapes. Due to the lack of independent metabolic and
enzyme systems, viruses are not capable to survive on their own, and they must live
in the host cells to get enough materials and energy to help continue their biological
activities, including replication, transcription, and translation. When a virus enters
the host cell, it could produce a new generation based on the genetic information
contained in its nucleic acid and affect the function of the host cell [1, 2].

In the past few decades, a spate of virus infection events such as SARS (severe
acute respiratory syndromes), MERS (Middle East respiratory syndrome), and
COVID-19 (coronavirus disease 2019) has occurred, which caused great loss in
people’s life and the social security. Currently, people still face the dilemma that
the virus is rapidly evolving to be more adaptive to the changeable environments
and will affect public health for a long time. To fight against it, much experimental
and clinical effort has been put into the prediction and prevention of virus
infection, meanwhile novel therapeutic regimens are proposed for the precision and
personalized treatment of patients with virus-induced diseases [3, 4].

In the era of big biomedical data and artificial intelligence (AI), the innovation
in informatics techniques provides unprecedented opportunities for holistic mon-
itoring of virus–host interactions [5], and it gradually promotes the transition of
virus research from experiment-oriented biological discovery to knowledge-guided
systems modeling and validation [6]. With the accumulation of data resources and
the development of bioinformatics algorithms, a number of computational tools
and platforms are available in these years for translational virus studies including
computer-aided drug and vaccine design, infection severity prediction, population-
level infection prevention, and global health management [7, 8].

In this chapter, several well-established databases and knowledgebases related
to viral sequence, structure, and interactions between virus and the host are first
introduced for computational virus research. Then the state-of-the-art bioinformat-
ics methods and software tools are listed based on their purposes for translational
applications, e.g., multiple sequence alignment, phylogenetic and evolutionary
understanding, and genome-wide exploration. According to the current social
situation and hotspot, case studies associated with the control of SARS-CoV-
2 (severe acute respiratory syndrome coronavirus 2), HBV/HCV (hepatitis B/C
virus), and influenza virus infection are emphasized and discussed. A new concept,
i.e., virus informatics, is finally proposed and highlighted for systems-level virus
surveillance and health promotion.
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1.2 Databases and Knowledgebases for Computational Virus
Research

1.2.1 Data Resources for Multiple Virus Groups

There have been many databases and online platforms developed for comprehensive
analysis of multiple virus groups. As illustrated in Table 1.1, ViPR (The Virus
Pathogen Database and Analysis Resource) is an advanced database for virology
research [9]. It covers basic information including sequences, gene annotations,
protein structures, and other clinical metadata for more than ten families of human
pathogenic viruses. In addition to the browsing of virus records, the database
provides powerful tools for statistical analysis, multiple sequence alignment, and
phylogenetic tree construction [9]. Virus Variation Resource is another database
belonging to NCBI (National Center for Biotechnology Information) for seven viral
types, including virus of influenza, Dengue, West Nile, Ebola, MERS, Rotavirus A,
and Zika. The functions such as sequence query, genetic annotation, and multiple
sequence alignment are also available for downstream analysis [10].

Since the sequence information is essential for virus study, ViruSurf and RVDB
(Reference Viral Database) are two well-constructed databases for viral sequences
collected from heterogeneous sources [11, 12]. In particular, ViruSurf mainly
focuses on recent outbreak viruses such as SARS-CoV, MERS-CoV, Ebola, and
SARS-CoV-2 [11], whereas RVDB is a reference database for all viral, virus-
related, and virus-like nucleotide sequences from eukaryotes [12]. ViMIC (Virus
Mutations, Integration sites and Cis-effects) is a recently developed database of
virus mutations, integration sites, and cis-effects for human diseases. It contains
comprehensive information associated with virus mutation entries, viral integration
sites, targeted genes, and sequence data of eight viruses in more than 70 diseases
[13]. Apart from the sequence information, protein–protein interactions (PPIs)
between virus and the host are of paramount significance for decoding the molecular
mechanisms and helping develop precision strategies for virus intervention. Based
on this goal, databases including HVIDB (Human-Virus Interaction Database) and
Viruses.STRING are proposed to provide the opportunity for predicting and inves-
tigating complex PPIs for comprehensive virus–host pathogenetic understanding
[14, 15].

In recent years, posttranslational modifications and circular RNA (circRNA)
regulations are found to be important in virus activities, and the dysfunction may be
a potential clue for human diseases. VPTMdb (Viral Posttranslational Modification
Database) is the first database with posttranslational modification data in viruses and
infected host cells [16]. VirusCircBase (Virus CircRNA Database) contains more
than 11,000 circRNAs related to 23 viral species for the analysis of viral circRNAs
in the context of human diseases and public health [17]. Besides, considering the
integration of viruses into human genome is a key driven signature for disease
development, VISDB (Viral Integration Site Database) is a manually curated
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Table 1.1 Publicly available data resources for virus research

Title Description Citation

Data resources for multiple virus groups

ViPR • A virus pathogen database and analysis platform for virology
research
• URL: https://www.viprbrc.org/

[9]

Virus Variation
Resource

• A data resource in NCBI for study of seven viral groups
• URL: http://www.ncbi.nlm.nih.gov/genome/viruses/variation/

[10]

ViruSurf • An integrated database for viral sequence study
• URL: http://gmql.eu/virusurf/

[11]

RVDB • A reference viral database with sequence data of different virus
species from eukaryotes
• URL: https://github.com/ArifaKhanLab/RVDB/

[12]

ViMIC • A comprehensive database of virus mutations, integration sites,
and cis-effects for human diseases
• URL: http://bmtongji.cn/ViMIC/

[13]

HVIDB • A comprehensive database for human–virus protein–protein
interaction understanding
• URL: http://zzdlab.com/hvidb/

[14]

Viruses.STRING • A comprehensive database of virus–host protein–protein
interactions
• URL: http://apps.cytoscape.org/apps/stringapp/

[15]

VPTMdb • A database for posttranslational modification of viruses
• URL: http://vptmdb.com:8787/VPTMdb/

[16]

VirusCircBase • A database of circular RNAs for virus
• URL: http://www.computationalbiology.cn/ViruscircBase/

[17]

VISDB • A database of reported integration sites of virus in the human
genome
• URL: https://bioinfo.uth.edu/VISDB/

[18]

Virus type-specific data platforms

2019nCoVR • The 2019 novel coronavirus resource for data sharing and
analysis of COVID-19
• URL: https://bigd.big.ac.cn/ncov/

[19]

Virus-CKB • An integrated knowledge base and online platform for drug
discovery against COVID-19
• URL: https://www.cbligand.org/g/virus-ckb/

[20]

DockCoV2 • A database for potential drug discovery against SARS-CoV-2
• URL: https://covirus.cc/drugs/

[21]

CoV3D • A database for coronavirus protein structures with high
resolution for SARS-CoV-2 study
• URL: https://cov3d.ibbr.umd.edu/

[22]

OxCOVID19 • A database of time–series data for COVID-19 pandemic
• URL: https://covid19.eng.ox.ac.uk/

[23]

GISAID • An initiative and program for all influenza data sharing
• URL: N/A

[24]

IRD • An influenza research database with genome sequence data and
associated characteristic information of influenza virus
• URL: http://www.fludb.org/

[25]

(continued)

https://www.viprbrc.org/
http://www.ncbi.nlm.nih.gov/genome/viruses/variation/
http://gmql.eu/virusurf/
https://github.com/ArifaKhanLab/RVDB/
http://bmtongji.cn/ViMIC/
http://zzdlab.com/hvidb/
http://apps.cytoscape.org/apps/stringapp/
http://vptmdb.com:8787/VPTMdb/
http://www.computationalbiology.cn/ViruscircBase/
https://bioinfo.uth.edu/VISDB/
https://bigd.big.ac.cn/ncov/
https://www.cbligand.org/g/virus-ckb/
https://covirus.cc/drugs/
https://cov3d.ibbr.umd.edu/
https://covid19.eng.ox.ac.uk/
http://www.fludb.org/
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Table 1.1 (continued)

Title Description Citation

FluReassort • A database for genomic reassortment study of influenza viruses
• URL: https://www.jianglab.tech/FluReassort/

[26]

BioHealthBase • A database for study and analysis of interactions between
influenza virus and host pathogen
• URL: http://www.biohealthbase.org

[27]

Ebolabase • A database with interactive data between Zaire Ebola virus and
human proteins for drug repurposing
• URL: http://ebola.bicpu.edu.in/

[28]

OvirusTdb • A comprehensive database of oncolytic viruses for cancer
therapeutics
• URL: https://webs.iiitd.edu.in/raghava/ovirustdb/

[29]

HDVdb • A comprehensive database for hepatitis D virus
• URL: http://hdvdb.bio.wzw.tum.de/

[30]

HRRD • A manually curated database for regulatory data between HPV
and host RNA
• URL: www.hmuhrrd.com/HRRD/

[31]

database integrating reported integration sites of viruses in the human genome, and
it is a useful resource for virus–disease association study [18].

1.2.2 Virus Type-Specific Data Platforms

As described in Table 1.1, several databases and knowledgebases are designed
specifically to given virus types. Due to the widespread infection of SARS-CoV-
2 around the world, the newly developed 2019nCoVR (2019 Novel Coronavirus
Resource), Virus-CKB (Viral-associated Disease-specific Chemogenomics Knowl-
edgebase), DockCoV2 (Drug Database for SARS-CoV-2), CoV3D (Coronavirus
Protein Structures), and OxCOVID19 (Oxford COVID-19 Database) are used for
the sharing and analysis of SARS-CoV-2 data [19–23]. Among them, 2019nCoVR
is a comprehensive resource for 2019 novel coronavirus. It provides a wide range of
information related to SARS-CoV-2 from published literatures, news, and scientific
papers and integrates functionalities for analysis and visualization of genome
variation using the collected SARS-CoV-2 chains for genome research, drug devel-
opment, and precision therapy of infection [19]. Virus-CKB is an integrated online
platform and knowledgebase for drug discovery against SARS-CoV-2. It contains
virus-related disease-specific chemogenomics data, which would help the computer-
aided pharmacology target mapping to predict drugs for SARS-CoV-2 treatment
[20]. Similarly, DockCoV2 is also a useful database, aiming at speeding up the
potential drug discovery against SARS-CoV-2. Currently, a total of 3109 drugs are
included in the database, and the data can be easily searched and downloaded for
scientific use [21]. CoV3D is a data resource for coronavirus protein structures,

https://www.jianglab.tech/FluReassort/
http://www.biohealthbase.org
http://ebola.bicpu.edu.in/
https://webs.iiitd.edu.in/raghava/ovirustdb/
http://hdvdb.bio.wzw.tum.de/
http://www.hmuhrrd.com/HRRD/
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and it will assist structure-based vaccine design for SARS-CoV-2 prevention [22].
Compared with these studies, OxCOVID19 is a database with dynamic and time–
series data for the better understanding of the impact on COVID-19 pandemic [23].

Besides SARS-CoV-2, there are some publicly available databases for virus-
level analysis of influenza, cancer, and other complex diseases. For example,
GISAID (Global Initiative of Sharing All Influenza Data), IRD (Influenza Research
Database), FluReassort (Influenza Virus Reassortment), and BioHealthBase are
databases for sharing all influenza data, investigating the genome sequence, genomic
reassortment, and influenza virus–host interactions, respectively [24–27]. Among
them, GISAID is one of the famous databases initiated by many top scientists
and Nobel Prize winners. It focuses on promoting the international sharing of all
influenza virus sequences, relevant clinical and epidemiological data of human
viruses, and geographic and species-specific data related to poultry and other
animal viruses. The purpose of GISAID is to help researchers understand how
viruses evolve, spread, and even become potentially major epidemic diseases
[24]. Ebolabase (Ebola Virus Database) is an Ebola virus-specific database with
interactive data between Zaire Ebola virus and human proteins [28]. For virus-
mediated cancer studies, OvirusTdb (Repository of Oncolytic Viruses) is a manually
curated database with comprehensive information of oncolytic viruses for cancer
therapeutics [29]. HDVdb (Hepatitis D Virus Database) and HRRD (HPV-RNA
Relationship Database), respectively, are developed for the prevention of HDV
(hepatitis D virus) and HPV (human papilloma virus) infection. Among them,
the collection of HDV genomic sequences and associated variability signatures in
HDVdb would increase the discovery of effective drugs or vaccines against HDV
infection [30] and hepatocellular carcinoma development. In HRRD database, the
regulatory relationship between HPV and different types of RNAs (e.g., messenger
RNAs, microRNAs, long non-coding RNAs) could improve the understanding of
HPV-induced carcinogenesis and prognosis [31].

1.3 Bioinformatics Models and Tools for Translational Virus
Analysis

1.3.1 Multiple Sequence Alignment

Multiple sequence alignment is an essential step for virus genome sequence
analysis. Currently, a large number of computational tools have been proposed and
improved for multiple sequence alignment based on different principles such as pro-
gressive, consistent, or evolutionary theories [7]. As shown in Table 1.2, MUSCLE
(multiple sequence comparison by log-expectation) is a powerful software program
for performing multiple alignments of protein sequences with high accuracy and
throughput based on a newly defined log-expectation score. Compared with the
existed approaches, it consumes a shorter calculation time and achieves the highest
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Table 1.2 Bioinformatics tools and programs for virus analysis

Title Description Citation

Multiple sequence alignment

MUSCLE • A high accuracy tool for multiple sequence alignment
• URL: http://drive5.com/muscle/

[32]

ProbCons • Multiple sequence alignment based on probabilistic
consistency analysis
• URL: http://probcons.stanford.edu/

[33]

StatAlign • An extendable software package for multiple sequence
alignment based on Bayesian theory
• URL: https://dl.acm.org/doi/10.1093/bioinformatics/btn457/

[34]

JABAWS:MSA • A comprehensive tool integrating different algorithms for
multiple sequence alignment
• URL: http://www.compbio.dundee.ac.uk/jabaws/

[35]

MSAViewer • A quick and easy visualization tool for multiple sequence
alignment data
• URL: http://msa.biojs.net/index.html/

[36]

Phylogenetic and evolutionary understanding

BIONJ • An improved method of the neighbor-joining algorithm for
phylogenetic tree analysis
• URL: http://www.atgc-montpellier.fr/bionj/

[37]

IQ-TREE • A stochastic algorithm for the estimation of
maximum-likelihood phylogenies
• URL: http://www.cibiv.at/software/iqtree/

[38]

PhyloBayes3 • A program for phylogenetic reconstruction or molecular dating
based on Bayesian analyses
• URL: http://www.atgc-montpellier.fr/phylobayes/

[39]

BEAST2 • An improved platform for Bayesian evolutionary analysis
• URL: http://www.beast2.org/

[40]

PhyloSuite • An integrated platform for evolutionary phylogenetics studies
• URL: http://phylosuite.jushengwu.com/

[41]

MEGA5 • An improved version for molecular evolutionary genetics
analysis
• URL: http://www.megasoftware.net/

[42]

Genome-wide exploration

gff2ps • A bioinformatics tool for visualizing annotations of genomic
sequences
• URL: http://genome.imim.es/software/gfftools/GFF2PS.html/

[43]

IBS • An illustrator of biological sequences for organization
representation
• URL: http://ibs.biocuckoo.org/

[44]

VirION2 • An improved framework with sequencing and informatics
workflow for the study of virus genomic diversity
• URL: https://dx.doi.org/10.17504/protocols.io.6q9hdz6/

[45]

VVV • A viral variant visualizer for the visualization of viral genetic
diversity
• URL: https://github.com/ALFLAG/Viral_Variant_Visualiser/

[46]

(continued)

http://drive5.com/muscle/
http://probcons.stanford.edu/
http://dx.doi.org/10.1093/bioinformatics/btn457
http://www.compbio.dundee.ac.uk/jabaws/
http://msa.biojs.net/index.html/
http://www.atgc-montpellier.fr/bionj/
http://www.cibiv.at/software/iqtree/
http://www.atgc-montpellier.fr/phylobayes/
http://www.beast2.org/
http://phylosuite.jushengwu.com/
http://www.megasoftware.net/
http://genome.imim.es/software/gfftools/GFF2PS.html/
http://ibs.biocuckoo.org/
http://doi.org/10.17504/protocols.io.6q9hdz6/
https://github.com/ALFLAG/Viral_Variant_Visualiser/
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Table 1.2 (continued)

Title Description Citation

RDP4 • A recombination detection program for the analysis of
recombination patterns in virus genomes
• URL: http://web.cbio.uct.ac.za/~darren/rdp.html/

[47]

ITN—VIROINF • Linking virology and bioinformatics to understand interactions
between virus and host
• URL: https://viroinf.eu/

[5]

DAMIAN • A computational tool for cohort-based study of microorganisms
• URL: https://sourceforge.net/projects/damian-pd/

[48]

INSaFLU • An automated online bioinformatics tool for surveillance of
influenza virus
• URL: https://insaflu.insa.pt/

[49]

result accuracy [32]. ProbCons (Probabilistic Consistency) is a famous probabilistic
consistency-based method for multiple sequence alignment and comparison [33].
Based on Bayesian analysis, StatAlign is an extendable tool with user-friendly
interfaces for joint Bayesian estimation of multiple sequence alignments and
evolutionary trees [34]. In addition, integrated resources and visualization tools
are popular for practical use. For example, the JABAWS framework integrates five
multiple sequence alignment approaches and provides web services for bioinfor-
matics analysis [35]. MSAViewer is a quick and easy JavaScript component for
visualization of alignment data [36].

1.3.2 Phylogenetic and Evolutionary Understanding

The construction of phylogenetic tree is an effective way to understand the origin
and evolution of viruses. At present, there have been a lot of algorithms developed
for estimating and measuring phylogenetic trees, including neighbor joining, max-
imum parsimony, maximum likelihood, and Bayesian inference [7]. As shown in
Table 1.2, BIONJ improves the traditional neighbor-joining algorithm by a simple
model of sequence data and achieves overall better performance for phylogenetic
analysis [37]. For maximum-likelihood phylogenies, fast tree inference methods
are needed due to the large size of phylogenomics data. Hence, the IQ-TREE is
proposed, and it gets high computation efficiency and accuracy for the estimation
of maximum-likelihood phylogenies [38]. PhyloBayes3 and BEAST2 are two well-
established programs both constructed from the theory of Bayesian inference [39,
40]. Among them, PhyloBayes3 is a powerful software package, using models of
amino acid replacement and nucleotide substitution for phylogenetic reconstruction
as well as molecular dating analysis [39]. BEAST2 is an improved platform of
BEAST1. Compared with the old version, this new release integrates many recently
published models and enhanced the abilities of data transmission for Bayesian
evolutionary analysis [40].

http://web.cbio.uct.ac.za/%E2%88%BCdarren/rdp.html/
https://viroinf.eu/
https://sourceforge.net/projects/damian-pd/
https://insaflu.insa.pt/
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There are also some integrated tools for phylogenetic studies. For example,
PhyloSuite is a desktop program for sequence data management and evolutionary
phylogenetic research [41]. It integrates a variety of phylogenetics-related bioinfor-
matics tools and allows the streamline of analysis from basic data recognition to
precise annotation of phylogenetic trees [41]. Based on the methods in evolutionary
bioinformatics, MEGA5 (Molecular Evolutionary Genetics Analysis version 5) is
proposed with newly added functions for evolutionary tree prediction, substitution
model selection, sequence identification, and evolutionary rate estimation [42]. The
software tool provides graphical interfaces for mining public datasets, conducting
sequence alignment and building phylogenetic trees [42].

1.3.3 Genome-Wide Exploration

Genome-wide exploration of viruses, including genome annotation, detection of
variation, and coronavirus recombination, are important for the analysis of virus
function and the relationship between different viruses. As shown in Table 1.2,
several computational programs can be used to annotate viral genetic sequences
and visualize the genetic diversity of viruses. For example, gff2ps is an offline
program that focuses on visualizing annotations of genomic sequences in files
with General Feature Format (GFF). In a GFF file, each genomic sequence feature
is shown in a single-line record, and the type of the feature on the genomic
sequence is specified. Although many tools have been developed for reading GFF
files, gff2ps tends to be popular due to its flexibility and high quality in data
processing and result representation [43]. IBS (Illustrator of Biological Sequences)
is another efficient tool for annotation and visualization of either nucleotide or
protein sequences. Compared with gff2ps, IBS has both local and online versions
for users to operate [44]. VirION2 and VVV (Viral Variant Visualizer) are powerful
platforms for study and visualization of viral genetic diversity [45, 46]. Here,
VirION2 is an improved tool integrating both short-/long-read sequencing and
informatics techniques to investigate the genetic diversity of viruses [45], whereas
VVV can be applied to analyze and visualize genetic variants of viruses from next
generation sequencing data [46]. Since the recombination frequently occurs in viral
genomes, the identification of significant recombination patterns is necessary be
considered. Currently, the latest released RDP4 (recombination detection program
version 4) holds the power for detecting and visualizing recombination events
in genome sequence alignments of viruses, and it also equips with many novel
functions for recombination analysis [47].

In addition, ITN-VIROINF implements important virological models to build
a comprehensive computational platform linking virology and bioinformatics to
help understand the interactions between viruses and their hosts [5]. DAMIAN
(Detection & Analysis of viral and Microbial Infectious Agents by NGS) is a bioin-
formatics resource for the detection and cohort-based analysis of microorganisms
including viruses. Besides the known sequence signatures, the tool allows screening
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novel pathogens [48]. Based on whole-genome sequencing data, INSaFLU is an
automated online tool specific to influenza surveillance, e.g., genome sequence
annotation, variant detection, phylogenetic tree analysis, and it will help the
discovery of potential drugs and the decoding of key pathways associated with
influenza evolution [49].

1.4 Data-Driven and AI-Assisted Studies for the Control
of Viral Infection

Nowadays, data-driven and AI-assisted approaches make the procedure for system-
level identification and analysis of changeable viral signatures more accurate. As
summarized in Fig. 1.1, the approaches often start with a collection of omics and
clinical data such as viral sequence, gene expression profiles, and interactive or reg-
ulatory associations among molecules at different levels. Then functional features
will be selected for computational modeling using the methods of mathematics,
biological networks, machine learning, and AI algorithms. Finally, key factors
including candidate biomarkers, pathway signatures, targets for drug, and vaccine
design could be identified for translational researches on viruses such as SARS-
CoV-2, HBV/HCV, influenza virus, and other viruses for human diseases.

Fig. 1.1 The schematic pipeline for computer-aided virus research
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1.4.1 SARS-CoV-2

Since the end of 2019, the infection of SARS-CoV-2 has seriously threatened
the normal order of human life and has caused great damages in both social and
economic fabrics. To fight against it, bioinformatics seems to be a powerful tool for
virus studies in terms of genome sequence annotation, host recognition, candidate
drug target identification, and computer-aided vaccine design.

Li et al. performed transcriptome profiling using lung and blood samples
from patients infected with SARS-CoV-2 and investigated core gene expression
signatures in the pathogenesis of pneumonia induced by SARS-CoV-2 infection
[50]. Based on weighted gene correlation network analysis, two significant gene
modules associated with clinical traits of COVID-19 patients were extracted, and
the over-activation of cytokine release syndrome mediated by immune systems was
identified as the potential mechanism in acute phase of SARS-CoV-2 infection
[50]. Vastrad et al. downloaded high-throughput sequencing data from public
database and identified key genes and significant pathways for COVID-19 diagnosis
based on integrated network topology and functional enrichment analysis [51]. The
result indicated that the abnormally expressed genes were mainly involved in viral
transcription and immune-related signaling, and a panel of ten genes may be used
as candidate diagnostic biomarkers and molecular targets for COVID-19 prediction
and prevention [51]. Similar to this idea, Xie et al. identified differentially expressed
genes from infected SARS-CoV-2 cell lines and constructed a PPI network for hub
gene mining. The validation result showed that CXCL2, IL6, and CCL20 could
serve as latent biomarkers in the prediction of SARS-CoV-2 infection [52].

Another outstanding advantage of bioinformatics is to help screen candidate
targets for immune responses and vaccine design. For example, Grifoni et al.
developed a novel approach integrating both sequence homology and bioinformatics
methods for inferring potential immune targets of SARS-CoV-2. Using parallel
bioinformatics predictions, a priori potential B- and T-cell epitopes were identified,
and it would promote the vaccine design with high efficacy [53]. Since coronavirus
nsp1 (non-structural protein 1) protein is an important player with versatile roles
in virus–host interactions, Min et al. analyzed the characteristics of nsp1 in SARS-
CoV-2 by bioinformatics and further explored its special function in manipulating
translation of host mRNA [54]. In addition to nsp1, ACE2 (angiotensin-converting
enzyme 2) is also a notable star in COVID-19 because it mediates the process of
SARS-CoV-2 into human host cells. Barker et al. selected a series of bioinformatics
methods to identify and compare the cell-specific expression of ACE2 among
trachea, lung, and small intestine and found that the expression of ACE2 in different
cell types was highly heterogeneous [55]. These results gave deep insights into the
drug and vaccine design for future translational applications.
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1.4.2 HBV/HCV

Accumulating evidences demonstrated that the infection of HBV and HCV are risk
factors for the development of liver cancer. Bioinformatics techniques, especially
network-based and AI-assisted models, are therefore developed and applied to
discover key signatures for the prediction or prognosis of HBV/HCV-associated
liver diseases [56].

Based on systems biology viewpoints, biological molecules including genes,
RNAs, proteins, and metabolites may interact with each other, which contributes
to the development of complex phenotypes. Hence, the construction and analysis
of biological networks, e.g., PPI network, gene co-expression network, miRNA-
mRNA regulatory network, competing endogenous RNA (ceRNA) network, would
help the holistic discovery of key players in disease pathogenesis [57]. For example,
Tang et al. identified several hub genes as candidate biomarkers for predicting the
occurrence of HBV-related hepatocellular carcinoma (HCC) from gene expression
and PPI data [58]. They found that the identified genes could well distinguish stage
I HCC samples from the normal controls, which indicated the potential of the
genes for early detection of HBV-induced HCC. Meanwhile, two gene signatures
in the result set, i.e., TOP2A and KIF11, could also be used for overall survival
(OS) stratification of patients with HBV-HCC [58]. Huang et al. integrated the
associations of PPI and miRNA-mRNA network to mine key miRNA-mRNA axis
in HBV-HCC prognosis and therapy [59]. First, they downloaded publicly available
datasets from online databases and performed the differentially expressed analysis
on genes. Then hub genes with significantly differentially expressed patterns were
extracted from the background, and miRNAs targeting the identified hubs were
identified as key factors based on relationships in miRNA-mRNA network. The
downstream web-lab experiments using real-time PCR approach convinced the
biomarker potential of miRNAs-mRNAs in prognostic management of HBV-HCC
patients [59].

The similar research pipeline could also be applied to HCV-mediated liver
disease analysis. Liu et al. constructed a HCV-HCC-related PPI network and
selected the top ten genes with high degrees for identification of biomarkers in
predicting HCV-HCC development [60]. Zhan et al. identified key genes, pathways,
and therapeutic targets for liver fibrosis associated with HBV and HCV infection
based on a combination of bioinformatics prediction and experimental validation
[61]. They found that the immune-inflammatory response pathway was shared by
both HBV and HCV datasets, which highlighted the significance and role of immune
and inflammatory responses to HBV/HCV infection [61].

1.4.3 Influenza Virus

Influenza, caused by the infection of influenza viruses, commonly occurs in Winter
and Spring in China. Although most influenza diseases could be cured after proper
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treatment, patients with serious symptoms may still be life-threatening. The integra-
tion of bioinformatics prediction and clinical validation is one of the current ways
widely acknowledged for translational researches of influenza. Liu et al. identified
hub genes from weighted gene co-expression network and found that these genes
were highly associated with the processes of antimicrobial response and neutrophils
activity [62]. Moreover, two significant genes, i.e., BPI and MMP8, tended to be
overexpressed in severe and dead cases, indicating their roles in regulating the
development of influenza [62]. In addition to biomarker discovery, bioinformatics
is also helpful for vaccine design. For example, Hu et al. used an integrated
bioinformatics approach to evaluate annual perspective changes in influenza viruses.
Based on the computational framework, the most plausible vaccine epitopes were
calculated and compared [63]. Kaewpongsri et al. designed a new bioinformatics
method to characterize viral sequences of A/H5N1. They collected the H5N1 viral
isolations and performed a combination of genotypic testing and bioinformatics
tools to detect the variations of H5N1 for designing appropriate vaccines against
influenza [64].

To sum up, bioinformatics is powerful for control of virus infection in the era
of big data and AI. On the one hand, the sequence and structure of virus could be
precisely deciphered based on genome annotation and analytical tools. On the other
hand, candidate biomarkers and driven signatures ranging from single molecules
including genes, RNAs, and proteins to integrated pathways could be screened for
translational applications such as drug design, vaccine development, and infectious
pathogenic understanding.

1.5 Virus Informatics: From Virus Surveillance to Health
Promotion

1.5.1 Opportunities for Precision Virus Management
and Systems Healthcare

Traditional studies for virus analysis are largely dependent on experimental tech-
niques, which would be time-consuming and costly. With the accumulation of data
resources and the progress in informatics techniques, computer-aided methods pro-
mote the flourishing of virus study into an interdisciplinary informatics-experiment
mode. The paradigm of virus informatics, therefore, is proposed for precision virus
management and infectious control. As shown in Fig. 1.2, databases and knowledge-
bases are foundations for systematical modeling of complex viral statuses. Using the
newly developed techniques such as AI, 5G communication, cloud computing, and
block chain, the basic information and evolutionary characteristics of viruses can be
quickly calculated and comprehensively measured for precision virus surveillance,
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Fig. 1.2 The paradigm of virus informatics for virus surveillance and health promotion

including the early detection of viral development signatures, phylogenetic analysis
on virus origin and evolution, and prevention from viral infection.

Virus informatics is also a strong weapon to fight against virus-induced diseases
and promote systems health spectrum [65]. Currently, computer-aided drug and
vaccine design have become a hot frontier for infection management and disease
treatment. Compared with studies solely using experimental methods, the identifi-
cation of key factors in viral infection process based on computational algorithms
integrates a variety of biomedical knowledge to improve the efficiency and precision
of data analysis, and it could further drive the discovery of novel clues and insights
in virus–host pathogenesis for personalized therapeutics of virus-infected diseases.

1.5.2 Challenges and Perspectives

It is acknowledged that the term translational informatics brings unprecedented
chances for precision virus surveillance and systems health promotion. The
advances in informatics technologies have greatly changed the mode of
computational modeling and intelligent computing, thereby creating the opportunity
for systematical understanding of various biology at molecular, cellular, individual
and population levels. Although the advantages are encouraging, limitations and
challenges are still needed to be carefully considered and addressed.

Challenge and perspective 1: standardization and integration of multi-omics data
and knowledge for population-based model construction and refining.
It should be admitted that data collection is an essential and the first step for
computational modeling. However, the data from multiple omics sources tend
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to be highly heterogeneous. Hence, the development of ontology is urgently
needed to provide standardized and normalized rules for data representation and
integration. As the occurrence and progression of virus infection is a typical issue
at the population level, bioinformatics models ought to be constructed and trained
using population-based data to avoid overfitting and achieve enough sensitivity
and specificity to assist clinical decision-making.

Challenge and perspective 2: Predicting dynamic variability and actionable signa-
ture alternations in virus evolution and infection.
Genomic mutation is one of the important features of viruses, and the interplay
between virus and host cell is also a dynamic process. The informatics models,
therefore, should have the ability to capture the changeable signatures in both
virus evolution and infection, and it would not only help the understanding of
viral origin but also be an effective way for the discovery of driven factors for
disease control and treatment.

Challenge and perspective 3: combining computational strategies with biomedical
experiments for translational pathogenesis understanding and anti-infective
therapeutics development.
Translational informatics is not a substitution of traditional experimental
researches, it aims at integrating innovative technologies of both informatics and
experiments for systems-level viral studies. The combination of computational
prediction with point-to-point experimental validation improves the flexibility
and accuracy of developing personalized anti-infective therapeutic schemes and
makes the designing of drugs and vaccines in a smart manner.

1.6 Conclusions

The advances of big data and translational informatics make the computational
modeling of virus infection become reality. Databases and knowledgebases are
well constructed to provide great resources for viral data sharing and analysis.
Meanwhile novel bioinformatics and systems biology frameworks with AI-guided
kernels contribute to systematical characterization of viruses in terms of the prop-
erties of genomic sequences, evolutionary patterns, and infectious pathogenesis. In
the future work, population-level virus informatics studies with large-sample-based
biomedical validations should be performed for health promotion of the translation
from basic researches into clinical applications.
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Chapter 2
Detection and Prevention of Virus
Infection

Ying Wang and Bairong Shen

Abstract The pathogenic mechanism of viral infection is a complex process
involving viral mutation, viral integration, and various aspects of the interaction
between the viral genome and the host. Moreover, the virus mutation will lead to
the failure of related vaccines, leading to the increasing of vaccine development
costs and difficulties in virus prevention. With the accumulation of various types
of data, using bioinformatics methods to mine the potential viral characteristics of
the pathogenic process can help virus detection and diagnosis, to take intervention
measures to prevent disease development or develop effective antiviral therapies.
In this chapter, we first outlined traditional approaches and emerging technologies
of virus detection and prevention, and then summarized the latest developments
in the bioinformatics methods application in different fields of virus researches.
The emergence of artificial intelligence provides advanced analysis techniques
for revealing key factors of virus infection and has been widely used in the
virology community. In particular, we highlight machine learning and deep learning
algorithms to identify factors/categories from complex multidimensional data and
uncover novel patterns of virus or disease risk prediction.
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2.1 Introduction

Viruses cause most of the infectious diseases, and more than 200 viruses have
been confirmed to be pathogenic to humans [1]. In the past 50 years, many new
emerging viruses are still being found worldwide, such as the Ebola virus in 1977,
human immunodeficiency virus (HIV) in 1983, SARS virus in 2003, MERS in 2012,
and the ongoing global pandemic of coronavirus disease 2019 (COVID-19). These
emerging new infectious diseases seriously threaten human health and safety. Some
are difficult to cure, due to lack of specific prevention and treatment methods, and
the mortality rate is high. Some have caused and will continue to cause great harm
to human beings as they are prone to becoming chronic diseases.

Nowadays, the rapid development of viral diagnosis technology has gradually
formed an important branch of virology research. Since there is no effective
treatment for most viruses, laboratory diagnosis has become an important strategy
to control the epidemic and spread of the virus. With the continuous deepening
of virology research, the diagnostic methods of viral infectious diseases have
evolved from a single virus isolation at the beginning to more sensitive and specific
diagnostic methods such as viral serology and molecular biology.

Vaccines are the most powerful weapon against viral infections. Although some
progress has been made in the research of virus vaccines, there is still a certain
gap in effective prevention currently. Many viruses show high mutation rates and
can evolve rapidly to produce new mutant strains. For example, COVID-19 has
evolved since the end of 2019. Different viral subtypes or branches are constantly
being developed and spread globally. Worse still is the occurrence of virus antigenic
drift, such as the continuous mutation of surface antigens of influenza virus neu-
raminidase (NA) and hemagglutinin (HA), leading to the emergence of antigenically
distinct variants [2].

Therefore, it is still necessary to develop novel diagnostic methods, strengthen
the research of virus vaccines, and carry out the mining and discovery of antiviral
drugs from multiple levels and perspectives. With the emergence of a series of
omics data (genomics, proteomics, metabolomics, etc.), sequencing technology has
provided researchers with a large amount of virus and host genome information.
Here, we aim to review the approaches and informatics for the detection and
prevention of some virus infection, including influenza virus, coronavirus, HIV,
human T-lymphotropic virus I (HTLV-1), human papillomavirus (HPV), herpes
virus, hepatitis virus, arboviruses, filovirus, and rabies virus.

2.2 Virus Detection and Prevention

Viruses are classified based on their type of nucleic acid as genetic material, DNA
or RNA. Compared with DNA viruses, RNA viruses are more likely to cause
diseases and more deadly to the human host. The replication mode of RNA viruses
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can be summarized as RNA self-replication and reverse transcription. Due to the
low activity or even almost absent of the enzymes involved in the error repair
mechanism during the replication process, RNA viruses are prone to mutations.
From the Spanish flu in 1918 until the COVID-19 in 2019, RNA viruses may
have constituted the greatest pandemic threat among all known pathogens in the
past 100 years. Rostislav Bukasov et al. reviewed RNA viruses with pandemic
tendency and common detection methods [3]. In this section, we summarized the
traditional methods and novel biosensor diagnostic strategies, as well as the latest
developments in the prevention and treatment for RNA and DNA viruses (Fig. 2.1).

2.2.1 Influenza Virus Detection and Prevention

Influenza is an acute respiratory infection caused by influenza virus. Influenza
viruses include four types: A, B, C, and D. Detection methods used to identify
influenza can be roughly divided into traditional and novel strategies. The traditional
detection methods mainly include cell culture-based tests, rapid influenza diagnostic
tests (RIDTs), immunofluorescence assays, serological assays, and nucleic acid-
based tests (NATs).

2.2.1.1 Cell Culture-Based Detection

Influenza viruses are propagated in mammalian cells or embryonic eggs [4]. The
cell culture lines used routinely include MDCK adherent cell line, VERO cell line,
Hep-2 line, A549 cell line, and MRC5 cell line [5]. The sensitivity of this method
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is almost 100%. In influenza diagnostic research, it is considered to be the most
traditional gold standard method, but results are usually not available within a few
days [6]. Therefore, this method is currently rarely used for diagnostic purposes but
is mainly used in the screening process of vaccine strains in epidemic seasons [5].

2.2.1.2 RIDTs

RIDTs are fast and easy of use, which are based on immunoassay to detect the nucle-
oprotein antigen of influenza virus in respiratory specimens [4]. Using colloidal gold
tests, the results are usually obtained within 10–30 min. For commercially available
RIDTs, several studies have carried out mutual evaluation or compared to reference
methods and found that the sensitivity range of RIDTs is relatively wide [4, 6, 7].
Therefore, to improve the accuracy of RIDTs in the early diagnosis of influenza, it
is still necessary to increase the sensitivity and specificity of their detection.

2.2.1.3 Immunofluorescence Assays

Immunofluorescence (IF) assays, including direct fluorescent antibody assay or
indirect fluorescent antibody assay, mainly use fluorescent pigments to label
antibody molecules and then bind to specific antigens in the specimen. IF assays
are cheap, intuitive, and fast, with results within 2–4 h. Compared to RIDTs, IF
assays have higher specificity and moderate sensitivity. However, the sensitivity is
much lower than those of PCR-based methods, and well-trained researchers with
expertise in fluorescence microscopy are required. Thus, it is still not a suitable test
for clinical laboratory diagnosis of influenza virus but is valuable in confirming the
results of RIDTs [7].

2.2.1.4 Serological Assays

Common serological assays include hemagglutination and hemagglutination inhi-
bition (HAI) test, neuraminidase inhibition (NI) assay, complement fixation test
(CFT), serum virus neutralization test (SVN), and enzyme-linked immunosorbent
test (ELISA) [4, 7]. Because the influenza virus encodes HA and NA, HAI prevents
the binding of HA on the virus surface to red blood cells by adding specific
antibodies to bind to the virus. The titer of specific antibodies increasing by
four times or more indicates positive and will reach the peak within 14 days
[8]. Since this method usually requires two serum samples, it is mainly used
as an auxiliary method for the detection of influenza but not conducive to the
early diagnosis [7]. The NI assay is mainly used for the rapid determination and
classification of neuraminidase subtypes (N1–N9) of the surface antigen of influenza
A virus, recommended by the World Health Organization (WHO) [9]. CFT is a
test for detecting antigens or antibodies that uses antigen–antibody complexes to
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combine with complement for the complement depletion in a solution of known
concentration, which is presently used for the retrospective diagnosis of influenza
[5]. The SVN test assesses the inhibitory effect of influenza virus infectivity by
detecting neutralizing antibodies in human or animal serum. This method can
achieve high sensitivity, but only if the antibodies match the antigens on the surface
of the virus. The cumbersome procedure also limits its diagnostic application [10].
ELISA has been widely used to detect antigens or antibodies with high sensitivity
and specificity and is routinely used for the rapid diagnosis of suspected influenza
cases. Currently, ELISA has also been combined with microneutralization assays to
determine the presence of influenza virus in microwell plates [10].

2.2.1.5 NATs

NATs is a series of technologies for direct detection of specific sequence of the
virus. Compared with antigen-based tests, NATs have higher sensitivity and shorter
time [4]. However, due to specific sequences depending on the aims of different
researches, the specificity of NATs may vary widely. Currently, available NATs
include reverse transcription PCR (RT-PCR), real-time RT-PCR, multiplex PCR,
nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal
amplification (LAMP), microarray, and next-generation sequencing (NGS).

The PCR-based detection method is considered as a gold standard test refers
to a diagnostic method with one of the highest sensitive for virus detection
including influenza virus. Compared with the RT-PCR, real-time RT-PCR has the
advantages of real-time monitoring of amplified products or treatment progress
in patients, lower time-consuming as well as less human effort. Multiplex PCR
detection method for multiple gene expressions can detect multiple respiratory
pathogens simultaneously, including influenza virus. The multiplex PCR seems to
have the highest diagnostic potential, characterized by high efficiency, systemicity
and economic simplicity [5].

Similar to PCR-based detection methods, isothermal nucleic acid amplification
method provides detection of a nucleic acid target sequence for pathogen in a high-
sensitivity and less-stringent instrument requirements. This method does not rely
on thermal cycling that would be very useful for high-throughput applications. To
date, several methods of isothermal nucleic acid amplification are available, such as
NASBA and LAMP [11–13].

Microarrays containing hundreds or thousands of probes can provide the poten-
tial for simultaneous detection of multiple pathogens. The sensitivity and specificity
of most microarrays are comparable to that of other molecular diagnostic tests. For
influenza virus, tested genes are usually focused on HA, NA, and M genes, and there
are also some microarrays used to detect nucleoprotein (NP) and non-structural
protein (NS) genes. However, due to the requirement of specialized instruments,
microarrays are more appropriate for research and monitoring [14].

NGS is one of the most influential technologies in the field of genetics and
medicine. To better develop novel and effective influenza inhibitors, Whitehead
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et al. [15] used the Illumina NGS platform to construct sequence function maps
to optimize influenza binding proteins. Since NGS requires specialized equipment
and takes a long time for bioinformatics analysis, this technology is more suitable
for research purpose such as characterization of novel viral genome, comparative
genome analysis, and genetic tracking [14].

Generally, traditional strategies for virus detection have been known for many
years and can be performed under standard laboratory conditions. However, most
traditional tests usually require special equipment or complex reaction control.
Since it is difficult to achieve instrument miniaturization, these methods are just
appropriate for clinical laboratory testing but not for point-of-care test (POCT) [16].
Biosensor is a kind of high-tech, developed from the mutual penetration of biology,
chemistry, physics, medicine, electronic technology, and other disciplines. In recent
years, with the continuous development of biological science, information science,
and material science, biosensor technology has grown rapidly and vigorously. It
is found that most sensors have high sensitivity, good selectivity, low cost, high
degree of automation, miniaturization, and online continuous monitoring system.
The current technical developments in the field of biosensors is based on the
selection of signal output systems, mainly optical and electrochemical detection
systems.

Optical biosensors commonly include the Surface-Enhanced Raman Scattering
(SERS) and Surface Plasmon Resonance (SPR). Yang Sun et al. [17] have used
SERS technology to develop a novel magnetic immunosensor to detect bird flu.
Skilled operators and Raman spectrometers are still required for this method. SPR
allows to track the binding kinetics of important molecules, as well as for quan-
titative detection of analytes [3]. Electrochemical biosensors contain voltammetry,
current method, impedance method, and conductivity biosensor. The main benefits
of using electrochemical biosensors are: fast, simple, fewer samples, and low cost.
The results are generally available between 5 and 20 min. At present, use of
nanomaterials in improving the performance of electrochemical biosensors is also
being carried out [3, 18]. Karolina Dziabowska et al. also listed other novel ideas
for biosensors [4].

Overall, taking into account the time efficiency, sensitivity, portability, and cost,
biosensors have the potential for future clinical applications and POCT. Their high
precision and detection rate opens up new horizons for the area of designing portable
and lab-on-a-chip devices to solve many difficult problems in decades.

2.2.1.6 Influenza Virus Prevention

Inactivated influenza virus vaccine (IVV) is regarded as one of the main means to
protect the host from influenza virus infection. The quadrivalent inactivated split
vaccine covers the four types of currently circulating seasonal influenza viruses,
H1, H3, Bv, and By. However, due to the vaccination rate, immunization failure,
or other reasons, there is always a virus outbreak during the flu season. The other
approach to prevention against influenza is anti-influenza therapy. Commonly used
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anti-influenza virus drugs are neuraminidase inhibitors (NAIs) and ion channel
inhibitors based on NA-neuraminidase and M2-ion channel design. The licensed
NAIs are oseltamivir (trade name Damivir), zanamivir, peramivir, and lanimivir
[19]. However, resistant mutations can affect the NA catalytic site. Mutations in the
catalytic site and the surrounding region were determined to be related to resistance
or reduction in sensitivity to NAIs [20]. Amantadine drugs include amantadine
and rimantadine. Due to the prevailing drug resistance, especially the amino acid
substitution mutations at residues 26–34 of the transmembrane domain of M2
protein, these antiviral drugs are only effective if given in the early stages of
infection and are currently phased out in the clinical use [21].

2.2.2 Coronavirus Detection and Prevention

Coronavirus is an important pathogen of many domestic animals and pets. In
humans, coronavirus can cause respiratory infections. The pathogenicities of human
coronavirus 229E (HCoV-229E), human coronavirus OC43 (HCoV-OC43), human
coronavirus HKU1 (HCoV-HKU1), and human coronavirus NL63 (HCoV-NL63)
are low. On the contrary, severe acute respiratory syndrome coronavirus (SARS-
CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly pathogenic,
leading to severe respiratory diseases and even fatal in infected patients [22].

2.2.2.1 Coronavirus Detection

As we all know, the ongoing outbreak of COVID-19 has accelerated threats to
the global public health. In clinical practice, there are three primary methods to
diagnose COVID-19, which are NATs, chest CT imaging, and immunoassays. NATs
are still the gold test for the diagnosis of COVID-19. In addition, studies have
shown that chest imaging is beneficial at some stage of COVID-19 infection [23].
However, because the CT imaging features of patients infected with COVID-19
may be similar to those of other viral infections (e.g., influenza or SARS-CoV),
the Centers for Disease Control still does not recommend using CT imaging to
diagnose COVID-19. Nevertheless, the combination of epidemiological history,
clinical symptoms, and CT images can help identify COVID-19 infection, especially
under the circumstances of lacking laboratory test kits.

The qualitative antibody detection of COVID-19 can employ the IgM/IgG rapid
detection kit based on immunoassay. The sensitivity of this method is lower than that
of NATs, but it has practical value and can be used for rapid screening of previous
infection individuals and identification of potential people whose immune systems
have a strong enough to the virus.

To combat the rapidly spreading pandemic, POCT is the best solution. The
equipment needs to be economical, sensitive, selective, user-friendly, and fast,
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which should be suitable for on-site testing in clinics and other environments with
less infrastructure or on-site use during a virus outbreak. The isothermal nucleic acid
amplification methods, such as rolling circle amplification (RCA) and RT-LAMP,
have been established. Although the isothermal nucleic acid amplification methods
simplified the RT-PCR detection procedure including the thermal cycler and the
turnaround time for amplification, sample processing steps still require professional
training of operators. A paper lateral flow measurement (LFA) technology was
further developed, which is characterized by low-cost, easy to manufacture, and test
at home. There are other emerging detection techniques that have been established
to improve various methodological performances. For example, the use of colloidal
gold nanoparticles combined with probes to achieve signal amplification strategies;
the use of single-molecule ELISA to provide the detection limit of subfemoral
protein concentration in order to enhance the sensitivity; the development of
proximity linkage analysis (PLA) to improve the specificity; and the use of NGS
and DNA microarrays to increase the throughput, etc. [24].

2.2.2.2 Coronavirus Prevention

Although many forms of vaccines against SARS-CoV and MERS-CoV have been
developed, no one has been approved by the FDA yet. As of now, there are more
than 200 COVID-19 vaccine candidates under the development worldwide.

Specifically, whole inactivated vaccines in clinical trials include CoronaVac (also
known as PiCoVacc) developed by SinoVac Inc., and other different COVID-19
inactivated virus vaccine made by Sinopharm and Wuhan Institute of Biological
Products. Additionally, Sinopharm Inc. also collaborated with Beijing Institute
of Biological Products to develop BBIBP-CorV. Protein subunit vaccines are
developed through chemical decomposition or control of proteolysis, then to extract
the special viral protein structure and screen immunologically active fragments.
Generally, protein subunit vaccines have few side effects and high safety. However,
they still need adjuvants and vaccine delivery systems to enhance the immune
response, to ensure the correct formation of immune memory. In clinical trials,
protein subunit vaccines of COVID-19 include NVX-CoV2373 vaccine developed
by Novavax and recombinant COVID-19 vaccine made by Anhui Zhifei Longcom
Biopharmaceutical Co. Nucleic acid vaccine (DNA or RNA) refers to the direct
introduction of exogenous genes that encode viral antigen proteins into animal
cells. The expression system of the host cell synthesizes antigen proteins and then
induces the host’s immune response. To date, DNA vaccines of MERS and COVID-
19 are mainly developed by Inovio. RNA vaccines against COVID-19 are made
by Moderna and BioNTech/Pfizer. Adenovirus vector vaccines are also popular,
such as Gam-COVID-Vac (Gamaleya Research Institute), AZD1222 (AstraZeneca
and Oxford University), Ad5 (CanSino Biological Inc. and Beijing Institute of
Biotechnology), and Ad26 (Johnson & Johnson and Beth Israel Deaconess Medical
Center) [22, 25].
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To date, there is still no effective antiviral drug for coronavirus infection. For
patients with early SARS-CoV infection, ribavirin and high-dose steroids are used.
Advanced patients use INF-a, lopinavir, and ribavirin [26]. However, the current
effects of these commonly drugs and treatments are limited. The effect of high-
dose steroid therapy and complications are still unclear. In addition, peptides
derived from certain viral proteins can be used to inhibit viruses, such as peptide
inhibitors in the MERS-CoV S2 region [27]. Other small-molecule drugs can
also inhibit the viral infection. Researchers have found that HIV inhibitor ADSJ1
and 3-hydroxyphthalic anhydride-modified human serum albumin can inhibit the
invasion of MERS-CoV, but their mechanisms need further study [28]. Nowadays,
the pandemic of COVID-19 has attracted global attention. Remdesivir, chloroquine
phosphate, and Lianhua Qingwen have been found to have certain clinical effects,
but more comprehensive clinical trials are still in progress [29].

2.2.3 HIV and HTLV-1 Detection and Prevention

HIV is a retrovirus that causes defects in the human immune system. Similar to HIV,
one of the key types in human T-lymphotropic virus, HTLV-1, is a tumorigenic RNA
virus that causes adult T-cell leukemia through infecting CD4+ T cells.

2.2.3.1 HIV and HTLV-1 Detection

Until now, many traditional detection methods, such as ELISA, immunoassay,
Western blot, radioimmunoprecipitation assay, NATs, have been developed to detect
HIV and HTLV-1. Moreover, diverse technologies based on nanomaterials also have
been employed for the construction of emerging diagnostic methods. Nanosensor
technology uses biochemical reactions mediated by enzymes, immune components,
cells, and tissues to provide corresponding information about particle behavior and
characteristics, and then these reactions are converted into interpretable signals
through the nano-to-micron technology. Nanosensors provide reproducible and
fast results with a high degree of specificity and sensitivity for quantitative and
qualitative detection. For example, Sarthak Nandi et al. reported that the nanosensor
technology can be used to track infant infections during mother-to-child trans-
mission, the latent pool in HIV-positive, and monitor patients with HIV receiving
antiviral therapy [30].

So far, the electrochemical sensor detections for HIV and HTLV-1 gene based
on nanomaterials include electrochemical impedance spectroscopy, square wave
voltammetry, differential pulse voltammetry, and hybrid methods. Optical biosen-
sors include quantum dots-based fluorescence analysis, metal nanoparticles, nan-
oclusters or nanosheets, fluorescence polarization measurement, chemilumines-
cence detection, nanoplasma analysis, dynamic light scattering detection, etc. These
emerging technologies will help accelerate the promotion of early diagnosis for
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HIV-1 and HTLV-1 infections, as well as the improvement of clinical treatment and
prevention of viruses [31].

2.2.3.2 HIV and HTLV-1 Prevention

Presently, vaccines fail to prevent HIV or HTLV-1 infection. HIV vaccines can be
divided into four research stages: neutralizing antibodies for humoral immunity,
cellular immunity mediated by stimulating CD8 T cells, combined immunization
applications for various vaccines, as well as the antigen modification and vector
replication to induce stronger humoral and cellular immune response. The discovery
and application of ultra-broad-spectrum neutralizing antibodies provide new ideas
for HIV vaccine research. Using technologies such as next-generation sequencing
and single cell sorting, scientists have discovered broadly neutralizing antibodies
(VRC01) in a small number of HIV-infected individuals [32]. Immunogenic repli-
cation virus vectors are also increasingly used in the development of HIV vaccines,
among which Ad26 and Ad35 combined immunization with adenovirus as a carrier
has entered the human phase I trial [33].

Traditional HIV antiviral therapy includes antiretroviral therapy (ART) and
antiviral drug targets. For instance, ibalizumab inhibits the viral activity by binding
to the extracellular domain of CD4 [34]; Maraviroc is a small molecule chemokine
receptor antagonist that can inhibit the replication of HIV by preventing the
binding of gp120 and CCR5 [35]; The fusion inhibitor T-20 blocks the invasion
of HIV by affecting the formation of two heptameric repeats in the extracellular
region of gp41 [36]. Other types of drugs include nucleotide reverse transcriptase
inhibitors (NRTIs), non-nucleotide reverse transcriptase inhibitors (NNRTIs), pro-
tease inhibitors, and integrase inhibitors. Novel HIV antiviral treatments include
nucleic acid-based gene therapy strategies, protein or polypeptide-based gene
therapy strategies, and antigen non-specific immunotherapy including RNA inter-
ference, gene editing, type I interferon, etc.

Although ART has made great progress in reducing the risk of AIDS, people
infected with HTLV-1 have not yet benefited from such effective treatments. In
recent years, virus-derived lentiviral vectors have shown great application potential
in the field of vaccine development. A HTLV-1 lentiviral vector vaccine containing
unique polypeptides that encode Tax, HBZ, p12, and p30 viral proteins, has
been proven to safely and effectively induce immune responses in mouse models.
However, these related vaccines still need to be verified in clinical trials [37].

2.2.4 HPV Detection and Prevention

HPV is a spherical DNA virus. The main infected area is human epidermis and
mucosal squamous epithelium, resulting in the proliferation of squamous epithelium
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of human skin and mucosa. HPV infection can lead to common warts, cervical
cancer, etc.

2.2.4.1 HPV Detection

Benign lesions caused by HPV infection can be divided into two categories
according to the site of infection, namely whether they cause genital mucosal lesions
and whether they cause skin lesions. Clinically, the forms of genital mucosal lesions
are condyloma acuminatum, papular warts, and flat lesions. The most common
type is condyloma acuminatum. Skin lesions caused by HPV are also frequent,
manifesting as common warts (HPV-2), plantar warts (HPV-1), or flat warts (HPV-
3). Generally, if the lesion is initially confirmed to be HPV-related benign lesions
based on clinical manifestations, laboratory tests are not performed.

In addition to the above-mentioned benign lesions, traditional methods for HPV
infection are based on PCR and probe hybridization. However, these methods cannot
detect fragments that do not specifically bind to the designed primers and probes, so
that different HPV genotypes may not be detected. Nevertheless, this limitation can
be circumvented by unbiased high-throughput sequencing of the total nucleic acid of
the sample. Furthermore, data will show whether there is viral transcription activity
by cDNA sequencing, which is usually essential for the initiation and maintenance
of the HPV malignant phenotype.

Among cancers related to anogenital HPV infection, cervical cancer is the most
popular. Interestingly, Arroyo Mühr et al. reported the use of Novaseq 6000 to
perform unbiased deep sequencing of HPV-negative patients with invasive cervical
cancer, which can provide more comprehensive data for HPV screening [38]. In
addition, HPV infection has also been identified as one of the predictive markers of
head and neck squamous cell carcinoma (HNSCC). Aldo Venuti et al. reviewed
the application of various detection techniques to HPV-infected HNSCC and
summarized the use of serum and plasma to measure HPV methods, such as serum
antibodies against HPV antigen, HPV DNA in plasma or saliva. The circulating
HPV DNA has a potential clinical application value in the HPV-infected cancers
[39]. R.B. Capone et al. used a combined detection method of conventional PCR,
Southern blot hybridization, and qPCR to evaluate the level of circulating HPV
DNA in patients with HNSCC [40]. It is expected that HPV detection combined
with the high-throughput technology may help determine the molecular profile of
any specific HPV+ or HPV− associated cancers and assist in diagnosing the risk of
related diseases.

2.2.4.2 HPV Prevention

Currently, there are three licensed HPV vaccines, including Bivalent (Cervarix
®

,
GlaxoSmithKline), Quadrivalent (Gardasil

®
, Merck), and Nonavalent (Gardasil9

®
,
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Merck). The Quadrivalent Gardasil was first licensed in 2006 and used to prevent
HPV6, HPV11, HPV16, and HPV18, followed by the Bivalent Gardasil (Types 16
and 18) in 2007. In 2015, the Gardasil9 was approved which protects against HPV
(Types 6, 11, 16, 18, 31, 33, 45, 52, and 58) [41].

2.2.5 Herpes Virus Detection

The herpes virus is a type of virus with an envelope and a double-stranded DNA
genome. Most types of herpes viruses that can infect humans are herpes simplex
virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), Epstein–Barr virus
(EBV), human cytomegalovirus (HCMV), Kaposi’s sarcoma-associated herpesvirus
(KSHV), varicella zoster virus (VZV), etc.

2.2.5.1 Herpes Virus Detection

Virus isolation and culture is a reliable basis for the clinical diagnosis of herpes virus
infection. Commonly used methods for antibody detection include the complement
fixation, enzyme-linked immunosorbent test, immunofluorescence, and neutral-
ization test. HSV-1-specific PCR amplification or DNA probes used to identify
this virus or DNA restriction endonuclease map can be used for the analysis of
typing. HCMV is the largest member of the genome of the herpes virus family
and can encode more than 200 proteins, which can cause severe complications in
immunosuppressed patients and infected newborns. Laboratory testing of HCMV
is mainly through the isolation of viruses from tissues or secretions. For rapid
diagnosis of HCMV, the infected cells can be fixed for 24 h, and DNA probes can
be used for in situ hybridization detection. Other detection methods include ELISA
to detect IgM antibodies and IgG antibodies, Western blotting, and molecular
hybridization techniques.

In addition, due to the overlapping manifestations of herpes viruses, clinical
identification is difficult. The multiplex PCR is an attractive choice for molecular
virology laboratories. Chang Ho Shin et al. has developed a quadruplex PCR
approach that can quickly and accurately detect and type HSV-1, HSV-2, CMV, and
EBV [42]. Cyril C.Y. Yip et al. established a multiplex PCR technique for detecting
and distinguishing HSV-1, HSV-2, and VZV and further compared the performance
with the commercially available RealStar alpha Herpesvirus PCR Kit 1.0 [43].

2.2.5.2 Herpes Virus Prevention

At present, there is still no preventable vaccine or available therapeutic vaccine
against herpes virus infections. Although the research on several herpes viruses such
as HSV-1 vaccines including wild strain vaccines, inactivated vaccines, recombinant



2 Detection and Prevention of Virus Infection 33

vaccines, and DNA vaccines have been started and developed, there is no clinically
effective vaccine to prevent HSV-1 infection. Drugs for the treatment of HSV-1 and
HCMV can only inhibit virus replication during infection and cannot completely
eliminate the virus. Generally, drugs based on HSV-1-encoded protein kinase that
inhibit DNA replication during the lytic phase are used, such as the nucleoside
drug acyclovir as well as its derivatives valacyclovir, penciclovir, and famciclovir.
Other non-nucleoside drugs include foscarnet and other drugs [44]. For HCMV
infection, the first choice for the treatment is ganciclovir, which can competitively
inhibit the synthesis of HCMV DNA polymerase and directly prevent the extension
of viral DNA [45]. For Kaposi sarcoma (KS)-associated herpesvirus (KSHV),
patients are treated with antiviral drugs such as valganciclovir [46]. At present,
there is no particularly good method to treat EBV-related diseases. Commonly used
drugs include acyclovir, ganciclovir, arginine butyrate, foscarnet, cidofovir, as well
as conventional radiotherapy and chemotherapy. Immunotherapy for EBV-related
diseases is also under development. Studies have shown that the star molecule, PD-
L1, is also highly expressed in various tumor diseases related to EBV. Inhibitors
targeting PD-L1 have also shown positive therapeutic effects in the research of
EBV-related diseases. The combination of multiple programs is still the future
development direction of the treatment of EBV-related diseases [47, 48].

2.2.6 Hepatitis Virus Detection and Prevention

Hepatitis virus refers to the pathogen that causes viral hepatitis, mainly including
hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis
D virus (HDV), and hepatitis E virus (HEV). Except for type A and E viruses which
are infected through the intestinal tract, other types of viruses are spread through
close contact, blood, and injection. The serological method of antigen antibody
detection can be used for routine diagnosis of hepatitis virus.

2.2.6.1 Hepatitis Virus Detection

HAV is an RNA virus, and its diagnosis is usually confirmed by serological evidence
of recent infection, namely detection of IgM antibodies against HAV. HAV RNA
can also be detected in the feces and saliva of infected hosts, but the concentration
is much lower than that in serum. The NAT detection methods for HAV include
real-time PCR or nested PCR [49]. HBV is a DNA virus. The antigens of HBV
are complex, including HBsAg, HBeAg, and HBcAg. HBsAg positive for more
than 6 months in the blood is an important indicator for the diagnosis of chronic
HBV infection (CHB). HBeAg is a serological marker molecule for active virus
replication. The core protein HBcAg is highly immunogenic. Correspondingly, anti-
HB is a protective neutralizing antibody. The appearance of anti-HBc IgM in the
blood is usually the first immunological indication of HBV infection. Anti-HBc
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IgG can survive for life after clinical cure and is a sign of HBV infection or
previous infection. The gold standard for detecting the presence of HBV virus is
to quantify the viral DNA load [50]. HCV is an RNA virus with a lipid shell,
and its detection can be divided into the detection of anti-HCV antibodies and
the detection of HCV antigens. The former methods include enzyme immunoassay
(EIA), microparticle EIA, and chemiluminescence immunoassay. The latter have
developed assays for the detection of HCV core antigen, as well as several
approaches for the simultaneous detection of both [51]. Since the co-infection of
HBV and HCV is also frequent, Shantanu Prakash et al. established a single-step
multiple real-time PCR method that can simultaneously detect HBV and HCV [52].
HDV is a defective hepatotropic single-stranded RNA virus that needs the assistance
of HBV to replicate. Therefore, HDV may occur as a simultaneous co-infection or
superinfection in HBV-infected patients. HEV is a picornavirus. One of the principal
diagnostic methods for HEV is molecular detection of RNA and specific antibodies
against ORF2 using serum samples [53].

2.2.6.2 Hepatitis Virus Prevention

Vaccination is an important way to control and prevent the spread of hepatitis virus
infection. Specifically, many countries have adopted universal HAV vaccinations
in their children such as Havrix, Vaqta, and Twinrix [49]. There are two types of
HBV vaccine. One is a plasma-derived vaccine, and the other is a recombinant
vaccine manufacturing by expressing the HBsAg gene in Saccharomyces cerevisiae.
These two generation vaccines are both safe and effective [54]. At present, the
only commercially available vaccine against HEV is HEV 239 (Hecolin, Xiamen
Chuangxin Biotechnology, China), which was registered in China in 2011 but has
not yet been approved in other countries [53].

Previously, for the antiviral treatment of HAV, interferon has been evaluated for
the acute HAV infection and shown to be effective in cell cultures; however, due to
the limited case reports, the effectiveness is still unclear [49]. Antiviral treatments
for HBV mainly include interferon alpha, long-acting interferons (PegINF-alpha),
and nucleoside analogs [nucleoside (tide) analogs, NUCs], etc. Because the treat-
ment of interferon combined with nucleoside analogs cannot target cccDNA, it is
difficult to completely remove the HBV replication template-cccDNA in liver cells.
To achieve the goal of completely curing chronic HBV infection, many potential
target drugs for different stages of the HBV life cycle have been developed, which
are mainly summarized into three categories: direct antiviral drugs targeting the
components of the virus itself, host-targeted drugs targeting factors related to the
virus life cycle, and targeting factors related to immune regulation [55, 56]. In
approximately 50% of treated HCV patients, the peg-IFN/RBV combination can
eliminate the HCV virus, which has become a standard for chronic HCV infection.
In addition, direct-acting antivirals have also become another treatment option for
HCV infection [51]. Currently, HDV treatment is still based on the interferon alpha.
Other three treatment strategies, Myrcludex B, Lonafarnib, and REP 2139, are under
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evaluation [57]. For the antiviral treatment of HEV, Juliana Gil Melgaço et al. have
shown that ribavirin can be used in patients with chronic HEV infections who are
immunocompromised [53].

2.2.7 Arbovirus Detection and Prevention

Arboviruses are a group of arthropod-borne viruses. More than 130 arboviruses
causing human diseases have been discovered worldwide, e.g., dengue fever
virus (DENV), yellow fever virus (JFV), Japanese encephalitis virus (JEV),
tick-borne encephalitis virus, Rift Valley fever virus (RVFV), West Nile virus
(WNF), Crimean-Congo hemorrhagic fever virus (CCHFV), Chikungunya fever
virus (CHIKV), and Zika virus (ZIKV).

2.2.7.1 Arbovirus Detection

The diagnosis of arboviruses generally includes the clinical features and epidemio-
logical analysis of the diseases. Several traditional methods for arbovirus detection
are cell culture virus isolation, serological analysis, molecular technology, etc.
Laboratory diagnosis mainly includes serological analysis (e.g., hemagglutination
inhibition test, complement fixation test, and neutralization test) and direct virus
isolation. At present, many researchers have developed techniques to detect multiple
arboviruses. For instance, Christian Drosten et al. established a one-step RT-PCR
system that can simultaneously detect CCHFV, RVFV, DENV, and YFV [58]. José
A. Boga et al. developed an approach based on multiplex real-time PCR that can
detect DENV, CHIKV, ZIKV, YFV, and WNV, concurrently [59].

Metagenomics takes the entire microbial community genome in specific environ-
mental samples as the research object for high-throughput sequencing. For clinical
purposes, metagenomics NGS can accurately analyze all microorganisms in patient
samples, which has an extremely high application value for pathogen research
of infectious diseases. Based on Oxford nanopore technology, MinION is a low-
cost handheld sequencer that can generate long reads up to 233 kb in real-time
and has been used to detect various viruses, including DENV and ZIKV [60].
In addition, biosensors based on optics, electrochemistry, microfluidics, ELISA,
and smartphones are the main methods used in detecting different biomarkers
and serotypes of viruses including DENV [61]. Luo Lianghui et al. developed
a magnetic surface molecularly imprinted resonance light scattering sensor that
can detect JEV quickly and with high sensitivity [62]. In future, these emerging
technologies will open up new prospects for the improvement of commercial
biosensors in the early diagnosis of arbovirus infections.
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2.2.7.2 Arboviruses Prevention

At present, there are only a few vaccines to prevent arboviruses. For instance,
the 17D live attenuated vaccine produced from chicken embryos has been widely
used in yellow fever endemic areas [62]. There are two vaccines for Japanese
encephalitis, an inactivated vaccine derived from inactivated Japanese encephalitis
virus cultured in hamster kidney cells and a live attenuated SA14-14-2 virus vaccine
[63].

2.2.8 Filovirus Detection and Prevention

The filovirus is a single-stranded anti-strand RNA virus, including Ebola virus and
Marburg virus. Ebola hemorrhagic fever caused by the Ebola virus is extremely
fatal. The structure of Marburg virus is almost the same as that of Ebola, but their
antigenic responses are different.

2.2.8.1 Filovirus Detection

Detection methods basically rely on the direct identification of virus particles,
proteins, or specific RNA in suspected cases from whole blood, serum, or plasma.
Importantly, because Ebola and MARV viruses are highly dangerous pathogens,
virus isolation and identification must be performed in a special laboratory facility.
Usually, the preferred method is via the NATs to directly detect the viral RNA.
The common target genes for the detection of these two viruses include NP,
L, and GP genes. Reverse transcription is required before PCR. The primary
diagnostic methods include RT-PCR, qRT-PCR, and RT-LAMP [64]. In addition,
sequencing technology is used to track the spread of pathogens and monitor
virulence and potential drug resistance. Portable systems have been developed for
on-site sequencing and analysis of EBOV samples, such as the MinION (Oxford
Nanopore Technology) sequencing equipment used in Guinea during the 2014–2016
Ebola virus outbreak. Other novel nucleic acid means similar to RT-qPCR include
FilmArray Biothreat E and have obtained the emergency use right during the EBOV
outbreak (2014–2016). To achieve the goal of POCT diagnosis, the FILODIAG
consortium developed a laser-based ultra-fast PCR device. The Mofina consortium
established a POCT device for detecting Ebola and Marburg viruses. This equipment
is small, rapid, and portable [64].

2.2.8.2 Filovirus Prevention

So far, there is still no effective treatment for filovirus infection. Ebola virus
disease (EVD) and Mofina virus disease (MVD) have limited treatment options.
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Conservative treatment is generally adopted, mainly maintenance treatment, includ-
ing intravenous infusion to maintain the patient’s blood oxygen concentration,
blood pressure and electrolyte balance, and the treatment of secondary infections.
Although there is no proven effective drugs treatment for EVD or MVD, some
specific small molecule drugs are during the research and development process or in
clinical trials, but their safety and effectiveness have yet to be confirmed. Maryam
Keshtkar-Jahromi et al. reported that candidate therapies such as ZMapp, IFN-β,
TKM-130803, Fabiravir, brincidofovir, and GS-5734 were entered into clinical trials
[65]. In terms of vaccines, although none of the Ebola virus vaccines has been
approved by the FDA, the 2014 West Africa epidemic quickly pushed a variety
of Ebola vaccines into the clinical research stage. Two most promising candidate
EBOV vaccines, rVSV-EBOV and ChAd3-EBO-Z, have been successfully verified
to have a good protective effect on the West African population [66]. However, the
MARV vaccine did not see an accelerated development similar to EBOV.

2.2.9 Rabies Virus Detection and Prevention

Rabies virus is a ribonucleic acid type rhabdovirus. As RABV is not resistant,
freshly collected, refrigerated, or frozen samples should be sent to a professional
laboratory for diagnosis in the fastest way.

2.2.9.1 Rabies Virus Detection

The most commonly used method for the antigen diagnosis of rabies virus is
fluorescent antibody test. For the antibodies diagnosis of rabies virus, it is mainly
used to determine whether the neutralizing antibody in the serum after vaccine
immunization is positive and the titer is enough. Methods to measure the level
of neutralizing antibodies are the fluorescent antibody virus neutralization (FAVN)
test, the rapid fluorescent focus inhibition test (RFFIT), and the indirect ELISA test
[67]. Molecular methods based on RT-PCR are increasingly being used for rabies
diagnosis, and further combined with nucleotide sequencing for epidemiological
investigations [68].

2.2.9.2 Rabies Virus Prevention

Rabies is a highly fatal infectious disease. Although there is still no effective treat-
ment, rabies is 100% preventable. Injection or oral rabies vaccine can effectively
prevent the occurrence of this disease. Animal rabies prevention products include
inactivated vaccines, live attenuated vaccines, recombinant vaccines, and subunit
vaccines. A recent work of Venice Du Pont et al. studied practical strategies for
the mechanical characterization and resistance analysis of RABV drug candidates,
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and found a new molecular probe chemical type GRP-60367 performing well on
specifically targeting RABV G protein and preventing G-mediated virus entry [69].

2.3 Informatics for Detection and Prevention of Virus
Infection

In recent years, both the fields of genomics and computational science have
undergone revolutions. The sequencing and computing capabilities have increased
exponentially. The impact of these nonlinear developments on virology research is
also multifaceted. The medical interest of viruses is mainly focused on pathogens
and their infections, and the infections will further cause the host immune response.
Advances in genomics and computational science help researchers to better under-
stand the molecular mechanism of host immune response, to determine more
effective prevention and treatment strategies against viral infections. Here, the
application of bioinformatics methods to the detection and prevention of viral
infections is mainly summarized in the following sections.

2.3.1 Gene Regulatory Network Modeling and Biomarker
Prediction Based on Multi-omics Data

Bioinformatics has been widely used to mine microarray and deep sequencing data
to reveal the heterogeneity between infection-related diseases and non-infectious
disease samples and to identify potential biomarkers and signaling pathways related
to viruses. Zhi-Ping Liu et al. proposed a novel and systematic transcription and
posttranscriptional regulation framework based on the curated knowledge and time
course expression data of H1N1 virus-infected human lung epithelial cells for in-
depth analyzing the regulatory relationship among transcription factors, miRNAs,
and genes [70]. To further understand the flavivirus pathogenesis, George Savidis et
al. used functional genomics to identify Zika virus- and dengue virus-dependent
factors [71]. To predict the potential biomarkers for personalized treatment of
HBV-related HCC patients, several studies selected multiple datasets from Gene
Expression Omnibus (GEO) database, screened out differentially expressed genes,
and further analyzed their related biological functions, pathways, interaction net-
works and prognosis [72–75]. Abdul Arif Khan et al. identified host target genes
and investigated the host–pathogen protein–protein interactions among all recent
coronavirus outbreaks including MERS, SARS, and COVID-19 [76]. Other virus-
related diseases for the screening and identification of potential biomarkers include
HIV-associated heart diseases [77], EBV-related gastric cancer [78], etc.
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2.3.2 Integrative Analysis and Classification Prediction Based
on Clinical Indicators and Demographic Information

To provide clinical decision support for personalized treatment in precision
medicine, the advanced bioinformatics analysis of big data is an emerging
technology to have been widely used in the field of healthcare. The current paradigm
for exploring virus-infected patients is still mainly based on the clinically relevant
information. For example, Ali Mohammad Mokhtari et al. performed a study in
India to investigate and analyze relationship among multi-level variables [79]. Alan
J. Mueller-Breckenridge et al. used a series of virological and clinical factors to
assess HBV activity and liver damage and combined histopathological analysis of
liver biopsy to estimate fibrosis [80].

Moreover, the emergence of artificial intelligence (AI) provides advanced analy-
sis techniques for revealing host and viral factors. As a subcategory of AI, machine
learning (ML) algorithms recognize data patterns and simultaneously train multiple
variables to build predictive models. In clinical studies, Yi Yin et al. conducted
the univariate logistic regression combined with the AdaBoost algorithm to infer
the risk factors for patients coinfected with HBV and HIV [81]. Na Wang et
al. used the support vector machine (SVM) model to distinguish serum peptide
profiles of hepatocellular carcinoma (HCC) from liver cirrhosis (LC) and found
new noninvasive specific serum biomarkers for the discrimination of HBV-related
HCC and LC [82]. Ying Wang et al. collected 33 indicators (i.e., demographic
characteristics, blood routine indicators, and liver function) and used 4 ML models
including extreme gradient boosting (XGBoost), random forest (RF), decision tree
(DT), and logistic regression (LR) to predict and evaluate the population at high
risk of HBV surface antigen detection [83]. Haochen Yao et al. used an ML model
based on blood and urine tests to predict whether patients with COVID-19 would
be at risk of severe symptoms and screened out 28 features for the potential severity
of COVID-19-related biomarkers involved in the COVID-19 infection [84]. A.S.
Albahri et al. summarized the application frequency of ML methods in COVID-19
detection and diagnosis, among which DT algorithms are the most frequently used,
followed by naive Bayes, SVM, k-nearest neighbors, etc. [85]. In addition, Raman
spectroscopy has received extensive attention in medical diagnosis and biomedical
research. Saranjam Khan et al. applied Raman spectroscopy combined with SVM
to predict HBV infection in human serum based on the spectral features [86].

Deep learning, as a branch field of ML, is an algorithm based on characterization
learning of data, and mimics the mechanism of the human brain to interpret data,
such as texts, images, and sounds. To date, the medical field has attracted more and
more attention on the application of deep learning. Patrick Luckett et al. applied a
deep learning model of cerebral blood flow to classify the cognitive impairment
and weakness of HIV-infected patients [87]. Sebastian Klein et al. performed
deep learning to predict prognosis of HPV related oropharyngeal squamous cell
carcinoma based on H&E staining data or combine p16 status, and the performance
is better than those of HPV-DNA combined with p16 status [88].
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Interestingly, several studies focus on the estimation of viral infections risk based
on the social network information, especially HIV. Tyler B. Wray et al. applied the
ML approach to the ecological transient assessment data of HIV risk behavior to
classify and predict the most important risk factors [89]. Cheng Zheng et al. used
an iterative deep learning method to automatically identify online HIV influencers
to increase the impact of HIV prevention activities [90]. Convolutional Neural
Network (CNN) is one of the representative algorithms of deep learning. It is a type
of feed forward neural network that characterized by the convolution calculation and
deep structure. To increase the prediction performance of HIV status in the social
network effectively, Yang Xiang et al. used a graph convolutional network model to
train multiple social network data and provided a useful tool for detecting possible
unknown HIV infections [91].

Actually, in a complex spectrum of viral diseases, a single laboratory test is
unable to fully understand the medical history and progress of patients. Presently,
many tools or pipelines have been developed to quickly analysis and integrate
virus information retrieved from public domains for a better risk evaluation. Chin-
Rur Yang et al. developed a set of integrated tools, FluConvert and IniFlu, which
combines public available virological, epidemiological, and clinical information to
discover new risk features of emerging influenza viruses [92].

2.3.3 Features Extraction and Analysis Based on Viral
Genome Sequences

Mining potential virus-causing risk factors in the viral genome sequences will help
formulate effective prevention and control measures to minimize the threat of future
pandemics. With the in-depth understanding of the structure and function of viral
genome, studies regarding the virus genetics and evolution have become one of
the hotspots in the virology research. Chun Yu et al. and Liang Cai et al. explored
the molecular characteristics and performed phylogenetic analysis of the virus N
gene of rabies virus [93, 94]. Olivo Miotto et al. identified a set of key factors in
the influenza A PB2 protein involved in the human-to-human transmission via the
mutual information analysis [95].

It is known that vaccination is the main strategy to reduce the impact of virus
outbreaks. Therefore, detecting the sequence variations of viral pathogens related
to diseases is essential for the development of vaccines and therapies. On the one
hand, it is a challenging task to identify genetic variants among rapidly evolving
pathogens that adapt to the selection pressure of each host. Alexander G. Holman
et al. used an ML model to construct novel methods for rapidly analyzing the
genetics of evolutionary pathogens to identify amino acid features in the HIV env
gene for dementia prediction [96]. On the other hand, virus subtypes or cross
subtypes analysis can help ease the design and development process of vaccines
and therapeutic interventions. In recent years, decoding the features that drive the
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biological functions from the main structure of virus subtypes has become the in-
depth research direction. Norbert Nwankwo et al. and Charalambos Chrysostomou
et al. used bioinformatics methods based on the digital signal processing to
determine the origin of HIV-1 non-B subtype and [97] influenza A virus subtypes in
the neuraminidase gene [98], respectively. Susanne Fischer et al. applied a novel
affinity propagation clustering algorithm to construct a standardized subspecies
classification on the basis of the RABV whole-genome sequence [99]. To identify,
assemble, and classify coronavirus genomes accurately and quickly, Sara Cleemput
et al. developed a coronavirus typing tool and provided a free web service that allows
tracking of new viral mutations via a novel dynamic aligner [100].

Furthermore, the accumulation of mutations in the viral antigen recognition site
can lead to antigen drift or antigen transfer, causing new virus strains that may lack
human anti-heterologous immunity such as the H1N1 pandemic in 2009. Since data
for the genome sequence can be obtained directly from clinical samples now, it is
both efficient and economical for researchers to make some attempts in identifying
antigenic variants based on the viral genome sequence. Lei Han et al. used multi-
source serological data to develop a graph-guided multi-task sparse learning model
that learns virus antigenicity-related mutations to infer antigenic variant of H3N2
virus [101]. Moreover, the reassortant virus strain poses a great risk of epidemics to
human and animal health. Aaron T.L. Lun et al. developed protein typing methods,
FluShuffle and FluResort, to correctly identify the source of virus proteins and the
number of reconfiguration events required to produce influenza strains by the high-
resolution mass spectrometry [102].

Compared with Sanger sequencing, researchers can in-depth explore HBV
quasispecies (QS) characteristics based on GB-level viral sequencing data generated
by NGS. In clinical practice, feature extraction from these data and convert them
into indicators has important significance of research and application value. To
reveal novel virus QS patterns of disease progression and risk prediction, the ML
algorithms that allow identifying classification of factors from complex multidi-
mensional data (hundreds to thousands of covariates) have been widely used in
the feature analysis of virus sequences. Mingjie Wang et al. employed ML-assisted
quantitative analysis of viral QS to accurately identify the immune tolerant stage of
HBeAg-positive patients and develop an automatic QS analysis package [103]. Alan
J. Mueller-Breckenridge et al. applied a RF model to determine the HBeAg status
for patients with chronic HBV infection [80]. Shipeng Chen et al. calculated the
QS pattern of the HBV rt region and provided the evidence the first time that HBV
rt sequence contains important QS features for HCC risk prediction [104]. Haiyan
Lei et al. mapped the original sequence with an average read length of 175 bps
with human, bacterial, fungal, and viral genomes DNA databases to investigate
the characterization of EBV genome in human peripheral blood B lymphocytes via
NGS technology [105]. Rohan J. Meshram et al. conducted phylogenetic, mutation
variability, sequence entropy, and mutation analysis strategies to predict the HCV
NS5B protein epitope [106]. With increasing application of NGS technology in
virus detection, the shortcomings associated with the bioinformatics pipelines have
not yet been thoroughly developed, including the algorithm design challenge of
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Fig. 2.2 ML-based clinical profile classification of HBV-infected patients [80] and sequence-
based risk prediction for early detection

de novo assembly of viral genome. To evaluate the read loss caused by fragment
alignment, Joel A. Southgate et al. provided a graph-based classifier for the
reference genomes selection, assembly verification, and non-human strain detection
[107]. Figure 2.2 showed the summary of features extraction and analysis based on
viral genome sequences.

2.3.4 Image Classification Strategies Based on the Deep
Learning Model

Regarding the medical image processing, the ML and deep learning model frame-
work is widely used to extract image features or directly complete tasks such as
classification and detection. For instance, a number of studies have built supervised
ML models to distinguish X-rays of COVID-19 and other lung diseases [108–112].
Using CT scans data, Xiaoguo Zhang et al. utilized feature selection and four ML
to construct the radiomics models and integrated deep learning to identify COVID-
19 [113]. Ahmad Waleed Salehi et al. reviewed the deep learning models used to
detect and predict coronavirus and summarized deep learning architectures that can
classify chest CT and X-ray images into pneumonia and disease-free categories,
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including baseline CNN, DenseNet201, VGG16, VGG19, Inception_ResNet_V2,
Inception_V3, Xception, Resnet50 and MobileNet_V2 [114]. Mohammed Chachan
Younis et al. assessed deep learning models for predicting different coronavirus
species and time series based on convolutional neural network models such as
LetNet-5, AlexNet, VGG-16 net, Resnet-50, and Long Short-Term Memory [115].
Table 2.1 listed the detail description of recent coronavirus-related works.

2.3.5 Knowledge Discovery via Text Mining in Electronic
Medical Records

Text Mining refers to an AI technology that extracts valuable information and
knowledge from text data. With the rapid development of medical technology,
massive, distributed, and heterogeneous medical data will be generated and stored
in multiple medical IT systems including electronic health record (EHR), picture
archiving and communications systems (PACS), hospital information systems
(HIS), laboratory information systems (LIS), etc. Among them, the data content
of EHR is rich which records detailed diagnosis and treatment of individuals.
Therefore, the development of EHR-based text mining is of great significance for
the prevention and control of viruses. At present, natural language processing (NLP)
and ML classifiers are increasingly used to detect influenza cases from free text
reports. Ye Ye et al. measured the feature selection and discrimination capabilities
of NLP and Bayesian Network classifiers on key factors influencing the influenza
detection [136]. Arturo López Pineda et al. used ML models combined with NLP
technology to recognize and detect influenza from free text reports of the emergency
department [137]. Julia L. Marcus et al. developed a HIV prediction model based
on a large healthcare system to identify and improve pre-exposure prevention [138].

2.3.6 Drug Discovery

Molecular docking is a drug design tool through the characteristics of receptors
and the interaction between receptors and drug molecules and has become a key
technology in the computer-aided drug discovery research. With a large amount of
protein–ligand complex structure data accumulated in public domains, researchers
have identified a series of potential NA inhibitors through this approach. Li Zhang
et al. developed a NA-specific scoring approach and used the RF algorithm to
effectively screen NA inhibitors [139]. Shen Chang et al. filtered potential drug
targets using two-side RNA-seq data and utilized the pre-trained deep learning drug
target interaction model for providing a systematic drug discovery and relocation
program [140]. N.R. Tomar et al. applied the molecular docking to simulate rabies
virus neutralizing antibodies and provided theoretical support for the improvement
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Table 2.1 Detail description of recent 20 coronavirus-related works (after 2020.10)

Reference Method Dataset Brief summary

Aversano et al.
[116]

Ensemble-based
approach

CT scan images VGG, Xception, and ResNet
evolved with a genetic
algorithm

Balaha et al.
[117]

CovH2SD CT scan images Harris Hawks optimization and
stacked deep learning

Banerjee et al.
[118]

COFE-Net Chest X-rays
and CT scans

Fuzzy ensemble network
(Inception V3, Inception
ResNet V2 and DenseNet 201)

Verma et al.
[119]

CovXmlc Chest X-rays SVM + last layer of VGG16
convolution network

Elharrouss et al.
[120]

Encoder-decoder-
based
method

CT scan images Structure and texture
component
extraction + encoder
(VGG-16)-decoder architecture

Kumar et al.
[121]

SARS-Net Chest X-rays Graph convolutional
networks + Convolutional
neural networks

Aviles-Rivero et
al. [122]

GraphXCOVID Chest X-rays Deep graph diffusion
pseudo-labelling

Liu et al. [123] Weakly supervised
segmentation

CT scan images Uncertainty-aware
self-ensembling and
transformation-consistent mean
teacher model with
scribble-level annotation

Barshooi and
Amirkhani
[124]

Novel data
augmentation
method

Chest X-rays Gabor filter and convolutional
deep learning

Ghosh and
Ghosh [125]

ENResNet Chest X-rays A modified residual network
based enhancement

Nikolaou et al.
[126]

Neural network Chest X-rays A dense layer on top of a
pre-trained baseline CNN
(EfficientNetB0)

Abdel-Basset et
al. [127]

Two-stage deep
learning framework

CT scan images GR-U-Net
redesigns + EfficientNet-B7

Li et al. [128] A
deep-learning-based
framework

CT scan images DNN (U-
net++) + Res2Net + Clinical
metadata embedding

Verma et al.
[129]

Wavelet and deep
learning-based
detection

Thoracic X-ray
images

A wavelet-based convolution
neural network

Morís et al.
[130]

Data augmentation
approaches

Chest X-rays Cycle generative adversarial
networks

Guarrasi et al.
[131]

Pareto optimization
of deep networks

Chest X-rays Ensemble CNNs

(continued)
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Table 2.1 (continued)

Reference Method Dataset Brief summary

Toğaçar et al.
[132]

Local interpretable
model-agnostic
explanations
method

CT scan images Grad-CAM + CNNs
(ResNet-18, ResNet-50,
ResNet-101) + LIME

Bhattacharyya
et al. [133]

A deep learning
based approach

Chest X-rays C-GAN + DNN
(VGG-19) + ML models

Chakraborty et
al. [134]

Transfer
learning-based
approach

Chest X-rays Transfer learning approach on
the pre-trained VGG-19

Malhotra et al.
[135]

COMiT-Net Chest X-rays Multi-task networks (VGG16
Encoder-Decoder)

of novel therapies in the future [141]. Alexander M. Andrianov et al. combined
the deep learning algorithm and molecular modeling method to identify small drug
compounds that can be used as novel virus entry inhibitors [142].

2.4 Conclusions and Perspective

In this chapter, we introduced recent progress on detection and prevention
approaches of viruses, including traditional and novel strategies, that have
been developed to diagnose, prevent, and treat virus infections, covering cell
culture-based tests, RIDTs, immunofluorescence assays, serological assays, NATs,
biosensors, antiviral treatment, and vaccines. Currently, more and more different
types of virus-related data are being available, bioinformatics has become a
powerful methodology for the detection and prevention of virus infections and
has been widely used in the virology community. Among them, the emergence
of AI technology has greatly improved our ability to detect and prevent the
risk of virus outbreaks, especially using ML and deep learning algorithms to
train clinical experience data, build a virus infection recognition or classification
model with high accuracy which can assist clinicians in rapid clinical diagnosis.
With the accumulation of various types of viral data, it is expected that more
efficient bioinformatics approach/tool/pipeline/databases will arise to realize global
viral data integration, process analysis, and mining via the combination of virus
genome and human genome data and help researches on virus mutation, evolution,
traceability, and treatment.
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Chapter 3
Bioinformatics for the Origin
and Evolution of Viruses

Jiajia Chen, Yuxin Zhang, and Bairong Shen

Abstract The ongoing pandemic of coronavirus disease 2019 (COVID19) caused
by infection with human SARS-CoV-2 is a global threat to the human population.
World effort has arisen toward the characterization of the origin and evolutionary
features of this devastating virus. The development of high-throughput sequencing
platforms has facilitated the surveillance of viral sequence diversity in both human
and animal populations. Bioinformatics pipelines are readily available for ongoing
virus tracking on a global level. In this chapter, we summarize the bioinformatics
tools in the origin tracing and evolutionary analyses of viruses with a highlight
in their application in SARS-CoV-2, which will facilitate the prevention of the
pandemic as well as custom-designed antiviral strategies.

Keywords SARS-CoV-2 · Virus · Evolution · Origin · Bioinformatics

3.1 Introduction

SARS-CoV-2, a novel coronavirus which causes the COVID-19 disease in humans,
outbroke in late 2019 leading to a pandemic. With 196 million confirmed cases and
four million deaths [1], COVID-19 is quickly becoming the most important health
concern in the world.

SARS CoV 2 belongs to the β genus of coronaviruses (CoVs) along with
MERS-CoV and SARS-CoV. As the global COVID-19 pandemic continues to rage,
knowledge about the origin of this virus and its mechanisms of dissemination is
of great importance for future epidemic control. Although there has been much
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speculation over the origin of the causative virus, no definite conclusion has been
given so far.

SARS-CoV-2 is an RNA virus that lacks proofreading capability to correct
replication errors. Therefore it keeps evolving actively with novel mutations. The
geographical and temporal distributions of these mutations and their impact on the
virulence and infectivity of virus require in-depth evaluation and investigation.

Recent revolutionary developments in sequencing technology have provided an
unprecedented amount of sequence data for structural, phylogenetic, and mutational
studies of viruses [2]. The integration of viral sequence data with spatial, temporal,
and other metadata in a bioinformatics framework will facilitate the inference of the
origin and evolutionary dynamics of the viral epidemic.

In this chapter, we introduce the bioinformatics tools currently available for
the origin tracing and evolutionary analyses of viruses and highlight their updated
application in SARS-CoV-2, which will facilitate the prevention of the COVID-19
pandemic as well as custom-designed antiviral strategies.

3.2 Informatics for Tracing the Origin of Viruses

3.2.1 Mechanism of Virus Dissemination

The potential dissemination route of SARS-CoV-2 is controversial. Molecular
phylogeny of viral genomes has provided some clues about the possible paths
of dissemination (Fig. 3.1). It is widely accepted that zoonotic dissemination of
CoVs occurs via an intermediate host species, in which viruses are selected for
better adaption to human receptors, promoting the species barrier crossing. The bat
CoV (BtRaTG13) is the closest viral strain to SARS-CoV-2 characterized by now,
sharing 96.1% genome identity. Given this genetic proximity, it can be postulated
that SARS-CoV-2 possibly originated from bats [3]. However, there is no definite
evidence that bats are the direct progenitor to humans. Recent analysis showed that
Malayan pangolin is a potential animal reservoir and intermediate host, which shares
<90% genome identity with SARS-CoV-2 [3–5]. SARS-CoV-2 invades the cell by
binding with the host cellular angiotensin-converting enzyme (ACE2) receptors
through the Spike glycoprotein (S protein). Some pangolin coronaviruses bear
striking similarities to SARS-CoV-2 in the receptor binding domain (RBD) of S
protein, including all six critical residues for ACE2 binding [4]. In the phylogenic
tree of S protein (Fig. 3.2a), the PnGX-P2V and BtRaTG13 strains are the closest to
that of human SARS-CoV-2, indicating a possible recombination between pangolin-
and bat-derived CoVs [6].
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Fig. 3.1 Origin and phylogeny of SARS-CoV-2. (a) Putative dissemination routes of SARS-CoV-
2. (b) Phylogenetic tree inferred from complete genomes from SARS-CoV-2 and other CoVs in
bats, pangolins, camels, and humans

3.2.2 Zoonotic Origin or Accidental Laboratory Escape?

There have been several speculations that HCoV-19 was artificially manipulated and
accidentally escaped from the laboratory [7]. The laboratory-origin stories are based
on the observation of the insertion of a furin proteolytic cleavage site between the
S1 and S2 subunits of the S protein (Fig. 3.2b). The furin cleavage site is unique
in the S protein of SARS-CoV-2 and absent in other β coronaviruses. Given the
uniqueness, it has been suggested that this insertion must be recent and might
be artificially generated in experiments to humanize the bat RaTG13 virus. This
hypothesis was supported by a recent analysis of codon usage of SARS-CoV-2 and
other β coronaviruses [8]. Significant codon usage bias was revealed on spike and
membrane genes between SARS-CoV-2 and its phylogenetic relatives, implying
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Fig. 3.2 Structure and evolution of the spike protein. (a) Phylogenetic tree of S proteins among
different CoV species. (b) Structure and prevalent mutations of the SARS-CoV-2 spike proteins
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these two genes are under different selection pressures and might originate from
different evolutionary backgrounds.

Amid claims of deliberate manipulation, bioinformatics and molecular phy-
logeny approaches have provided strong pieces of evidence that argue for natural
selection. Phylogenetic inferences performed around the furin cleavage sites showed
that the appearance of insertion occurs in multiple coronavirus species [9]. Compu-
tational prediction revealed that the RBD sequence is not optimal for ACE2 receptor
binding, lending further support to the natural selection hypothesis.

However, the current knowledge is far from sufficient to conclude the origin
of SARS-CoV-2. Since this issue is critical to formulating future prevention and
biosafety policies, transparent and open investigation is urgently needed.

3.2.3 Phylogenetic Inference of Virus Origin

Phylogenetic inference is a widely used method in virology and a key element
of virus origin and epidemiological investigation. Molecular phylogeny analyzes
the molecular sequence information, including DNA and protein mutations, codon
usage, etc. through statistical methods to calculate the similarity between sequences
and estimate the rate of molecular evolution, the time of sequence divergence, and
the phylogenetic position of a species or gene.

Phylogenetic tree is the most widespread visualization of virus phylogeny. It can
be constructed using multiple methods, e.g., distance-based methods neighbor join-
ing (NJ), character-based methods maximum parsimony (MP), maximum likelihood
(ML), and Bayesian inference (BI).

NJ, ML, and BI approaches are based on substitution models of nucleotide or
amino acid. NJ method reconstructs new neighbors by continuously connecting the
nearest neighbors, and finally forms a tree topology. NJ method treats all positions
on the sequence equally, and is suitable for short sequences with small evolutionary
distance and few information sites. ML method is the best tree-building algorithm
when the evolutionary model is selected reasonably, but it is computationally
intensive and time-consuming. BI method is a new systematic evolutionary analysis
method that uses Bayesian deduction to predict phylogenetic history. It not only
retains the basic principles of ML method, but also introduces the Markov chain
Monte Carlo method (MCMC) to simulate the later probability distribution of the
evolutionary tree. MP method does not employ substitution models. It calculates all
possible correct topological structures and selects the topological structure with the
smallest number of substitutions as the optimal phylogenetic tree.

Software implementing these phylogenetic methods have been developed to
realize phylogenetic inference on a genome scale (Table 3.1), e.g., BIONJ [10]
implementing NJ, PhyML [11], IQ-TREE [12] and RAxML [13] implementing
ML and MrBayes [14], PhyloBayes [15], BEAST2.5 [16] implementing BI. Var-
ious alignment-free approaches also exist for phylogenetic tree-building, e.g., the
average common subsequence [17], CVTree [18], and k-mer [19]. Recently, several
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Table 3.1 Bioinformatic tools for phylogenetic inference of viruses

Methodology URL Reference

Phylogenetic analysis

BIONJ http://www.atgc-montpellier.fr/bionj/ [10]
PhyML http://www.atgc-montpellier.fr/phyml/ [11]
IQ-TREE http://www.iqtree.org/ [12]
RAxML http://www.exelixis-lab.org/software.html [13]
MrBayes http://nbisweden.github.io/MrBayes/ [14]
PhyloBayes http://www.atgc-montpellier.fr/phylobayes/ [15]
BEAST2.5 http://www.beast2.org/ [16]
Phylosuite http://phylosuite.jushengwu.com/ [20]
PAUP http://paup.csit.fsu.edu/ [21]
MEGA https://www.megasoftware.net/ [22]
Nextstrain https://nextstrain.org/ [23]
Phylogeographic analysis

GeoBoost2 https://zodo.asu.edu/geoboost2/ [24]
SpreaD3 https://github.com/phylogeography/SPREAD [25]
ZooPhy https://github.com/ZooPhy [26]
CoVerage https://sarscoverage.org/ [27]

integrative platforms, e.g., PhyloSuite [20], PAUP [21], and MEGA [22], have been
proposed to streamline phylogenetic inference and data management.

Phylogenetic methods have found wide application in studying the evolution of
viruses. For example, Nextstrain [23], a popular viral sequence analysis platform,
focuses on visualized phylogenetic and enables real-time tracking of the transmis-
sion and evolution of the latest SARS-CoV-2 genomes. New computational tools
are required to solve some special issues of virus phylogeny, such as recombination,
virus-host interaction, and horizontal gene transfer during evolution.

3.2.4 Virus Originated from Different Geographical Locations

Phylogeography is an emerging subdiscipline in public health that explores the
geographic pattern of taxa from the perspective of phylogeny, and estimates the
gene flow, historical or ecological barriers that affect the spatial pattern. In this
field geographical information is accounted for when analyzing the evolutionary
lineage of those species. Phylogeography of viruses allows researchers to estimate
the origin and migration path of viruses over time within a special context, thus
better predicting the risk to humans in specific geographic areas.

Nucleotide sequences repositories such as GenBank have provided a wealth of
sequence data for phylogeographic research. However, the amount of geographical
information is scarce in GenBank entries, which may hinder the analysis and even

http://www.atgc-montpellier.fr/bionj/
http://www.atgc-montpellier.fr/phyml/
http://www.iqtree.org/
http://www.exelixis-lab.org/software.html
http://nbisweden.github.io/MrBayes/
http://www.atgc-montpellier.fr/phylobayes/
http://www.beast2.org/
http://phylosuite.jushengwu.com/
http://paup.csit.fsu.edu/
https://www.megasoftware.net/
https://nextstrain.org/
https://zodo.asu.edu/geoboost2/
https://github.com/phylogeography/SPREAD
https://github.com/ZooPhy
https://sarscoverage.org/
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give erroneous conclusions. The ever growing number of virus sequences needs
matching information extraction tools.

To address this issue, a combination of Named Entity Recognition (NER) based
informatics tools have been developed to extract and disambiguate geographic
locations in the free-text content of articles, in order to include more geographical
data for phylogeographic research. For example, GeoBoost2 [24] is a natural lan-
guage processing (NLP) based tool for automate geographic locations extraction of
infected hosts from the literature using supervised and distant supervision methods.
Advanced Web technology (Web 2.0 and the Semantic Web) can also integrate
diverse geography data within evolutionary models. SpreaD3 [25] is a software
that implements a flexible Bayesian statistical framework that incorporates spatial
diffusion by mapping phylogenies onto both discrete and continuous spatial infor-
mation. Another example is ZooPhy [26], an automated phylogeographic pipeline
of zoonotic RNA viruses. ZooPhy retrieves genetic, geographical, and public-health
data through data-mining methods, performs Bayesian phylogeographic analysis via
BEAST and visualizes virus migration via SpreaD3. CoVerage [27] is an online
interactive dashboard to visualize and track COVID-19 cases in real time. This web
resource calculates country/region-wise frequency over time and identifies SARS-
CoV-2 lineages with a selective advantage in individual countries/regions based on
viral genome sequence data shared via GISAID.

3.3 Prediction of SARS-CoV-2 Evolution

3.3.1 Data Resources for Virus Mutations

Virus genome sequences are being generated and shared at an unprecedented rate
in virus-centered nucleotide sequences repositories such as GenBank [28], Global
Initiative on Sharing All Influenza Data (GISAID) [29], CNCB/NGDC database
[30], and the Virus Pathogen Resource (ViPR) [31] (Table 3.2). These databases
play important roles in sequence archiving, phylogenic inference, and mutation
detection. Among them, GISAID provides the largest number of SARS-CoV-2
genome sequences. At the time of writing, it has more than one million SARS-
CoV-2 sequences available.

Recently, databases of nucleotide or amino acid variations have been built
for SARS-CoV-2, which could track the epidemic trend of mutation in the viral
genomes of interest. GESS [32] is a single nucleotide variants (SNVs) database of
over two million SARS-CoV-2 genomes, while CoV-GLUE [33] is an amino acid
variation database that contains replacements, insertions, and deletions in GISAID
SARS-CoV-2 sequences.
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Table 3.2 Bioinformatics resources for SARS-CoV-2 evolution analysis

Recourses URL Reference

Database

NCBI https://www.ncbi.nlm.nih.gov/genome/
viruses/

[28]

GISAID https://www.gisaid.org/ [29]

CNCB/NGDC https://bigd.big.ac.cn/ncov/ [30]

ViPR https://www.viprbrc.org/ [31]

GESS https://wan-bioinfo.shinyapps.io/GESS/ [32]

CoV-GLUE http://cov-glue.cvr.gla.ac.uk/#/home [33]

Mutation identification and visualization

CoV-Spectrum https://cov-spectrum.ethz.ch/ [34]

CoVariants https://covariants.org/ [35]

CoVizu http://filogeneti.ca/covizu/# [36]

Genomic Signature Analysis https://covid19genomes.csiro.au/
index.html#

[37]

Geographic Mutation Tracker https://www.cbrc.kaust.edu.sa/covmt/ [38]

EACoV server http://cov.lichtargelab.org/ [39]

MicroGMT https://github.com/qunfengdong/MicroGMT [40]

AutoVEM https://github.com/Dulab2020/AutoVEM [41]

Recombination analysis

RDP4 http://web.cbio.uct.ac.za/∼darren/rdp.html [42]

SimPlot https://sray.med.som.jhmi.edu/SCRoftware/
simplot/

[43]

Mutation detection at structural level

COVID-3D http://biosig.unimelb.edu.au/covid3d/ [44]

Coronavirus3D https://coronavirus3d.org/index.html [45]

VIStEDD https://prokoplab.com/vistedd/ [46]

mCSM-PPI2 http://biosig.unimelb.edu.au/mcsm_ppi2/ [47]

CATH resource http://funvar.cathdb.info/ [48]

EVCouplings https://marks.hms.harvard.edu/sars-cov-2/ [49]

Spike protein mutation analysis

Sequence Analysis Pipeline https://cov.lanl.gov/content/index [50]

MutationAnalyzer https://weilab.math.msu.edu/
MutationAnalyzer/

[51]

Spike Protein Mutations Monitoring https://www.molnac.unisa.it/BioTools/
cov2smt/index.php

[52]

Covid-Miner https://covid-miner.ifo.gov.it/ [53]

Conservation analysis

GERP http://mendel.stanford.edu/SidowLab/
downloads/gerp/

[54]

PhastCons http://compgen.cshl.edu/phast/ [55]

PhyloP https://ccg.epfl.ch/mga/hg19/phylop/phylop.
html

[56]

Selection pressure calculation

EasyCodeML https://github.com/BioEasy/EasyCodeML [57]

datamonkey https://www.datamonkey.org/ [58]
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3.3.2 Characterization of Virus Mutations

Viruses evolve through mutations and genetic recombination to adapt to envi-
ronmental changes or evade host immunity. World effort has arisen toward the
characterization of the genetic variation and evolutionary characteristics of SARS-
CoV-2.

3.3.2.1 Mutation Detection at Sequence Level

Mutation sites, e.g., nucleotide substitutions and indels, could be readily identified
through the alignment of full-length viral genomes. Enabled by CoV-19 data shared
via GISAID, a variety of tools are now available for tracking the key variations
in viral genome as well as epidemic trends with customizable visualizations, e.g.,
CoV-Spectrum [36], CoVariants [37], CoVizu [38], Genomic Signature Analysis
[39], and Geographic Mutation Tracker [40]. With these tools one is able to find out
mutation determinants of a variant, the functional impact as well as to visualize the
diversity of SARS-CoV-2 genomes.

In addition to presenting the pre-defined mutations, platforms are also available
for early identification of new variants. EACoV server [39] identifies variants
and epitopes from SARS-CoV-2 proteome using Evolutionary Trace (ET) method.
MicroGMT is a Python-based mutation tracker which allows for sequence mapping
and indel and SNV calling [40] in microbial genomes. AutoVEM [41] is an
combinatorial tool for haplotypes classification, mutations deletion and analysis in
SARS-CoV-2.

In addition to mutations in the viral genome, several human mutation databases,
e.g., dbSNP [59], gnomAD [60], 1KGP [61], Topmed [62], UK10K [63], and
CHINAMAP [64] also provide comprehensive landscape of variation on human
host proteins, e.g., ACEs that may interact with SARS-CoV-2. The annotation of
SARS-CoV-2 variant data in human genome can help identify the human mutations
that determine virus susceptibility and disease outcomes.

3.3.2.2 Recombination Analysis

Gene recombination is an important mechanism of virus evolution. Viruses can
produce a large number of genetic mutations through genetic recombination, which
is much faster than mutations caused by mutations alone. In order to reveal the role
of gene recombination in the evolution of certain genes, it is necessary to obtain and
validate possible recombination signals. Multiple algorithms exist for recombination
analysis and have been implemented in RDP4 [42], a popular Windows program that
detects recombination events amongst a group of aligned sequences. SimPlot [43]
is another popular recombination analysis tool, which detects recombination signals
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by assessing the sequence similarity between target sequence and the reference
sequence through pattern changes of the dot diagram.

3.3.2.3 Mutation Detection at Structural Level

Various structure-based resources have been established that map mutation data onto
protein structures to interpret the impacts of the mutation on protein function and
target binding. COVID-3D [44] and Coronavirus3D [45] rely on the spatial mapping
of variant information onto experimental and predicted protein structures of SAR-
CoV-2 to determine the mutation location within functional sites as well as the
impact on function of the protein. In addition to SARS-CoV-2 proteins, VIStEDD
[46], mCSM-PPI2 [47], and CATH [48] also map variants onto human receptors to
predict the molecular impact of mutations on virus-host protein interactions.

Most methods above are based solely on evolutionary sequence conservation.
Recently, an unsupervised statistical method EVCoupling [50] was developed which
considers the residue dependencies between mutation positions to predict the effects
of mutations and make inferences on protein function.

3.3.3 Evolutionary Analysis of Virus Spike Protein and Host
Cell Receptor ACE2

The spike protein on the viral envelope is a key player in virus evolution and species
barrier crossing. It binds to ACE2 through the RBD to mediate the virus entry into
host cells. As shown in Fig. 3.2b, the spike protein contains two functional subunits
S1 and S2, where S1 is responsible for binding to host cell receptors, and the S2
subunit is responsible for the membrane fusion between virus and host cells. During
the infection process, the S protein is cleaved by the host protease (e.g., TMPRSS2)
into the N-terminal S1 subunit and the C-terminal S2 subunit, and changes from the
pre-fusion state to the post-fusion state. S1 and S2 are composed of an extracellular
domain and a single transmembrane helix, which mediate receptor binding and
membrane fusion, respectively. S1 consists of an N-terminal domain and a receptor
binding domain (RBD), which is essential for determining tissue tropism and host
range [65].

Some bioinformatic tools are specifically designed for analysis of S protein
mutations, e.g., COVID-19 Viral Genome Analysis Pipeline [50], MutationAnalyzer
[51], Spike Protein Mutations Monitoring [52], and Covid-Miner [53]. Among
the observed S protein mutations, the D614G mutation is the most prevalent
and its significance has been functionally characterized. The D614G mutation
increases the viral load in the upper respiratory tract of COVID-19 patients and
may facilitate transmission [66]. However, D614G does not seem to affect the
interaction domain with ACE2, which is responsible for the viral entry into epithelial
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cells [67]. Apart from D614G, other mutations have been identified in RBD as
host range determinants and may significantly alter the receptor binding capability.
Recent reports [68, 69] performed the multiple sequence alignment to analyze
the mutational dynamics in RBD and found that L455, F486, Q493, S494, N501,
and Y505 residues on RBD are crucial for ACE2 recognition. RBD is the major
target of the neutralizing antibodies currently under development which aim to
block the binding of ACE2 to the viral receptor binding domain, thus inhibiting the
membrane fusion capacity of virus. It should be noted that some of the RBD point
mutations have little effect on the ability of the virus to infect, but have developed
broad-spectrum resistance to neutralizing antibodies. For example, the RBD mutants
A475V, L452R, V483A, and F490L are resistant to certain neutralizing antibodies
[70]. A recent study [71] conducted a phylogenetic analysis of ACE2 orthologous
genes from 410 vertebrate species to score the binding ability of SARS-CoV-2 Spike
protein and ACE2. Species with high scores are likely to be infected with the SARS-
CoV-2 virus through the ACE2 receptor, while species with low scores have a lower
probability of infection. However, these predictions are only based on computer
simulation and need to be confirmed by direct experimental data.

3.3.4 Mutation and Virulence Analysis

Key mutations in the RBD of SARS-CoV-2 create new inter-protein contacts
which may alter the binding affinity and eventually the infectivity. Most variants
with D614G and its combination with other mutations, e.g., D614G + K458R,
D614G + I472V, have generally increased infectivity. There are also some muta-
tions that reduced infectivity, e.g., V341I, D405V, V503F, P521S.

N501Y found in the B.1.1.7 variant potentially increased virulence and
transmissibility [72, 73]. Co-occurrence of mutations in the RBD, e.g.,
K417N + E484K + N501Y, K417T + E484K + N501Y variants is more lethal
with reduced antigenicity [74] than N501Y mutation alone. N439K [75] in S protein
has increased binding affinity to the human ACE2 receptor and may contribute to
immunity evasion.

3.3.5 Mutation Constraints and Drug/Vaccine resistance

The spike protein is the major target for vaccine design. The emergence of variants
with mutations in spike protein may confer resistance to the neutralizing monoclonal
antibodies and reduce the activity of convalescent serum [76, 77].

Variants with L452R, E484K, N501Y, Y508H, and combinations, e.g.,
D614G + A435S, D614G + I472V, K417N-E484K-N501Y, H69/V70 deletion
+N501Y + D614G and E484K + N501Y + D614G [78–81] exhibited attenuated
sensitivity to vaccine-induced and monoclonal antibodies [82, 83]. Therefore,
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immune evasion is likely to occur after acquisition of these mutations, and design
strategies of COVID-19 vaccine against challenges from the variants for antibody
escape are needed.

Greaney et al. [84] scanned the mutations in the RBD that affect antibody
binding and generated a complete escape mutation map to predict the mutations
under positive selection in the presence of antibodies and enable rational design of
antibodies. A number of other interesting polymorphisms outside the spike protein
have been described throughout the rest of the genome. For example, a deletion of
382 bp in the ORF8 showed significantly higher replicative fitness in vitro [85] and
may assist with host immune evasion.

Genes with strong evolutionary conservation may have more important functions.
As the central functional motif involved in ACE2 binding, it was earlier believed
that the RBD residues are also subject to strong evolutionary constraints [86, 87]. A
conservation tracks program [88] has been established for identifying evolutionarily
conserved elements on surface residues of antibody epitopes that bind the SARS-
CoV-2 RBD. The program discovered multiple highly conserved footprints on the
RBD surface with a stronger antibody neutralizing effect. Antibodies targeting
conserved conformational-epitopes on RBDs can cross-react with a range of related
viruses and are expected to be a major target for therapeutic exploitation.

The conserved elements during viral evolution can be identified with a variety
of bioinformatics tools. GERP (Genomic Evolutionary Rate Profiling) [54] uses
the maximum likelihood method to estimate the evolution rate of a specific site.
It identifies constrained motifs in multiple alignments by quantifying substitution
deficits referred to as “Rejected Substitutions,” which represents the strength of
purifying selection on the site. The score reflects the conservativeness of the
site. The higher the score, the more conservative, and the more deleterious the
substitutions. PhastCons [55] and PhyloP [56] identify conserved elements based on
alignment and a model of neutral evolution called phylo-HMM, and then compute
conservation scores to estimate the likelihood of aligned DNA sequences under
purifying selection. PhyloP only considers the current column of the comparison and
PhastCons also considers the adjacent columns of the comparison column, which
makes PhastCons more sensitive to the conservative segments, while PhyloP is more
accurate in the definition of conservative segments.

These tools provide a framework to inform the formulation of antibody cocktails
against multiple conservation sites, in order to prevent mutation escape from
individual antibodies.

3.3.6 Prediction of the Fitness of the Virus Mutations

Whether the virus develops resistance against environmental pressure during the
epidemic is an important factor that affects the infectivity. The detection and
quantification of evolutionary pressure have been a hot area of research in recent
years. Genes containing adaptive mutations in the genome are constantly increasing
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due to the predominance of positive natural selection. These genes with adaptive
mutations are generally potential drugs targets.

As synonymous mutations are largely invisible to natural selection, while
nonsynonymous mutations can be under strong selective pressure, the ratio of syn-
onymous/nonsynonymous substitution rate (ω = dN/dS) is an important indicator of
selective pressure at the protein level, in which ω = 1 means neutral mutation, ω < 1
represents purifying selection, and ω > 1 means diversifying positive selection.

CodeML is one of the most widely used programs searching for genomic
signatures of positive selection and has been implicated in bioinformatics tools
such as EasyCodeML [57]. Datamonkey [58] is another web-server for evolutionary
pressure analysis which provides a collection of methods for interrogating coding-
sequence alignments for imprints of natural selection. Users can run different
algorithms such as SLAC, FEL, or REL to detect sites undergoing positive
(adaptive) evolution or negative evolution.

3.3.7 Long-Term Evolution and Herd Immunity

Herd immunity refers to immunization of a large proportion of the population to
protect the susceptible individuals by reducing the proportion of vulnerable hosts to
a level below the transmission threshold [89]. A high level of herd immunity means
a high percentage of hosts in the group that are resistant to infection.

Induction of herd immunity by mass vaccination is the only ethical way for
epidemic prevention. The decision whether to introduce herd immunity artificially
by immunization against a particular disease will depend on several epidemiological
principles. The disease must carry a substantial risk; the risk of contracting the
disease must be considerable; and the vaccine must be effective and safe.

Effective herd immunity depends on several factors, including the proportion of
the immunized population, the duration and efficacy of the immune response, and
the stability of the viral epitopes.

The threshold proportion of the population that needs to be immunized to
achieve herd immunity depends on the basic reproduction number R0, i.e., the
average number of people who can be infected by an infected person in a fully
susceptible and well-mixed population. The formula for calculating the herd
immunity threshold is 1-1/R0, that is, the more people each infected person can
infect, the higher the proportion of population immunity is needed to achieve herd
immunity. For example, measles is very contagious, R0 is generally between 12 and
18, and the calculated herd immunity threshold is 92–94% of the total population.
The lower the infectivity of the virus, the lower the reproduction number, the
lower the threshold. For SARS-CoV-2, global immunization coverage of 50–66%
of population is required to achieve herd immunity. Globally, till August 2021, a
total of 4.3 billion vaccine doses have been administered. Given the current infection
rates, it still represents a massive challenge. In addition, clinical data suggest that the
length of immunity response against SARS-CoV-2 vaccines may not be significant
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and the vaccine may not be efficacious in all patients. In conclusion, development
and manufacture of more effective vaccines are needed to provide a safer possible
way to reach COVID-19 herd immunity.

3.4 Conclusions

Bioinformatics analysis has shed light on the possible origins and evolution trends
of multiple viruses including SARS-CoV-2. The future of virus bioinformatics will
depend on the development of specific bioinformatic tools, establishment of virus-
specific databases as well as the collaboration of interdisciplinary research projects,
in order to better understand the molecular epidemiology of viruses.
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Chapter 4
In Silico Drug Discovery for Treatment
of Virus Diseases

Shikha Joon, Rajeev K. Singla, and Bairong Shen

Abstract Viral infections have remained a serious public health burden despite
significant improvements in medical and pharmaceutical research in recent years. In
silico approaches for drug discovery and design are fruitful for the management of
a plethora of viral diseases. Virtual screening of libraries is performed using various
computational tools to search for potential antiviral compounds. For this, a rational
approach is used that comprises filtration of the screened compounds using docking,
ligand- or pharmacophore-based similarity searches. The selected candidates are
then tested in vitro to ascertain their biological activity. This minimizes the overall
cost and time incurred in conventional drug designing methods. In this book
chapter, we have discussed various methods of drug discovery and design, and their
applications for the development of effective antiviral compounds. A descriptive
methodology for the management of some common and notorious viral diseases is
also outlined.
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4.1 Introduction

Management of viral infections has been often onerous as it demands a longer treat-
ment regime, which increases the economic burden, especially on the developing
nations. Besides causing acute and chronic illnesses, these notorious bugs have
the potential to give way to the pandemics affecting global health and economic
stability [1]. The occurrence of high variations in the viral genomes is a major barrier
to the development of efficient antiviral therapeutics. This genome variability is
indispensable for the survival of the viruses as it confers adaptability and resistance
to them against myriad antivirals. This necessitates a prompt and efficient drug
discovery approach.

Drug discovery and development against various diseases (the viral diseases) is
an arduous and cost-extensive process. To find a promising candidate, conventional
drug discovery methods rely on the synthesis of various compounds usually large
in number followed by their screening. In recent decades, in silico techniques
such as virtual screening (VS) have accelerated and economized the process of
drug discovery and development [2]. VS has a wide range of applications for the
discovery and development of potential antivirals. This involves the identification
of a target and lead structure followed by the development of a potential drug
compound and its optimization.

The past couple of decades have witnessed an increased interest and efforts to
use a combinational approach focused on in silico, chemical, biological approaches
to expedite antiviral drug discovery and development [3]. In silico approaches have
proven to be pivotal in deciphering the underlying molecular mechanisms, reveal
potential drug targets, and their inhibitory compounds. These candidate molecules
or lead compounds pave the way to the designing of novel and efficient anti-
infectious drugs [4]. In silico approaches can either be used for de novo synthesis
of novel drug candidates or optimization of ADMET (absorption, distribution,
metabolism, excretion, and toxicity) profile of known drugs from various databases
for a particular disease. In this chapter, we have discussed various methods of
drug discovery and design, and their applications for the development of effective
antiviral compounds. A descriptive methodology for the management of some
common and notorious viral diseases is also outlined along with the most recent
in silico-based antiviral drug discovery and development.

4.2 In Silico Drug Designing: Concepts and Methods

In silico drug designing is also known as virtual screening. This exploits compu-
tational models for describing the interactions between the macromolecules (most
commonly these are proteins) and their respective ligands. This is accomplished by
employing several computer-based methods. These fall under two main categories
known as the two- and the three-dimensional approaches (2D and 3D methods).
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Fig. 4.1 An outline of principles underlying in silico drug discovery and design

These have different computational performance or efficiency and applications.
Amongst these, the 2D approaches are most popularly exploited as “molecular
filters” to minimize the potential molecules for downstream screening. This is
credited to their much-reduced calculation times over 3D approaches. These are
discussed in detail in the following sections and illustrated in Fig. 4.1.

4.2.1 2D/Descriptor-Based Approach

The methods based on this approach calculate and compare the scalar molecular
properties. These are then used to identify molecules with similar molecular
attributes (calculated). Machine-learning tools and techniques, for example, the
linear correlation of experimentally determined biological activity and neural
networks are used to select and weigh the relevant molecular descriptors for specific
target binding.

4.2.2 3D/Conformation-Based Approach

The methods based on this approach are aimed at describing the chemical and steric
complementarity of the target (macromolecule)-ligand binding for their 3D confor-
mations. In recent times, 3D or conformation-based computational approaches are
the methods of choice for antiviral drug discovery. These 3D models are developed
using either the structure-based drug design or ligand-based drug design approaches.
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The structure-based drug design (SBDD) requires information on the 3D structures
of potential drug targets (macromolecules, usually, the proteins) whose binding
pocket is known, as in the target-ligand co-crystallized structure. This information
on the 3D structure of biological targets is determined experimentally using the
technique, such as the X-ray crystallography, and archived in the Protein Data Bank
(PDB) [5]. On the contrary, the ligand-based drug design (LBDD) approach works
well when the 3D structural data of the biological targets are unavailable. Therefore,
it relies on a set of known biomolecules or ligands that binds with the potential drug
target for the disease under study. However, the predicted binding site (on the target)
for these ligands mandates experimental validation using mutagenesis studies. This
has an advantage as it may reveal a set of novel small molecule inhibitors for the
target of interest (for a specific disease).

Both SBDD and LBDD (3D) approaches disseminate crucial information for lead
optimization. The putative ligand (active) is positioned in the respective binding
site on the target molecule using SBDD approaches. This enables the chemical
optimization of the said compound. On the other hand, LBDD offers a range of
compounds whose inhibitory action against similar targets is known. This allows
analysis of critical aspects related to lead optimization. These approaches, their
methodology, and their types are discussed in detail in the following sections.

4.2.3 Structure-Based Drug Design (SBDD)

As mentioned in the previous section, the methods that rely on this approach exploit
the structural information of the intended drug target for a particular disease. This,
in turn, allows for the development of potential inhibitors against that specific
disease target. Here, the disease targets are usually the cellular receptors whose
structure is to be known for developing potential inhibitors. The structural data
are most commonly acquired using X-ray crystallography and/or Nuclear Magnetic
Resonance (NMR).

4.2.3.1 Threading and Homology Modeling for SBDD

Threading and homology modeling is a pair of useful computational modeling tech-
niques when the structural details of the intended drug target are absent. Threading
enables modeling those target proteins that lack their counterparts (homologous
proteins). In the absence of the homologous counterparts, the structural details are
completely unknown. Here, a compatibility search is made for a specific amino acid
sequence against the structures in a database. These structures have folds that are
known, which, in turn, are used to build the structure of the protein in question
(query).

Homology modeling is a comparative approach that exploits the sequence (amino
acid sequence) homology between the query protein and its counterpart (homol-
ogous protein or template) whose structure is known. Here, one known structure
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of the homologous protein is sufficient [6]. Homology modeling is performed
sequentially as follows: Firstly, the homologous protein in its 3D structural form
is identified. This becomes the template. Secondly, the sequence alignment of the
query (target protein) and the template is done. Next, the model for the query
protein is generated followed by its refining and final validation using various
computational tools [7, 8]. In recent years, this approach has gained much popularity
for generating 3D models of the intended target proteins when the crystal structures
are not available.

4.2.3.2 De Novo SBDD

This approach is based on the notion “from the beginning.” Here, the active site of
the potential drug target is characterized structurally. This includes the revelation
of amino acid sequences that together form the active site and their orientation that
confer ligand specificity to the binding site. This, in turn, is crucial for designing
ligands that specifically bind to their respective drugs targets. The structural data
for the active site of the target protein can be acquired and its analysis can be
done using various computational approaches. These computational tools known
as computer-aided ligand design (CALD) are of immense help in deciphering
potential small molecule inhibitors (or ligands) from the available databases or
de novo designing [9]. Reportedly, there are six main classes of CALD methods
that comprise fragment connection methods, fragment location methods, random
connection methods, sequential build-up methods, site point connection methods,
and whole molecule methods [9]. A description of CALD methods is outlined in
Table 4.1.

Table 4.1 Classification of CADD methods for SBDD

Method Description

Fragment
connection
methods

Positioning the fragments and connecting them using either the “linkers”
or “scaffolds”. This is done to achieve a desired orientation of the
positioned fragments.

Fragment location
methods

The desired or favourable atom(s) or small fragment(s) locations (within
the active site) are determined.

Sequential
build-up methods

The ligand is constructed either atom by atom or fragment by fragment.

Random
connection
methods

This is a combination of sequential build-up and fragment connection
methods, which introduces randomness using bond disconnection
strategy.

Site-point
connection
methods

At first, the locations or site points are determined, followed by fragment
placement in the active site. This is done to ensure that appropriate atoms
occupy the determined locations.

Whole molecule
methods

Placement of compounds (in different conformations) into the target’s
active site. This is done to assess target-ligand complementarity, in terms
of shape and electrostatic force.
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4.2.3.3 Structure-Based Virtual Screening (VS) for SBDD

This is the most sought-after SBDD approach (3D) for lead identification that
complements high-throughput screening (HTS). It comprises molecular docking
and scoring functions. Molecular docking predicts the binding mode of ligand
(assumed to be flexible) to its specific binding site (assumed to be highly rigid)
on the target whose 3D structure is known while target-ligand binding affinity
is measured using scoring. Here, the database search for plausible target binding
compounds is carried out. These compounds are then ranked to obtain a potential
target-specific subset, which is then proceeded for further biological assays [6, 10,
11]. For this, various docking tools have been developed with different algorithms
for ligand placement and scoring [12]. These include AutoDock [13], DOCK
[14], FlexX [15], FRED [16], GLIDE [17], GOLD [18], LigandFit [19], Surflex
[20], and GRIP docking [21, 22] (Table 4.2). There is considerable data on
the application of structure-based VS that relies on molecular docking [23–29].
Structure-based VS has accelerated the process of drug discovery and development
with improved efficiency [30]. Ligand placement is largely reliable for assessing
various possibilities for the binding of ligand to the intended target (and their
geometries). But, the scoring functions cannot be relied upon for all the targets.
This could occur due to its incapacity to correctly estimate the effects of entropy
[31]. This could, however, be overcome by developing manual and customized
scoring functions (empirical) for specific applications. This approach is considered
amongst the most promising methods for rational lead optimization as it allows to
visualize the hypothetical target-ligand binding (docking). Even though there are
crude energy calculations involved, it offers ready availability of the compounds
from various libraries. This makes in vitro biological assays less challenging and
generates fewer false positives [11].

Table 4.2 Molecular docking tools for structure-based virtual screening

Tool Description/algorithm used Reference

FlexX Based on ligand fragmentation and incremental
reconstruction

Rarey et al. [15]

DOCK
FRED

Based on molecular shape algorithms Ewing et al. [14]
McGann et al. [16]

GOLD
AutoDock

Based on genetic algorithms Jones et al. [18]
Morris et al. [13]

Glide Based on systematic search algorithms Halgren et al. [17]
LigandFit Based on monte Carlo optimization Venkatachalam et al. [19]
Surflex Based on surface-based molecular similarity Jain et al. [20]
GRIP
docking

Based on PLP scoring function Singla et al. [21]
Singla and Dubey [22]
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4.2.4 Ligand-Based Drug Design (LBDD)

As mentioned in the previous sections, the LBDD approach works well when the
3D structural data of the biological targets are unavailable. It, therefore, solely
relies on a set of known biomolecules or ligands that binds with the potential
drug target for the disease under study. This is accomplished using 3D quantitative
structure-activity relationships (3D QSAR) and pharmacophore modeling tools.
Here, predictive models are generated that enable lead identification and optimiza-
tion [32].

4.2.4.1 Quantitative Structure-Activity Relationship (QSAR) for LBDD

The process of quantitatively correlating molecular descriptors with functions for
a group of similar compounds is known as QSAR. Here, the structural properties
of a molecule are referred to as the “molecular descriptors” or “descriptors” while
“functions” is the term used for the biological activities, physicochemical attributes,
toxicity, etc. [33]. QSAR relies on the notion that a molecule’s structure possesses
the attributes (electronic, geometric, and steric properties) that confer specific
activities to it (physical, chemical, and biological properties) [34]. This approach
strives to study a series of molecules with varied structures and properties to deduce
a structure-property relationship empirically. As mentioned in the earlier sections,
this is a promising alternative approach for LBDD when the structural data is
not available. The QSAR approach comprises methods that correlate the structure
of a molecule with experimental data concerning its biological activities. These
methods have distinct nomenclature based on the data collected. For example, the
quantitative structure-property relationship (QSPR) includes methods that model
physicochemical properties while the quantitative structure-toxicity relationship
(QSTR) is used to correlate molecular structure with toxicological data [35].

4.2.4.2 Pseudoreceptor Modeling for LBDD

Here, the structures of known bioactive or ligands are exploited for reconstructing
the 3D structure of an unknown target. This is a novel concept in computer-aided
drug discovery and development (CADD) that generates a precise and explicit
model of a target or receptor. The receptor model so generated can be utilized for
affinity predictions and to generate other models [36]. These are classified as 3D
QSAR methods that link LBDD with the receptor or target-based drug design [37].
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4.2.4.3 Pharmacophore Mapping/Modeling for LBDD

The concept of “pharmacophore” was introduced by Paul Ehrlich in the 1900s,
which is an amalgamation of phoros (the carrier or bearer) and pharmacon (drug)
[38]. So, pharmacophore is a part of a molecular framework bearing essential
attributes or structural features that confer specific biological or pharmacological
properties to a drug, such as receptor recognition and binding [38, 39].

It strives to achieve the following:

(a) To find the essential features or attributes needed to confer a specific biological
activity.

(b) To determine the bioactive or the molecular conformation needed.
(c) To develop a rule for the alignment or superposition for the compound series.

These are achieved through a sequential computational approach that comprises
a selection of the drug target, preparation of database, generation of the phar-
macophore model, and 3D screening [40–44]. Some automated programs have
been developed for pharmacophore mapping, such as Catalyst [41, 45], DISCO
[46], GASP [47], LigandScout [48–50], MOE [51, 52], and Phase [53]. Table 4.3
describes these automated pharmacophore mapping programs. In particular, these
automated programs recognize interaction sites that include hydrogen bond acceptor
(A), hydrogen bond donor (D), hydrophobic (H), ionizable/negative ionic (N), ion-
izable/positive ionic (P), and aromatic rings (R). These develop the pharmacophore
models by exploiting the “activity” attribute to differentiate the actives from the
non-actives. The pharmacophore models that exhibit inactivity are discarded. In
recent times, the pharmacophore-based VS has become an essential tool for hit
identification in drug designing studies in the absence of the target’s 3D structural
information. Also, it offers prompt screening to identify potential compounds from
a library of numerous compounds. Moreover, these generate descriptive and highly
transparent models (or 3D pharmacophore representations) that are amenable to
modifications with easy interpretation of results. However, these fail to completely

Table 4.3 Automated pharmacophore mapping programs

Tool Description Reference

LigandScout The pharmacophore is derived from
complexes formed by the protein and the
ligand.
It interprets geometries of the ligand.
The accurate hybridization states are
assigned.
The possible protein-ligand interactions are
classified by applying a defined set of rules.

Wolber and Langer [49],
Wolber et al. [50], Seidel et al.
[48]

Catalyst,
GASP,
Phase, MOE

The superpositioning of pharmacophore
molecules is done using cascading n-point
pharmacophore fingerprints.

Hecker et al. [45], Güner et al.
[41], Jones et al. [47], Dixon et
al. [53], Halgren [52], Cheong
et al. [51]
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address the biophysical interactions of the drug in question, which is a limitation of
this approach [54–60].

4.2.4.4 Scaffold Hopping for LBDD

Using this approach, novel compounds with structural diversity, but shared spe-
cific biological attributes are found [61]. Here, the structural skeleton or the
chemical core structure of a scaffold is altered while the biological activity (or
interaction properties in the 3D space) is preserved [62]. This technique aids the
identification of novel and structurally diverse classes of compounds as potential
inhibitors of the target protein [63, 64]. The automated scaffold hopping methods
include Recore [65] (http://www.biosolveit.de/), BROOD (http://www.eyesopen.
com/), SHOP (Scaffold Hopping) [62] (http://www.moldiscovery.com/), and MOE
(Molecular Operating Environment) (http://www.chemcomp.com/).

4.3 The Journey of In Silico Drug Discovery and Design for
the Treatment of Viral Diseases

In silico drug discovery and designing methods had a remarkable journey for
the treatment and management of viral diseases. These include viruses for AIDS
(acquired human deficiency syndrome), dengue, hepatitis C, influenza, mononucle-
osis, severe acute respiratory syndrome (SARS-CoV1 and SARS-CoV2), West Nile
fever, and yellow fever. The genome of these viruses encodes structural and non-
structural proteins. There are three structural proteins, namely the core and envelope
proteins (E1 and E2, fusion) while the non-structural or enzymatic components
include NS1, NS2A, and NS2B, NS3, NS4A, and NS4B, and NS5 proteins.
Together, these facilitate replication and assembly of the virion [66]. As these par-
ticipate in crucial activities needed for viral fusion, replication, and virion assembly,
they make up attractive antiviral targets. Different databases are screened to discover
potential antiviral compounds whose antiviral activity was previously not known.
These antiviral compounds are specific to the known or novel targets of the causative
viral agent in question (Table 4.4). The proceeding literature provides an overview of
the journey of in silico drug discovery and design for the treatment of viral diseases.
For example, the neuraminidase (NA) enzyme of the influenza virus is a potential
drug target. This is known to be involved in the viral transportation into the host
[67]. To this end, the shape-based virtual screening (VS) approach was adopted
by Kirchmair et al., wherein five potential katsumadain A (NA inhibitor) analogs
were identified from the National Cancer Institute (NCI) compound database (http://
cactus.nci.nih.gov/download/nci/) [68, 69]. These were further validated by in vitro
chemiluminescence and cytotoxicity assays. Another potential antiviral drug target
is reverse transcriptase (RT) of the Human Immunodeficiency Virus (HIV-1). RT

http://www.biosolveit.de/
http://www.eyesopen.com/
http://www.eyesopen.com/
http://www.moldiscovery.com/
http://www.chemcomp.com/
http://cactus.nci.nih.gov/download/nci/
http://cactus.nci.nih.gov/download/nci/
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is involved in the reverse transcription mechanism, that is, from RNA to DNA.
Various in silico approaches have been adopted to search for or design potential
RT inhibitors. These include high-throughput docking with physicochemical filters
(FRED and FILTER) from the NCI database. In this study, four best hits from
amongst 2800 compounds were found to possess anti-RT activity in vitro [70].
Further, docking-based VS (by GLIDE) of ZINC [71] and Maybridge screening
collection (https://www.thermofisher.com) revealed nine-hit compounds. Amongst
these, three compounds demonstrated anti-RT activity in vitro at low-micromolar
concentrations [72]. Further, a shape-based VS screening of the NCI database
for dihydroxy benzoyl naphthyl hydrazine (DHBNH) analogs was performed. A
consecutive ligand-based VS was conducted for the best hits using ligand-based
pharmacophore screening and 3D-, 2D-similarity searches. In vitro, anti-RT activity
evaluation of the compounds bearing novel scaffolds revealed remarkable antiviral
activity [54, 55]. In another study, novel thiohydantoin, thiobarbituric acid, and
rhodamine-based analogs were explored from the Asinex gold collection (http://
www.asinex.com/, a commercial database) against the integrase (IN) enzyme of
HIV-1. IN is known to aid the integration of viral DNA with the host cell genome.
The receptor-based pharmacophore search revealed BAS-044249 (Asinex code),
which demonstrated significant anti-IN inhibitory activity in vitro [73]. The entry
of HIV-1 into the host system can also be abrogated via inhibition of binding of
glycoprotein 120 (gp120) to the CXCR4 or CCR5 chemokine co-receptors and CD4
receptor. Accordingly, novel gp120 inhibitors were identified using a combination
of docking and shape-based similarity search (ZINC database) approaches [74].
Furthermore, novel small molecule anti-capsid protein (CTD, C-terminal domain)
inhibitors were identified using a docking-based VS (ZINC database) and analog
search (GLIDE). Capsid protein is crucial for the assembly and maturation of HIV-
1. The best hit compounds demonstrated significant anti-HIV-1 activity in vitro
[75]. Finally, human targets were also explored as a promising antiviral therapeutic
strategy. This strategy is based on the notion that viral escape mutants are capable
of rendering the antiviral drugs inactive, which can be overcome by including
those host protein targets that are essential for the replication of the virus. These,
however, are nonessential for the host. The human CXCR4 receptor is a promising
target to prohibit virus entry into the host system. For this, a combined structure
and ligand-based VS workflow were developed and validated that targeted the
CXCR4 receptor. Five potential hits were generated from the Maybridge database
that required synthesis and experimental testing [76].

The Flaviviridae family comprises viruses that majorly cause hepatitis C, dengue,
yellow fever, and West Nile fever [77]. The potential drug targets include NS3-4A
serine protease, NS5 or NS5B polymerase, and envelope- or E-protein. GENIUS, a
novel induced-fit docking method was developed by Takaya et al., which generated
13 new inhibitors of hepatitis C virus (HCV) NS3-4A protease. Their HCV
inhibitory activity was ascertained by in vitro assays [78]. Further, pharmacophore
modeling (3D)-based VS was performed using Cerius2 that sought NS5 polymerase
as the key target for the discovery of novel anti-HCV inhibitors. This yielded a
potential anti-NS5 polymerase inhibitor in the activity assays in vitro [79]. Fur-

https://www.thermofisher.com
http://www.asinex.com/
http://www.asinex.com/
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thermore, the structure-based VS of the Maybridge database and in vitro revealed
an isoxazole analog as potential anti-NS5B polymerase inhibitors [80]. Using
a structure-based VS approach followed by compound synthesis and structure-
activity relationship, the rhodanine, and imidazocoumarin analogs were identified as
promising anti-HCV NS5B polymerase inhibitors from the ChemBridge database.
These identified compounds led to allosteric inhibition of the NS5B polymerase
upon binding to the enzyme’s AP-1 pocket as confirmed by the in vitro RdRp
inhibitory assay [81]. In another interesting study, a combined 3D QSAR approach
that comprised ligand- and structure-based VS was used to search for novel HCV
NS5B polymerase inhibitory compounds from the NCI database. This revealed a
potential HCV NS5B polymerase inhibitor [82]. There is considerable evidence
from the docking studies on the potential antiviral candidature of the E-protein
of the dengue virus (DNV). These studies screened the commercial databases or
built their customized library for discovering novel DNV inhibitors that targeted
ligand-binding, hydrophobic, or the βOG pocket of E-protein [77, 83–85]. In an
interesting study, novel DENV NS5 polymerase inhibitors were discovered using
in vitro-driven VS of commercial databases (ZINC and CACDB) [86]. Novel anti-
E protein compounds against the yellow fever virus (YFV) were explored using
docking studies by Umamaheswari et al. [87]. Ligand-based VS of NCI revealed
potential allosteric inhibitors of NS3 proteinase of the West Nile virus (WNV) [88].
A high-throughput VS for anti-Epstein-Barr nuclear antigen 1 (EBNA1) inhibitors
against Epstein-Barr virus (EBV) led to the discovery of four selective inhibitory
compounds [89].

The spike protein (S protein) and 3-chymotrypsin-like protease (3CLpro) are
attractive drug targets against severe acute respiratory syndrome caused by SARS-
CoV (coronavirus) and SARS-CoV-2 [68, 69]. Structure- and ligand-based VS
identified potential 3CLpro inhibitors against SARS from the commercial databases.
In vitro assays confirmed their candidature as promising anti-SARS inhibitory
compounds [90–92]. In a study by Park and coworkers, the structure-based VS
identified RNA pseudoknot-binding ligands that potentially inhibited −1 ribosomal
frameshifting (RF) of SARS-CoV [93].

4.4 Conclusion

In silico methods have proved their merit in the discovery and design of novel drugs,
particularly, for the treatment of viral diseases. In silico approaches comprise rapid
and efficient tools that score over the conventional drug discovery methods for the
management of viral infections that are accompanied by resistance to almost any
commercial drug. VS, for example, is an essential component of computer-assisted
drug discovery and development that is mainly employed for early lead discovery
to expedite the process. Despite the several advantages being offered by in silico
approaches, the drug development process demands improvisations, particularly, to
combat the emerging and re-emerging viral diseases. Moreover, efforts are needed
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to enhance the accuracy of these in silico methods, which in turn are expected to
improve the quality of the procured experimental data. To this end, an amalgamation
of in silico and chemical-biological methods can be sought as an efficient approach.
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Chapter 5
Vaccines and Immunoinformatics
for Vaccine Design

Shikha Joon, Rajeev K. Singla, and Bairong Shen

Abstract The host immune system recognizes and responds to the selective
antigens or epitopes (immunome) of the intruding pathogen over an entire organism.
The immune response so generated is ample to confer the desired immunity and
protection to the host. This led to the conception of immunome-derived vaccines
that exploit selective genome-derived antigens or epitopes from the pathogen’s
immunome and not its entire genome or proteome. These are designed to elicit
the required immune response and confer protection against future invasions by
the same pathogen. Immunoinformatics through its epitope mapping tools allows
direct selection of antigens from a pathogen’s genome or proteome, which is
critical for the generation of an effective vaccine. This paved way for novel
vaccine design strategies based on the mapped epitopes for translational applications
that includes prophylactic, therapeutic, and personalized vaccines. In this chapter,
various Immunoinformatics tools for epitope mapping are presented along with their
applications. The methodology for immunoinformatics-assisted vaccine design is
also outlined.
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5.1 Introduction

Vaccination has unquestionably contributed to the maintenance of a healthy pop-
ulation worldwide. It has enhanced the quality of life and curtailed medical
expenses while the disease burden and associated morbidity and mortality are
minimized [1]. However, vaccine development is presented with various challenges
concerning emerging and re-emerging infectious diseases, complicated life cycles
and antigen diversity associated with the causative pathogens, need for personalized
or tailored vaccines together with the cost and time invested [2, 3]. To conquer
these roadblocks, it is pertinent to strategize the process of vaccine development
and devise novel approaches that are efficient, economical, and swift.

Breakthroughs in the field of immunology together with the development of
advanced Bioinformatics tools paved the way to novel platforms for vaccine design.
The advent of various immunome-mining tools embarked on a new journey of
immunology and led to the conception of novel vaccine designing strategies. These
comprise “genome-derived vaccines” or “immunome-derived vaccines,” “reverse
vaccinology,” and “vaccinomics” [4–10]. The principle behind immunome-derived
vaccines is that recognition of specific antigens or a set of epitopes (B-cell or T-
cell epitopes) induces competent and protective host immune responses against the
intruding pathogen. For instance, a lock (antibody) can be opened with the key
(pathogen) bearing the matching strings (epitopes) at its tip (antigen). In this case,
the entire key is not required to open the lock, but the critical peptides or epitopes
at its tip. Upon recognizing their specific key strings or epitopes, the immune locks
or cells, such as T cells are activated. These, in turn, raise an alarm to other arsenals
of the immune system regarding the trespassing pathogen. This laid the foundation
of immunome-derived vaccines that comprise specific epitopes from the pathogen’s
genome or proteome using various Immunoinformatics tools.

Several vaccines have been designed against myriad infectious diseases using
Immunoinformatics tools. These include immunome-derived vaccines for Staphy-
lococcus aureus [11, 12], Streptococcus pneumoniae [13], Neisseria meningitidis
[10], group B streptococcus [14], Porphyromonas gingivalis [15], and Chlamydia
pneumoniae [16], which are under development. Immunoinformatics tools have also
been exploited to develop anticancer vaccines and others that confers protection
against autoimmune diseases [17, 18]. In this chapter, the feasibility of Immunoin-
formatics tools in unraveling critical immune determinants for vaccine design is
discussed together with a methodology for designing immunome-derived vaccines.

5.2 Concept of Immunome-Derived Vaccines

T cells orchestrate the host’s protective immunological response to a disease-
causing pathogen. These responses are, in particular, targeted to the specific epitopes
or short peptide sequences present on the antigens of the attacking pathogen. In
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Fig. 5.1 Conceptualization of immunome-derived vaccines using in silico epitope mapping tools
that mimic host immune restriction

brief, the attacking pathogen is encountered by specific immune cells called antigen-
presenting cells (APCs), which undertake to process all the antigens encoded by the
entire genome of the pathogen. At this stage, MHC restriction or “immune system
filter” allows the presentation of only selected processed proteins (fragmented
proteins) or peptides to the T cells. These are recognized as the MHC ligands
while those that fail to undergo MHC binding are sieved out in the screening
process. Advanced epitope mapping tools have now made it possible to mimic this
immune filtration considerably. A set of epitopes (immunogenic), specifically the T-
cell epitopes, that elicit protective T-cell-mediated immunological responses can be
identified from the immunome of a pathogen. Upon identification of potential T-cell
epitopes, their immunogenicity can be confirmed with in vitro and in vivo studies.
Finally, vaccine design and delivery can be commenced when desirable protection
is obtained. As already stated, a pathogen’s immunome comprises epitopes from all
the proteins (cellular and non-cellular) (Fig. 5.1) [19].

5.3 The Journey of Vaccine Development Through Genome
to Immunome

Choosing an appropriate antigen(s) is a major hurdle for the development of an
effective vaccine. This roadblock in vaccine development has largely been overcome
with the advent of novel genome analysis tools. These advanced tools are based
on Bioinformatics and Immunoinformatics that aid in the selection of antigenic
proteins from the pathogens’ (in question) genomes directly. These, in turn, paved
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way for novel vaccine designing strategies based on the genome or immunome of the
pathogen. The “immunome” refers to a set of immune-specific genes and proteins
(antigens and epitopes) [20].

5.3.1 Antigen Presentation, and Activation and Generation
of T- and B-Cell Immune Responses

Upon encountering an intruder or a pathogen, the host immune system responds
through its various arsenals that include pathogen attacking antibodies (produced
by B cells) and T cells. Here, both T helper cells (THCs) and cytotoxic T-
lymphocytes (CTLs or killer T cells) participate in the T-cell responses. THCs
trigger the antibody responses while CTLs are responsible for eliminating the
pathogen-hijacked (intracellular pathogens) host cells or antigen-presenting cells
(APCs). APCs display pathogen-specific epitopes via antigen processing, which
are bound to the major histocompatibility complex (MHC: MHC I and MHC II)
molecules on their surface. These, in turn, are recognized by their cognate T cells
and stimulate the T-cell responses. “Epitopes” refers to the short peptide sequences
present on the surface of an antigen (Fig. 5.2) [21].

Induction of the immunological memory and its quality, as well as magnitude,
critically effectuates immune system activation. This, in turn, has a conspicuous
effect on the efficacy of the developed vaccine. Besides, factors such as the category
of memory cells induced and the longevity of antibodies generated markedly affect

Fig. 5.2 Illustration of antigen presentation, and activation and generation of T- and B-cell
immune responses in the human host upon pathogen exposure [21]
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a vaccine’s efficacy [22]. Previously, it was thought that the key immunological
effectors induced upon pathogen entry are the antibody-producing B cells (humoral
response), and the vaccines that induce B cells are more potent. However, accumu-
lating shreds of evidence confirmed that vaccines based on the T-cell epitopes trigger
protective immunological responses. These T cells generated protective immuno-
logical responses need the development of immune memory (B- and T-cell memory)
only to a set of immunodominant epitopes from key pathogenic antigen(s) instead of
every conceivable peptide from the whole pathogen. Essentially, these are amongst
those few critical peptides that are capable of stimulating a T-cell response upon
clearing the antigen processing and binding stages. This can be well understood by
the following example. Smallpox (Variola) infection was averted by immunization
with the cowpox virus vaccine (Vaccinia) even though their causative virus culprits
are non-identical but related. A plausible explanation for this could be the conserved
or shared B- and T-cell epitopes amongst the etiological agents of their etiological
agents. These shared epitopes could successfully drive protective immunological
responses via the generation of B and T memory cells in the host system against
conserved Variola epitopes as well upon immunization with cowpox vaccine. Other
examples include the HBV (Hepatitis B Virus) vaccine developed against the
Hepatitis B virus. This vaccine contains Hepatitis B surface antigen (HBsAg) as
the sole virus protein and provides sufficient protection against HBV. Further, the
BCG (Bacillus Calmette–Guérin) vaccine against tuberculosis (TB) comprising
only a subset of potent mycobacterial antigens drives host immunological responses
against Mycobacterium tuberculosis bacterium. These examples strengthen the fact
that vaccines based on a conserved set of immunodominant epitopes are proficient in
thwarting the intruding bugs at par or even more in comparison to their counterparts
that contain the entire pathogens or their whole proteins. As T cells orchestrate both
humoral and cell-mediated immunological memory, the T-cell epitopes are now
considered as the prime immune targets for developing an effective vaccine. For
this, the critical T-cell epitopes can be shortlisted from the pathogen’s immunome
by making a comparison of their genome sequences and Immunoinformatics tools
can then be exploited for epitope mapping.

5.4 Comparison of the Genome Sequences from Pathogens
for Vaccine Development: A Novel Approach

Although an organism’s immunome is obtained from its proteome (through its
genome), the whole proteome does not serve as the starting point for epitome map-
ping. The reason being that the proteome comprises all the proteins of a pathogen.
Several of these proteins are frequently conserved through diverse microbial species
and participate in myriad activities including those that are immune-specific. These
are, therefore, undesirable candidates for developing a vaccine. However, there are
several ways to limit the candidate proteins from an organism’s vast proteome for
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Table 5.1 Strategies to exploit genome sequencing data for discovering vaccine candidates

Strategy Outcome

Identification and elimination of
genes other than those that are
quintessential for immune response
generation

Only immune-specific candidate antigens will be
focused minimizing the undesirable self-immune
reactions or cross-reactivity from vaccines comprising
the screened candidates

Comparison of genome sequences
of virulent and non-virulent
organisms

Identification of virulence-associated genes for
screening protein counterparts

Comparison of genome sequences
from pathogens and uncovering
their conserved genes, which are
either used in existing vaccines or
are potential future candidates

Identification of established antigens against a known
pathogen which can be exploited for generating
protective immunity against another infectious agent
Examples: BCG vaccine against TB, and cowpox virus
vaccine (vaccinia) against Smallpox (variola)

Employ DNA-microarray approach
to screen pathogen-specific
essential genes (adaptation,
survival, and virulence genes)

Unveil genes, which in turn code for proteins (secretory
proteins) that undergo upregulation post host immune
interactions

epitope mapping. For instance, the genome sequences of virulent and non-virulent
organisms can be compared. This way the genes that are indispensable for the
pathogenesis of virulent counterparts along with those that generate host immune
responses can be shortlisted for further analysis. Another strategy could be to
uncover the conserved genes in the organisms that are proven vaccine candidates and
their target pathogen using comparative genome sequencing. This will disseminate
crucial information on antigen selection for vaccines (Table 5.1). Eventually, the
pathogen-specific proteins, which are indispensable for its survival and virulence
can be screened as potential vaccine targets. These include various upregulated
and secretory proteins, which facilitate its adaption to the host environment post-
intrusion. Thus, a comparison of genome sequences can reveal potential targets that
can be subjected to epitope mapping for discovering critical T-cell epitopes using
suitable Immunoinformatics tools outlined in the following section

5.5 Designing Vaccines Using Immunoinformatics Tools

Once the protein targets (potential antigens) from the pathogen in question are
shortlisted for vaccine design, the immunodominant regions are determined using
appropriate Immunoinformatics tools. In vitro testing of these potential immuno-
gens is then undertaken to ascertain their immunogenicity. As stated in the previous
section, Immunoinformatics tools aid in discovering the critical T-cell epitopes on
the selected antigens that interact with the host T cells. These Immunoinformatics
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Table 5.2 A list of T and B cell epitope prediction tools and databases

Name Website/URLs PMID References

T cell epitope prediction tools and databases
TEPITOPE www.vaccinome.com 15542373 [24]
ProPred http://www.imtech.res.in/raghava/proped 11751237 [29]
MULTIPRED http://antigen.i2r.a-star.edu.sg/multipred/ 15980449 [30]
MHCPred 2.0 http://www.darrenflower.info/mhcpred/ 16539539 [31]
NetMHC http://www.cbs.dtu.dk/services/NetMHC/ 12717023 [32]
NetCTL 1.2 http://www.cbs.dtu.dk/services/NetCTL/ 17973982 [33]
IEDB http://www.immuneepitope.org/ 15760272 [34]
IMGT

®
http://imgt.cines.fr 18978023 [35]

EpiToolKit http://www.epitoolkit.org 25712691 [36]
MMBPred http://www.imtech.res.in/raghava/mmbpred/ 14511568 [37]
SYFPEITHI http://www.syfpeithi.de 10602881 [38]
ElliPro http://tools.immuneepitope.org/tools/ElliPro 19055730 [39]
B cell Epitope Prediction Tools
ABCpred http://www.imtech.res.in/raghava/abcpred 16894596 [40]
COBEpro http://scratch.proteomics.ics.uci.edu/ 12807816 [41]
BEPITOPE http://bepitope.ibs.fr/ 12557235 [42]
DiscoTope http://www.cbs.dtu.dk/services/DiscoTope/ 23300419 [43]
BepiPred http://www.cbs.dtu.dk/services/BepiPred 28472356 [44]
Pepitope http://pepitope.tau.ac.il/ 17977889 [45]
BCPREDS http://ailab.cs.iastate.edu/bcpreds/ 19642274 [46]

tools for epitope mapping utilize algorithms that exploit threading, non-linear
functions, and neural networks [23–28]. These tools allow to scan of the sequences
from protein targets and predict potential T-cell epitopes. Table 5.2 summarizes
the Immunoinformatics tools employed in epitope mapping (both B- and T-cell
epitopes).

5.6 Advanced Immunoinformatics Tools for Epitope
Mapping

Before an MHC-bound peptide (antigen) is presented to the T cells, it must be
excised or processed from their native proteins within the APCs of the host.
This involves enzyme-mediated proteolytic cleavage or proteasomal processing and
their transportation by ancillary proteins such as the transporter associated with
antigen processing (TAP) to the endoplasmic reticulum (ER). All these steps are
indispensable for peptide binding to MHCs, their presentation of MHC-bound
peptides to the T cells, and elicitation of T-cell-dependent immune stimulation
[47]. There exist several Immunoinformatics tools that have improvised epitope
mapping in terms of its quality for shortlisting potential epitopes as vaccine

http://www.vaccinome.com
http://www.imtech.res.in/raghava/proped
http://antigen.i2r.a-star.edu.sg/multipred/
http://www.darrenflower.info/mhcpred/
http://www.cbs.dtu.dk/services/NetMHC/
http://www.cbs.dtu.dk/services/NetCTL/
http://www.immuneepitope.org/
http://imgt.cines.fr
http://www.epitoolkit.org
http://www.imtech.res.in/raghava/mmbpred/
http://www.syfpeithi.de
http://tools.immuneepitope.org/tools/ElliPro
http://www.imtech.res.in/raghava/abcpred
http://scratch.proteomics.ics.uci.edu/
http://bepitope.ibs.fr/
http://www.cbs.dtu.dk/services/DiscoTope/
http://www.cbs.dtu.dk/services/BepiPred
http://pepitope.tau.ac.il/
http://ailab.cs.iastate.edu/bcpreds/
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Table 5.3 A list of antigen-processing tools for vaccine design

Name Website PMID References

Proteasomal cleavage prediction tools
NetChop 20S http://www.cbs.dtu.dk/Services/NetChop/ 11983929 [48]
PAProC http://www.paproc.de/ 11345595 [49]
MAPPP http://www.mpiib-berlin.mpg.de/MAPPP/ 10047495 [53]
PCPS http://imed.med.ucm.es/Tools/pcps/ 32162269 [54]
Pcleavage https://webs.iiitd.edu.in/raghava/pcleavage/ 15988831 [55]
TAP processing prediction tools
PREDTAP http://antigen.i2r.a-star.edu.sg/predTAP 16719926 [52]
SVMTAP http://www-bs.informatik.uni-tuebingen.de/WAPP 15987883 [51]
TAPPred http://bioinformatics.uams.edu/mirror/tappred/ 14978300 [50]

components. For instance, Immunoinformatics tools such as NetChop 20S [48]
and PAProC (Prediction Algorithm for Proteasomal Cleavages) [49] can predict
proteasomal processing for several proteins intended for vaccine development.
These online tools are based on artificial neural networks and have revamped
Immunoinformatics screening for epitope mapping (T-cell epitopes). Then there
are other epitope mapping tools, which can precisely predict the fate of shortlisted
peptides concerning their processing and differentiate processed peptides from those
that will not be amenable to processing. For instance, TAPPred [50], SVMTAP [51],
and PREDTAP [52] can predict which peptides will successfully pass through the
TAP during their processing and has enhanced the precision of epitope mapping
[53]. Table 5.3 summarizes Immunoinformatics tools for predicting proteasomal
cleavage sites and TAP processing of antigens.

5.7 What Makes Immunoinformatics Tools so Proficient
at Identifying Critical Antigens/T-Cell Epitopes for
Vaccines?

The Immunoinformatics tools have proven to be incredibly valuable as they
considerably minimize the research efforts, cost, and time needed for epitope
mapping over traditional vaccine design methods. The candidate protein sequences
can be selected and Immunoinformatics tools can be exploited to determine the
immunogenic regions in the protein. As stated earlier, these immunogenic regions
or short peptides drive appropriate immune responses in the host. Alternatively,
the Open Reading Frames can be selected when the name and function of the
gene of interest have not been assigned yet. The synthesis of these shortlisted
immunogenic peptides that comprise potent epitopes can be undertaken followed
by their screening in vitro. For this purpose, the T cells that are primed with
these immunogens are obtained from the patients. Next, in vitro immunological

http://www.cbs.dtu.dk/Services/NetChop/
http://www.paproc.de/
http://www.mpiib-berlin.mpg.de/MAPPP/
http://imed.med.ucm.es/Tools/pcps/
https://webs.iiitd.edu.in/raghava/pcleavage/
http://antigen.i2r.a-star.edu.sg/predTAP
http://www-bs.informatik.uni-tuebingen.de/WAPP
http://bioinformatics.uams.edu/mirror/tappred/
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assays, such as enzyme-linked immunospot (ELISpot) and cytokine assays by flow
cytometry can be exploited. When the synthesized peptides yield a positive immune
response in these assays these can be considered as potent immunogens for further
analysis. These immunogens are capable of interacting with the immune system of
the host and generate an appropriate immune response when the host encounters
the associated disease or infection. These peptides undergo cellular processing and
presentation within the APCs of the host. The presented peptides (or antigen in
this case) display epitopes on their surfaces that elicit appropriate host immune
responses. Once the epitopes are confirmed, their peptide counterparts that partake
in eliciting T-cell-specific immune responses are the antigens of choice for the
vaccine. Alternately, the whole protein counterpart of these peptides can be selected
for developing a subunit vaccine.

5.8 Immunoinformatics: A Boon for Vaccine Design
and Development

This section discusses applications of Immunoinformatics for in silico vaccine
design and development and modeling and simulation of immunological responses
as two broad categories.

5.8.1 In Silico Vaccine Design and Development

With the advent of genome sequencing and proteomics (comparative) together with
immunoinformatics tools, it is now possible to implement new vaccine design
methodologies.

A novel concept in vaccine design was introduced and termed, “reverse vacci-
nology,” which identifies potential immunogens (extracellular) from the pathogen’s
entire genome. This indeed is an economic and time-intensive approach. This
approach was foremost used for developing a conjugate vaccine against Neisseria
meningitides, a causative agent for meningococcal meningitides and sepsis [56, 57].

5.8.1.1 Microarray-Based Vaccine Design

The microarray technology allows the screening of pathogenic genes from various
bugs at different phases of their growth and conditions. This considerably minimizes
the candidate genes in a pathogen’s genome for vaccine design. It is worth mention-
ing here that immunogenicity, structural motifs, and signal peptides obtained from
sequencing of the given genome are vital ingredients for vaccine design [19].
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5.8.1.2 Epitope-Based Vaccine Design

The vaccines that are based on the entire antigen or protein of a pathogen often
present the risk of undesirable immunogenicity to the host. This is greatly eliminated
by designing epitope-based vaccines. These vaccines comprise immunodominant
epitopes that induce the desired immunological responses and confer protective
immunity to the host [58]. Vaccines designed using this approach comprise a start
codon (single) and an epitope inserted in a vaccine construct consecutively [59].
Subunit vaccines are now designed using this approach and require the prediction
of ligands that have binding promiscuity [60].

5.8.1.3 Peptide-Based Approach for Vaccine Design

Peptide-based vaccines comprise small peptides obtained from epitopes, which are
engineered to augment the immunological response. The prediction of potential
peptides that bind to MHC molecules on APCs is quintessential as these peptides
undergo MHC class I recognition. The MHC binding peptides can be predicted
using any of the three approaches mentioned below and then a voting scheme can
be applied for their integration to obtain better outcomes. At first, qualitative and
quantitative immunological data is procured followed by quadratic programming.
Another method is based on linear programming while the last method exploits
sequence profiles. For this, the known epitopes are clustered and candidate peptides
are then scored to yield sequence profiles. This is a more convenient approach over
sequence-based methods to identify peptides that bind to MHC [61].

5.8.1.4 Non-alignment-Based Vaccine Design

Previous approaches for identifying antigens relied on sequence alignment and
had several limitations. For instance, there exist proteins that are structurally and
biologically similar, albeit they may not have the same sequence. A novel non-
alignment-based approach for vaccine design was introduced to overcome this
constraint. At first, three datasets were designed for viruses, bacteria, and tumors,
respectively. Validation of the developed models was then done employing the
leave-one-out cross-validation (LOO-CV) method on these sets. Tests sets were
used for external validation. The outcome was the webserver VaxiJen (http://
www.darrenflower.info/VaxiJen/), which comprises these validated models [62]
(Table 5.4).

http://www.darrenflower.info/VaxiJen/
http://www.darrenflower.info/VaxiJen/
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Table 5.4 In silico DNA vaccine design tools

Tool/server Website/URLs PMID References

DyNAVacS http://miracle.igib.res.in/dynavac/ 16845007 [63]
NERVE http://www.bio.unipd.it/molbinfo 16848907 [64]
VaxiJen http://www.jenner.ac.uk/VaxiJen 17207271 [62]
Vaxign http://www.violinet.org/vaxign/ 20671958 [65]
VIOLIN http://www.violinet.org 24259431 [66]

5.8.1.5 Designing DNA Vaccines

It is a known fact that DNA vaccines elicit both humoral and cell-mediated
immunological responses. These are particularly helpful in combating intracellular
pathogens. For this, various.

Webservers and softwares have been developed, which include DYNAVACS
[63], NERVE [64], and VIOLIN [66]. DYNAVACS has various modules such as
mapping sites for restriction enzymes, optimization of codons for heterologous
genes, insertion of Kozak sequences, designing primers, genetic engineering for
gene therapy, and customized sequence insertion [63]. The subunit vaccines can be
designed against bacterial bugs using the automated NERVE software [64]. VIOLIN
is a web-based database that executes curation, storage, and analysis of published
vaccine data [66]. It comprises integrated programs for data mining and searches
such as VAXPRESSO, VAXLERT, VAXMESH, and LITSEARCH. Now, potential
vaccine targets can be predicted with the aid of VAXIGN, which is a vaccine
design Webserver. In addition to predicting immunogenic vaccine targets, it can also
predict the transmembrane domain, subcellular location, probability of adhesion,
conserved sequences in distinct genomes, immunogen and host proteome sequence,
and binding of the predicted epitope to MHCs [65] (Table 5.4).

5.8.2 Modeling and Simulation of Immunological Responses

Modeling and simulation of immunological responses give a qualitative and
quantitative understanding of the immune system on the whole. The generated
immune models are capable of testing the antigen–antibody interactions and deduce
immunological responses for the antigen in question. These are particularly useful
in evaluating the efficacy of a vaccine candidate or drug administration. Several
infection models have been developed to date including Hepatitis C and HIV
(human immunodeficiency virus) [34, 67]. These models disseminate information
on adaptive immune responses and the virus infection cycle within the host.
The immune system is simulated to gain an insight into the complex immune
responses by exploiting a combinational approach comprising experimental and
computational data. IMMUNOGRID (http://www.immunogrid.org) and VIROLAB

http://miracle.igib.res.in/dynavac/
http://www.bio.unipd.it/molbinfo
http://www.jenner.ac.uk/VaxiJen
http://www.violinet.org/vaxign/
http://www.violinet.org
http://www.immunogrid.org
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Fig. 5.3 Various immunology-related applications of Immunoinformatics

(http://www.virolab.org:080/virolab) are immune simulation projects based on this
approach that aims at developing an in silico library for myriad infections [68].
Another example includes SIMISYS 0.3, which simulates healthy and diseased
states of the host based on its interpretations of immune cell interactions and the
pathogen [56, 69]. Various immunology-related applications of Immunoinformatics
are shown in Fig. 5.3.

5.9 Designing Vaccines Using Immunoinformatics Tools:
Pitfalls and Future Interventions

Although immune-derived vaccines save the time, cost, and labor invested in design-
ing vaccines using conventional wet laboratory techniques, they are accompanied by
certain limitations as follows.

• Immunoinformatics tools rely on in vitro, in vivo, and clinical findings to
generate substantial data for further analysis. Therefore, these can expedite the
process of vaccine design and development but, not replace the wet laboratory
immunology research.

• Data quality and robustness of the algorithm exploited determine the prediction
quality of Immunoinformatics tools. For instance, sequencing data acquired from
high-throughput sequencing many times is flawed. The incorrect sequencing or
annotations affect the quality of analysis as they can yield ambiguous results [70].

• The existing tools for genome mapping are not efficient in identifying the
immunogenic epitopes from the pathogen’s non-protein antigenic entities, such
as lipids and carbohydrates.

http://www.virolab.org/virolab
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• To date, only a few Toll-receptor agonists have been discovered, which are
required in innate immune responses and in turn in generating protective immune
responses [71]. Immunoinformatics tools that can model and select pathogen-
associated molecular patterns (PAMPs) are underway though.

• Further, the available Immunoinformatics tools are inefficient in generating
reliable predictions for B-cell epitopes (conformational epitopes). These interact
with the host antibodies [72].

• Finally, the identified immunogens or their predicted epitopes mandate in vitro
and in vivo efficacy evaluation with appropriate challenge animal models before
clinical trials [19].

5.10 Conclusion

In recent years, research in the field of genome-based vaccine development has
gained momentum. This can be credited to the enormous and expanding information
on microbial genome complemented with novel genome sequencing tools that allow
the comparison of genomes from distinct microbial species. Immunoinformatics
with advanced antigen selection approaches and tools have expedited vaccine
research and development. The validation of the predicted antigens for vaccine
development relies on highly efficient in vitro assays that measure antigen elicited T-
cell response. Howbeit, the time and cost invested in preliminary antigen selection
procedures are greatly minimized with genome scanning and Immunoinformatics
over classic in vitro methods. As these in silico methods allow scanning of the
genome sequences illuminating potential vaccine targets, in-depth knowledge of
protein (of the pathogen) structure and function is not needed anymore. Also, these
have eliminated the need for cloning of genes and protein (of the pathogen) isolation
before the target screening. By scanning the antigen or peptide sequences in the
target pathogen, potential epitopes for the vaccine can be discovered circumventing
long-drawn-out in vitro cloning procedures. An amalgamated approach employing
bench-research and Bioinformatics tools, such as the confirmation of T-cell (in
vitro) and genome sequencing can expedite the process of vaccine development
over traditional vaccine design strategies. In conclusion, Immunoinformatics has
emerged as a promising in silico approach, which might revolutionize vaccine
design and development.
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Chapter 6
Predicting the Disease Severity of Virus
Infection

Xin Qi, Li Shen, Jiajia Chen, Manhong Shi, and Bairong Shen

Abstract The COVID-19 pandemic has resulted in unprecedented burden on
global health and economic systems, promoting worldwide efforts to understand,
control, and fight the disease. Due to the wide spectrum of clinical severity,
effective risk factors, biomarkers, and models for predicting disease severity and
mortality in COVID-19 patients are urgently needed to provide guidance for clinical
intervention and management. In this chapter, we first describe the infection features
of different COVID-19 strains and the potential of clinical features, cytokine storm
and biomarkers in predicting the severity of COVID-19 patients. We focus on
how scoring systems, mathematical models and artificial intelligence (AI)-based
models can promote the classification of COVID-19 severity at the population or
individual level. Moreover, the development perspective of biomarkers and models
for predicting the severity of COVID-19 is prospected. Therefore, this chapter
highlights the clinical significance of biomarkers and models related to COVID-
19 severity and provides important clues for improving the outcomes of COVID-19
patients, thereby facilitating timely disease assessment and precision medicine for
individual COVID-19 patients.
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Keywords COVID-19 severity · Risk factor · Cytokine storm · Biomarker ·
Scoring system · Mathematical model · AI-based model

6.1 Introduction

The recent occurrence and spread of COVID-19 have posed a huge threat to
healthcare, economic, and social systems around the world. It is caused by infection
with a novel coronavirus called severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Increasing evidence showed that the majority of patients with
COVID-19 exhibit mild or moderate clinical symptoms, such as cough, fever,
fatigue, and pneumonia, while 19% of patients still develop to severe illness or even
organ failure [1]. Without timely diagnosis and treatment, severe cases of COVID-
19 possess a high risk of poor prognosis [2]. Therefore, it is urgent to identify risk
factors or develop effective models for predicting severity and providing guidance
for individualized intervention and treatment of COVID-19 patients.

Biomarkers are measurable alterations in the composition of tissues or body
fluids, which can objectively indicate physiological or pathological processes with
high specificity and sensitivity. Multiple types of biomarkers including molecular
alteration, biochemical index, hematological parameters, and clinical features have
been extensively utilized as effective tools for the diagnosis, staging, and treatment
of different diseases. Especially, biomarkers possess huge clinical significance if
they could track real-time disease progression and severity. At present, due to high
mortality of severe patients with COVID-19, scientists and medical workers from
all over the world are devoted to the development and identification of biomarkers
that can predict the severity of the disease. For example, expression levels of
plasma IFN-γ-induced protein 10 (IP-10), monocyte chemotactic protein-3 (MCP-
3), interleukin-6 (IL-6), and C-reactive protein (CRP) have been demonstrated
to be promising biomarkers that were highly associated with COVID-19 severity
and progression [3, 4]. Furthermore, recent progresses in multi-omics technologies
have spurred considerable efforts to survey biomolecules for predicting the severity
and prognosis of COVID-19 patients. Overmyer et al. have successfully identified
219 biomolecules with high relevance to COVID-19 severity based on large-scale
transcriptomic and proteomic analysis [5].

Predictive models that integrate key variables or clinical parameters can also
benefit the evaluation of COVID-19 severity. Currently, methods ranging from
scoring systems to mathematical models, machine learning models and deep
learning models have been proposed to predict COVID-19 severity, thereby helping
patients to receive prompt and effective therapeutic regimens at early stages. For
example, using univariate and multivariate logistic regression analysis, Zhang et al.
6 have established a novel predictive scoring system for COVID-19 severity, which
was composed of factors including age, white blood cell count (WBC), neutrophil
(NEU), glomerular filtration rate (GFR), and myoglobin. Its excellent prediction
value was confirmed by the area under the curve (AUC) in the ROC curve analysis
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[6]. Based on three key indicators (e.g., lactic dehydrogenase (LDH), lymphocyte
and high-sensitivity C-reactive protein (hs-CRP)) for COVID-19 prognostic predic-
tion, a machine learning-based model was developed that can predict the mortality
risk of severe patients with over 90% accuracy [7]. Therefore, the development of
COVID-19 severity models is of great significance for customizing personalized
treatment regimens and even reducing mortality.

To gain a deep understanding of the role and application potential of the identified
predictive factors and models, we here firstly introduce the infection features
of different COVID-19 strains and summarize the key clinical indicators highly
associated with COVID-19 severity. Then, we describe the impact of cytokine storm
in COVID-19 disease process and severity. Finally, we systematically review and
appraise the available predictive biomarkers and models of COVID-19 severity,
highlighting the importance of disease severity prediction for precision medicine
and healthcare for COVID-19 patients (Fig. 6.1).

6.2 Informatics for Diagnosis of COVID-19 with Varying
Severity

6.2.1 Different SARS-CoV-2 Strains and Infection Severity

Recent researches suggest that the emergence of multiple highly transmissible
variants of SARS-CoV-2 has not only exacerbated the COVID-19 pandemic, but
also brought considerable difficulties and challenges for the design of an effective
vaccine on a global scale. Currently, several new SARS-CoV-2 genetic variants
including Alpha variant (B.1.1.7), Beta variant (B.1.351), Gamma variant (P.1),
and Delta variant (B.1.617.2), are reported to possess increased transmissibility and
pathogenicity compared with the original strain, arousing health concerns around
the world.

The first SARS-CoV-2 variant of concern with an amino acid mutation from an
aspartate to a glycine at position 614 (D614G) in the spike protein was identified
in early March 2020 and spread quickly to global dominance by April 2020 [8],
attaching considerable attention. The spike protein composed of S1 and S2 subunits
is a vital structural region of the coronavirus for receptor recognition and membrane
fusion [9]. The D614G mutation is located in the S1 subunit, which plays a crucial
role in SARS-CoV-2 entry into host cell [10]. Emerging studies indicated that
SARS-CoV-2 harboring D614G mutation has higher infectivity [11, 12].

The B.1.1.7 variant (N501Y.V1) was initially detected in the United Kingdom
(UK) in September 2020 [13], and rapidly became the dominant SARS-CoV-2 strain
in the southeast and east of England [14]. Notably, the strain had spread to 160
countries by 3 June, 2021 [15]. Genomic surveillance revealed that the strain has 23
mutations across the virus genome, especially including the N501Y (Asn501Tyr)
mutation in the spike protein, which might enhance angiotensin-converting enzyme
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Fig. 6.1 Paradigm of predicting the disease severity of COVID-19. Based on large-scale clinical
data, medical images and expression profiling data, a variety of risk factors, scores, and models
can be used to predict disease severity and mortality, thereby providing guidance for clinical
intervention and management of patients with COVID-19. EV extracellular vesicles; sRAGE
soluble receptor for advanced glycation end product; SIR susceptible-infectious-recovered; SEIR
susceptible-exposed-infectious-recovered; AI artificial intelligence

2 (ACE2) receptor-binding affinity [16]. Preliminary evidence indicated that the
B.1.1.7 strain is more transmissible than previously reported variants. Davies et al.
[17] found that the UK variant B.1.1.7 is 43 to 90% (95% credible intervals (CI):
38–130%) more transmissible than preexisting lineages. Volz et al. [18] and Graham
et al. [19] independently discovered that B.1.1.7 has a significant transmission
advantage over preexisting variants, with a multiplicative increase in the effective
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reproduction number, Rt, by a factor of 1.5–2.0 or 1.35. Besides, Bager et al. [20]
found that there is an increased risk of hospitalization for people infected with
B.1.1.7 relative to other lineages in Denmark.

The B.1.351 variant (501Y.V2), first identified in October 2020 [13], rapidly
caused the outbreak of COVID-19 in South Africa [21]. It harbors three pivotal
mutations in the receptor-binding domain of the spike protein, including N501Y,
K417N, and E484K, thereby enhancing the binding affinity of spike protein to
the ACE2 receptor [22]. By analyzing the global spread of SARS-CoV-2 variants,
Campbell et al. [15] found a marked increase in effective reproduction numbers of
B.1.351 strain at 25% (95% CI: 20–30%), highlighting its increased transmissibility.
Besides, it is estimated that the transmission rate of the 501Y.V2 variant is 50%
higher than the preexisting variant in South Africa [21].

The P.1 variant (501Y.V3) first detected in Manaus in the Brazilian Northern
region, was alleged as the main cause of the second COVID-19 wave that occurred
in Amazonas in November 2020 [23]. The P.1 strain has 17 mutations, including the
N501Y, K417N, and E484K in the spike protein that shared with the B.1.351 variant
[24]. Epidemiological data showed that prevalence of P.1 variant increased sharply
to 73% in January 2021 and replaced the original strain in less than 2 months [25].
Evidence indicated that the P.1 variant has caused a striking increase in intensive
care unit (ICU) admission, mechanical ventilation (MV) need, and mortality of
young adults [26], confirming its high transmissibility and lethality.

The B.1.617 lineage was first identified in India in October 2020 [27]. It has
since then contributed to the surge of COVID-19 cases in India and the UK and
further rapidly spread to 43 countries [28]. The lineage has three main subtypes
including B.1.617.1, B.1.617.2, and B.1.617.3, which contain diverse mutations in
the spike protein. Among them, B.1.617.2 (Delta variant) is deemed to spread faster
than other preexisting variants [27]. Emerging evidence showed that the growth rate
of B.1.617.2 was higher than that of B.1.1.7, and its doubling time was between 5–
14 days [29]. Currently, B.1.617.2 with increased proportion in sequenced lineages
is the prevailing variant in UK, indicating a competitive advantage. Moreover, Sal-
vatore et al. found that B.1.617.2 exhibited higher transmissibility than previously
circulating strains [30].

Collectively, given the critical role of spike-ACE2 binding affinity in the initial
stage of SARS-CoV-2 infection, accumulating studies have uncovered that several
SARS-CoV-2 variants with significantly increased transmissibility and disease
severity including B.1.1.7, B.1.351, P.1, and B.1.617.2 strain, harbor different num-
ber of mutations in the spike protein, which could enhance the spike-ACE2 binding
affinity. Therefore, characterization of new variants is critical for monitoring the
extent of the COVID-19 pandemic and maintaining the effectiveness of vaccination.
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6.2.2 Clinical Features Associated with COVID-19 Severity

Since the outbreak of COVID-19 epidemic, considerable efforts have been made
to discover clinical characteristics and risk factors related to the disease severity,
thereby supporting decision-making in clinical practice. As listed in Table 6.1,
clinical features associated with COVID-19 severity were mainly classified into four
types: demographics, hematological and biochemical parameters, comorbidities,
and radiographic features.

6.2.2.1 Demographics

Male gender and older age are the most frequently reported demographic factors
that can increase the severity and mortality of COVID-19, and are therefore included
as key variables in multiple risk scores or indexes that predict the disease severity
[31]. Barek and colleagues found that male patients and patients older than 50 years
are significantly associated with the higher risk of cases severity [32]. The meta-
analyses on 36,470 patients by Pijls et al. also showed that male patients and patients
with age ≥ 70 have a higher risk for severe COVID-19 [33].

6.2.2.2 Hematological and Biochemical Parameters

Through laboratory biochemistry tests, increasing evidence demonstrated that the
involvement of hematological abnormalities is prominent in severe patients with
COVID-19 [34]. As listed in Table 6.1, the hematological markers, such as
neutrophil-to-lymphocyte ratio (NLR) [35–39], platelet-to-lymphocyte ratio (PLR)
[35, 37, 39], serum amyloid A (SAA) [40, 41], C-reactive protein (CRP) [38, 40,
42–44], D-dimer [44–47], ferritin [42, 48], ALT [42], AST [42], albumin [42],
immunoglobulin deficiency [49], blood urea nitrogen (BUN)/creatinine (Cr) ratio
[50], troponin I (cTnI) [44], high sensitivity C-reactive protein-prealbumin ratio
(HsCPAR) [51], and high-sensitivity C-reactive protein-albumin ratio (HsCAR)
[51], can play a predictive role in the stratification of COVID-19 severity. Especially,
NLR, PLR, and BUN/Cr ratios were reported to be associated with COVID-
19 severity as well as mortality, and mean platelet volume (MPV) and D-dimer
are predictive makers of hospitalization and severity in children with COVID-19.
Therefore, these hematological and biochemical parameters altered significantly in
severe cases may serve as promising biomarkers for identifying patients needing
hospitalization and intensive care.
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6.2.2.3 Comorbidities

Patients with COVID-19 present a wide range of clinical phenotypes that can be
used to help identify high risk and critically ill patients. Primarily transmitted by
respiratory droplets, the most common clinical feature of symptomatic individuals
with COVID-19 is the acute respiratory manifestations, including cough, fever,
dyspnea, and fatigue [52, 53]. Besides, the presence of comorbidities is also tightly
associated with the severity and clinical outcomes of COVID-19. Hypertension,
diabetes, and cardiovascular disease have been identified as important risk factors
for COVID-19 severity since the first description of the virus disease [54]. For
example, by performing a meta-analysis, Lippi et al. [55] found that hypertension
was associated with an approximately 2.5-fold increase in the risk of severe and
poor prognosis for COVID-19, especially in the elderly; Mantovani and colleagues
[56] found that preexisting diabetes was associated with a nearly twofold increased
risk of severe illness and an approximate threefold higher risk of in-hospital death
of COVID-19 patients; Li et al. [57] discovered that acute cardiac injury was
associated with the severity and prognosis of patients with COVID-19. Furthermore,
chronic kidney diseases and cancer have recently emerged as frequent comorbidities
associated with severity of COVID-19 patients. For example, a meta-analysis of 42
studies involving 8932 patients showed that COVID-19 patients had a strikingly
increased risk of developing severe illness or death [58]; Ofori-Asenso et al.
[59] found that COVID-19 patients with cancer face higher risk of severity than
those without cancer. Therefore, the presence of preexisting comorbidity should
be regarded as a critical factor in risk stratification of COVID-19 severity and
outcomes.

As mentioned above, SARS-CoV-2 infection of host cells is triggered by the
binding of the virus spike protein to the ACE2 receptor, which also has a vital role
in the development of cardiovascular diseases, hypertension, and diabetes. Thus,
one possible mechanism by which comorbidity increases the risk of severity and
death is that the increased ACE2 expression promoted virus entry [60].

6.2.2.4 Radiographic Features

The clinical manifestations of COVID-19 range from asymptomatic infection to
acute respiratory illness and respiratory failure. Chest radiography (CXR) and
computed tomography (CT) scan have been widely used to detect the distribution of
lung abnormalities. Hui and colleagues found that the degree of CXR abnormalities
can distinguish patients with severe COVID-19, and its performance (AUC = 0.987)
was comparable to or better than that of well-characterized laboratory markers [61].
Liu et al. found that the alteration of radiographic features examined by high-
resolution computed tomography (HRCT) scans, including ground-glass opacity,
nodular opacities, consolidation, air bronchogram, and pleural effusion, were
valuable in assessing disease severity and viral clearance for COVID-19 [62]. Li
et al. [63] reported that 5 days after the appearance of initial symptoms, CT could
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predict the COVID-19 patients who progressed to severe symptoms later with 95%
confidence. Similarly, a study enrolling 1078 patients with COVID-19 pneumonia
showed that CT opacity scores can accurately distinguish the critical patients with
excellent performance (AUC = 0.91) [64]. Therefore, CXR and CT examinations
possess key clinical value for the follow-up of COVID-19 pneumonia.

6.2.3 Cytokine Storm for Classification of COVID-19 Severity
Prediction

The dysregulation of cytokines in COVID-19 patients is one of the main contributors
to death, which is technically named cytokine storm syndrome (CSS). In fact, CSS
is not a new syndrome from this pandemic but was proposed about one century ago
[73]. Several recent worldwide viral pandemics, such as SARS, H1N1, and MERS,
arise scientists’ attention to CSS. General mechanisms of CSS can be described as
the over-expression of several pro-inflammatory cytokines like IFN-γ that break the
balance of immune system and cause the excessive immune response, leading to a
systematic over-inflammation [74]. Due to its tight association with high lethality, a
precise evaluation and classification of CSS are highly demanded.

During the COVID-19 pandemic, numerous investigations have noticed positive
correlations between the severities of CSS and COVID-19. As early as the beginning
of this outbreak, Huang et al. have been aware of the existence of cytokine storm
in patients requiring ICU admission [75]. Following studies from Horby et al., Zhu
et al., Del Valle et al., Mathew et al. and so on gave further detailed illustration of
the positive correlations from both biological and clinical views [76–79]. Besides,
serum concentration of several pro-inflammatory cytokines (e.g., IL-3 and IL-6)
was confirmed to be an excellent indicator of COVID-19 severity (Table 6.2) [80,
81]. Especially, due to the rapid increases in the number of patients with COVID-
19, overloading of the capacity of public health services may result in a shortage in
doctors and computational resources for medical image analysis, compared to which
cytokine testing is much time-saving. Therefore, these findings raise a potential
classification strategy that the measurement of CSS severity may serve as one of
the grading standards for COVID-19.

6.2.4 Biomarkers for Prediction of COVID-19 Severity

To ensure timely treatment, it is imperative to identify effective biomarkers that can
stratify the severity of COVID-19 patients. Currently, besides the clinical features
and cytokine storm mentioned above, disordered expression pattern of proteins
involved in oxidative stress, extracellular vesicles (EVs), and immune response has
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been identified as promising biomarkers for predicting the severity and mortality of
COVID-19 (Table 6.2).

Oxidative stress is defined as the disproportion in the oxidant-antioxidant balance
marked by excessive production of reactive oxygen species (ROS) [82]. It has been
demonstrated that various viral infections are accompanied by oxidative stress,
which further affects the disease pathogenesis, including immune and inflammatory
responses, as well as cell and tissue damage [83]. Thiols are the main component of
the antioxidant defense system involved in oxidative stress and a key indicator of the
redox state of cells [84]. The maintenance of thiol-disulfide homeostasis is critical
for viral entry and fusion into target cells, and can be impacted by oxidative stress
[85]. Emerging evidence suggests that oxidation of thiols to disulfides modulated
by oxidative stress may elevate the binding affinity of the spike protein to the ACE2
receptor, thereby exacerbating the severity of COVID-19 [85]. The research results
of Kalem et al. [43] confirmed the important role of oxidative stress in COVID-19
pathogenesis, and showed that the level of native thiol is a highly sensitive biomarker
for COVID-19 severity stratification (AUC = 0.83). Similarly, by comparing the
thiol levels of patients with mild, moderate, severe, and critical COVID-19, Erel et
al. [86] found that the thiol level was negatively correlated with the disease severity
and could serve as an independent risk factor. Aykac et al. [87] also identified serum
levels of native thiol and total thiol as independent predictors of COVID-19 severity
in children and adults.

Extracellular vesicles (EVs) (e.g., exosomes and microvesicles) are responsible
for transferring information to target cells, playing a pivotal role in regulating cell
communication under physiological and pathological processes. A variety of RNAs
and proteins in serum exosomes have been identified as potent and highly specific
disease biomarkers. Especially, exosomes derived from virus-infected cells could
spread viral infection by delivering viral proteins to normal cells [88], highlighting
its potential role in mediating SARS-CoV-2 infection. Fujita et al. [89] found that
the abundance of EV COPB2 protein in serum of mild COVID-19 patients was
higher than that of severe COVID-19 patients. Moreover, EV COPB2 expression
level proved to be an important predictor of COVID-19 severity with high accuracy
(AUC = 0.85). These findings suggest that EV protein may be a key biomarker for
monitoring the course of COVID-19 and assessing the severity of the disease.

Receptor for advanced glycation end product (RAGE), a member of the
immunoglobulin superfamily, has been reported to play an important role in lung
inflammation and pathogen-induced pneumonia [90]. In particular, the serum level
of soluble RAGE (sRAGE) is an indicator of the status of bacterial infection,
inflammatory response and lung epithelial injury as well as a predictor of the
progression of acute respiratory distress syndrome (ARDS) patients without
COVID-19 [91, 92]. Recently, Lim et al. [93] found that sRAGE level in serum
positively correlated with COVID-19 severity and could serve as an excellent
biomarker for predicting the mortality (AUC = 0.903) and the need for MV
(AUC = 0.871) in patients with COVID-19. Kapandji et al. [94] discovered that
plasma sRAGE levels in ARDS patients with COVID-19 were higher than that in
ARDS patients without COVID-19.
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Presepsin (PSP), a soluble CD14 subtype, is known to modulate immune
responses through interactions with T and B cells [95]. Currently, increasing
evidence indicated that PSP could serve as a powerful biomarker for early diagnosis
and prognosis prediction in patients with pneumonia. The data from Zaninotto et
al. [96] showed that COVID-19 patients with PSP values higher than 250 ng/L
spent significantly longer in the ICU than patients with lower PSP values. And ROC
curve analysis showed that the AUC value of PSP was 0.72 in predicting mortality,
revealing its prognostic role in COVID-19. Besides, Fukada and colleagues [97]
also identified PSP as a potential biomarker for predicting COVID-19 severity.

6.3 Models for Classification and Prediction of COVID-19
Severity

6.3.1 Scores or Indexes for COVID-19 Severity Measurement
at the Individual Level

Early identification of COVID-19 patients who are at high risk of severe illness
and/or mortality is of great significance for optimizing clinical decision-making
and allocating medical resources. Recently, based on outcome-related variables,
a variety of prognostic scores or indexes have been developed to facilitate the
detection of COVID-19 patients at high risk of severe or critical illness (Table 6.3).

Various conventional pneumonia severity scoring systems proposed to determine
the outcome of community-acquired pneumonia (CAP), such as the Pneumo-
nia Severity Index/Pneumonia Outcome Study Trial (PSI/PORT), CURB-65, and
Severe Community-acquired pneumonia (SCAP), have proven to be strong indica-
tors of COVID-19 severity and mortality. For example, Anurag et al. [99] found
that the SCAP score could serve as a useful screening tool for distinguishing
severe cases of COVID-19 with high sensitivity (0.905) and specificity (0.842), and
SCAP, PSI/PORT, CURB-65 scores were all accurate predictors of 14-day mortality.
Moreover, when comparing the performance in predicting mortality in COVID-19
patients, the SCAP score was superior to the PSI/PORT and CURB-65 scores [99],
and the accuracy of the PSI/PORT score was higher than that of the CURB-65 score
[99, 100].

The COVID-GRAM score was firstly established to accurately predict the
risk of developing critical illness in Chinese COVID-19 patients based on 10
variables frequently measured upon hospital admission [101]. Armiñanzas et al.
[102] further explored the ability of COVID-GRAM score in predicting severity
among Caucasian patients with COVID-19. They found that the COVID-GRAM
score exhibited excellent accuracy for evaluating disease severity, and it was
identified as an independent indicator of critical illness (AUC = 0.779). In terms
of predicting 30-day mortality, the COVID-GRAM score (AUC = 0.88) shows a
higher distinguishing performance than CURB-65 score (AUC = 0.83) [102].
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The prognostic nutritional index (PNI) calculated based on the serum albumin
level and total lymphocyte count, is known to be a risk-stratified tool reflecting
the immune and nutritional status of patients. Wang et al. [103] found that the
PNI was markedly lower in critical patients with COVID-19 than that in non-
critical controls, and demonstrated to be a good factor for distinguishing COVID-19
severity (AUC = 0.790). Xue et al. [51] also found PNI was closely associated with
the risk of severe COVID-19. Similarly, multiple score systems based on clinical
and biochemical parameters have been developed with satisfying performance in
predicting the severity and mortality of COVID-19, such as COVID-19 index [104],
COVID-19 Severity Index [105], Kuwait prognosis indicator (KPI) score [106],
and systematic immune-inflammation (SII) index [51]. Besides, the role of scoring
systems based on lung detection techniques, such as CT severity score [107, 108],
total CT score [109], CXR score [110] and lung ultrasound (LUS) score [111],
have been demonstrated for predicting disease severity and outcome in COVID-19
patients.

6.3.2 Mathematical Models for Population Level Prediction
of the COVID-19 Severity

In epidemiology, it is critical to estimate the transmissibility of pathogens and the
severity of the outbreak at a population level, which is commonly determined by
parameters, such as basic reproduction number (R0) [114] and effective repro-
duction number (Rt or Re) [115]. Mathematical models have long been used
as key tools to estimate the transmission dynamics of infectious diseases via
epidemiological parameters, which can provide important clues for understanding
the epidemiological situation and assessing whether the control measures taken are
having an obvious effect.

Susceptible-infectious-recovered (SIR) model and susceptible-exposed-
infectious-recovered (SEIR) model are typical infection expansion models that
have recently been established to evaluate the transmission dynamics of COVID-19
around different regions. For example, SIR models have been employed to assess
the transmissibility and severity of the first-wave COVID-19 in major cities of China
outside Hubei province, estimate the potential impact of relaxing interventions in a
possible second wave [116], and simulate the spread of COVID-19 within different
communities [117]. SEIR models have been developed to evaluate the scale and
time of the epidemic peak as well as the eventual size of the outbreak under different
intervention strategies in China [118], simulate COVID-19 scenarios at state level
in the United States [119], and forecast the median rate of symptom onset in the
first 12 months across African countries [120].

Bayesian models are increasingly being used to estimate the epidemiology
of COVID-19 with the advantage of integrating prior information with current
information and more fully considering the uncertainties associated with models and
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parameter values [121]. Saqib et al. [121] introduced a hybrid polynomial-Bayesian
ridge regression (PBRR) model that can forecast the progression of COVID-19
outbreak with high accuracy and reliability. This is a typical example of assessing
the ability of a modified Bayesian model to predict the progression of the COVID-
19 pandemic. Moreover, Bayesian models have contributed to quantify the impact
of COVID-19 interventions [122], evaluate biases in the prevalence and severity
of COVID-19 reported in Wuhan, China, based on international traveler case data
[123], and identify high-mortality risk in hospitalized patients with COVID-19
[124].

Totally, various mathematical models have been developed to estimate the
dynamic transmissibility and severity of the COVID-19 pandemic at population
level, determine the effectiveness of implemented public health interventions, and
further guide policy development.

6.3.3 Artificial Intelligence (Machine Learning or Deep
Learning) Models for Classification of COVID-19
Severity

Artificial intelligence (AI) is an innovative computer technology that uses com-
putational methods to simulate human intelligent behavior and critical thinking.
Given the outstanding ability to analyze mountains of complex medical data, AI-
based techniques, especially machine learning and deep learning models, have
been recognized as a helpful tool to fight the COVID-19 by identifying high-
risk patients, evaluating disease severity and mortality, and predicting the scale of
disease outbreaks in different regions. Most of these AI models have been developed
based on information or variables, such as biochemical indicators, medical images,
and clinical data.

Rapid biochemical tests and protein profiling in blood enables monitoring of
multiple critical biomarkers, which indicate changes in cell/organ functions and
are frequently used to predict the severity of diverse diseases. Increasing evidence
suggest that machine learning or deep learning approaches based on those available
biochemical parameters can improve the quality of clinical decision-making for
patients with COVID-19. For example, Aktar et al. [125] developed predictive
machine learning models using a large number of routine blood parameters and
proved that these methods can predict COVID-19 disease severity with high accu-
racy. Cobre et al. [126] implemented four machine learning-based models including
artificial neural networks (ANN), decision trees (DT), discriminant analysis by
partial least squares (PLS-DA), and k-nearest neighbors (KNN), for COVID-19
diagnosis and severity prediction based on biochemical, hematological, and urinary
parameters. They found that all of the four models can effectively diagnose COVID-
19 patients and predict COVID-19 severity with high accuracy (>84%) and ferritin
was identified as the most critical variable in all models. Furthermore, based on
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the key proteins determined by blood protein profiling, Yaşar et al. [127] compared
the accuracy of machine learning (gradient boosted trees (GBTs) and random forest
(RF)) and deep learning approaches in the prediction of COVID-19 severity. Their
results indicated that the proposed GBTs model achieved the highest accuracy in
predicting COVID-19 disease severity compared with other models.

CT, CXR, and LUS are noninvasive tools for monitoring the progression and
severity of lung diseases. Especially, automated severity assessment of COVID-19
from medical images through AI-based models plays a pivotal role in identifying
patients that are in urgent need of intensive care. The CT scan is capable of
monitoring the manifestations of COVID-19 during the disease progression with
high sensitivity by providing a three-dimensional display of the pulmonary vessels.
Agarwal and colleagues [128] developed a novel block imaging approach for
effectively detecting COVID-19 severity based on CT images and demonstrated
that deep learning exhibited superior performance compared with machine learning
models. Yu et al. [129] found that the deep learning model DenseNet-201 combined
with cubic SVM classifiers achieved high accuracy for rapid discrimination of
COVID-19 severity from CT scans. The CXR is another attractive radiological
imaging method due to its flexibility and low cost. Cohen et al. [130] proposed a
deep learning model for monitoring the severity of COVID-19 as well as treatment
efficacy using CXR images. In addition, as a powerful visual-inspection based
approach, the LUS provides real-time and high-resolution views of the lungs
without the risk of radiation. Dastider et al. [131] developed an effective deep
learning model that integrated convolutional neural network (CNN) with Long
Short-Term Memory (LSTM) for predicting COVID-19 severity from LUS images.

Given the important role of medical imaging (especially CT) and clinical features
(including symptoms and laboratory findings) in the diagnosis and prognosis of
COVID-19, AI models integrated with CT features and clinical variables have also
been demonstrated to predict COVID-19 severity and progression risk to critical
illness with high accuracy [132]. For example, the machine learning model extracted
features from CT images and clinical laboratory measurements can identify severe
cases of COVID-19 with a cross-validated AUC value of 0.93, indicating its role
in predicting COVID-19 severity [133]. The open database containing CT images,
clinical features and laboratory-confirmed status was able to discriminate severe
cases via deep learning algorithm with high accuracy (AUC = 0.884) [134]. Shiri et
al. [135] proved that combination of radiomic and clinical features can effectively
improve the prognostic performance of the machine learning model in predicting
survival outcomes.

Furthermore, a super learner ensemble of 14 statistical and machine learning
models were developed and proved to be more powerful for predicting disease
severity of COVID-19 patients with cardiovascular conditions, highlighting the
great potential of super learning ensembles in improving predictive performance
[136]. Therefore, AI-based models contribute greatly to the classification and
prediction of COVID-19 severity.
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6.4 Summary and Perspectives

The outbreak of COVID-19 continues to cause high mortality, pose a huge threat
to global public healthcare systems and bring profound economic implications due
to the emergence of novel SARS-CoV-2 variants. Especially, the Delta variant with
increased transmissibility triggers new waves of COVID-19 pandemic throughout
the world. As patients with COVID-19 are presenting with a spectrum of clinical
severity, ranging from asymptomatic disease to severe, life-threatening infections
requiring ICU admission or MV, the most urgent issue in the management and
intervention of COVID-19 patients is to monitor disease severity and distinguish
individuals at high risk of mortality.

At present, considerable efforts have been made to identify risk factors and
biomarkers associated with the severity and mortality of COVID-19 disease and
develop effective predictive models for detecting COVID-19 severity from the
individual level or population level. On the one hand, increasing evidence indicates
that a variety of clinical features, including demographic, biochemical, hemato-
logical, inflammatory and radiographic findings, are closely related to the severity
of COVID-19, and that the cytokine storm is a major driver of critical illness in
COVID-19. On the other hand, based on the clinical risk factors and medical images,
a growing number of prognostic scores/indexes and AI models have been developed
for individual level prediction of COVID-19 severity, and multiple mathematical
models have been utilized to predict the local and global transmissibility, infectivity
and severity of COVID-19 at the population level.

However, current methods for predicting or classifying the severity of COVID-19
still have some key issues that need to be addressed. First, considering the impact
of new variants on COVID-19 outbreak and effectiveness of vaccination, increasing
effort need to be put on the mechanism of SARS-CoV-2 mutation to effectively
fight with COVID-19. Second, only physiological index, CSS grading system or
image analysis is not enough for precise classification, a combined model or
standard, which includes both image, and clinical and physiological indexes, should
be constructed for COVID-19 grading. Moreover, to achieve superior predictive
performance, novel scoring systems and AI models are required to be developed
based on large-scale clinical data, comprehensively taking population, region, and
environment into account.

In summary, it is of great significance to identify reliable severity predictors and
develop effective models for monitoring disease progression, classifying patients,
optimizing treatment, and allocating appropriate medical resources during the
COVID-19 pandemic.
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Chapter 7
Modeling the Virus Infection at the
Population Level

Cong Wu, Xuemeng Fan, Tong Tang, and Bairong Shen

Abstract As pointed out by many researchers in the last few decades, differential
equations with fractional (non-integer) order differential operators, in comparison
with classical integer order ones, have apparent advantages in modeling. A Caputo
fractional order system of ordinary differential equations is introduced to model
the virus infection at the population level in this chapter. As well known, there
are two main methods to study the dynamics of a model: qualitative analysis and
numerical modeling. Here the qualitative analysis, including uniqueness, invariant
set, and stability, is first presented with intuitive derivation. Then the famous genetic
algorithm is introduced to numerically model the dynamics of virus infection, i.e.
to adjust the parameters of the Caputo fractional model such that its solution can
properly fit real data and predict future.

Keywords Virus infection at the population level; Caputo fractional model;
Qualitative analysis; Numerical modeling

7.1 Introduction

The coronavirus disease (COVID-19) broke out in Wuhan, China at the very
beginning of 2020. As reported in [1], this disease is caused by the novel coronavirus
of zoonotic origin. Currently, the spread of COVID-19 is controlled very well in
China. Only a small amount of confirmed cases are reported seldomly. However,
outside of China, such as United States of America, Russia, and India, it seems that
those people are suffering a serious and deadly situation. For the whole world, the
COVID-19 epidemic is still far away from its end. Therefore, it has been significant
to predict the trend of epidemic up to this moment.
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Epidemic models prove to be an effective method for prediction. Especially,
Caputo fractional order models have shown their advantages in modeling virus
infection at the population level. Fractional order operators (derivatives and inte-
grals), as explained in Remark 6.4 in [2], are a very natural tool to model memory-
dependent phenomena. They provide an excellent instrument for the description of
memory and hereditary properties of various processes, which endows fractional
order models, in comparison with classical integer order ones, apparent advantages
in modeling, see Preface of [3]. In 2013, Diethelm used a Caputo fractional
order model to simulate an outbreak of dengue fever in [4] and pointed out that
the parameters at the right hand side of the model must satisfy the dimension
requirement there. In the same year, Gonzalez-Parra, Arenas, and Chen-Charpentier
applied a Caputo fractional order epidemic model for the simulation of outbreaks
of influenza A(H1N1) [5]. In 2019, Almeida, Brito da Cruz, Martins, and Monteiro
built a Caputo fractional order epidemiological model for the varicella outbreak
among Shenzhen school children, China [6]. In 2021, Xu, Yu, Chen, and Lu adopted
a Caputo fractional order model to forecast the epidemic trend of COVID-19 in
United States of America [7].

There are two main methods to study the dynamics of a model: qualitative
analysis and numerical modeling. This is also reflected in [5–7]. Specifically, in
[5], the uniqueness and stability were studied, and the least squares method and
the Nelder-Mead algorithm were adopted to adjust the parameters of the Caputo
fractional order model; in [6], the stability was also investigated, and the routine
fminsearch from the MATLAB Optimization Toolbox was used for fitting the
model’s parameters; in [7], the invariant set and stability were analyzed, and the
internal function lsqcurvef it of MATLAB was applied for numerical modeling.
As well known, qualitative analysis may help us to figure out dynamics of models
prior to numerically solving them. However, in practice, real models perhaps do
not possess those qualitative properties. In this situation, the method other than
qualitative analysis—numerical modeling may be taken into consideration. It can
be used to adjust parameters such that models fit real data and perform precise
prediction.

In terms of their importance in modeling, both the qualitative analysis and
numerical modeling will be introduced in this chapter. The former is to include
uniqueness, invariant set, and stability, while the latter is to be implemented by
a heuristic algorithm—genetic algorithm. Compared to those routine ones, the
genetic algorithm [8] has advantages in robustness, convergence, parallelism, and
scalability.

7.2 Model Form

The Caputo fractional order ordinary differential equations will be considered as the
form of the virus infection model at the population level owning to their apparent
advantages, in comparison with classical integer order ones, in modeling.
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7.2.1 Caputo Fractional Order Ordinary Differential Equation

At first, referring to a book by Diethelm [2], we introduce definitions for fractional
integrals and derivatives. A fractional integral on L1[a, b] is given by

aI
γ
t f (t) = 1

�(γ )

∫ t

a

f (τ )

(t − τ )1−γ
dτ, a ≤ t ≤ b,

where γ > 0 and �(·) is the Gamma function. For an arbitrary non-integer number
p > 0, the Riemann-Liouville and Caputo fractional derivatives are, respectively,
defined by

R
a D

p
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and
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p
t f (t) = aI
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where [p] represents p’s integer part; D, RD, CD, respectively, denotes the
first-order derivative, Riemann-Liouville fractional derivative, Caputo fractional
derivative. If f ∈ AC[p]+1[a, b] (the set of functions with absolutely continuous
derivative of order [p]), then the fractional derivatives R

a D
q
t f and C

a D
p
t f exist

almost everywhere on [a, b] [2]. In particular, for 0 < p < 1, R
a D

q
t f and C

a D
p
t f

exist almost everywhere on [a, b], if f ∈ AC[a, b] (the set of absolutely continuous
functions).

Now it becomes ready to consider the Caputo fractional order ordinary differen-
tial equation

{
C
t0
Dα

t x = f (t, x)

x(t0) = x0,
(7.1)

where α ∈ (0, 1); f : R+ × B(ρ) → R
n, for some ρ > 0, is the given vector field

function; t0 ∈ R+ is an initial time; and x0 ∈ R
n is an initial value vector. Here

B(ρ) := {x ∈ R
n : ||x|| < ρ}, where || � || denotes the Euclidean norm.

Lemma 1 (Existence) Assume that f is continuous on the closed set S̄ = {(t, x) :
t ∈ [t0, t0 + a], ||x − x0||1 ≤ b}, for some a > 0, b > 0 such that S̄ ⊂ R+ × B(ρ).
Then (7.1) has a solution x(t) ∈ C[t0, t0+h], where h = min{a, [b�(α+1)/M]1/α}
and M = max(t,x)∈S̄ ||f (t, x)||1.

Note that || � ||1 denotes the norm given by ||x||1 = ∑n
i=1 |xi |, for x ∈ R

n.
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Lemma 2 (Uniqueness) Assume that f is continuous in t and Lipschitz in x on S̄.
Then (7.1) has a unique solution x(t) ∈ C[t0, t0 + h].
Lemma 3 (Global Uniqueness) Assume that f is continuous in t and Lipschitz in
x on G = [t0, t0 + a] × R

n. Then (7.1) has a unique solution x(t) ∈ C[t0, t0 + a].
Remark 1 As a = ∞, i.e. G = [t0,∞] × R

n, (7.1) has a unique solution x(t) ∈
C[t0,∞).

The lemmas above Lemma 1, 2, and 3 are, respectively, extended from Theo-
rem 6.1, Theorem 6.5, and Theorem 6.8 in [2], according to Remark 6.1 in [2].

Definition 1 The constant x∗ is an equilibrium point of the Caputo fractional order
nonautonomous system in (7.1), if and only if f (t, x∗) = 0, for all t ≥ t0.

Definition 2 Assume f (t, 0) ≡ 0, and let x(t) = x(t, t0, x0) denote the solution
of (7.1). Then the trivial solution to the Caputo fractional order nonautonomous
system in (7.1) is said to be stable, if for any ε > 0, t0 ≥ 0, there exists a δ(t0, ε) > 0
such that ||x0|| < δ implies ||x(t)|| < ε, for all t ≥ t0.

Lemma 4 (Lyapunov’s Indirect Method [9]) Assume f (t, x) ≡ f (x) = Ax +
g(x), where A ∈ R

n × R
n is the Jacobian matrix of f at 0, and g : Rn → R

n is of
order higher than the linearization in B(r), a neighborhood of 0, i.e. g(0) = 0 and

lim
r→0

sup
x,y∈B(r),x �=y

||g(x) − g(y)||
||x − y|| = 0.

If one of A’s nonzero eigenvalues λ satisfies

|arg(λ)| <
απ

2

and g is Lipschitz on Rn, then the trivial solution of (7.1) is unstable.

7.2.2 Caputo Fractional Order Model of the Virus Infection at
the Population Level

In 1995, a model of the virus infection at the population level was proposed in [10]
as

⎧⎪⎪⎨
⎪⎪⎩

Ṡ(t) = � − βS(t)I (t) − αS(t)

Ė(t) = βS(t)I (t) − (α + σ)E

İ (t) = σE(t) − (α + γ )I (t)

Ṙ(t) = γ I (t) − αR(t),

(7.2)
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where S(t), E(t), I (t), and R(t) are, respectively, the number of susceptible,
exposed, infective, and recovered individuals at time t ; �, α, β, γ , and σ is the
birth rate, natural death rate, transmission rate, recovery rate, and incubation rate,
respectively. See (1.1) with p = q = 1 in [10]. In 2010, the model above was
updated with a general nonlinear incidence to

⎧⎪⎪⎨
⎪⎪⎩

Ṡ(t) = � − βF(S(t))G(I (t)) − αS(t)

Ė(t) = βF(S(t))G(I (t)) − (α + σ)E(t)

İ (t) = σE(t) − (α + γ )I (t)

Ṙ(t) = γ I (t) − αR(t),

(7.3)

where F,G : R → R+, F(0) = 0 and G(0) = 0, see the epidemic model in the
case of delay ω = 0 above (15) in [11]. Here the product F(S)G(I) is the so-called
incidence rate of general form.

In 2013, a Caputo fractional model was first derived in [12] by Diethelm, based
on some model similar to (7.2) and a rule that the time dimension of both sides of
models must be consistent, see (9) in [12]. In 2020, a Caputo fractional model with
consistent time dimension in both sides and a general nonlinear incidence rate was
given as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
t0
D

q
t S(t) = �q − βqF (S(t))G(I (t)) − αqS(t)

C
t0
D

q
t E(t) = βqF (S(t))G(I (t)) − (αq + σq)E(t)

C
t0
D

q
t I (t) = σqE(t) − (αq + γ q)I (t)

C
t0
D

q
t R(t) = γ qI (t) − αqR(t),

(7.4)

in [13], where 0 < q ≤ 1. This Caputo fractional model will be the object of
discussion in the chapter.

7.3 Qualitative Analysis

Qualitative analysis, including uniqueness, invariant set, and stability, helps to
figure out dynamics of models prior to numerically solving them. Specifically, the
uniqueness of solutions tells us that the integral curves for a model cannot cross; the
invariant set sketches the scope where solutions cannot go out once entering; and
the stability implies the eventual tendency of solutions once their initial conditions
are given sufficiently close to the origin.
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7.3.1 Uniqueness

Let x = [S E I R]T and f denote the right hand side function (vector field function)
of (7.4), then

∂f

∂x
=

⎡
⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−βqG(I) dF
dS

− αq 0 −βqF(S) dG
dI

0

βqG(I) dF
dS

−(αq + σq) βqF(S) dG
dI

0

0 σq −(αq + γ q) 0

0 0 γ q −αq

⎤
⎥⎥⎥⎦ .

By the Mean Value Theorem for vector-valued functions, if F,G ∈ C1(R), and
F(S),G(I), F ′(S) and G′(I) are all bounded, then f is (continuous in t and)
Lipschitz in x on [0,∞) × R

4. By Lemma 3, we have the following uniqueness
result for (7.4).

Theorem 1 If F,G ∈ C1(R), and F(S),G(I), F ′(S) and G′(I) are all bounded,
then the initial value problem of (7.4) has a unique solution on [t0,∞).

7.3.2 Invariant Set

Theorem 2 The set � = {(S,E, I, R) ∈ R
4 : 0 ≤ S + E + I + R ≤ �q/αq } is an

invariant set of (7.4).

Proof Let N = S + E + I + R, then by adding the four Caputo fractional order
ordinary differential equations of (7.4), we derive

C
t0
D

q
t N(t) = �q − αqN(t).

Let N(t0) = N0, where 0 ≤ N0 ≤ �q/αq , then by Lemma 2.1 in [14],

N(t) = N0Eq [−αq(t − t0)
q ] +

∫ t

t0

(t − τ )q−1Eq,q [−αq(t − τ )q ]�qdτ,

where Eq and Eq,q denote the Mittag-Leffler functions with one parameter q and
two the same parameters q , respectively.

By [15], these two Mittag-Leffler functions are nonnegative. Thus, N(t) ≥ 0 for
all t ≥ t0.

As N(t0) = �q/αq , N(t) ≡ �q/αq for all t ≥ t0. That is, for t ≥ t0,

�q

αq
Eq [−αq(t − t0)

q ] +
∫ t

t0

(t − τ )q−1Eq,q[−αq(t − τ )q ]�qdτ ≡ �q

αq
.
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It follows, as 0 ≤ N0 < �q/αq ,

N0Eq [−αq(t − t0)
q ] +

∫ t

t0

(t − τ )q−1Eq,q [−αq(t − τ )q ]�qdτ <
�q

αq
,

i.e. N(t) < �q/αq . Therefore, for any (S0, E0, I0, R0) ∈ �, (S(t), E(t), I (t),

R(t)) ∈ �, for all t ≥ t0. �

7.3.3 Stability

Let us find the possible equilibrium points for (7.4). Let the right hand side of (7.4)
be zero, i.e.

⎧⎪⎪⎨
⎪⎪⎩

�q − βqF (S)G(I) − αqS = 0
βqF (S)G(I) − (αq + σq)E = 0
σqE − (αq + γ q)I = 0
γ qI − αqR = 0.

(7.5)

Obviously, (�q/αq, 0, 0, 0) is a constant solution to (7.5) so is an equilibrium
of (7.4). As introduced in [13], there may be another equilibrium point. Let us go
through the detailed derivation. Adding the first and second equation in (7.5) yields

�q − αqS − (αq + σq)E = 0.

Substituting the third equation into the second equation in (7.5), for the replacement
of I by E, gives

βqF (S)G

(
σqE

αq + γ q

)
− (αq + σq)E = 0.

Combining these two equations, we derive

βqF

(
�q − (αq + σq)E

αq

)
G

(
σqE

αq + γ q

)
− (αq + σq)E = 0.

Let F̄ denote the right hand side of this equation, then

F̄ = F̄ (E) = βqF

(
�q − (αq + σq)E

αq

)
G

(
σqE

αq + γ q

)
− (αq + σq)E.
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Since G(0) = 0, F̄ (0) = 0. Similarly, since F(0) = 0,

F̄

(
�q

αq + σq

)
= −�q < 0.

Moreover, let

k = βqF

(
�q

αq

)
dG

dI
|I=0

σq

(αq + γ q)(αq + σq)
,

then

dF̄

dE
|E=0 = βq dF

dS
|
S= �q

αq

−(αq + σq)

αq
G

(
σqE

αq + γ q

)
|E=0

+ βqF

(
�q − (αq + σq)E

αq

)
|E=0

dG

dI
|I=0

σq

αq + γ q
− (αq + σq)

= βqF

(
�q

αq

)
dG

dI
|I=0

σq

αq + γ q
− (αq + σq)

= (αq + σq)(k − 1).

If k > 1, then it follows the continuity of F̄ , there exists E∗ ∈ (0,�q/(αq + σq))

such that F̄ (E∗) = 0. Correspondingly,

S∗ = �q − (αq + σq)E∗
αq

, I∗ = σqE∗
αq + γ q

,R∗ = γ qI∗
αq

.

Moreover,

dF̄

dE
|E=E∗ = βq dF

dS
|
S= �q−(αq+σq )E∗

αq

−(αq + σq)

αq
G(

σqE

αq + γ q
)|E=E∗

+ βqF

(
�q − (αq + σq)E

αq

)
|E=E∗

dG

dI
|
I= σqE∗

αq+γ q

σ q

αq + γ q
− (αq + σq)

= βq dF

dS
|S=S∗

−(αq + σq)

αq
G(I∗)

+ βqF (S∗)
dG

dI
|I=I∗

σq

αq + γ q
− (αq + σq).



7 Modeling the Virus Infection at the Population Level 149

If (dF̄/dE)E=E∗ < 0, then the positive E∗ is unique, because for any other possible
positive E∗∗, we must have

dF̄

dE
|E=E∗∗ > 0.

In the integer order case, the stability and instability of an equilibrium point for
a nonlinear autonomous system may be investigated through that of an equilibrium
point for its linearization, see pp.139 in [16]. There this linearization method is
called Lyapunov’s indirect method. It seems very natural to extend this idea for
Caputo fractional order autonomous systems. However, there is only one proven
result on instability [9], and none on stability despite a few applications, e.g. [13,
17], based on this idea. In this section, only the instability of (�q/αq, 0, 0, 0) is
discussed. The steps for investigating the instability of (S∗, E∗, I∗, R∗) are the same.

We may first translate the nonzero equilibrium point (�q/αq, 0, 0, 0) to the
origin. Let S̄ = S − �q/αq , then (7.4) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C
t0
D

q
t S̄ = −βqF

(
S̄ + �q

αq

)
G(I) − αq S̄

C
t0
D

q
t E = βqF

(
S̄ + �q

αq

)
G(I) − (αq + σq)E

C
t0
D

q
t I = σqE − (αq + γ q)I

C
t0
D

q
t R = γ qI − αqR.

(7.6)

Clearly, the origin (0, 0, 0, 0) becomes an equilibrium point of the translated
model (7.6). The Jacobian matrix of (7.6) is

J (S̄, E, I, R) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−βq dF
dS

|
S=(S̄+ �q

αq )
G(I) − αq 0 −βqF

(
S̄ + �q

αq

)
dG
dI

0

βq dF
dS

|
S=(S̄+ �q

αq )
G(I) −(αq + σq) βqF

(
S̄ + �q

αq

)
dG
dI

0

0 σq −(αq + γ q) 0

0 0 γ q −αq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus,

J (0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−αq 0 −βqF

(
�q

αq

)
dG
dI

0

0 −(αq + σq) βqF

(
�q

αq

)
dG
dI

0

0 σq −(αq + γ q) 0
0 0 γ q −αq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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We may derive the eigenvalues of J (0): λ1 = −αq ,

λ2,3 =
−(2αq + σq + γ q) ±

√
(σ q − γ q)2 + 4βqσqF

(
�q

αq

)
dG
dI

|I=0

2
,

and λ4 = −αq .
As k > 1, it can be concluded that

dG

dI
|I=0 > 0.

In this case, λ1,3,4 < 0, we only need to focus on λ2, which is calculated as follows

λ2 =
−(2αq + σq + γ q) +

√
(σ q − γ q)2 + 4βqσqF

(
�q

αq

)
dG
dI

|I=0

2

>
−(2αq + σq + γ q) + √

(σ q − γ q)2 + 4(αq + γ q)(αq + σq)

2

= −(2αq + σq + γ q)

2

+
√[(αq + γ q) − (αq + σq)]2 + 4(αq + γ q)(αq + σq)

2

= 0.

Clearly, |arg(λ2)| < qπ/2. Applying Lemma 4, we have the following theorem.

Theorem 3 If F,G ∈ C1(R), F(0) = 0,G(0) = 0, and F(S),G(I), F ′(S)

and G′(I) are all bounded, and moreover, k > 1, then the equilibrium point
(�q/αq, 0, 0, 0) of (7.4) is unstable.

Proof As analyzed in Section 3.1, F,G ∈ C1(R), and F(S),G(I), F ′(S) and
G′(I) are all bounded, then the right hand side function of (7.4), i.e. that of (7.6),
is Lipschitz on R

4. Moreover, k > 1 implies |arg(λ2)| < qπ/2. By Lemma 4, the
zero equilibrium point of (7.6) is unstable. The translation relation implies that the
equilibrium point (�q/αq, 0, 0, 0) of (7.4) is unstable. �

7.4 Numerical Modeling

In fact, the qualitative analysis is meaningless unless the model is sufficiently
precise. Once an effective virus model is established, it may be used to predict
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the dynamics of virus infection (e.g. the number of infectious, dead, and recovered
individuals) in the future through analyzing the properties of its solution (qualitative
analysis) or directly computing its numerical solution. Compared to qualitative
analysis, a rapid presentation of numerical solution seems more important in
practice, because established models perhaps do not have expected properties. In
this section, we shall introduce a numerical method (genetic algorithm) to build
a model from available data (https://github.com/CSSEGISandData/COVID-19/tree/
master/csse_covid_19_data/csse_covid_19_time_series), and then use its numerical
solution for prediction.

7.4.1 Genetic Algorithm

The genetic algorithm, motivated from the natural selection, is an adaptive algorithm
for searching global optimal solution [18]. Based on the principles of heredity,
variation, and survival of the fittest in Darwinian evolution theory, the genetic
algorithm has inherent advantage in solving NP-hard problems, see [8] for more
details about the NP-hard problem. In the genetic algorithm for a specific problem,
at first, one population with a certain number of individuals is generated. Each
individual represents a feasible solution in the search space of optimization and each
individual will be given a particular fitness. In biology, the fitness of an individual is
regarded as the individual’s ability to survive in environment, while in minimization
problems, it is the value of the optimization objective function of the feasible
solution corresponding to this individual. All the individuals will be screened. The
individuals with less fitness will be eliminated through selection or competition,
while the individuals with higher fitness will mate with each other and produce
new ones that will be added to the population. For the sake of realizing the mate
process, binary strings are used to code each individual and so may be interpreted
as chromosomes. As well known, in biological mate process, chromatids perform
crossover, mutation, and inversion behaviors to ensure population diversity. The
genetic algorithm performs the same operations on the binary strings representing
chromosomes and then generates new individuals that are similar to but different
from their parents, so as to realize the global search in the solution space. In the
later stage of the algorithm, the mutation probability will be increased to avoid local
optimal solutions. The algorithm continues to calculate the fitness of the newly
formed population and continues to repeat the natural selection and reproduction
process, till the optimal solution is found or the threshold number of iteration is
reached. In the eventual population obtained, the feasible solution corresponding to
the individual with the highest fitness will be regarded as the global optimal solution.

As introduced above, a genetic algorithm may be implemented by the following
main steps.

1. Initialize parameters: iteration number “eranum,” population size “N,” cross
probability “pcross,” mutation probability “pmutation,” inversion probability

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
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“pinversion,” precision “precision,” upper and lower limits of solution space
“UP” and “LP.”

2. Determine the string length of binarily encoded feasible solutions.
3. Generate an initial population: arbitrarily generate “N” number of feasible

solutions in the search space, and binarily encode them.
4. Implement the principle of survival of the fittest: decode the binary codes, then

compute the fitness of all the individuals in the population, and then select the
individuals with higher fitness as the parent generation by using the nonlinear
method of roulette, and let them mate and produce new individuals.

5. Perform crossover: exchange segments of any two binary strings of the parent
generation (chromosome) by the probability of “pcross,” and produce new
individuals.

6. Perform mutation: create mutations on single points from 0 to 1 or from 1 to 0
on the binary strings of the new individuals by probability “pmutation.”

7. Perform inversion: interchange segments of the binary strings of the new
individuals by probability “pinversion.”

8. Add new individuals to the population.
9. Iterate: repeat steps 3–8 continuously till the optimal solution is found or the

threshold number of iteration is reached.

Further, these main steps above may be described by the following pseudocode.

1 %Input: eranum, N, pcross, pmutation, pinversion, ...
precision, UP and LP.

2 %output: global optimal solution.
3 parameter initialization: eranum, N, pcross, pmutation, ...

pinversion, precision, UP, LP;
4 binary encoding length: bitslength;
5 initial population: Pop = InitPopGray(N, bitslength);
6 while i < eranum
7 fitness: fit = fitness(Pop);
8 selection: select = NonlinearRankSelect(fit,Pop);
9 crossover: newpop = CrossOver(select, pcross);

10 mutation: newpop = Mutation(newpop, pmutation);
11 inversion: newpop = Inversion(newpop, pinversion);
12 addition: Pop = select U newpop;
13 end

7.4.2 Setup

Here we set up the MATLAB code for the genetic algorithm to build the Caputo
fractional order model of the virus infection at population level, i.e. to adjust the
parameters of (7.4) such that its solution coincides the real data as possible. We
select
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F(S) = eln S,G(I) = eln I

S(t0) + E(t0) + I (t0) + R(t0) + �
.

Obviously, F,G : (0,∞) → (0,∞). The initial condition is selected as

R(t0) = 8474, I (t0) = 224560−8474, E(t0) = 0.25∗I (t0), S(t0) = 1500∗I (t0)+�,

where R(t0) is the number of recovered cases and I (t0) is the number of confirmed
cases with a subtraction of R(t0) on April 1st 2020, and � = 433994. Moreover,
the factors (0.25 and 1500) in the expressions of E(t0) and S(t0) are selected such
that the total population S(t0)+E(t0)+ I (t0)+R(t0) approximately equals the real
population of the United States of America.

The goal of the genetic algorithm is to obtain

arg min
para

a1

8∑
i=2

|Confirmedi − Ii (para)−Ri (para)|+a2

8∑
i=2

|Recoveredi −Ri (para)|,

where a1 = 0.2, a2 = 0.8, and i means the ith day in April 2020. Further,
Confirmedi , Recoveredi denote the real number of confirmed, recovered cases,
respectively, and Ii , Ri denote the derived number of confirmed, recovered cases
from (7.4) with the selected F , G and initial condition, respectively, on the ith day
in April 2020. Here, “para” denotes all the parameters of (7.4) including q , �, β, α,
σ , and γ , whose first value is selected as 0.6, 433994, 0.2209, 5.2 × 10−7, 0.2467,
and 0.1031, respectively.

7.4.3 Implementation

The main file is presented as follows and all the function files are attached in
Appendix. There are totally twelve functions used in the main file that are: f un, F ,
G, InitPopGray, b2f , NonlinearRankSelect , CrossOver , EqualCrossOver ,
MultiPointCross, Mutation, Inversion, f omsprediction. The method used in
function fun and foms_prediction to compute the numerical solution of the Caputo
fractional model (7.4) is referred from [19]. All the other functions are written based
on [8].

1 % solves problems of the form:
2 % min F(X) subject to: LB < = X < = UB
3 % FUN - objective function
4

5 %parameters
6 q=0.6;
7 Lambda=433994;
8 beta=0.2209;
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9 alpha = 5.2 * 1e-7;
10 sigma=0.2467;
11 gama=0.1031;
12 para = [q, Lambda, beta, alpha, sigma, gama];
13 UB = [1-1e-3, 600000, 0.9, 0.1, 0.9, 0.9];
14 LB = [0.1, 300000, 0.001, 1e-10, 0.001, 0.001];
15 real_pop = [224560 256792 289087 321477 351354 382747 ...

413516 444731; 8474 9001 9707 14652 17448 19581 ...
21763 23559];

16 syms x
17 FUN = @(x) fun(x, real_pop);
18 eranum = 200;popsize = 100;pCross = 0.8;pMutation = ...

0.1;pInversion = 0.15;options = [0 1e-4]; precision ...
= [1e-3, 100,1e-3, 1e-13, 1e-3, 1e-3];

19

20 %GA
21 bounds = [LB;UB]';bits = [];VarNum = size(bounds,1);Pop= [];
22 bits = ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));
23 Pop = InitPopGray(popsize,bits);
24 bits0 = cumsum([0 bits]);
25 [m,n] = size(Pop);
26 NewPop = zeros(m,n);
27 children1 = zeros(1,n);
28 children2 = zeros(1,n);
29 pm0 = pMutation;
30 BestPop = zeros(eranum,n);
31 Trace = zeros(eranum,length(bits)+1);
32 i = 1;
33 while i ≤ eranum
34 [m,n] = size(Pop);
35 value = zeros(1,m);
36 for j=1:m
37 value(j)=feval(FUN,(b2f(Pop(j,:),bounds,bits)));
38 end
39 [MaxValue, Index] = min(value);
40 BestPop(i,:)=Pop(Index,:);
41 Trace(i,1)=MaxValue;
42 Trace(i,(2:length(bits)+1))=b2f(BestPop(i,:),bounds, ...

bits);
43 [selectpop] = NonlinearRankSelect(value,Pop);
44 [CrossOverPop] = CrossOver(selectpop,pCross,...
45 round(unidrnd(eranum-i)/eranum), VarNum);
46 [MutationPop] = Mutation(CrossOverPop,pMutation,VarNum);
47 [InversionPop] = Inversion(MutationPop,pInversion);
48 Pop=InversionPop;
49 pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4);
50 p(i)=pMutation;
51 i=i+1;
52 end
53 t = 1:eranum;
54 plot(t,Trace(:,1)');
55 title('Genetic algorithm for ...

optimization');xlabel('eranum');ylabel('maxfitness');
56 [MaxFval,I] = min(Trace(:,1));
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57 X = Trace(I,(2:length(bits)+1));
58 hold on; plot(I,MaxFval,'*');
59 text(I+5,MaxFval,['FMAX = ' num2str(MaxFval)]);
60 str1 = sprintf('GA seeks the optimal solution X = [%s], ...

FUN(X)=%f\n in the %d th ...
generation',num2str(X),MaxFval,I);

61 disp(str1);
62

63 %plot
64 real_pop_test = [224560 256792 289087 321477 351354 ...

382747 413516 444731 480667 515081 544183 571440 ...
598380 627205 652611 682626 715656 743588 769684 ...
799512 825429 854288 887858 920185 950581 977082 ...
1000785 1025362 1051800 1081020; 8474 9001 9707 ...
14652 17448 19581 21763 23559 25410 28790 31270 ...
32988 43482 47763 52096 54703 58545 64840 70337 ...
72329 75204 77366 80203 99079 100372 106988 111424 ...
115936 120720 153947

65 ];
66 real_pop_test = real_pop_test(:,1:12);
67 foms_prediction(X, 8, real_pop_test);
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Fig. 7.1 Confirmed cases

The result of implementing the main file is shown in Figs. 7.1 and 7.2. In these
two figures, the circles denote the real data reported from April 1 to 8 that is used
to adjust the parameters of (7.4) such that the goal function given in Sect. 7.4.2 is
minimized; the crosses denote the real data reported from April 9 to April 12 that is
only used to compare with the predicted data (sketched by full lines) derived from
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Fig. 7.2 Recovered cases

the built model (i.e. model (7.4) with adjusted parameters). As shown in these two
figures, the genetic algorithm works well in adjusting the model to fit the real data,
and to predict.
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Appendix

1 % function fun
2

3 function [erro] = fun( para, real_pop )
4 h=1/24;
5 T = size(real_pop, 2) - 1;
6 N=24*T;
7

8 %parameters
9 q=para(1);

10 Lambda=para(2);
11 beta=para(3);
12 alpha=para(4);
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13 sigma=para(5);
14 gama=para(6);
15

16 %initial conditions
17 flag = true;
18 I0= 224560 - 8474;
19 S0= 1500*I0 + Lambda;
20 E0= 0.25*I0;
21 R0= 8474;
22 t0=0;
23 S = [];
24 S1 = [];
25 E = [];
26 E1 = [];
27 I = [];
28 I1 = [];
29 R = [];
30 R1 = [];
31

32 %end values
33 M1=0;
34 S(N+1)=[0];
35 S1(N+1)=[0];
36 M2=0;
37 E(N+1)=[0];
38 E1(N+1)=[0];
39 M3=0;
40 I(N+1)=[0];
41 I1(N+1)=[0];
42 M4=0;
43 R(N+1)=[0];
44 R1(N+1)=[0];
45

46 %iteration
47 S1(1)=S0+h^q*(Lambda^q-F(S0)*G(Lambda,I0)*beta^q-S0* ...

alpha^q)/(gamma(q)*q);
48 E1(1)=E0+h^q*(F(S0)*G(Lambda,I0)*beta^q-E0*sigma^q-E0* ...

alpha^q)/(gamma(q)*q);
49 I1(1)=I0+h^q*(E0*sigma^q-(gama^q+alpha^q)*I0)/(gamma(q)*q);
50 R1(1)=R0+h^q*(I0*gama^q-alpha^q*R0)/(gamma(q)*q);
51 S(1)=S0+h^q*(Lambda^q-F(S1(1))*G(Lambda,I1(1))*beta^q- ...

S1(1)*alpha^q+q*(Lambda^q-F(S0)*G(Lambda,I0)*beta^q ...
-S0*alpha^q))/gamma(q+2);

52 E(1)=E0+h^q*(F(S1(1))*G(Lambda,I1(1))*beta^q-E1(1)*sigma^q ...
-E1(1)*alpha^q+q*(F(S0)*G(Lambda,I0)*beta^q-E0*sigma^q ...
-E0*alpha^q))/gamma(q+2);

53 I(1)=I0+h^q*(E1(1)*sigma^q-(gama^q+alpha^q)*I1(1) ...
+q*(E0*sigma^q-(gama^q+alpha^q)*I0))/gamma(q+2);

54 R(1)=R0+h^q*(I1(1)*gama^q-alpha^q*R1(1)+q*(I0*gama^q ...
-alpha^q*R0))/gamma(q+2);

55

56 for n=1:N-1
57 M1=(n^(q+1)-(n-q)*(n+1)^q)*(Lambda^q-F(S0) ...

*G(Lambda,I0)*beta^q-S0*alpha^q);
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58 M2=(n^(q+1)-(n-q)*(n+1)^q)*(F(S0)*G(Lambda,I0)*beta^q ...
-E0*sigma^q-E0*alpha^q);

59 M3=(n^(q+1)-(n-q)*(n+1)^q)*(E0*sigma^q ...
-(gama^q+alpha^q)*I0);

60 M4=(n^(q+1)-(n-q)*(n+1)^q)*(I0*gama^q-alpha^q*R0);
61 N1=((n+1)^q-n^q)*(Lambda^q-F(S0)*G(Lambda,I0)*beta^q ...

-S0*alpha^q);
62 N2=((n+1)^q-n^q)*(F(S0)*G(Lambda,I0)*beta^q-E0*sigma^q ...

-E0*alpha^q);
63 N3=((n+1)^q-n^q)*(E0*sigma^q-(gama^q+alpha^q)*I0);
64 N4=((n+1)^q-n^q)*(I0*gama^q-alpha^q*R0);
65 for j=1:n
66 M1=M1+((n-j+2)^(q+1)+(n-j)^(q+1)-2*(n-j+1)^(q+1))* ...

(Lambda^q-F(S(j))*G(Lambda,I(j))*beta^q-S(j)* ...
alpha^q);

67 M2=M2+((n-j+2)^(q+1)+(n-j)^(q+1)-2*(n-j+1)^(q+1))* ...
(F(S(j))*G(Lambda,I(j))*beta^q-E(j)*sigma^q ...
-E(j)*alpha^q);

68 M3=M3+((n-j+2)^(q+1)+(n-j)^(q+1)-2*(n-j+1)^(q+1))* ...
(E(j)*sigma^q-(gama^q+alpha^q)*I(j));

69 M4=M4+((n-j+2)^(q+1)+(n-j)^(q+1)-2*(n-j+1)^(q+1))* ...
(I(j)*gama^q-alpha^q*R(j));

70 N1=N1+((n-j+1)^q-(n-j)^q)*(Lambda^q-F(S(j))* ...
G(Lambda,I(j))*beta^q-S(j)*alpha^q);

71 N2=N2+((n-j+1)^q-(n-j)^q)*(F(S(j))*G(Lambda,I(j))* ...
beta^q-E(j)*sigma^q-E(j)*alpha^q);

72 N3=N3+((n-j+1)^q-(n-j)^q)*(E(j)*sigma^q ...
-(gama^q+alpha^q)*I(j));

73 N4=N4+((n-j+1)^q-(n-j)^q)*(I(j)*gama^q-alpha^q*R(j));
74 end
75

76 S1(n+1)=S0+h^q*N1/(gamma(q)*q);
77 E1(n+1)=E0+h^q*N2/(gamma(q)*q);
78 I1(n+1)=I0+h^q*N3/(gamma(q)*q);
79 R1(n+1)=R0+h^q*N4/(gamma(q)*q);
80 S(n+1)=S0+h^q*((Lambda^q-F(S1(n+1))*G(Lambda,I1(n+1))* ...

beta^q-S1(n+1)*alpha^q)+M1)/gamma(q+2);
81 E(n+1)=E0+h^q*((F(S1(n+1))*G(Lambda,I1(n+1))*beta^q ...

-E1(n+1)*sigma^q-E1(n+1)*alpha^q)+M2)/gamma(q+2);
82 I(n+1)=I0+h^q*((E1(n+1)*sigma^q-(gama^q+alpha^q)* ...

I1(n+1))+M3)/gamma(q+2);
83 R(n+1)=R0+h^q*((I1(n+1)*gama^q-alpha^q*R1(n+1))+M4)/ ...

gamma(q+2);
84 if(¬(isreal(S(n+1)) && isreal(E(n+1)) && ...

isreal(I(n+1)) && isreal(R(n+1))))
85 flag = false;
86 break
87 end
88 end
89

90 %optimization
91 if flag
92 S = [S0 S]; E = [E0 E]; I = [I0 I]; R = [R0 R];
93 s = []; e = []; i = []; r = []; t = [];



7 Modeling the Virus Infection at the Population Level 159

94 s(1)=S0;
95 e(1)=E0;
96 i(1)=I0;
97 r(1)=R0;
98 t(1)=t0;
99 for n=2:N+1

100 s(n)=S(n-1);
101 e(n)=E(n-1);
102 i(n)=I(n-1);
103 r(n)=R(n-1);
104 t(n)=t0+(n-1)*h;
105 end
106

107 erro = sum([0.2, 0.8] * abs(real_pop(:,2:end) - [ ...
I(24:24:(length(I)-1)) + R(24:24:(length(R)-1)); ...
R(24:24:(length(R)-1))] ));

108 if(isnan(erro) )
109 erro = inf;
110 end
111 else
112 erro = inf;
113 end

1 % function F
2

3 function F=F(S)
4 F=exp(log(S));
5 end

1 % function G
2

3 function G = G(Lambda, I)
4 I0= 224560 - 8474;
5 S0= 1500*I0 + Lambda;
6 E0= 0.25*I0;
7 R0= 8474;
8 G=exp(log(I)) / (S0 + E0 + I0 + R0 + Lambda);
9 end

1 % function InitPopGray
2

3 function [initpop]=InitPopGray(popsize,bits)
4 len=sum(bits);
5 initpop=zeros(popsize,len);
6 for i=2:popsize-1
7 pop=round(rand(1,len));
8 pop=mod(([0 pop]+[pop 0]),2);
9 initpop(i,:)=pop(1:end-1);
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10 end
11 initpop(popsize,:)=ones(1,len);

1 % function b2f
2

3 function [fval] = b2f(bval,bounds,bits)
4 scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); ...

numV=size(bounds,1);
5 cs=[0 cumsum(bits)];
6 for i=1:numV
7 a=bval((cs(i)+1):cs(i+1));
8 fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1);
9 end

1 % function NonlinearRankSelect
2

3 function [selectpop]=NonlinearRankSelect(value,Pop, m, n)
4 [m,n] = size(Pop);
5 selectpop = zeros(m,n);
6 fit = 1./value;
7 selectprob = fit/sum(fit);
8 q = max(selectprob);
9 x = zeros(m,2);

10 x(:,1) = [m:-1:1]';
11 [y x(:,2)] = sort(selectprob);
12 r = q/(1-(1-q)^m);
13 newfit(x(:,2))=r*(1-q).^(x(:,1)-1);
14 newfit = cumsum(newfit);
15 rNums = sort(rand(m,1));
16 fitIn = 1;newIn = 1;
17 while newIn ≤ m
18 if rNums(newIn)<newfit(fitIn)
19 selectpop(newIn,:) = Pop(fitIn,:);
20 newIn = newIn+1;
21 else
22 fitIn = fitIn+1;
23 end
24 end

1 % function CrossOver
2

3 function [NewPop]=CrossOver(OldPop,pCross,opts, VarNum)
4 [m,n] = size(OldPop);
5 NewPop = [];
6 r=rand(1,m);
7 y1=find(r<pCross);
8 y2=find(r≥pCross);
9 len=length(y1);
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10 if len>2&&mod(len,2)==1
11 y2(length(y2)+1)=y1(len);
12 y1(len)=[];
13 end
14 if length(y1)≥2
15 for i=0:2:length(y1)-2
16 if opts==0
17 [NewPop(y1(i+1),:),NewPop(y1(i+2),:)] ...

=EqualCrossOver(OldPop(y1(i+1),:), ...
OldPop(y1(i+2),:));

18 else
19 [NewPop(y1(i+1),:),NewPop(y1(i+2),:)] ...

=MultiPointCross(OldPop(y1(i+1),:), ...
OldPop(y1(i+2),:), VarNum);

20 end
21 end
22 end
23 NewPop(y2,:)=OldPop(y2,:);

1 % function EqualCrossOver
2

3 function ...
[children1,children2]=EqualCrossOver(parent1,parent2)

4 n = length(parent1);
5 children1 = parent1;
6 children2 = parent2;
7 hidecode=round(rand(1,n));
8 crossposition=find(hidecode==1);
9 holdposition=find(hidecode==0);

10 children1(crossposition)=parent1(crossposition);
11 children1(holdposition)=parent2(holdposition);
12 children2(crossposition)=parent2(crossposition);
13 children2(holdposition)=parent1(holdposition);

1 % function MultiPointCross
2

3 function ...
[Children1,Children2]=MultiPointCross(Parent1,Parent2, ...
VarNum)

4 n = length(Parent1);
5 Children1=Parent1;
6 Children2=Parent2;
7 Points=sort(unidrnd(n,1,2*VarNum));
8 for i=1:VarNum
9 Children1(Points(2*i-1):Points(2*i)) ...

=Parent2(Points(2*i-1):Points(2*i));
10 Children2(Points(2*i-1):Points(2*i)) ...

=Parent1(Points(2*i-1):Points(2*i));
11 end
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1 % function Mutation
2

3 function [NewPop]=Mutation(OldPop,pMutation,VarNum)
4 [m,n] = size(OldPop);
5 NewPop = [];
6 r=rand(1,m);
7 position=find(r≤pMutation);
8 len=length(position);
9 if len≥1

10 for i=1:len
11 k=unidrnd(n,1,VarNum);
12 for j=1:length(k)
13 if OldPop(position(i),k(j))==1
14 OldPop(position(i),k(j))=0;
15 else
16 OldPop(position(i),k(j))=1;
17 end
18 end
19 end
20 end
21 NewPop=OldPop;

1 % function Inversion
2

3 function [NewPop]=Inversion(OldPop,pInversion)
4 [m,n] = size(OldPop);
5 NewPop=OldPop;
6 r=rand(1,m);
7 PopIn=find(r≤pInversion);
8 len=length(PopIn);
9 if len≥1

10 for i=1:len
11 d=sort(unidrnd(n,1,2));
12 if d(1) �=1&d(2) �=n
13 NewPop(PopIn(i),1:d(1)-1)=OldPop(PopIn(i), ...

1:d(1)-1);
14 NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i), ...

d(2):-1:d(1));
15 NewPop(PopIn(i),d(2)+1:n)=OldPop(PopIn(i),d(2) ...

+1:n);
16 end
17 end
18 end

1 % function foms_prediction
2

3 function [S, E, I, R, t] = foms_prediction( para, T, ...
real_pop_pre)

4 h=1/24;
5 N=24*(size(real_pop_pre,2)-1);
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6

7 %parameters
8 q=para(1);
9 Lambda=para(2);

10 beta=para(3);
11 alpha=para(4);
12 sigma=para(5);
13 gama=para(6);
14

15 %initial conditions
16 I0= 224560 - 8474;
17 S0= 1500*I0 + Lambda;
18 E0= 0.25*I0;
19 R0= 8474;
20 t0=0;
21 S = [];
22 S1 = [];
23 E = [];
24 E1 = [];
25 I = [];
26 I1 = [];
27 R = [];
28 R1 = [];
29

30 %end values
31 M1=0;
32 S(N+1)=[0];
33 S1(N+1)=[0];
34 M2=0;
35 E(N+1)=[0];
36 E1(N+1)=[0];
37 M3=0;
38 I(N+1)=[0];
39 I1(N+1)=[0];
40 M4=0;
41 R(N+1)=[0];
42 R1(N+1)=[0];
43

44 %iteration
45 S1(1)=S0+h^q*(Lambda^q-F(S0)*G(Lambda,I0)*beta^q-S0* ...

alpha^q)/(gamma(q)*q);
46 E1(1)=E0+h^q*(F(S0)*G(Lambda,I0)*beta^q-E0*sigma^q-E0* ...

alpha^q)/(gamma(q)*q);
47 I1(1)=I0+h^q*(E0*sigma^q-(gama^q+alpha^q)*I0)/(gamma(q)*q);
48 R1(1)=R0+h^q*(I0*gama^q-alpha^q*R0)/(gamma(q)*q);
49 S(1)=S0+h^q*(Lambda^q-F(S1(1))*G(Lambda,I1(1))*beta^q ...

-S1(1)*alpha^q+q*(Lambda^q-F(S0)*G(Lambda,I0)*beta^q ...
-S0*alpha^q))/gamma(q+2);

50 E(1)=E0+h^q*(F(S1(1))*G(Lambda,I1(1))*beta^q-E1(1)*sigma^q ...
-E1(1)*alpha^q+q*(F(S0)*G(Lambda,I0)*beta^q-E0*sigma^q ...
-E0*alpha^q))/gamma(q+2);

51 I(1)=I0+h^q*(E1(1)*sigma^q-(gama^q+alpha^q)*I1(1) ...
+q*(E0*sigma^q-(gama^q+alpha^q)*I0))/gamma(q+2);
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52 R(1)=R0+h^q*(I1(1)*gama^q-alpha^q*R1(1)+q*(I0*gama^q ...
-alpha^q*R0))/gamma(q+2);

53

54 for n=1:N-1
55 M1=(n^(q+1)-(n-q)*(n+1)^q)*(Lambda^q-F(S0) ...

*G(Lambda,I0)*beta^q-S0*alpha^q);
56 M2=(n^(q+1)-(n-q)*(n+1)^q)*(F(S0)*G(Lambda,I0)*beta^q ...

-E0*sigma^q-E0*alpha^q);
57 M3=(n^(q+1)-(n-q)*(n+1)^q)*(E0*sigma^q ...

-(gama^q+alpha^q)*I0);
58 M4=(n^(q+1)-(n-q)*(n+1)^q)*(I0*gama^q-alpha^q*R0);
59 N1=((n+1)^q-n^q)*(Lambda^q-F(S0)*G(Lambda,I0)*beta^q ...

-S0*alpha^q);
60 N2=((n+1)^q-n^q)*(F(S0)*G(Lambda,I0)*beta^q-E0*sigma^q ...

-E0*alpha^q);
61 N3=((n+1)^q-n^q)*(E0*sigma^q-(gama^q+alpha^q)*I0);
62 N4=((n+1)^q-n^q)*(I0*gama^q-alpha^q*R0);
63 for j=1:n
64 M1=M1+((n-j+2)^(q+1)+(n-j)^(q+1)-2*(n-j+1)^(q+1))* ...

(Lambda^q-F(S(j))*G(Lambda,I(j))*beta^q-S(j)* ...
alpha^q);

65 M2=M2+((n-j+2)^(q+1)+(n-j)^(q+1)-2*(n-j+1)^(q+1))* ...
(F(S(j))*G(Lambda,I(j))*beta^q-E(j)*sigma^q ...
-E(j)*alpha^q);

66 M3=M3+((n-j+2)^(q+1)+(n-j)^(q+1)-2*(n-j+1)^(q+1))* ...
(E(j)*sigma^q-(gama^q+alpha^q)*I(j));

67 M4=M4+((n-j+2)^(q+1)+(n-j)^(q+1)-2*(n-j+1)^(q+1))* ...
(I(j)*gama^q-alpha^q*R(j));

68 N1=N1+((n-j+1)^q-(n-j)^q)*(Lambda^q-F(S(j))* ...
G(Lambda,I(j))*beta^q-S(j)*alpha^q);

69 N2=N2+((n-j+1)^q-(n-j)^q)*(F(S(j))*G(Lambda,I(j))* ...
beta^q-E(j)*sigma^q-E(j)*alpha^q);

70 N3=N3+((n-j+1)^q-(n-j)^q)*(E(j)*sigma^q ...
-(gama^q+alpha^q)*I(j));

71 N4=N4+((n-j+1)^q-(n-j)^q)*(I(j)*gama^q-alpha^q*R(j));
72 end
73

74 S1(n+1)=S0+h^q*N1/(gamma(q)*q);
75 E1(n+1)=E0+h^q*N2/(gamma(q)*q);
76 I1(n+1)=I0+h^q*N3/(gamma(q)*q);
77 R1(n+1)=R0+h^q*N4/(gamma(q)*q);
78 S(n+1)=S0+h^q*((Lambda^q-F(S1(n+1))*G(Lambda,I1(n+1))* ...

beta^q-S1(n+1)*alpha^q)+M1)/gamma(q+2);
79 E(n+1)=E0+h^q*((F(S1(n+1))*G(Lambda,I1(n+1))*beta^q ...

-E1(n+1)*sigma^q-E1(n+1)*alpha^q)+M2)/gamma(q+2);
80 I(n+1)=I0+h^q*((E1(n+1)*sigma^q-(gama^q+alpha^q)* ...

I1(n+1))+M3)/gamma(q+2);
81 R(n+1)=R0+h^q*((I1(n+1)*gama^q-alpha^q*R1(n+1))+M4)/ ...

gamma(q+2);
82 end
83

84 %plot
85 S = [S0 S]; E = [E0 E]; I = [I0 I]; R = [R0 R];
86 s = []; e = []; i = []; r = []; t = [];
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87 s(1)=S0;
88 e(1)=E0;
89 i(1)=I0;
90 r(1)=R0;
91 t(1)=t0;
92 for n=2:N+1
93 s(n)=S(n-1);
94 e(n)=E(n-1);
95 i(n)=I(n-1);
96 r(n)=R(n-1);
97 t(n)=t0+(n-1)*h;
98 end
99 Tr = 1:size(real_pop_pre,2);%t(1:24:(length(t)-1))

100 Cr = real_pop_pre(1,:);
101 Rr = real_pop_pre(2,:);
102

103 figure
104 plot(t+1,i + r,'lineWidth',2)
105 xlabel('t (day)','Interpreter','Latex','FontSize',14);
106 ylabel('Confirmed','Interpreter','Latex','FontSize',14);
107 hold on
108 plot(Tr(1:T),Cr(1:T),'ro','lineWidth',2)
109 xlabel('t (day)','Interpreter','Latex','FontSize',14);
110 hold on
111 plot(Tr((T+1):end),Cr((T+1):end),'r+','lineWidth',2)
112 xlabel('t (day)','Interpreter','Latex','FontSize',14);
113 set(gca,'xlim',[1,12],'xtick',[1:1:12]);
114

115 figure
116 plot(t+1,r,'lineWidth',2)
117 xlabel('t (day)','Interpreter','Latex','FontSize',14);
118 ylabel('Recovered','Interpreter','Latex','FontSize',14);
119 hold on
120 plot(Tr(1:T),Rr(1:T),'ro','lineWidth',2)
121 xlabel('t (day)','Interpreter','Latex','FontSize',14);
122 hold on
123 plot(Tr((T+1):end),Rr((T+1):end),'r+','lineWidth',2)
124 xlabel('t (day)','Interpreter','Latex','FontSize',14);
125 set(gca,'xlim',[1,12],'xtick',[1:1:12]);
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Chapter 8
Health-Based Geographic Information
Systems for Mapping and Risk Modeling
of Infectious Diseases and COVID-19
to Support Spatial Decision-Making

Xiao Huang, Renyi Zhang, Xiao Li, Bahar Dadashova, Lingli Zhu,
Kai Zhang, Yu Li, and Bairong Shen

Abstract Infectious diseases remain an essential global challenge in public health.
For instance, novel coronavirus (COVID-19) has resulted in significant negative
impacts on public health, infecting more than 214 million people and causing 4.47
million deaths worldwide as of August 2021. Geographic Information Systems have
played an essential role in managing, storing, analyzing, and mapping disease and
related risk information. This article provides an overview of a broad topic on appli-
cations of GIS into infectious disease research. Our review follows the framework of
human–environment interactions, focusing on the environmental and social factors
that cause the disease outbreak and the role of humans in disease control, including
public health policies and interventions such as social distancing/face covering
practice and mobility modeling. The work identifies key spatial decision-making
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issues where GIS becomes valued in the agenda for infectious disease research and
highlights the importance of adopting science-based policies to protect the public
during the current and future pandemics.

Keywords Infectious disease · COVID-19 · Geographic information system
(GIS) · Social distancing · Spatial decision-making · Public health policy

8.1 Introduction

Environmental pollution, disasters, urbanization, global warming, and rapid pop-
ulation growth have become the significant factors that cause infectious disease
outbreaks [1–3]. Infectious diseases remain an essential global challenge in public
health, causing over 13 million deaths each year. According to statistics, viral
hepatitis, influenza, and tuberculosis stand among the leading causes of illness and
death in the United States [4]. Since 2019, novel coronavirus (COVID-19) started to
be detected from humans, which rapidly developed into a global pandemic, infecting
more than 214 million people, and causing 4.47 million deaths worldwide as of
August 2021 [5]. COVID-19 has changed human production and life behavior not
only affected the water system, but also had a strong impact on a wider range of
energy systems and food systems under the global background of high coupling of
food, energy, water, and environment, and then affects the process of sustainable
development of economy, society, and environment in the whole region. For the
energy system, the reduction of power demand and the decline of fossil fuel use
caused by the economic recession during COVID-19 have significantly reduced the
carbon dioxide emissions of the global power sectors [6–8].

The development of computer-based geographic information systems (GIS) for
integrating and analyzing spatially referenced data has provided new tools for
medical geographic research on infectious disease control. Infectious diseases have
revealed strong spatial patterns, where Geographic Information Systems (GISs)
played a central role in managing, storing, analyzing, and mapping disease informa-
tion. The Coronavirus Resource Center established by the Johns Hopkins University
is one of the noteworthy examples of this practice (see https://coronavirus.jhu.
edu/map.html). Disease cartography began with Koch’s work, including the spatial
mapping of pandemics such as the European plague and yellow fever [9]. Later, the
GIS-based disease mapping tools also leveraged many other kinds of data such as
demographic, social media, and environmental data to improve disease surveillance
and decision-making [10–12].

Spatial decision-making and spatial decision support systems have been widely
discussed in the GIS research for solving real-world problems such as disaster
management, environmental and water resources management, agriculture risk
management, and public health surveillance [13–22]. The existing literature describ-
ing GIS-based public health applications suggests that GIS diffusion into infectious
diseases research and public health practice has moved beyond the early innovation
phase [23]. Such publications can be identified in an extensive range of outlets,

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
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including multidisciplinary journals on public health, environmental science, social
science studies, GIS conference proceedings, and government reports. For instance,
numerous COVID-19 related research articles have been published since 2019 in
the journals (or proceedings) of environmental science, geography, geosciences,
infectious diseases, computer science, and multidisciplinary studies. Nevertheless,
it is unclear to what extent and depth GIS has been utilized in infectious disease
studies. For instance, which types of infectious diseases research have attracted
most GIS applications? What kinds of GIS-based methodologies have been used
in analyzing infectious diseases? Some infectious diseases such as COVID-19 are
highly contagious, where public health policies (e.g., social distancing), human
behavior, and mobility analysis have been extensively analyzed with the help of
GIS-based data and methodologies in infectious disease studies.

This review article tends to systematically review and inductively summarize
the influential literature on applications of GIS into infectious disease research.
Figure 8.1 illustrates the workflow of the article. Our review follows the framework
of human–environment interactions, where the term “environment” represents the
environmental and social factors that contribute to disease outbreak and trans-
mission. The term “human” represents the role of humans in disease control,
including public health policies and interventions such as social distancing practice
and mobility modeling. This reminder of this review paper is structured into the
following sections. Section 8.2 systemically reviewed and summarized the typical
applications of four types of GIS techniques in infectious disease-related research,
including spatial clustering and statistics, spatial interpolation, WebGIS and spatial
visualization, and spatial modeling. In Sect. 8.3, we conducted an in-depth review
of COVID-19 related research works. We paid particular attention to an emerging

Fig. 8.1 Use of GIS in infectious disease research for spatial decision-making
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geographic data source—fine-grained mobility data, reviewed, and summarized
the existing efforts about how to use mobility data to assess different COVID-
19 protective measures (e.g., social distancing) and how to use mobility data to
facilitate decision-making during different stages of the pandemic.

8.2 Environmental Distribution of Infectious Disease
and GIS-Related Research

This article first developed a search strategy with terms relating to “GIS/Geographic
Information Systems” and “Infectious Disease.” This search was developed through
an iterative process of incorporating new terms and refining those included based on
results returned and identification of relevant citations. We conducted an electronic
search on the Web of Science database with no restriction on the date or language of
publication. We found 1944 peer-reviewed articles that focus on infectious disease
and involved GIS or spatial analysis. Figure 8.2 illustrates the number of identified
articles by different publishers, with Springer Nature publishing the most GIS-
related infectious disease research, followed by Elsevier and Willey.

In the next step, we used the keyword “GIS” combined with different types of
infectious disease keywords such as “HIV,” “Influenza,” and “COVID-19” to group
the articles by different disease types. Table 8.1 illustrates the number of articles
(with their corresponding citations) that applied GIS and spatial analysis for each
type of infectious disease. According to Table 8.1, Malaria, COVID-19, and Human
Immunodeficiency Virus (HIV) are the top three diseases that mostly utilized GIS
and spatial analysis in their relevant research works.

Fig. 8.2 Illustration of publishers for GIS-related infectious disease articles
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Table 8.1 Illustration of several articles and citations that are related to applying GIS in infectious
disease research

Infectious disease Number of articles Number of citations

Malaria 430 7233
COVID 226 1132
HIV/AIDS 212 2972
Escherichia Coli 193 3396
Tuberculosis 178 2299
Influenza 153 2213
West Nile virus 119 2153
Lyme 113 2554
Viral hepatitis 76 1202
Salmonella 57 1184
Severe acute respiratory syndrome 46 847
Pneumonia 36 716
Hand-foot-mouth disease 33 322
Measles 20 415
Meningitis 17 176
Whooping cough (pertussis) 11 139
Poliomyelitis 7 58
Diphtheria 6 561
Tetanus 5 75
Chickenpox 2 102
Giardiasis 1 12
Infectious mononucleosis 1 10
Mumps 2 11
Total 1944 39, 987

8.2.1 Use of Spatial Clustering and Spatial Statistics
in Identifying Disease Hotspots

Spatial clustering and spatial statistics are two of the mostly used spatial analysis
techniques for evaluating infectious diseases’ geographic distribution (see Table
8.2). In this section, we searched for articles with keywords “infectious disease,”
“GIS,” and “spatial clustering and statistics” in the Web of Science database. Results
have returned with 49 articles. We removed duplicated and un-relevant articles and
selected ten articles for analysis. Spatial clustering is used to partition spatial data
(e.g., disease data) into a series of meaningful subclasses called spatial clusters,
where spatial objects that are within the same cluster are similar to each other
[36]. Spatial autocorrelation is often used in the GIS to identify how well objects
correlate with other nearby objects across a spatial area [36]. As listed in Table 8.2,
spatial autocorrelation was used in five articles for studying the spatial distribution
of Hepatitis, Tuberculosis, HIV, Mumps, and SARS diseases. Spatial clustering
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methods such as Kulldorff’s spatial scan and self-organizing maps were used in
seven articles. In these articles, the spatial scan statistic identified statistically
significant hotspots based on the number of disease cases by systematically scanning
circular windows using varying sizes across the study area [26–28]. A space-time
scan was used to test the statistically significant clusters of the disease cases across
space and time [35]. Other spatial statistical models such as Local Moran’s I are
global clustering statistics that measure the tendency for points to occur closer
together in space by chance across the entire study area [25, 31]. In contrast, the
Kulldorff spatial scan statistic identifies local clusters in a particular region. Local
clusters can exist in either the absence or presence of global clustering [26, 27].

8.2.2 Use of Spatial Interpolation in Estimating Disease
Pattern

Another focused area of using GIS technology in infectious disease mapping is to
create “heat maps’‘using data gathered in a limited number of locations to estimate
values in unmeasured locations. Spatial interpolation is the process of using points
with known values to estimate values at other points [36]. Traditional spatial interpo-
lation methods include kriging interpolation, trend surface interpolation, and inverse
distance weighted interpolation. As illustrated in Table 8.3, the kriging interpolation
method has been used in six articles studying Burkholderia Pseudomallei, foot-
and-mouth disease, norovirus, Tuberculosis, rotavirus, and influenza-like illness.
Inverse distance weighted interpolation was used in four articles studying Malaria,
Tuberculosis, Kala-azar disease, and Hepatitis. In these articles, spatial interpolation
methods were often combined with spatial statistics to analyze spatial transmission
patterns of infectious disease ([37, 40];). Spatial interpolation is often used to
convert discrete data into continuous data for comparison with the spatial trend
of infectious diseases [44, 45]. Others may consider spatial interpolation as a data
processing method for spatial analysis [39, 40].

8.2.3 Spatial Visualization and Web-Based GIS Dashboard

With the advancement of web-based technologies (e.g., ArcGIS online), various
web-based GIS platforms have been developed to visualize the infectious disease
risks at different space-time scale. Some of the well-known dashboards include the
WHO Coronavirus dashboard [46], John Hopkins University COVID-19 dashboard
[47], the UK National Health Service (NHS) COVID-19 app [48], and CDC
COVID-19 data tracker [5]. Spatial interpolation methods have often been combined
with web-based geovisualization tools to predict the infectious disease spread
patterns [37, 44, 45]. WebGIS and ESRI products such as ArcGIS dashboard are



8 Health-Based Geographic Information Systems for Mapping and Risk. . . 173

Table 8.2 Selected studies using cluster detection and spatial statistics to characterize the spatial
distribution of infectious disease

References Study Country Methods Key findings

Stopka et al. [24] United States Hepatitis C
virus/spatial
autocorrelation
Getis-Ord Gi* statistics

Largest clusters in Boston,
New Bedford, Worcester,
and Springfield
HCV is positively
associated with the race of
the population

Rao et al. [25] China Tuberculosis
Moran’s I and spatial
panel data model

The disease accidents are
positively associated with
temperature, precipitation,
and wind speed

Gwitira et al. [26,
27]

Zimbabwe HIV/AIDS and malaria
Moran’s I and
space-time clustering
Kulldorff’s spatial scan

Identify risk areas based
on clusters

Aturinde et al.
[28]

Uganda HIV-TB
Moran’s I and spatial
scan statistics

Two clusters were
identified in Lake Victoria
and the presence of
refugee camps

Yu et al. [29] China Mumps/spatial
autocorrelation and
Kulldorff space-time
scan

Several clusters have been
identified

Lai et al. [30]
Lee and Wong
[31]

Hongkong, China SARS/spatial
clustering,
spatiotemporal
clustering, global
Moran’s I

Origin-and-destination
plots showed the
directional bias and radius
of the spread of
superspreading events

Lantos et al. [32] United States Lyme/spatiotemporal
cluster analysis

Northern Virginia
experienced
intensification and
geographic expansion of
Lyme disease cases.

Yang et al. [33] Taiwan HIV/spatial statistics Spatial patterns of
different HIV risk
behaviors significantly
differed in both local
clustering patterns and
global geographic
distribution

Basara and Yuan
[34]

United States Infectious
diseases/self-
organizing
maps

Identified positive
relationship between
environmental conditions
and health outcomes in
communities

Dong et al. [35] China Influenza
(H7N9)/retrospective
space-time permutation
scan statistic

The epidemic moved from
east to southeast coast,
and hence to some central
regions of China
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Table 8.3 Use of spatial interpolation in infectious disease research

Reference Country Methods Key findings

Saengnill et al. [37] Thailand Burkholderia
Pseudomallei/Mann–
Whitney U test, chi
test, semivariogram
model, and indicator
kriging

Burkholderia Pseudomallei is not
significantly associated with
spatial soil factors. The lag
distance between positive case is
90.51 m

Perez [38] Pakistan Foot-and-mouth
disease/probability
co-kriging

A higher risk of disease is
associated with increased contact
with infectious animal migration

Siya et al. [39] Uganda Malaria/inverse
distance weighted
interpolation (IDW)
and Mann-Kendall
trend test

Malaria is declining during the
study period; rainfall plays an
important role in malaria burdens.
Altitudes can affect the key
factors

Bhunia et al. [40] India Kala-azar disease/IDW,
Moran index,
Getis-Ord Gi*

Southeastern and northwestern
part of the study area are with
higher incidence rate; Kala-azar
incidences are positively
correlated for five consecutive
years; the spatial trend of disease
diffusion is shown

Liu et al. [41] China Hepatitis E/trend
surface, IDW,
spatial-temporal
analysis

Higher incidences in northwestern
counties of the study area; suggest
the need for strengthened
supervision and surveillance of
sanitary water, sewage treatment,
and food in high-risk areas

Inaida et al. [42] Japan Norovirus/kriging Incidences increase in southern
areas at first and extend to
northern areas in Japan

Ding et al. [43] China Multidrug-resistant
tuberculosis/kriging

The proportion of MDR-TB cases
in all TB cases are higher during
2006–2009 and lower during
2010–2012

Török et al. [44] USA Rotavirus/kriging Confirm the trends of rotavirus
activity and identify the
variability in the timing of peak
disease activity

Sakai et al. [45] Japan Influenza-like
illness/kriging

Two spreading patterns are
observed

commonly used technology for geographical data sharing, visualizing [49]. WebGIS
techniques were used in three articles for establishing visualization platforms [50,
51]. Google Maps were used in two articles for visualizing infectious disease
information [50, 51]. As one of the most representative WebGIS platforms, ArcGIS
Online provides various mapping and analysis functions, geographic data sources,
and web-based applications, allowing users to effectively build up web applications
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Table 8.4 Use of WebGIS techniques and geovisualization in infectious disease monitoring

Reference Country Methods Key findings

Lu [52] China Infectious disease in
general/WebGIS, J2EE
based architecture is
applied to construct a
distrusted system
infrastructure

A platform that contains
georeferenced data can convert
disease information into
graphical and visual form

AI Manir et al. [53] Global Malaria/dashboard Prototype of surveillance
platform for accessing
distributed disease data sources

Li et al. [50] China Infectious disease in
general/WebGIS, Google
maps

The platform can display
infectious disease emergencies
information and transfer
information between workers in
the field and decision-makers
through the internet

Yang et al. [51] China Schistosomiasis/Google
earth, WebGIS

A WebGIS platform that can
operate search, evaluation, risk
analysis and prediction. This
platform can help identify early
high-risk areas and provide
detailed information

Patrick et al. [54] USA HIV/calculate the
proportion of ever tested,
tested positive and newly
positive in the past year;
chi-square test for trend

This dashboard can be used to
complement the HIV care
continuum

USA COVID-19/dashboard An online dashboard that can
display COVID-19 data for
every county of 188
metropolitan areas in the USA

Cheng et al. [55] China Influenza/dashboard An influenza surveillance
dashboard with several data
streams and indicators for
monitoring disease activities

Ravinder et al. [56] India COVID-19/dashboard A web-based dashboard that
provides a 3-week prediction of
COVID-19 incidences

without coding. Meanwhile, it also provides different GIS tools and APIs used by
developers while it is not as functional as ArcGIS Desktop. The Google Maps API
provides embedded Google Maps into web pages through JavaScript. The APIs
provide many utilities to generate maps and customize the map content by adding
additional information services. However, these APIs do not support complicated
analysis functions. Table 8.4 illustrates selected articles that have used WebGIS
techniques and geovisualization in infectious disease monitoring.
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8.2.4 Exploring Environmental and Social Factors Using
Spatial Regression Analysis

Several articles are focused on investigating the key factors that affect the occurrence
and spread of infectious diseases. Geographically Weighted Regression (GWR) has
a high utility in epidemiology, particularly for examining the relationship between
the spread of infectious disease with different social, political, and environmental
factors (e.g., built environment, health policies, and interventions). GWR is a local
form of linear regression used to model spatially varying relationships [57]. Table
8.5 illustrates the key social and environmental factors that have been explored in
infectious disease research. According to Table 8.5, environmental factors such
as temperature, humidity, precipitation, wind speed, air pressure, altitude, and
socioeconomic factors such as child population density and per capita Gross
Domestic Product (GDP) are associated with Hand, Foot, and Mouth Disease
(HFMD). Other environmental factors such as air pollution, brickfield density, land
use, and public transportation facilities significantly impact on COVID-19 cases.
Other sociodemographic factors such as gender, nationality, employment status, and
occupation types are associated with malaria and tuberculosis.

8.3 Human-Centered Efforts to Address COVID-19
Challenges

Novel coronavirus (COVID-19) has significant negative impacts on public health,
infecting more than 214 million people and causing 4.47 million deaths worldwide
as of August 2021. The COVID-19 pandemic is much more pronounced than
many of the previous outbreaks of infectious diseases, including the 2002/2003
SARS. The enormous scope and magnitude of the COVID-19 outbreak reflects a
highly contagious nature and exceedingly efficient transmission for SARS-CoV-2.
There exists two primary pathways for respiratory viruses to be transmitted from
person to person (Fig. 8.3a). Virus-bearing particles are produced from breathing,
talking, coughing, or sneezing by an infected person. Interhuman transmission
occurs by the direct (deposited on persons) or indirect (deposited on objects)
contact route via respiratory droplets (>5 μm) or the airborne route via respiratory
aerosols (<5 μm). While large respiratory droplets readily settle out of air to cause
person/object contamination, small virial-bearing respiratory aerosols are efficiently
dispersed in air and inhaled by human to lead direct deposition along the respiratory
tract and to cause infection [13, 14, 19]. Well-established public health measures
to prevent interhuman transmission include face covering, social distancing, and
testing/quarantine (Fig. 8.3b). There exists now compelling scientific evidence for
the importance of airborne transmission in spreading the COVID-19 disease and
face covering in preventing interhuman [11, 13, 14, 19]. Also, increasing ventilation
in an enclosed community setting has been shown to effectively reduce viral
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Fig. 8.3 Transmission, science-based intervention, and application of GIS. (a) Illustration of viral
transmission routes (adopted from Zhang et al. 2020). (b) Mitigation for preventing interhuman
transmission and the application of GIS in decision-making. The boxes denote mitigation
measures, and the circles depict the disease evolution

transmission [66]. Vaccination is commonly believed to mitigate viral transmission,
albeit for the occurrence of break-through infections [67]. The effectiveness of
vaccination has been clearly documented to significantly reduce hospitalization,
severe syndromes, and mortality [68].

As the COVID-19 outbreak grew to an epidemic, and various GIS systems have
been developed and implemented, leading the response to COVID-19 in many ways.
For instance, Johns Hopkins University launched its COVID-19 dashboard using
ESRI technology [47]. So far, social distancing plays an important role in controlling
the spread of coronavirus. Governments issued different level of restrictions on
traveling, institutions canceled gatherings, and citizens socially distanced them-
selves to limit the spread of the virus. Social distancing measures have significantly
influenced the mobility patterns, which have been widely discussed in various
COVID-19 related GIS applications. On the other hand, those literature are also
tightly related to public health policy and social equity issues, which are worthy
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of future research. This article illustrates the key findings of using GIS in mobility
and policy analysis during the COVID-19 pandemic. We structured our reviews by
different stages of pandemic control, i.e., early stage, controlling stage, reopening
stage, and post-pandemic recovering stage. We found 228 articles related to the
topic. In the following four subsections, we discuss human-centered efforts that
leverage mobility data in addressing COVID-19-related challenges.

8.3.1 Early in the Pandemic: Contact Tracing and Initial
Control

At the early stage of the COVID-19 pandemic, location-based intelligence has been
widely adopted to provide situational awareness for policy-makers and researchers.
Human mobility records retrieved from cell phone users’ location data (by way
of GPS, cell phone towers, and/or Wi-Fi), electronic wristbands, credit card
transactions, and closed-circuit television (CCTV) systems can assist in tracking
disease spread and enforcing social isolation measures [69]. In China, Alipay and
WeChat, two big providers of mobile payment systems, released apps that combine
users’ health, location, and financial data to generate a personal infection risk
rating [70]. Other government-backed apps were also used in the early stage of
the pandemic to collect users’ essential information, and necessary user scanning
was required at checkpoints to better gauge people’s moving patterns. Besides
efforts and guidelines by the officials, crowdsourcing efforts are also popular, as
citizens themselves can contribute to contact tracing and surveillance by voluntarily
sharing their whereabouts online. For instance, Private Kit (https://privatekit.mit.
edu/), released by the Massachusetts Institute of Technology, is a crowdsourcing
application that stores GPS location records from users every 5 min for up to
28 days. Users have the option to share their location data and notify health officials
if they test positive for COVID-19. Numerous studies have proved that human
mobility records with fine spatiotemporal granularity are essential for disease spread
control, as reconstructed trajectories of individuals who have been tested positive
can be used to alert those who may have been put at risk of infection [71, 72].
Zhang et al. [13, 14, 19] studied the relationship between human mobility and the
cross-space infection in the early stage of the pandemic, based on which a variety
of counterfactual analyses is developed to examine the necessity of lock-down and
the other containment approaches.

https://privatekit.mit.edu/
https://privatekit.mit.edu/
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8.3.2 During Control Measures: Compliance Monitoring

To contain the COVID-19 pandemic, one of the non-pharmacological epidemic con-
trol measures is to reduce the transmission rate of SARS-COV-2 in the population
via social distancing or other similar quarantine measures [11, 73]. Besides the
proof from epidemiologic simulations, many pieces of evidence have been found
in numerous studies that the implementation of mobility-restricting measures is
responsible for the declined transmission rates (e.g., [74, 75]). In certain cases,
however, different countries, states/provinces, counties/towns, and other adminis-
trative units choose to handle COVID-19 in different ways, with great disparity in
the implementation of policies and guidelines. Even in regions under the same level
of restrictions, disparities in compliance tend to occur. Human mobility records,
either at the individual level or aggregated to certain geographic units, can reflect
how people adjust their travel patterns under the COVID-19 pandemic and whether
policies are implemented in an effective manner. There are some notable efforts that
Huang et al. [76] analyzed over 580 million tweets worldwide to investigate how
people follow mobility-restricting measures at the global, country, and U.S. state
levels. Their results revealed great discrepancies in responsiveness, evidenced by
the contrasting mobility patterns in different epidemic phases at their investigated
scales. Taking advantage of Google’s COVID-19 mobility reports, Bargain and
Aminjonov [77] investigated how policy compliance is linked with political trust
at the regional level in Europe. Their findings indicate that high-trust regions
decrease their mobility significantly more than low-trust regions, and the efficiency
of policy stringency in terms of mobility reduction significantly increases with
trust. Other efforts coupled mobility-related indices with sociodemographic factors,
aiming to reveal the determinants that potentially lead to the disparity in policy
compliance (e.g., [78]; Chiou and Tucker). The general findings point to the luxury
nature of mobility-restricting measures (e.g., working from home and other virtual
working conditions) with which socioeconomically disadvantaged groups cannot
afford to comply. Zhu et al. [79] utilized network optimization to identify how the
geographical centers of the pandemic moved spatially over time across the USA
in the context of various intervention policies. The pandemic has also witnessed
much mis- and dis-information. Network reconstruction methods can be employed
to measure the interaction between the information diffusion and the outbreak
of COVID-19 across space, and identify both positive and negative impact of
information on the pandemic [12, 15]. The above evidence reveals the essential role
of mobility data in policy compliance monitoring during the COVID-19 pandemic,
which benefits further policymaking in terms of adjusting controlling measures and
mitigating compliance disparity.
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8.3.3 Reopening: When, How, and Where

After the implementation of mobility-restricting measures, federal and local govern-
ment officials have been investigating reopening strategies, such as when and where
to reopen borders and business, and how much activities are allowed in certain
places. These reopening strategies, however, should be determined in a scientific
manner with the assistance of epidemiological models that consider human mobility
dynamics. Many studies have been conducted to assist in reopening decision-
making taking advantage of fine-grained human mobility data. One notable effort
is by Chang et al. [80], who built enormous mobility networks containing 5.4
billion hourly edges from mobile phone data that cover hourly movements of 98
million people from 56,945 U.S. census block groups to 552,758 points of interest
(POIs). The results suggested that, coupled with detailed mobility records, their
simulation can estimate the effects of specific reopening strategies in the USA.
Using the same dataset, Andersen et al. [81] examined U.S. college reopenings’
association with changes in human mobility within campuses and in COVID-19
incidence in the U.S. counties of the campuses over a 10-week period around college
reopenings. They found that college reopenings were associated with increased
campus mobility, responsible for the increased COVID-19 incidence by 2.7 cases
per 100,000. Xiong et al. [82] investigated the partial reopening phases in the
USA by leveraging anonymized mobile device location data from over 100 million
monthly active users procured from multiple third-party data providers. The detailed
mobility records coupled with their models revealed the high likelihood of a second
spike in coronavirus in many early-opening regions. The above examples highlight
the necessity of human mobility data in optimizing reopening decisions.

8.3.4 Post-Pandemic: Recovery and Transition Gauging

Human mobility data can be used to tell stories regarding how different regions
recover after the lifting of strict mobility-restricting orders and the implementation
of reopening policies by comparing the human moving patterns in post-pandemic
situations to the ones in pre-pandemic situations. While some of the changes are
temporary, such as the disruptive social, physical, and economic activities in urban
and rural landscapes during the stay-at-home orders (most of which have largely
recovered after the reopening), others seem to be permanent impacts that force
multiperspective transitions in an irreversible manner. Human mobility data that
cover multiple stages are expected to benefit the investigation of the dynamic,
intertwining, long-term societal effects of the COVID-19 pandemic, filling the
knowledge gaps in our understanding of how spatial and social interactions have
shifted and transitioned in the post-pandemic world, and informing better adapting,
responding, and recovering strategies that reduce inequalities and vulnerabilities.
Despite the fact that it is difficult to decide when the post-pandemic era really
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starts, numerous efforts have been made to gauge recovery and transition when
society functions resume. Kupfer et al. [83] investigated park visitation recovery
by mapping and analyzing the spatiotemporal patterns of visitation for six national
parks in the western USA, taking advantage of large mobility records sampled
from mobile devices and released by SafeGraph as part of their Social Distancing
Metric dataset. Huang et al. [78] leveraged multi-source mobility datasets from
Google, Apple, Descartes Labs, and Twitter to investigate how people reduced their
travels during the mobility-restricting period and how mobility recovered after the
reopening at the county level in the USA. Their results revealed a great disparity
in mobility dynamics in the recovery phase, as the poor countries tended to gain
earlier and greater upward momentum than the wealthy counties. Such disparity in
recovery has been noted by many studies that take advantage of mobility records
(e.g., [76, 83]).

8.4 Conclusion and Discussion

Adopting science-based policies are paramount in protecting the public during the
current and future pandemics. This article provides an overview and a summary
on applying applications of GIS into infectious disease research, and application
of GIS tools for analyzing and maintaining COVID-19. We paid special attention
to COVID-19 related research in terms of human-environment interactions. The
term “human” represents the role of humans in disease control, including public
health policies such as social distancing practice and mobility modeling. A total of
1944 peer-reviewed GIS-based infectious disease research articles were identified,
where Springer Nature published the most articles, followed by Elsevier and Willey.
Spatial analysis methods such as spatial clustering, spatial statistics, and spatial
interpolation (e.g., Kriging), and GWR analysis have been discussed in detail in
those articles to demonstrate the important value of using GIS and spatial analysis in
infectious disease monitoring. The article also provides the summary of web-based
portals (e.g., GIS dashboards) in visualizing infectious disease risks.

The article also includes a review on human-centered methods for COVID-19
research, including the analysis of social distancing and mobility in COVID-19
disease control and policymaking. We structured this section by different pandemic
stages, including early-pandemic, under strong control measures, reopening, and
post-pandemic recovery. In the early stage, several articles discussed using human
mobility records derived from emerging geo-data sources (e.g., cell phone location
data, electronic wristbands, credit card transactions, and closed-circuit television
(CCTV) to assist in tracking disease spread and enforcing social isolation mea-
sures. In the disease controlling stage, much evidence has been found that the
implementation of mobility-restricting measures is responsible for the declined
transmission rates. Later in the reopening and recovery stages, human mobility data
has demonstrated effectiveness in determining how different regions recover after
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lifting social distancing orders by comparing the human moving patterns in post-
pandemic situations to those in pre-pandemic situations.

According to the literature review performed in this study, GIS has been fre-
quently used to prevent and control of infectious diseases to facilitate the appropriate
spatial decision-making. By identifying spatial hot spots/patterns and potential risk
factors of infectious diseases as well as vulnerable populations, the governmental
and public health agencies, health care organizations, and other stakeholders, can
put more efforts and resources into those regions and develop effective prevention
strategies and mitigation actions. Furthermore, spatiotemporal disease modeling
(e.g., Geographically and Temporally Weighted Regression) could also advance the
understanding of spatiotemporal variation characteristics of the environmental and
sociodemographic factors on the disease incidence and prevalence. Leveraging GIS
techniques in COVID-19 research may produce broad impacts in spatial decision-
making such as health care facility planning, public health policymaking, business
intelligence, and health equity solutions.
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Chapter 9
5G, Big Data, and AI for Smart City
and Prevention of Virus Infection

Shumin Ren and Bairong Shen

Abstract With the development of urbanization, artificial intelligence, communi-
cation technology, and the Internet of Things, cities have evolved a new ecology
from traditional city structures, that is, smart city. Combining 5G and big data,
the applications of smart cities have been extended to every aspect of residents’
lives. Based on the popularization of communication equipment and sensors, the
great improvement in data transmission and processing technology, the production
efficiency in medical field, industrial field, and security field has been improved.
This chapter introduces the current research related to smart cities, including its
architecture, technologies, and equipment involved. Then it discussed the challenges
and opportunities of explainable artificial intelligence (XAI), which is the next
important development direction of AI, especially in the medical field, where
patients and medical personnel have non-negligible needs for the interpretability
of AI models. Then, taking COVID-19 as an example, it discussed how smart cities
play a role during virus infection and introduced the specific applications designed
so far. Finally, it discussed the shortcomings of the current situation and the aspects
that can be improved in the future.
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9.1 Introduction

The settlements of humans in cities have been promoting the development of
urbanization, which has become an unstoppable trend in human society. In the
process of urbanization development, due to denser housing and more intensive
use of infrastructure, socio-economic development is accelerating, and data from
various fields such as transportation, public safety, urban management, education,
and medical care are gradually increasing. Cities need to coordinate the deployment,
networking, and data processing of various infrastructures to achieve good manage-
ment of the cities. During this period, a large amount of data is generated, forming
big data, with typical 3v, 4v, or even 5v characteristics, including volume, variety,
velocity, veracity, and value [1]. In the following content, we will explore how big
data and emerging communication technology, 5G, are combined with smart cities,
and related applications they brought.

The popularization of machine learning (ML) has led to a lot of artificial
intelligence (AI) applications, and AI is an indispensable part of smart city. Through
the construction of big data databases and the increase in computing ability, key
technologies have been invented and provided for the fields of science and industry.
A key function of an artificial intelligence system is the ability to explain the process
and reason of the decisions or predictions it makes. However, unfortunately, many of
the advanced ML models are “black boxes” because they cannot explain the reasons
for their decision-making due to their nested non-linear structure. However, in smart
cities, interpretability is vital for some special fields, which is related to making pro-
fessional decisions. Therefore, we need to explore the future and challenges of XAI.

While large numbers of people gather in cities, cities have also become the source
of pollution and diseases. In particular, infectious diseases can have permanent
negative effects [2, 3]. Due to the high population density in the city, it will directly
affect the prevalence of the virus [4] thus affecting virus control. For example,
the spread of COVID-19 has not been fully controlled up to now. The epidemic
has severely endangered the lives of citizens and society’s economy. Under this
situation, it is urgent to accurately predict the epidemic trend of viruses, make
prevention, and control strategies. Smart cities have the advantages of big data,
powerful algorithms, and infrastructure, which can play an important role in local
optimization and overall scheduling in disaster emergencies. In the end, we will
discuss how smart cities can play a specific role in the prevention and control of
virus infection.

9.2 5G and Big Data Promote the AI and Smart City

9.2.1 5G and Big Data

The development of society leads to changes in the use of mobile and wire-
less communication systems. Basic services such as e-health, e-government, e-
transportation, e-commerce, and e-education will keep developing quickly, and the
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number of communications equipment in the future will increase rapidly. These
developments will lead to an avalanche of mobile and wireless communications. It
is predicted that there will be 50 billion connected devices worldwide by 2020 [5],
making it impossible for existing network technologies to support this huge growth.
Under the social development conditions with such big data and high-circulation,
5G has become the latest generation of mobile communication technology. 5G
is supposed to achieve high data rates, high throughput, ultra-reliable and low-
latency communications, energy-saving, costs reduction, system capacity increase,
and massive machine type communications by introducing high carrier frequencies,
a large number of antennas, and new features such as sensors, embedded systems,
cyber physical systems (CPS), device-to-device communication (D2D), and fog
computing [6], etc. On the basis of cloud computing paradigm, fog computing
places resources close to the edge of the network to cope with the growth of
connected devices [7]. Meanwhile, with the development of Internet of Things
(IoT), the integration of 5G wireless systems will change people’s lifestyles, provide
solutions for business models, and be applied to advanced fields such as robots,
drives, and drones [8].

9.2.2 Artificial Intelligence

Based on the development of big data and the latest mobile communication
technologies, the development of AI is also in full swing. Artificial intelligence
is described as imitating the cognitive functions of the normal brain, such as
problem solving and learning, with the help of data [9]. Generally speaking,
artificial intelligence applications can be divided into two modules. The first and
most important module is the model learning module, which is mainly responsible
for effective data collection, data training, and modeling. On the other hand, the
other module is the prediction module, which is responsible for reacting to the
current situation. Artificial intelligence algorithms are used to make decisions,
usually using real-time data from different sources, such as sensors, digital data, or
remote input. The technology has been applied to many sectors, such as finance,
national security, healthcare, and transportation. Well known examples include
Google Maps, Facebook, and autopilots [10]. In these examples, the use of AI
helps to analyze large amounts of data to make reasonable predictions and decisions
[11]. The applications of artificial intelligence usually include rule-based systems,
classic machine learning (ML), and deep learning (DL). Rule-based system is used
to interpret information in a useful way by storing and manipulating knowledge.
Generally, rule-based system applies to systems that are formed based on manually
formulated rules. ML is a branch of artificial intelligence. It belongs to a rule-based
system built using automatic rule inference. It focuses on using filtering data and
algorithms to imitate the way humans learn and solve problems, and aims to make
accurate predictions or decisions without limited instructions from users [12]. It’s
able to analyze large amounts of data at high speed. According to the types of input
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data, ML can be divided into two categories: supervised ML and unsupervised ML.
The supervised ML model is constructed based on labeled data, that is, training data,
to make predictions on new data. In contrast, in unsupervised ML, the provided
data is not labeled and classified before training. Commonly used machine learning
algorithms include support vector machines, random forest classifiers, k-means,
hierarchical clustering, and artificial neural networks (ANN), while deep learning
includes advanced ML algorithms based on artificial neural networks, in which
multi-layer processing units are used to infer higher-level features from data [13].

9.2.3 The Development of Smart City

The city is a complex system. The economic and social activities in the city
are diversified and interdependent, resulting in economic specialization and the
division of labor [14]. Various types of data are distributed in different levels and
departments, while their infrastructure and economic components are closely related
[15], so urban development decision-makers must adopt a more dynamic and unified
vision, emphasize the cooperation across disciplines and professions, promoting the
development of intelligence of cities in a scientific, predictable, and quantitative
manner.

9.2.3.1 ICT, the Internet of Things, and Smart City

Information and communications technology (ICT) has played a key role in urban
development. ICT generally refers to all communication equipment and related
services, including radios, televisions, mobile phones, computer and network
hardware, satellite systems, etc. [16]. The concept of telecity and smart city occurred
due to the use of ICT in the provision of municipal services. Senbab defines telecity
as a city that uses information technology for transportation, economics, and other
public services, which consists of a series of houses that can achieve simple and
a wide range of functions [17]. Telecity can also be regarded as the predecessor
of smart city. Going further than telecity, smart city pays more attention to the
combination of AI, IoT, and ICT.

The origin of the IoT started in the 1980s, and its goal is to embed technology
in daily life [18]. On one hand, the IoT plays a key role in improving people’s
living standards through e-medicine, smart home, and e-education. On the other
hand, the IoT can be used in automation, intelligent logistics, remote monitoring.
Driven by various technologies such as sensor nodes (SNs), the IoT is undergoing
revolutionary changes to the existing framework by integrating wireless sensor
networks (WSNs) into the base layer of IoT framework. As the basic components of
the IoT, sensors and actuators can be controlled remotely to perceive and transmit a
large amount of data. The data is then processed and analyzed according to user
queries. These data will be distributed on various applications and platforms in
smart cities. This trend prompted researchers to use the IoT as the basic framework
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for conceiving smart cities [19]. The WSNs and their various technologies are
completely integrated into the infrastructure of cities, which forms a digital skin
[20]. The massive amount of information generated by ubiquitous embedded
devices will be shared among different platforms and applications, transforming
cities into smart cities [21].

Smart city is a concept that integrates all other concepts related to smart
applications into the same space [22, 23]. As the future direction of urban devel-
opment, the smart city can provide people with services and in many fields such
as traffic management, medical care, shopping, security, and government decision-
making. It aims at optimizing resource use. Under smart cities, citizens will have
more opportunities to participate in various services and decision-making, thus
improving service efficiency of infrastructure and the quality of life of citizens.
Combined with AI, various types of data collected by the urban internet can be
used for intelligent decision-making, increasing transparency, thereby increasing
productivity and efficiency in various industries. Smart city initially only focused
on smart home, which is usually the basic unit of smart city. In recent years, as
the IoT gradually replaces the traditional network, the products and components of
smart homes cooperate to work, gradually expanding to areas other than home.

9.2.3.2 Smart City and Its Components

Most of the current projects on smart cities are limited to some conventional urban
management parts, such as parking management, waste treatment and recycling,
infrastructure management, etc. The effectiveness of urban service provision is
negatively affected by the lack of the whole city network. Smart cities should be
more complete, flexible, and efficient. Today, IoT consists of a large number of smart
devices, and IoT related applications are supporting and accelerating the develop-
ment of smart cities [24]. Through integrating its advanced computing, embedded
devices (such as actuators, smart phones, etc.), sensor networks, Internet/WSN
protocols, and applications, IoT is incorporating heterogeneous objects into smart
life. Smart city is composed of various scenarios, including smart industry, smart
security, smart energy, smart transportation, smart healthcare, smart shopping, smart
governance, etc. Specifically, for example, smart industry can improve production
efficiency and reduce waste of human resources; smart security can monitor the
dangerous elements in the city (natural disasters, military terror, etc.) in real time to
protect the safety of cities and residents; smart energy can optimize energy supply
and reduce energy waster; smart transportation can plan the best travel route, save
user time and reduce energy consumption. Smart health can prevent, predict, and
treat diseases according to the patient’s situation. Smart governance can facilitate
residents to understand real-time policies and promote the interaction between the
government and the public; smart shopping can provide self-service shopping, and
help users find suitable products based on the recommendation system. In the above
smart city application scenarios, the data from heterogeneous devices are processed
and analyzed to help users make more rational decisions and provide more efficient
services. The smart city function distribution is shown in Fig. 9.1.
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Fig. 9.1 The function of smart city

Traditional artificial intelligence applications are usually developed for specific
scenarios, which always require deep customization [25]. Most of the customized
solutions used in smart products can only be understood by service providers [26].
This situation usually results in unnecessary fragmentation of information and only
presents a partial view of the whole urban network. Therefore, traditional artificial
intelligence applications may be difficult to apply to common scenarios composed of
heterogeneous objects. However, many different types of devices or objects coexist
in smart city, while traditional AI cannot integrate these devices or objects as a
whole. Generally speaking, the Internet of Things is defined as a collection of
heterogeneous objects, which are uniquely addressable and can collect and share
information through symbolic human–computer interaction [20, 27–29]. In order to
promote correct and effective communication between different intelligent objects
in a smart city, it is increasingly necessary to continuously collect, analyze, process,
and transmit data from all devices with sensor function. Therefore, it is necessary to
extract knowledge about the “things” in the IoT and assign their service functions
so as to better promote the cooperation among research and development (ICT),
service industry (provider/consumer), and government (policy developers) [30].
Since the expertise and requirements of stakeholders are different, smart products
must provide users with an intelligent interface to browse and use the stored data
and knowledge. Smart services require strong data processing capabilities where
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Fig. 9.2 The workflow of smart city

data will be calculated and analyzed in the context awareness. In this way, the
system becomes intelligent by being aware of its environment and can change its
service with the different environments. Therefore, an autonomous and compatible
model should be developed for smart cities, which should make different fields
interact with each other, thereby improving urban life. The objects in smart city may
follow different standards and patterns when accessing the Internet through different
devices. As a result, in order to ensure that artificial intelligence can effectively solve
the heterogeneity problem of service, it is essential to build a platform that maps the
different behaviors and patterns of objects to a unified model which can support
the fusion of heterogeneous objects and systems, ultimately benefiting the system’s
intelligence and interoperability. At the same time, in order to achieve the opening
and fusion of urban data, the open protocols for IoT devices should be supported to
achieve seamless and continuous communication between them, while data integrity
and security should be protected during transmission and processing [31].

In conclusion, a large number of heterogeneous devices are deployed in smart
cities, which results in urban big data (UBD). Our goal is to standardize the data.
The heterogeneous devices and data will be connected to a wireless sensor network.
By the current advanced artificial intelligence technology, the data of the urban
network can be stored, processed, transmitted, and finally be analyzed to obtain
service provision and decision support. The operation flowchart of the entire smart
city is shown in Fig. 9.2.

9.2.3.3 Smart City Related Technologies and Applications

The current improvement ideas and related technology about smart city are dis-
cussed as follows. In the development of smart cities driven by the Internet of
Things, the connection between heterogeneous devices and the support of smart
urban big data databases should be taken into account to promote data based and
context-aware computing. Wenge et al. [32] proposed a hierarchical smart city
architecture containing urban network data stream, which consists of event-driven
application, domain service, support service, data storage and vitalization, data
transmitting, data acquisition. Nandury et al. [33] proposed a smart city architecture
concept consisting of a data collection layer, a data processing layer, and a
query processing layer to maintain communication between heterogeneous devices
continuous. Rathore et al. [34] proposed a four-level smart city architecture, which
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consists of multiple heterogeneous devices and relay nodes. Kun Guo [35] proposed
an artificial intelligence-based Semantic Internet of Things (AI-SIoT) hybrid service
architecture to integrate heterogeneous devices in IoT to provide related smart
services. This architecture enables flexible connections between heterogeneous
devices through AI-based semantics technology. In addition, the service delivery
efficiency of smart city is closely related to the performance of data collection, data
management, data processing, and decision-making. The expansion of WSNs has
increased the flow of urban data, resulting in urban big data (UBD). With the rapid
data growth, traditional data processing mechanisms can no longer meet real-time
data processing needs. And in smart city applications, because resources may be
requested by multiple devices at different locations at the same time, there is a
great demand for low-latency data transmission. Real-time big data processing is
important in designing and managing cities, thereby promote the transformation of
smart cities. Analysis of big data enables the government to make key decisions
in a scientific way. Therefore, it is necessary to introduce advanced technology
to collect big data, manage big data, and complete the analysis of big data. Alaa
Alsaig [36] proposed a data-centric IoT pattern which conceptualized things from
a service-oriented perspective, and discussed effective methods for identifying,
integrating, and managing big data. The data-centric approach is designed to benefit
the management of the IoT big data with complexity features. Jara et al. [37]
proposed a smart city architecture embedded in big data analysis to handle massive
data analysis needs. The smart city with big data analysis is designed to provide
services from two perspectives [38]. First, the application of urban big data plays a
key role in smart city design and management. Second, smart city requires big data
analysis to achieve and manage a large number of urban planning and services.
In addition, many researches paid attention to the development of cloud-based
smart cities [39–41]. For example, SmartCityWare is a cloud-based service mid-
dleware platform that aims to promote the development of smart city and improve
municipal service quality [42]. SmartCityWare provides a virtual environment for
deploying smart city applications, where the various components and services
could be integrated and cooperate seamlessly and effectively. In order to achieve
this function, services are distributed in various clouds components. José Santos
[43] proposed a fog computing framework to support autonomous management in
5 g smart cities. Following the guidelines of the European Telecommunications
Standards Institute (ETSI) NFV MANO architecture, the framework is extended
with additional software components, achieving a significant reduction in network
latency. In Tang et. al’s research [44], another four-layer structure based on fog
calculation was proposed. The architecture continuously monitors and identifies
the public infrastructure and its changes. The framework selects low-cost and non-
invasive sensors to collect big data from the bottom layer. Shalli Rani [21] proposed
a new method to improve the energy-saving of micro sensor nodes and reduce
the delay of big data collection under IoT framework. In order to realize smart
city scenarios, an efficient and energy-saving wireless sensor network providing
well service is required. Therefore, in this research, a new protocol namely QoS-
IoT (quality of service enabled IoT) is also proposed. In addition, the city data
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analysis platform (CiDAP) developed on Hadoop was proposed to improve the
design and use of smart city services [45]. Through testing, the platform improves
the throughput of the city network. Similarly, SCOPE [46] and FIWARE [47] are
two commercial products that aim to maximize the benefits of big data analysis. In
particular, SCOPE is an open ecosystem platform based on cloud service with smart
city. FIWARE is a framework that promotes the future development of intelligent
Internet applications. Furthermore, IBM [48] and AGT [49] have also developed
some other data platforms for smart cities.

9.3 From AI for XAI: Challenges and Opportunities

The popularization of machine learning (ML) has led to more and more artificial
intelligence (AI) applications. Through the construction of big data databases
and the increase in computing ability, key technologies have been invented and
provided for the fields of science and industry. A key function of an artificial
intelligence system is the ability to explain the process and reason of the decisions
or predictions it makes. However, unfortunately, many of the advanced ML models
are “black boxes” because they cannot explain the reasons for their decision-
making due to their nested non-linear structure. These systems cannot provide
enough reasons for their autonomous decisions to human users as their pattern is
to process and analyze the data without knowing the domain. The complexity of
black box models makes them seem opaque to human reasoning. For some artificial
intelligence applications, explanation may not be a necessary step. However,
recently, interpretability has become extremely important for the applications of
artificial intelligence models especially in certain fields, such as defense, healthcare,
finance, and law, etc., where interpretation is essential for users to understand and
manage these artificial intelligence tools [50]. Therefore, experts and practitioners
in some fields tend not to accept the black box AI model in practice, as they need
sufficient evidence to reason and verify the output of the model before making a
final decision. Exploring how the input of an artificial intelligence model affects
the output will help us better understand the behavior and logic of the model and
contribute to building a more robust and interpretable artificial intelligence model
[51]. For example, in the clinical scenario, patients and doctors expect to acquire
the explanation for the actions, especially high-risk decision-making, including
medical diagnosis and therapeutic regimen [52]. In this situation, the output of the
model should promote professional decision-making and improve expert clinical
experience.

The recent success and popularization of artificial intelligence are largely due to
the new ML technology, including support vector machines (SVM), random forests,
and deep learning (DL) neural networks, etc. Although these models may perform
well in certain tasks, they are opaque from the perspective of interpretability.
Actually, there may be inherent conflicts between ML performance (such as
prediction accuracy) and interpretability. Generally, the best-performing method
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(e.g., deep learning) is the least easy to interpret and does not apply to mathematical
analysis, while the method with the easiest logic (e.g., decision tree) is the least
accurate.

Transparency is generally considered to be the key to the effective deployment
and applications of intelligent systems in the practice. Therefore, explained AI
(XAI) has gradually attracted attention. XAI refers to the AI models where the
output can be understood by humans, which is the opposite of the pattern of black
box. The XAI model provides an in-depth understanding of the reasons for model
output. In addition, interpretability also can help identify unknown vulnerabilities
and flaws in AI systems, thereby enabling developers to correct errors timely [51].
The purpose of an explainable artificial intelligence (XAI) system is to make it easier
for humans to understand its mechanisms and behavior by providing explanations.
The current two main research branches of XAI domain are interpretable models,
and prediction interpretation and justification. For the former, its goal is to make
the operation of the system understandable by humans, while for the latter, it can
explain why a decision is best, but it cannot guarantee to explain how the decision
was made [53]. In order to enable AI system end users to understand and cooperate
with the system, artificial intelligence researchers have produced many user-centric
XAI toolkits with visualized interfaces (e.g. Pytorch Captum and TensorFlow tf-
explain), to meet the demands of users in different disciplines with even insufficient
artificial intelligence literacy.

In some circumstances, explanation is important for the acceptance and satisfac-
tion of users. It has proved that explanations have significantly increased the trust of
users for systems [54]. In a study, doctors regarded the ability to explain decisions
as to the most ideal and needed feature of a decision-making assistance system
[55, 56]. At the same time, the application of interpretability evaluation criteria
(such as reliability, causality, and usability) helps to track the use of algorithms,
so as to figure out how to improve the algorithms and provide guidance for
further development [57–59]. Some methods have been proposed to measure the
effectiveness of interpretation by now. Some of views are from the perspective of
users’ satisfaction and other subjective feeling, while other measurement may focus
more on task performance, improvement of decision-making, and other objective
criterion [60]. Each explanation is produced in a context that is related to the task,
ability, and AI system user expectations. Therefore, the definition of interpretability
largely depends on specific domain [60]. Meanwhile, an effective explanation will
take into account the demands of different target user groups. For example, for
expert users and lay users, they may have total different level of AI literacy,
professional knowledge, and concerns for their tasks [61]. Finally, the workflow
of XAI is shown in Fig. 9.3.

At present, there have been some researches focusing on XAI in the urban
field for clinical diagnosis and treatment prediction [62], drug development, urban
building safety management [63], aerial image rendering, autonomous driving
[64], etc. In order to create an effective and more understandable AI system, the
development of XAI should follow the following principles: The XAI system needs
to explain its capabilities and understanding of the task; the XAI system needs to
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Fig. 9.3 XAI workflow

explain the procedures it has completed, the procedures it is going through, and the
subsequent procedures; the XAI system needs to provide a basis for making certain
decisions or predictions [65].

There are still many challenges in the XAI field. For instance, (1) how to
formulate effective explanations according to the cognitive level of different users.
Because users of the XAI system have different knowledge backgrounds and task
requirements, as well as different cognitive abilities and operation skills of the
AI system, XAI should focus on the process of human–computer interaction, so
that users can obtain the most suitable explanations in the exchange and improve
their ability to learn XAI. (2) The current technology on interpretability still has
limitations. Because certain contradictions exist between interpretability and model
accuracy, how to achieve a balance between interpretability and model accuracy is
an important issue. (3) How to establish an evaluation model for the interpretability
of the XAI system. Since interpretability is still a vague concept, it is necessary to
measure the level of interpretability to evaluate user satisfaction, improve decision-
making quality, and improve system efficiency. (4) In terms of time cost, since each
interpretation needs to be generated separately, it will be a very time-consuming
task to generate a systematic interpretation database.

Due to the wider range of application areas for current models, they are
being more complex and difficult to interpret than ever before. They are used
for tasks in different disciplines and are more common in daily life and they
are increasingly allowed to make more autonomous decisions. Therefore, the
importance of explaining these models is critical. In the future, XAIs will not
only include independent interpretation, but also can coordinate with the AI
systems in other disciplines to fuse and integrate knowledge across interdisciplinary
backgrounds, so as to promote the development of cross-disciplines. There are
still many challenges and opportunities in the future of XAI. Once we achieve
a breakthrough in the development of XAI, the entire society and industry will
undergo tremendous changes, and smart cities will also make great progress on this
basis.
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9.4 Smart City and Prevention of Virus Infection

In order to prevent epidemics and its adverse effect, smart city is playing an
important role. In this process, the contribution of artificial intelligence (AI), big
data, the Internet of Things, and other emerging technology support such as 5G
is essential. As the data generated in cities around the world is encouraged to be
shared among laboratories, the technology tools and treatments can be designed
and invented by working together. Subsequently, smart cities can take advantage of
these tools and data, promote the cooperation in various fields, thereby providing
better platform for health works with latest information on infection tracking,
patient diagnosis, and information consultation [66]. For example, a wealth of
technical products were developed based on smart cities [67, 68], which can
help early detection of epidemics. The data sets from various technical products
and devices can enrich the health database, provide more accurate and real-time
information about the epidemic, thereby helping to provide more effective risk
management decision-making for cities [69]. City managers and decision-makers
need to control the epidemic and take effective actions without harming the society
and economy.

9.4.1 Virus Spread Process and Corresponding Responses

In general, during the period of the emergence and spread of a virus, several
processes would be gone through as follows: (1) The first is the dissemination
stage of the information. At this time, people do not have enough knowledge
and vigilance, which is also a large-scale ambush period for the virus. During
this time, the misinformation could cause people to make wrong responses to
the virus. Based on this, the government should release the exact message as
soon as possible. The task of this stage is to achieve early detection and early
reporting. (2) The establishment and implementation of epidemic prevention poli-
cies is an important aspect during the process of virus control, including medical
resources allocation, isolation policies, treatment policies, traffic restrictions, and
commercial business plans, etc. This stage is mainly for early diagnosis, early
isolation, and early treatment. (3) The third stage focus on tracking, consolidation,
and prevention, including tracking of personal conditions (e.g. health codes),
vaccine production and arrangements, and education for public awareness. In
this process, with the cooperation of public health personnel, epidemiologists,
scientists, clinicians, and other professionals, combined with the rich techni-
cal network under the smart city, the best epidemic prevention effect could be
achieved. In conclusion, the response steps to virus can be summarized as in Fig.
9.4.
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Fig. 9.4 The response steps to virus

9.4.2 Smart Applications for Virus Prevention

The development of AI computing methods has led to a paradigm shift in research
methods related to infectious diseases [70] [71, 72]. Due to the development of
high-performance algorithms (deep learning algorithms, machine learning, and
neural networks) and cloud computing, the application of intelligent data analysis
has become more and more widespread, which enables researchers to collect and
process large amounts of data and acquire analysis results. In order to control the
impact of the virus pandemic, a large number of technical methods and products
were applied. Among them, the Internet of Things, artificial intelligence as emerging
technology, and the cutting-edge media transmission networks such as 5G are at the
forefront [73, 74].

Complex and large amounts of data could be collected and processed using ML-
based technology. These techniques have been widely applied to predict epidemic
patterns. For example, Bullock et al. [75] divided the applications of artificial
intelligence into three levels. Artificial intelligence models can be applied to disease
diagnosis and treatment by analyzing proteins (molecular level), analyze patient
data such as diagnosis images, personal health records to improve patient care
quality (clinical level), as well as analyze current cases and online information
(such as social media) to predict disease development (social level). In Harrus
and Wyndham’s research, artificial intelligence applications were divided into
five categories, including prediction, diagnosis, containment and monitoring, drug
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development and treatment, and social and medical management [76]. In addition,
the intelligent layout of smart cities with efficient information processing capacity
and logistics chain decreases the speed of virus spreading, make the allocation
of resources faster, such as delivering medicines and vaccines by point-to-point,
thereby reducing the burden of preventing and controlling the epidemic. Recent
development in the field of artificial intelligence has greatly contributed to the
screening, diagnosis, and prediction of virus. These models and applications can
be used on a large scale, provide the feedback in time, and perform much better
than humans in certain tasks. (Sipior, 2020; Beck et al., 2020; Pant et al., 2020)
[77–79]. There is already a lot of research on how machine learning plays a role in
the epidemic such as COVID-19.

Under the structure of smart city, the process of dealing with the spread of the
virus can be summarized into the following paradigm, as shown in Fig. 9.5.

Fig. 9.5 Paradigm for responding to virus under smart cities
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9.4.2.1 Smart Applications for Clinical Screening, Diagnosis,
Classification, and Treatment

In terms of clinical screening, diagnosis, classification, and treatment, taking
COVID-19 as an example, many countries have applied artificial intelligence
technologies to CT scans, X-ray images, and even cough sounds after infection
[80–82], thereby helping diagnosis decision. At the same time, due to the need
to limit physical contact and quickly track COVID-19 positive patients, rapid,
point-of-care (POC) testing for COVID-19 is found to be increasingly attractive,
such as kit for detecting antibodies or antigens. Some COVID test kits can detect
antibodies faster with specialized portable test equipment (such as Abbott ID NOW)
[83]. These kits are able to identify contacts who may be infected, and in order
to prevent them from infecting the public, appropriate isolation measures should
be taken in time. At the same time, a series of innovative technologies have been
invented due to the progress of mobile wireless networks, wireless sensors, and the
Internet of Medical Things (IoMT). Under this trend, knowledge can be shared in
real time and patient information can be kept consistent in medical system, making
telehealth has become an important communication and treatment method during
the COVID-19 pandemic. Through telehealth, doctors can evaluate, analyze, treat,
and communicate with patients without face to face contact [74], thus improving
the efficiency of clinical management and preventing the spread of the virus in
the hospitals. Meanwhile, smartphone applications for COVID-19 detection have
gradually emerged and been applied. For example, SANOFI, a medical firm in
French, has designed a home test for COVID-19 [84]. It uses a nanoparticle that
can glow in the dark, which can be detected by a smartphone’s camera, and then
the smartphone will process the signal by AI algorithms and automatically send
results to telehealth platform within 30 min. This kind of over-the-counter (OTC)
method for COVID-19 detection is not only easy to use, but also reduce the risk of
infection [84]. Similarly, there are other AI test methods, such as MDBio COVID-
19 test kit [85], AI Tool-Chest X-ray [86]. As for the treatment and management
of patients, mobile devices can be used to collect clinical health data of patients
and then provide these data to clinicians to obtain real-time monitoring of patient
vital signs. At the same time, the combination of artificial intelligence and drug
research can help to develop drugs against COVID-19. Some studies have used
omics data to find drug candidates for the treatment of COVID-19 [87, 88]. In
addition, vaccine development can also cooperate with AI technology. For instance,
through combining data analysis tools from Oracle cloud computing, a vaccine
against the COVID-19 pandemic was developed [89].

9.4.2.2 Smart Applications for Information Tracking, Information
Coordination and Disease Outbreak Prediction

In terms of information tracking, information coordination, and disease outbreak
prediction, there have been quite a few applications combined with artificial
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intelligence. Integrated modeling that combines different types of individual data
(such as travel data, GPS tracking, individual health data, and behavior pattern
data) is the key to building a successful epidemic surveillance system [90]. This
comprehensive surveillance system can help detect threats from viruses and be used
for epidemic surveillance in early stages. This pattern also takes the integration of
mathematical models into account to estimate the spread of large-scale infectious
diseases and simulate the effects of health interventions from the communities [91],
cities, and national level, thereby enabling the authorities to make the effective
decisions. The interoperability and information sharing pattern is the key value of
these systems and tools, so the central and local health systems can communicate
and synchronize information in a timely manner, thereby improving the efficiency of
epidemic prevention and control [83]. Taking COVID-19 as an example, one method
widely used in China for information tracking is the health code. Health code is an
application implanted in Wechat (the most popular social media app in China) based
on smartphone quick response (QR) code generation. With real-name information
system, it collects self-reported and networked recorded health data, travel history,
and contact history to assess the user’s infection risk. The program uses different
colors to divide individuals’ risk profiles, including green (individuals are allowed to
travel and work normally), amber (7-day home quarantine is required), and red (14-
day medical quarantine is required [92]). Meanwhile, the information is integrated
and delivered to the data platform of the local government to map the population
flow and detect the contacts, so as to make a timely isolation decision with
contacts and transportation [93]. For example, since January 31, 2020, the Shenzhen
Municipal Government website [94] had been releasing related information on
each confirmed and suspected case of COVID-19, including gender, age, travel
route, date of diagnosis, and number of close contacts. After that, local joint IT
companies quickly updated this information into online maps. Residents can check
maps to confirm whether there are cases in their neighbor to prevent themselves
from being exposed to the virus [95]. Regarding the study of epidemic outbreak
prediction, for example, some researchers in China used comprehensive modeling
methods to predict the infectious disease vulnerability index (IDVI) during COVID-
19 with multiple indicators such as travel information, national socio-economic
status, infrastructure, etc. [96–99]. Ye et al. developed an artificial intelligence
program called α-Satellite based on data from social media, demographics, travel
data during COVID-19. α-Satellite uses a advanced heterogeneous graphical auto-
encoder (GAE) to integrate and process data from nearby communities so as to
assess the risk [100]. Other prediction methods also include multi-layer perceptron
(MLP), adaptive network-based fuzzy inference system (ANFIS), DL, and other
ML algorithms, which are all beneficial to predict the outbreak and spread of
COVID-19 in the future [101–103]. Chen et al. [104] developed a time-dependent
mathematical model for predicting the total number of confirmed cases, and Hu
et al. [105] developed prediction model for the spread of COVID-19 spreading
period using a modified stacked auto-encoder. The results show that AI plays a
key role in predicting the virus outbreak and spread. In addition, the travel history
and physical signs and symptoms recorded online can be took advantage of to



9 5G, Big Data, and AI for Smart City and Prevention of Virus Infection 205

establish a model for predicting risk factors of virus spread based on artificial
intelligence [106]. Pirouz et al. [107] used artificial intelligence algorithms to
explore the correlation between environmental parameters and COVID-19, which
shows a significant correlation between the city and climate parameters and the
number of confirmed COVID-19 cases. Haghshenas [108] also analyzed the effects
of certain environmental parameters on virus spread based on artificial intelligence,
including daily average temperature, humidity, wind speed, etc., and found that
urban parameters and relative humidity are the most priority variables for predicting
confirmed cases of COVID-19. Zaheer Allam [109] analyzed the virus outbreak
from the perspective of cities, and proposed the establishment of standardization
protocols of smart city networks in order to promote data sharing and global
cooperation during outbreaks of virus.

9.4.2.3 Smart Applications for Information Screening and Public
Awareness Monitoring Based on Social Media

In addition to tracking the journey information of contacts and predicting disease
outbreaks, artificial intelligence is also used to screen COVID-19 releted informa-
tion and assess public perception for epidemic situation based on mobile networks
and social media [110]. During epidemic, tracking contacts and updating the related
information plays an important role in minimizing the spread of infection. Using
smartphone-based GPS and social media data is one way for contact tracing and
risk assessment [111]. Although this method may lead to high false positives, a
solution has been proposed that using data from six different smartphone sensors
to track contacts simultaneously can reduce information errors [112]. At the same
time, the development of digital communications and social medias provides vast
amount of real-time data for the content circulating in online communities. As
a result, social network data and public sentiment analysis are important tools
to manage the COVID-19 pandemic [113]. However, social media platforms are
also regarded as a medium for dissemination of disinformation, especially for
popular social media platforms with a mass of data exposed, such as Twitter,
YouTube [114, 115], Wechat, Weibo, etc. Under this trend, the phenomenon called
infodemic appeared [116]. Infodemic refers to a large amount of information is
provided during public health crisis, including false or misleading information,
which provokes confusion and wrong behavior of public, and brings harm to
authorities of public health department [117]. It may have an inverse effect on the
interventions for pandemics. As a result, in order to help the authority understand
the public’s concerns and emotions about the epidemic, and to track misinformation
spreading and information gap, a lot of initiatives and research has been conducted.
Information monitoring, online social media listening, content pretesting, and other
computational methods for social science are considered to be effective methods
for detecting and analyzing misinformation [118] and information voids for virus.
The WHO Information Network for Epidemics (EPI-WIN), in cooperation with
digital research institutions, has developed a digital media data analyzing method,
which detects infodemic signals to analyze and summarize the main concerns and
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information gaps detected in online communications [119], so as to make more
effective responses and strategies to virus spread. Tina D Purnat [116] developed
a taxonomy that divides online conversations and contents in English and French
about COVID-19 into 5 topics 35 subtopics. Each subtopic will be analyzed in terms
of quantity, speed, and emerging issues to detect misinformation or information
void. In addition, artificial intelligence tools can help local governments assess the
public’s awareness of vaccination and contribute to spreading vaccination awareness
to the public.

9.4.2.4 Smart Applications for Supply Chain Support

As for necessary material manufacture and distribution, such as face masks and
vaccines, artificial intelligence algorithms can have a positive effect on manufac-
turing, storage, and logistics. E-commerce companies and logistics companies can
cooperate with artificial intelligence technology companies to develop personal pro-
tective equipment (PPE) intelligent supply chain management systems by using big
data and advanced algorithms, which can achieve the automatic supply match and
distribution. Through Software as a Service (SaaS) platform, suppliers of personal
protective equipment, suppliers of necessary materials, parts and manufacturing
equipment will be connected together to promote the efficiency of the production
of personal protective equipment [92].

9.5 Summary and Perspectives

With the development of urbanization, artificial intelligence, Internet of Things,
and communication technologies, the concept and applications of smart cities have
emerged. A smart city includes various aspects, from people’s daily shopping, trans-
portation, power supply, to government decision-making, mobile health, medical
prevention and control, etc. From the perspective of the overall architecture of
smart cities, it is necessary to strengthen the popularization of basic equipment,
upgrade the technical architecture of smart cities, and strengthen the importance
of the Internet of Things in various fields. At Smart city managers should expand
the use of smartphones, sensors, wearable devices, drones, robots, etc., and expand
the scope of data collection. The successful realization of a smart city depends
on the efficient transmission and management of the urban big data. Therefore, in
the process of generating data and transmitting the data to the data server or base
station, it is necessary to combine new communication technologies and computing
methods (such as 5G, cloud computing, fog computing, etc.) to further meet the
stringent requirements in IoT scenarios, such as low latency, high energy efficiency,
and high mobility [43]. At the same time, it is also important to improve the smart
city application framework and model. Combined with wireless sensor network,
the data needs to be effectively aggregated, transmitted, analyzed, classified, and
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managed, thereby providing the basis for related services. In addition, the future
smart city network still needs improvement in transmission speed, throughput,
service quality, etc. Furthermore, since artificial intelligence in smart cities involves
different scenarios applied with different data sets, the context model with narrow
definition may not work at the general level [120]. As a result, it is necessary to
improve the generalizability of artificial intelligence algorithms, that is, the ability
to execute and adjust algorithms efficiently in different contexts.

For data collection and processing, due to the integration and interoperability
of all smart components and technical tools in smart city, there is mass of multi-
dimensional data. At the same time, smart cities generate urban big data at a very
high speed and big scale, which provides real-time and high-quality information
and services for a variety of smart applications, contributing to the convenience for
city people. Therefore, it is necessary to encourage data sharing and collaboration
between different regions and industries. The generated data should be first collected
and managed uniformly, and be processed and analyzed in real time to update future
services. Meanwhile, another key point in the development of smart cities is how
to deal with concurrent services with complex data and how to provide the service
orderly. However, one of the main challenges for this problem is the lack of standard
data sets.

A large amount of data is needed for the development of epidemic forecasting
tools, however, the data could be complicated and varied. At present, various models
of artificial intelligence have been proposed. However, most of them have used
heterogeneous data sets. Due to the use of different samples, which model is best for
detecting viruses is not clear. The data structure and data collection standards should
be set to improve the reliability and accuracy of epidemic prediction. On the one
hand, efficient database systems could be established to standardize data structure.
On the other hand, semantic technology such as natural language processing can
better process information with complexity characteristics and transform them
into structured multi-dimensional data. Therefore, databases based on standardized
structures and artificial intelligence analysis technologies (such as natural language
semantic models) will be the future keys to smart cities. At the same time, the lack
of standardization among smart city technology and application suppliers may cause
inefficient communication between regions and data platforms. In the case of a virus
outbreak, this may also lead to reduced production efficiency in industries, as it has
an inverse effect on products’ early detection and management. Therefore, there is
an urgent need to achieve the standardization of smart city communication protocols
and cooperation among technology suppliers, improving the data’s fairness and
transparency between stakeholders [109].

At the same time, most of the current artificial intelligence and machine learning
algorithms are still “black boxes.” As AI models are increasingly used in fields that
require high interpretability, such as medical care and government decision-making.
Researchers in different fields such as philosophy, psychology, cognitive science,
human–computer interaction, etc. need to cooperate with artificial intelligence
companies to develop more interpretable AI frameworks connected with human’s
interpretability demand.
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As for the response to infectious diseases, smart cities based on artificial
intelligence have great potential in preventing the rapid spread of infectious diseases
(such as the recent COVID-19). It is necessary to integrate artificial intelligence,
optimize data sets and algorithms, and develop more infectious disease diagnosis
and prediction models, prevention, control and treatment paradigms. At the same
time, advanced technologies such as drones, disinfection robots, and video tem-
perature detectors can be used to monitor and report the epidemic. In addition,
the basic application of smart cities in the supply chain also contributes to the
medical resources allocation and virus epidemics prediction. By integrating supply
chain and demand information in various regions, relevant medical supplies (such
as vaccines, masks, etc.) can be accurately transported to spots in need, saving
human resources to the greatest extent and improving virus defense efficiency. At
the social media level, artificial intelligence semantic technologies such as natural
language processing can be used to manage misleading information on the Internet,
thereby improving the accuracy of Internet epidemic information and the efficiency
of epidemic prevention and control.

At last, a noteworthy problem about smart cities is data privacy. In the process
of using digital tools to deliver smart services, because artificial intelligence is
embedded in different applications, it is important to think about how to design
and implement these technologies in a reliable and fair way. At the same time,
due to seamless wireless network, people need to share personal information in
the cloud, which will also increase the threat to personal data privacy. Especially
in medical institutions, since artificial intelligence involves multiple stakeholders,
the lack of transparency in the clinical models, the privacy of patient data, and
related ethical issues are the main data regulatory challenges that AI faces [121].
Meanwhile, as mentioned above, interpretability is also very important for AI
models in smart cities to ensure the fairness, transparency, and accountability of
AI technologies [122]. In particular, when smart city provides services, the service
suppliers will analyze user demands based on users’ personal data. For example,
during COVID-19 pandemic, related prediction models need to use data including
X-ray images, CT scans, travel history, personal health records, GPS location, and
other personal information. However, if there is no formal privacy law or rules, few
people will allow their data to be shared to the database or online. Therefore, related
departments should create formal procedures to collect the privacy data according
to the type, accessibility, and utilization of data [123]. In conclusion, how to protect
personal information security in the background of information sharing is a huge
challenge in the future.
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