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in Low-Level CT Image-Processing Tasks
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Abstract. Image artifact removal in computed tomography (CT) allows clini-
cians to make more accurate diagnoses. One method of artifact removal is
iterative reconstruction. However, reconstructing large amounts of CT data
using this method is tedious, which is why researchers have proposed using
filtered back-projection paired with neural networks. The purpose of this paper
is to compare the performances of various forms of training data for convolu-
tional neural networks in three low level CT image processing tasks: sinogram
completion, Poisson noise removal, and focal spot deblurring. Specifically,
modified U-nets are trained with either CT sinogram data or reconstruction data
for each of the tasks. Then, the predicted results of each model are compared in
terms of image quality and viability in a clinical setting. The predictions show
strong evidence of increased image quality when training models with recon-
struction data, thus the reconstruction strategy possesses a clear edge in prac-
ticality over the sinogram strategy.
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1 Introduction

Computed Tomography is a commonly used medical imaging modality due to its
advantages over other conventional imaging methods. These advantages include rapid
image acquisition, larger amounts of data, and clear, detailed images of internal
structures [1]. While CT possesses many advantages over other imaging modalities, a
prominent issue that CT medical professionals struggle to deal with are image artifacts,
which refer to misrepresentations of the scanned objects. Deep learning techniques
such as convolutional neural networks (CNN) have been seeing increased attention in
medical imaging [2-5]. Most of these applications have been focusing on using CNN
for classification tasks such as pathology identification [6] and tumor segmentation [7].
However, the application of CNNs in low-level medical imaging tasks is an under-
studied area. When using CNN for CT, there are two main strategies used for model
training due to the fact that CT images have two domains. These two strategies differ
because one uses sinogram data3 for training and the other uses reconstruction data.
A sinogram is the direct output of the CT detector, which consists of all the X-ray
projections taken from different angles (See Fig. 1). The reconstruction is the result
after a reconstruction algorithm [8] has been applied on the sinogram, and this three-

© Springer Nature Singapore Pte Ltd. 2021
W. Cao et al. (Eds.): CONF-CDS 2021, CCIS 1513, pp. 66-77, 2021.
https://doi.org/10.1007/978-981-16-8885-0_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8885-0_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8885-0_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8885-0_7&amp;domain=pdf
https://doi.org/10.1007/978-981-16-8885-0_7

Comparing Different CNN Training Strategies 67

dimensional image is what allows professionals to analyze the internal structure of
objects or patients.

A benchmark of the performance of these two strategies is missing, and the purpose
of this study is to compare these strategies through three different CT imaging tasks.
The tasks consist of sinogram completion (See second column of Fig. 9), Poisson noise
removal (See second column of Fig. 11), and focal spot deblurring (See second column
of Fig. 13). These are all common CT artifacts, which lower the image quality and
make analysis more difficult. The cause of these artifacts is due to the nature of CT
scans requiring the use of X-ray beams. Since X-ray is a form of radiation, exposure to
it also increases the likelihood of developing cancer. Therefore, doctors must find a
careful balance when selecting the radiation dose. While a high dose produces a high-
quality image, it also increases the patient’s chance of developing cancer. On the other
hand, having a lower dose reduces the risk for cancer, but it also introduces the
aforementioned image artifacts, lowering the image quality and making diagnosis
harder. Sinogram completion and Poisson noise artifacts are introduced from lower
dose images, while focal spot deblurring comes from the X-ray source itself.

The first task, sinogram completion, stems from a scanning method named sparse-
sampling, where the CT scanner produces X-ray beams at fewer angles than a full
sample. For example, a sparse sample’s sinogram could include 180 angles around the
patient’s body while a full sample includes 360. A full sample sinogram produces a
higher quality image than the sparse sampled one, but a sparse sample scan reduces the
patient’s radiation exposure by a large margin. Another way to reduce radiation dose is
to lower the scanner’s tube current (mA), causing it to emit a lower amount of X-ray
photons in each projection, which produces Poisson noise throughout the image. The
final task isn’t controlled by the radiation dose; it is due to the size of the X-ray source.
An image with no blur requires the source to be infinitely small, which isn’t possible in
the real world. Even then, extremely small sources will not be able to handle large
amounts of X-ray output due to overheating. Therefore, normal X-ray sources will
produce images with a reasonable amount of blur, and thus, the need for deblurring
arises. Success of this work will help others understand the benefits and downsides of
the two strategies (Fig. 1).

Fig. 1. Example of a sinogram and its reconstruction
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2 Materials and Methods

2.1 Dataset

Experimentation involved the use of sinogram data obtained from the FIPS Open X-
Ray Tomographic Datasets. Four sinograms were used, and they were created from
four different objects: a walnut, carved cheese, a lotus, and a cross phantom. The
walnut data was a 1200 x 2296 sinogram, signifying that it consisted of projections
taken from 1200 angles. The rest of the data had a significantly lower amount of
projections, with the lotus sinogram having dimensions of 366 x 2240, and the carved
cheese and cross phantom being 360 x 2240 (Fig. 2).

Fig. 2. FIPS Data reconstructions

2.2 Network Architecture

The model used to conduct this study is a modified U-Net [9], which was initially used
for segmentation in biomedical images [10, 11]. The original structure used 2 X 2 max
pooling to down sample the input data. One of the modifications involved replacing the
max pooling layer with a convolutional layer with a stride of 2. This allows the down
sampling process to be learn-able, which improves the overall ability of the network.
The second modification was an addition of a residual block in the last layer. This allows
the network to learn how to approximate the difference between the input and target and
also accounts for the vanishing gradient issue common in networks with many layers.
Both of these modifications improve the approximation ability of the model, making it a
better fit for regression tasks as opposed to its original segmentation purpose. The
architecture of the modified model is shown in Fig. 6. In order to generate input images
to train the models for the sinogram domain, image artifacts were simulated over the
original sinogram, and the ground truth sinogram was used as the desired output. For the
reconstruction domain, the Poisson noise and focal spot deblurring tasks used the
reconstruction of the estimated sinogram from the sinogram domain model as input and
the ground truth sinogram’s reconstruction as output. The sinogram completion model
used the sparse sinogram’s reconstruction as input and the ground truth sinogram’s
reconstruction as output, and an explanation of this difference is in the Focal Spot
Deconvolution section. Training and testing data was split by using the walnut, carved
cheese, and lotus as the training set, while the cross phantom was used as the test set.
Since using the entire image data for training would be too computationally expensive
and only net four sets of data for training, the model utilizes patch-based training, each
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patch being a 64 x 64 portion of the entire image. This results in train and test sets
consisting of 66,848 and 12,672 patches, respectively. The final predicted result would
then be all the patches pieced back together after going through the model. During
training, an Adam optimizer with learning rate 0.001 was used, along with a callback
that reduced the learning rate by half if no improvement was seen over three epochs.
A mean squared loss function calculated the average of how far off each predicted pixel
was from the ground truth, its equation given by (Fig. 3): scikit-image

1
MSE = ﬁzizl (Y = Ypa)’ (1)

Afterwards, the model was trained for 100 epochs, and the model was able to learn
very quickly, as shown by the learning curve (taken from the sinogram completion
model that was trained in the sinogram domain) in Fig. 7.

2.3 Image Artifact Simulation

Sinogram Completion. To generate the input images for this task, a python for loop
with a step of 10 was used over the original sinogram, and the input image only contained
values at these slices, with the rest of the image having a zero-pixel value. This method
successfully reduced the sinogram to only 10% of the original amount of slices (Fig. 4).

Fig. 3. Example of a sparse sampled sinogram’s reconstruction

Fig. 4. Example of a reconstruction with Poisson noise artifacts
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Poisson Noise Removal. In order to add noise to the original images, a python
function modeled after [12] was used. The function takes 3 parameters that determine
the amount of noise, along with a fourth parameter which is the original low-noise
sinogram. The function then returns an array that represents a high-noise version of the
original sinogram (Fig. 5).

Focal Spot Deconvolution. The method introduced in [13] was used for the focal spot
deconvolution. The simulation of focal spot deconvolution is very straightforward with
the help of the gaussian function from the scikit-image library. The [14] function takes
a parameter named &, which is the standard deviation of the gaussian kernel, to
determine the amount of blur that will be applied to the image. The higher the o the
blurrier the image. We used ¢ = 2 for the input image simulation. Finally, the function
returns the desired blurry image that simulates the focal spot blur artifact (Fig. 6).

Fig. 5. Example of a reconstruction with the focal spot blurring issue
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Fig. 6. Architecture of the U-Net used in this study. 64 x 64 patches were used as input and
output images during training
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Fig. 7. Graph of the model’s loss over 100 epochs

3 Results

3.1 Sinogram Completion

Looking at the walnut data (Fig. 8), both predicted reconstructions perform well in
removing the streak artifacts prevalent throughout the sparse reconstruction. However,
looking at the zoomed in portions, the quality at the center of the walnut for the
sinogram domain reconstruction has decreased substantially when compared to the
ground truth. The reconstruction domain result, on the other hand, is very close to the
ground truth, quality wise, and it outperforms the sinogram domain for the walnut data.
Without looking closely, it is hard to find noticeable differences between the recon-
struction domain image and the ground truth, but when magnifying the center of the
walnut, it is clear that the model smooths over intricate details, which could prove
troublesome when applied on complex structures like the heart. The remaining data
(Fig. 9) followed a similar trend, the predicted reconstructions successfully removed
the streak artifacts (with one exception), but the centers of the sinogram domain images
are heavily warped, making details and edges of the image difficult to see, which render
the images useless for diagnosis in a clinical setting. After inspection, the recon-
struction domain achieves better performance than the sinogram domain, maintaining
higher quality images that are close to the ground truth. However, it still isn’t the same
as a full sinogram due to the bright spots introduced in the cheese and lotus data, and
the small streak artifacts still present in the cross phantom data. These issues are small
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compared to the warping in the sinogram domain and the streak artifacts covering the
image in the sparse reconstructions. We can conclude that training in the reconstruction

domain works best for the sinogram completion task.

Ground Truth Reconstruction Sparse Reconstruction Sinogram Domain

Reconstruction Domain

CNN Predicted Reconstructions

Fig. 8. Walnut data results with magnification for the sinogram completion task

Ground Truth Reconstruction ~ Sparse Reconstruction i R truction D

Fig. 9. Results for the remaining data
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3.2 Poisson Noise Removal

At first, it is difficult to tell the difference between the four cross phantom images (See
Fig. 10), but magnifying a portion of the image helps us easily differentiate and
compare the results. The noisy reconstruction is covered with tiny black spots that
make up Poisson noise, and the noise gives the image a static texture. Although the
noise level isn’t extremely high in this experiment, the results can still tell us which
strategy works better for denoising. Both models perform very similarly in removing
the actual noise artifacts from the image, but the sinogram domain’s result changes the
quality of the image, making it blurrier than the reconstruction domain and noisy
reconstructions. Because of this, the reconstruction domain strategy outperforms the
sinogram domain strategy for the cross phantom data, due to a closer image quality to
the ground truth.

Some of the remaining results (Fig. 11) differ from that of the cross phantom. For
the walnut data, the two predicted reconstructions appear to be virtually the same,
meaning in some instances, the two strategies achieve the same performance. This
could be due to the fact that the walnut data makes up a large amount of the training
data set, and this shows that the reconstruction domain strategy for denoising works
better in cases with less data provided. A similar trend to the cross phantom data is seen
in the rest of the images, with the sinogram domain result tending to be a blurrier and
lower quality image than the reconstruction domain, but overall, both training strategies
successfully remove most of the noise from the image. Again, the reconstruction
domain has a better performance than the sinogram domain overall, though in some
instances, the two strategies have similar results.

Ground Truth Reconstruction Noisy Reconstruction Sinogram Domain Reconstruction Domain

CNN Predicted Reconstruction

Fig. 10. Cross Phantom results with magnification for the Poisson noise removal task
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Ground Truth Reconstruction Noisy Reconstruction Sinogram Domain Reconstruction Domain

Fig. 11. Results for the remaining data

3.3 Focal Spot Deconvolution

The focal spot deconvolution artifact proved to be harder for the models to remove than
the other two tasks. In the previous two tasks, the models removed virtually all of the
streak artifacts or noise, however, in the deblurring task, blur was still present, even in
the best result. At first glance, the blurred reconstruction, the sinogram domain result,
and the reconstruction domain result all have a clear difference in quality for the carved
cheese (See Fig. 12). The image with nothing done to it is the lowest in quality, while
the sinogram domain image is in the middle, and the reconstruction domain image is
the highest in quality. Upon magnification of the hole to the left of the “C”, the
difference is even more pronounced. The circle’s edges are very hard to define in the
blurred reconstruction, and its shape has been slightly altered. The texture of the cheese
itself has changed as well, looking smooth instead of textured like the original. The
circle shape is easier to see in the predicted results, and the background isn’t as devoid
of texture, but the edges are still hard to define. The difference in quality between the
blurry and predicted results is clear even without the magnification, but the magnifi-
cation helps clarify that the predicted results do a lot better at approximating texture,
and it makes the difference in quality between the two predicted results clearer.

As for the rest of the results (Fig. 13), the two strategies have little difference in
performance for the walnut and lotus data. Both strategies achieve better image clarity
than the blurred image, meaning that for these two cases, it doesn’t matter which type
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of training is performed. The cross-phantom’s results are the same case as the carved
cheese, where the sinogram domain was blurrier than the reconstruction domain.

1 1 1

Ground Truth Reconstruction Blurred Reconstruction Sinogram Domain Reconstruction Domain

CNN Predicted Reconstruction

Fig. 12. Carved Cheese results with magnification for the Focal Spot Deconvolution Task

Ground Truth Reconstruction Blurred Reconstruction Sinogram Domain Reconstruction Domain

Fig. 13. Results for the remaining data



76 A. Huang

Table 1. PSNR values calculated between walnut results and original walnut reconstruction

CNN training method

None | Sinogram | Reconstruction
Sinogram completion |38.30 | 35.36 43.52
Poisson noise removal | 38.10 | 35.65 47.30

Focal spot deblurring |47.33|35.23 35.19

The PSNR values of predicted results, when compared to the original, for all three
tasks are shown in Table 1 for the walnut data. They demonstrate the edge that the
reconstruction domain has over the other methods, and it verifies the difficulty for the
models to remove the blur artifact. The lotus, cheese, and cross phantom values fol-
lowed similar trends, and they were omitted to avoid redundancy.

4 Conclusions

In this work, the performance of different CNN training strategies in medical CT was
compared through three common low level image-processing tasks, and the target of
the study to benchmark the different strategies in terms of image quality and clinical
viability was successfully met. The sinogram domain results under-performed the
majority of the time, and its predicted reconstructions for the sinogram completion task
were not even used as training input for the reconstruction domain due to the fact that
the results achieved by using the sparse reconstruction as training input were better. On
the contrary, the reconstruction domain never performed worse than the sinogram
domain, making it the better strategy to pick when training a model for CT. However, a
surprising outcome was that the two strategies had the same performance in some
cases. Because the reconstruction domain’s input has already been through a model, it
should already have a slight advantage over the sinogram domain, but in most of the
walnut results and the lotus results for focal spot deconvolution, the two strategies had
virtually no difference in performance. This interesting result shows that in a few cases,
the extra step included in the reconstruction domain wasn’t necessary, and the less
computationally expensive strategy, he sinogram domain, achieved the same results. In
conclusion, this paper successfully bench-marked and compared the two main training
strategies, and as a result discovered that the reconstruction domain strategy consis-
tently achieves higher performances than the sinogram domain, with few exceptions.
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