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Abstract. As the demand for autonomous agents such as intelligent vehicles
and robots’ increases, effective and safe human-machine interaction must be
ensured. Therefore, machines should be able to anticipate the motions of
humans and solve appropriate schemes to achieve their goals. To accomplish
this, a sequence of future positions must be generated according to some his-
torical positions extracted from videos by the predictive neuron network, and the
planning algorithm has to find and execute the best scheme in a limited window.
In the paper, we propose to use a long-short-term-memory (LSTM) network for
prediction and an A* algorithm to solve the planning problem. With these
methods, we successfully combined these two parts and conducted simulations
where autonomous cars have to reach targets efficiently while avoiding pedes-
trians in a safe manner. Besides, we compared our predictive models with other
models on the UCY data-set. We also conducted experiments to compare the
resulting paths with our prediction and those with naive and simple linear
prediction. The result showed that our system can effectively generate safe and
efficient future paths for autonomous vehicles.

Keywords: Human-robot interaction � Pedestrian trajectory � Motion
planning � Long-short-term-memory network � A* search

1 Introduction

Nowadays, research about human-robot interaction is perpetually under the spotlight
because of the emergence of complex artificial intelligence (AI). Researchers from all
over the world have developed uncountable innovative inventions based on AI. For
example, speaktoit assistants, such as Siri and Cortana, facilitate immediate information
communication to the end-user; another instance is the introduction of intelligent
robotics in industrial and manufacturing applications that improve efficiency and
eliminate hazards. Autonomous driving belongs in this promising emergent domain
studied by many researchers. Currently, autonomous vehicles remain plagued by
limitations in performance, in particular, motion prediction, a necessary module to
enable prophetic decision making. If we can develop a precise and effective prediction
model, many new techniques will process significantly. For instance, autonomous
vehicles need to get to the given destinations as soon as possible while avoiding
potential hazards such as collisions with pedestrians and other vehicles. Without
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predictions of the pedestrians’ positions, the vehicle cannot decide how to behave next.
Similarly, other service robots for household and industrial applications also need to be
designed with the reduction of risk to people within its operational scope. Such pre-
diction models are in severe demand in every situation where robots have to navigate
themselves to goals in a human-occupied environment. By now, many studies have
been conducted by researchers to address these problems, and while many models have
been designed, this remains a significant challenge for researchers in autonomous
guidance.

Beyond prediction models, motion planning is another crucial module for robots to
make decisions. After predicting the positions of different kinds of obstacles, the
vehicle has to decide on its acceleration and direction, which will further determine the
motor power and the future positions of the vehicle. In this way, the car and pedestrians
can interact actively and safely in the same environment.

In our study, we designed a long-short-term-memory (LSTM) [1] model for pre-
diction, and we formulated the planning problem as a MDP [2] planning problem and
designed an A* search algorithm for it. In addition, we connected these two models
together and created a complete model to simulate a common situation where the car is
asked to get the goal on a map with meandering pedestrians. To underscore the sig-
nificance of the prediction, we compare the prediction results of our trained prediction
model and a simple linear prediction which assumes the pedestrian will maintain the
same velocity. In addition, we extended our comparisons to other existing models to find
the advantages and drawbacks of our model on the public data set UCY [3]. (Fig. 1)

2 Related Work

2.1 Prediction [4]

The software configurations of an intelligent vehicle can be generally summarized as
three core components: perception, planning and control [5]. The perception module
captures information presented in the environment such as positions, times, states,
predictions, and sends it to other module in the system. The planning module employs
the information gathered by perception to generate a full plan of actions toward the

Fig. 1. Pedestrians trajectory prediction
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goals. Such a plan is passed to the controller module to be conducted, which translates
the plan into commands for the devices on the vehicle while employing different
methods to reduce the error. Therefore, the vehicle is incapable of operation in absence
of any of these three elements.

Traditional Models. Before the wide adoption of deep learning in this field, the
researchers’ general conception was to formulate this question based on physics or
sociology and calculate the future positions of the pedestrians with some specific rules
that were derived by them. For instance, an easy model is to assume that pedestrians
will keep their current velocities or accelerations during the following time steps [6]. It
becomes immediately apparent that these linear models are too simple to perceive
complex interactions among pedestrians. Comparatively, recent models were devel-
oped with the ability to take such interactions into account. The vanguard of these
approaches, the social-force model which was conducted by helbing, uses concepts
from sociology to construct a system able to formulate the behaviors of human beings
[7]. It models the interaction between humans by two virtual forces: an attractive force
and a repulsive force. They bring such two forces into the prediction of future tra-
jectories. This model has been proven to be effective and competitive in a number of
scenarios and datasets [3, 8]. Based on this idea, some impressive and elaborate
modifications have been proposed by other researchers [9, 10]. Moreover, by further
observing into this task, researchers extracted more key information that affected
pedestrians’ trajectories from videos and took these factors into consideration in the
model, and a variety of innovative formulations have been constructed by them. For
instance, tay used a gussian process [11] to solve such a problem; antonini proposed a
discrete choice model for prediction [12]; rodriguez came up with a way to analyze
crowded scenes from videos; other models derived by lisotto [13] can perceive both
interaction among pedestrians and between pedestrians and other crucial objects or
scene scale; some other researches [14–16] analyzed people’s behaviors via finding out
the goal of pedestrians; some other combined pedestrians with similar behavior into
clusters and analyzed them as a group [17, 18]. Though such formulated models are
quick to train and run, the formulas invented by researchers lack flexibility since there
are so many factors that can affect pedestrians’ decisions, so the prediction will be
terrible if the actual situation has not been formulated by the models. As a result, the
neuron networks with abundant weights might have better performance.

Deep Learning Method. On the other hand, rather than using derived formulation to
solve the problem, the mainstream has turned to teaching computers to generate a data-
based comprehension of the pedestrian trajectory. However, the conventional fully
connected neuron network might not be appropriate for spatial-temporal signals
because they cannot establish a sense of order and remember the information extracted
from previous time steps. Therefore, the recurrent neuron network (RNN) models were
proposed to handle this problem. It shows its superiority, but improvement is neces-
sary. So the variants of RNN, long short term memory (LSTM) [4] and gated recurrent
units (GRU) [19], were invented as a response and proved their great performance.
These modified RNN have been widely adopted in natural language processing
(NLP) [20], speech recognition [21], trend forecasts, and machine translation [22]. As
they did before, in this challenging field, LSTM and GRU have inspired many new
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solutions with noble success. For instance, the sequence to sequence structure of LSTM
has attained a relatively lower loss than many models [23]; the social LSTM [24],
DAG-Net [25] and the social wagdat [26] model successfully set up connections
among pedestrians to give the network chances to learn the relationship among agents;
the ss-LSTM model [27] integrates the information from the scene and from the social
reactions into the network; yagi [28] makes a prediction using first-person video data in
order to take the ego-motions which can implicitly show intention of the people into
consideration; shi, xiaodan’s model [29] is also impressive because it accesses a way to
deal with extremely crowded scenarios. These models all show different advantages
when dealing with the public datasets [3, 8]. However, even though there are so many
attempts to use deep learning in this task, sometimes the simplest constant velocity
model can still outperform these complicated models [6], and it is much easier to train.
Therefore, in the pedestrian’s trajectory prediction problems, there are many different
and competitive candidates and not a single “gold” approach exists that can handle all
situations.

2.2 Planning [5]

The research of the motion planning module of robots is very popular with a long
history. To meet the requirement for navigation in flexible real-life scenarios, the
planning module is indispensable for both robots and automated vehicles because they
both need to navigate in the flexible real-life scenes and complete their assigned tasks.
The basic meaning of motion planning is to make decisions by the information that
perception has captured, such as the positions of roads, other cars and pedestrians (what
we study in this research). According to this framework, researchers have come up with
a large amount of ideas and algorithms during the last few decades. These researches
can be categorized into several groups; some of them are so classical models to the
degree that a few examples were invented before the advent of computers, while some
other algorithms are creative and impressive. Some groups of solutions are introduced
below:

Graph Search Planning. The general idea of this branch is to find a series of future
states in the state space for the vehicle by searches or other algorithms. When the robot
executes along these planned states, it will get optimal reward. A classic example of
this kind of algorithm is shown in Fig. 2, what the graph search algorithm does is to
generate a search tree that consists of nodes of states based on such a graph; then the
nodes in the trees are checked and evaluated until the goal, or final nodes, are met. The
pioneer of these algorithms is the dijkstra algorithm [30–32], it can find a single-source
shortest path. Inspired by this fundamental algorithm, many other algorithms emerged.
DFS (Depth first search) [33] and BFS (Breadth first search) [34] are two simple
instances. Then UCS (Uniform cost search) [35], which does BFS according to a cost
function in order to reduce the nodes that need to be expanded and is able to make sure
that the result is optimal, is implemented. The differences between UCS and BFS are
shown in Fig. 3 and Fig. 4. The blue dots are the nodes in the search graph, and the red
dots are the goal states. Moreover, extended from Dijkstra algorithm, A* [36] was
invented. This search scheme is quicker than other existing methods because of the
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adoption of heuristics: this algorithm uses the sum of the past costs and the estimation
of the distance to the goal as a criterion to find and evaluate the optimal path.
Therefore, designing the cost function and heuristics is the most important and chal-
lenging task to perform such an algorithm. Across a long term of researching, differ-
ently designed variants of A* such as the anytime D* [37], the dynamic A* [36], the
Theta* [38], and the field D* [39] were employed in automated robots and vehicles.
However, though the graph search algorithms can find the best path with limited
information, they also have obvious drawbacks: they plan the path in discrete nodes
instead of a smooth track. In addition, they are also time-consuming when dealing with
intricate situations because they need to expand and enumerate many nodes in the
searching tree, while computational time is extremely crucial in automated driving that
has to take reaction to the changes in the environment and replan a new path in a
moment. In our work, we design a cost function and heuristics for the vehicle-
pedestrian scene.

Interpolating Curve Planning. The two approaches discussed above are generally
recognized as global planners that can only generate approximate and discrete paths.
To complete the solution, interpolating curve planning is applied. Interpolating means
to insert data into the rough data given by global planners and output a smooth and
continuous trajectory. The Computer-aided Geometric Design (CAGD) [40] is a fun-
damental technique in the application of this task. Researchers use different curves like
clothoid curve [41, 42] and polynomial curve [43, 44] to fit the points and make the
path smoother.

Fig. 2. Traveling in Romania—a classical example of Graph Search
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Interpolating Curve Planning. The two approaches discussed above are generally
recognized as global planners that can only generate approximate and discrete paths.
To complete the solution, interpolating curve planning is applied. Interpolating means
to insert data into the rough data given by global planners and output a smooth and
continuous trajectory. The Computer-aided Geometric Design (CAGD) [40] is a fun-
damental technique in the application of this task. Researchers use different curves like
clothoid curve [41, 42] and polynomial curve [43, 44] to fit the points and make the
path smoother.

3 Problem Statement

3.1 Overall Procedure

As Fig. 5 shows, to address the task of navigating, a robot has to be able to complete
this looping procedure. At first, the camera that is deployed at the front of the robot
captures information from the environment in the form of video. Then, through a
Convolutional Neuron Network (CNN) [45], the robot perceives features of the
environment such as the historical positions of pedestrians and other objects. This
information is sent to the prediction model to predict future positions which are crucial
to the planning algorithm. After the planning module has solved an optimal path for the
robot, the controller is called to generate a sequence of power commands to the motors
to move the robot by only one node of the path, and the rest of the path is abandoned.
This is the principle of Model Predictive Control (MPC). This trick is conducted to
ensure the planned path depends on true features since the features in the environment
undergo constant change and more recent paths can generate more accurate predictions.
Finally, when the robot has achieved the next state, factors in the environment,
including pedestrians’ positions and the robot itself, will change, so a recapture of the
information is necessary. As this loop is running, the robot will gradually approach its
goal until it achieves it. Our system is represented with the green block in Fig. 5, and it
can convert the extracted positions of pedestrians into a proper path for the vehicle
given the goal and other stable barriers in the environment.

Fig. 3. The UCS search Fig. 4. The BFS search
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3.2 Prediction

In the prediction module, a sequence of the historical positions is translated and read by
a computer, and another sequence of predicted future positions returns. Therefore, what
our prediction model does can be summarized with the following formula:

bx;byð Þtþ 1; bx;byð Þtþ 1� � � bx;byð ÞtþT¼ f x; yð Þt�Hþ 1; x; yð Þt�Hþ 2; � � � x; yð Þt
� � ð1Þ

Where the f (x) stands for the whole function of prediction; (x,y)t represents the
predicted value of the x and y position at the time t; T is the time horizon the models
will predict and H is the length of the historical sequence that is put into the network.
Therefore, the prediction problem is a sequence-to-sequence prediction with input and
output features of size 2 (x and y position).

3.3 Planning

We expect our robot to do the things shown in Fig. 6: to generate a sequence of actions
that result in a path to the goal among different kinds of barriers. The orange dots are the
prediction of pedestrians, while the orange lines represent the true paths. The blue line is
the planned path of the vehicle, and the blue dots are the actual positions at each time step.

In the planning algorithm, since the next decision only depends on the current state
of the agent and the predicted information, this problem can be considered as a Markov
Decision Process (MDP) [5]. Thus, the state space and action space have to be defined.
In this specific question, the state is actually the attributes of the robot in a certain si-
tuation, and our definition is that every state is a vector of size 5: t (current time step), x
(x position), y (y position), v (the current velocity of the agent), d (the direction that the
robot faces, measured in radians). As shown in the equation:

S ¼ t; x; y; v; dð Þ ð2Þ

On the other hand, the action space is the range of choices available to the robot
given the current state to transform to the next state. By simplifying the robot as a point
and considering about real scene when we drive, we know that the choice of path at a
specific state is actually the choice of acceleration and turning angle. By taking these
actions, the robot can reach any state in the state space. So, the action space is defined
as follows.

Fig. 5. The overall procedure of the system
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as ¼ a; hð Þ ð3Þ

Moreover, via the prediction module, the robot has received the predicted future
trajectories of the pedestrians, we represent it with (Xp, Yp)t+1:t+T, which means the
estimation of pedestrians’ positions during the following T (predicted step) steps.
Therefore, we can design a cost function to evaluate whether a single action is a good
choice. In this way, the algorithm will be able to generate the planned path step by step
because we can update the current state with the chosen action without interference
from the previous decisions, and the entire process can be represented by this formula.

at:tþT ; dt:tþTð Þ ¼ argmin C St; Sgoal;
dXp; Yp

� �
tþ 1:tþ T

� �� �
ð4Þ

Where at:t+T and dt:t+T is the planned accelerations and diversions (the action) of the
agent in the following T time steps. T is the steps we want to plan (equal to our
predicted output); C() is the cost function and St stands for the state of the agent at the
time t (current time).

This formula means that the sequence of accelerations and diversions from the
source toward the goal in a certain time period is determined by minimizing a cost
function that judges and weighs different factors including the risk of colliding with
pedestrians. More details regarding the design of the cost functions and the planning
algorithm are given in the following sections.

4 Method

4.1 Heuristic and Cost Functions

The heuristic is just a simple estimation of how much work the agent need to do to
achieve the goal. However, we should bear in mind a critical rule when designing a
heuristic: the heuristics must be admissible and consistent if we want to guarantee the
optimality of the path. Admissible and consistent: 8 Hi � Hj

� ��Cij.

Fig. 6. The situation of our planning program
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Where H means the heuristic of node i and Cj represents the actual cost form node
i to node j. As a result, the heuristic will never overestimate the actual distance and the
A-score will never decrease along the expanded nodes. In this specific question, our
heuristic is defining as:

H ¼
1 0� ffffð Þ S 2 ICSð Þ

WH � x� xgoal
� �2 þ y� ygoal

� �2� �
S 62 ICSð Þ

8><
>: ð5Þ

Where WH means a constant weight. We used the square of Euclidean Distance (the
straight line distance) to the goal to estimate the cost because this measurement never
overestimates the distance, so our algorithm can be optimal. Moreover, we also adopt a
trick on H value to reduce the nodes that need to be expanded. We used a concept
called Inevitable Collision State(ICS) [46, 47] the state that no matter what the vehicle
decides to do, collision, or at least extremely close contact, is inevitable according to
the current prediction. Therefore, if the current state is in ICS, we can feel free to set its
H-value to a value that is close to infinity because will definitely not choose this path.
This can prevent the search from further expanding unnecessary nodes.

Besides H value, G value is also crucial to finding the best path. Since it is the
measurement of the total cost from origin to current states, we summarized several
costs that the agent will face below and design our G function based on these rules:

• The speed of the vehicle should not be too much bigger than the speed limitation,
because over-speeding is always illegal and can be a potential safety threat.

• The vehicles should accelerate or decelerate as minimally as possible, frequent
changes of velocity will make passengers uncomfortable.

• Too frequent turnings are also unfriendly to passengers and may giddy them; in
addition, more turnings can make the demand of the accuracy of the controller and
the motors stricter.

• The vehicles should maintain distance from pedestrians as close contact is a
potential risk for collision and the prediction model cannot be relied upon
completely.

• In any situation, saving time while reducing potential hazards is the preferred
outcome, so the planned path should be as short as possible to a time scale.

We designed G value as the sum of several functions which represent these costs
with their weights. Concrete formulas are listed below accordingly (all W is the
weight):

Cmlim ¼ 0 m� mlim
Wmlim � m� mlimð Þ2 m[ mlim

�
ð6Þ

Where mlim stands for the speed limitation. This equation is easy to understand, if the
car does not overspeed, the cost should be zero, and the car does have excessive
velocity, the cost will increase at a square rate.
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Cacc ¼ Wquareacc � a2 ð7Þ

Where a is the acceleration that need to be executed to the state that is being evaluate.

Cturn ¼ Wturn � h2 ð8Þ

Where 6 stands for the turning angle that need to be conducted to the next state.

Ccoll ¼
Xi� p

i¼1
Wcoll � e�k� x�xið Þ2 þ y�yið Þ2ð Þ ð9Þ

Where k is another parameter that can make the curve less steep, and p is the number of
pedestrians that the agent is able to detect; xi and yi are the predicted positions of
pedestrians i at current time step. We use exponential function to describe this cost
because this function increases at a high rate as x is close to zero, which can match our
situation that extremely close distance is absolutely Forbidden.

Ctime ¼ Wtime � Dtð Þm ð10Þ

Where Δt is the time difference between the current state and the initial state. m is also a
parameter and m This function increases rapidly at the beginning and then becomes
gentle. This is because we want the agent to feel the urgency of the time at the
beginning of the search, or it will choose to remain still as time lost is otherwise
irrelevant to its decision-making.

By this definition and a time-consuming adjustment of weight, we have built a
metric which helps our algorithm to search effectively. (Fig. 7)

Fig. 7. The graphs of some example functions
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4.2 Transitional Function

The algorithm requires a function to update the attributes of the current state after
deciding the acceleration and diversion. In our situation, t, v, and d is easy to derive:

tiþ 1 ¼ ti þ dt ð11Þ

miþ 1 ¼ mi þ a ð12Þ

diþ 1 ¼ di þ h ð13Þ

Where dt is the time of a time step, and we define a and h as using the unit time steps. In
addition, to make our model simpler and reduce the computational time, we assumed
the car to be a mass point in our search, and the time that the car needs to turn its
steering angle is ignored. Since then, the position of the next state after choosing the
action has also become uncomplicated:

xtþ 1 ¼ xt þ mi � dtþ 1
2
adt2� cos dþ hð Þ

� �
ð14Þ

ytþ 1 ¼ yt þ mi � dtþ 1
2
adt2� sin dþ hð Þ

� �
ð15Þ

In this way, the transition between states is available.

4.3 Search Procedure

In our algorithm, we used Priority Queue [48] to store the fringe nodes and easily select
the nodes with the lowest A-score. In addition, we also applied a dictionary to store the
parents of the nodes and at the same time serve as a close list that store expanded nodes
which should not be expanded again. The procedure of our A* algorithm is shown
below, and it is also shown in Fig. 8.

Step 1: Put the origin into the Priority Queue with its A-score as priority.
Step 2: Take the state with the least priority out of the queue.
Step 3: If this node is already being expanded, skip and start from step 2.
Step 4: If the chosen state is a goal state or there is no prediction for the algorithm

to continue (have search designed steps), save this node as skip to step 7.
Step 5: For every choice that the agent can take, generate the resulting state and its

A-score, push all of them into the priority queue.
Step 6: Set the current state as the parent of all the generated states, return to step 2.
Step 7: Use the saved node to find back to the origin and get a path. update the

origin to the first state of the path. If the origin is the goal, then our algorithm is done,
but if not, we should re-predict pedestrians’ trajectory, clear the queue and parent
dictionary, and return to step 1.
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Dataset. We use datasets that originate from two sources. First, we collected some
videos of people’s footage by drones. After that, we adopted CNN (convoluted neuron
network) [45] to translate the videos into historical sequences of positional information.
This dataset has a time step of 0.1 s. Moreover, we also utilized the data that has been
published by the university of cyprus [3]. This dataset includes many sequences of
pedestrians’ trajectory, which is represented by positions. There is also a feature called
the gaze direction, standing for the direction that pedestrians look. However, in order to
maintain the same number of features with the previous dataset, we have abandoned
this feature.

Fig. 8. Procedure of A*
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Training Configurations. In our training, we modified our hyper parameters for a
long time in order to optimize the performance of our models. At last, we found a set of
balanced hyper parameters which is listed below:

• Learing rate: 0.01
• Batch size: 25
• Train test validation data ratio: 7: 2: 1
• Epoch: 100
• Activation function: ReLU
• Loss function: MAE (Mean Square Error)
• Optimizer: Adam

With these hyper parameters, our models are able to achieve a relatively good
performance and at the same time keep the computational time acceptable.

Prediction Performance. We trained and tested our model with the dataset collected
by ourselves. We pre-processed the data and inputted it to our models. The visual-
izations of the prediction are shown below. The red lines are the historical path; the
blue ones are the ground truth. Different colors of scatters represent the prediction by
models. Yellow is the simple constant velocity model’s, purple stands for our multi-
step prediction, while green means our feedback model (autoregressive model). These
selected graphs are the typical cases that can represent the performance of our models.

In cases (1) and (2), all predictions from all models are precise to an acceptable
standard. This is because the behaviors of the pedestrians in these cases are simple:
they almost walk along a straight line. Therefore, the constant velocity model can also
have acceptable performance (Figs. 9, 10, 11 and 12).

Fig. 9. Case (1)
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Fig. 10. Case (2)

Fig. 11. Case (3)

Fig. 12. Case (4)
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However, case (3) and (4) show that the superiority of our prediction models is
apparent. These two pedestrians suddenly turn right or turn back, and not unsurpris-
ingly, the simple models have no ability to capture their tendencies to turn. However,
both of our two models achieve that and generate an approximate prediction.

The judgment on the change of directions from the pedestrians is a farmore crucial part
than predicting the exact positions of them in autonomous driving since the car always
deals with questions like whether the pedestrians will pass the intended path of the car
instead of how far they will go. In addition, as pedestrians’ speeds are significantly lower
than those of cars, the value of error does not matter a lot when we try to decide which
model we should use in our search model. As shown in cases (5), (6), (7) and (8), though
the pedestrians occasionally behave in unexpected ways, our single-step model predic-
tion successfully predicted the future direction while the other two methods get lost.
Moreover, in case (9), the single-step model is also more accurate than the multi-steps
model; this superiority indeed exists in the majority of our data-set. As a result, we
decided to use the single-step model in our planning (Figs. 13, 14, 15, 16 and 17).

Fig. 13. Case (5)

Fig. 14. Case (6)
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Fig. 15. Case (7)

Fig. 16. Case (8)

Fig. 17. Case (9)
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However, our model still has many limitations. In cases (10) and (11), the pedes-
trians’ behaviors are erratic. The first one takes a sharp turn and accelerates quickly; the
second one waits and abruptly turns around. As a result, all of our attempts failed to
comprehend such behaviors. This revealed one of our models’ limitations that we can
only predict a person’s path with only his or her historical paths. Hence, it is impossible
for our models to successfully take the reactions that he or she has because of other
people or objects into account (Figs. 18 and 19).

Comparison Among Our Prediction Models and Other Models. In addition to
testing the performance of our prediction model, we also evaluated the MAE (mean
absolute error) and compared it to other models that list below.

Fig. 18. Case (10)

Fig. 19. Case (11)
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• Linear model [6] (Line.): the simple model that assumes the velocities of pedes-
trians are constant.

• Social-Force model [9] (SF.): the model that formulates the interaction among
people.

• Our Single-step model (Sin.): Since the Single-step model outperforms the multi-
steps models, we use it to compare with other models.

• Social-LSTM [24] (S-LSTM.): the LSTM network that is specially designed to take
the relationship among pedestrians into consideration.

The loss is shown in the following table. (Zara_1, Zara_2, and UCY datasets are all
form University of Cyprus, as mentioned in the dataset subsection) (Table 1).

Unsurprisingly, the Linear model has the greatest error generation among these
models; the Social-Force model is better, but it is still too inaccurate to be put into
practice. Our LSTM, which uses the traditional structure, was a little worse than the
Social-LSTM [24]. However, since our model has fewer parameters, it is an advantage
that we can complete our training faster. Moreover, our model resulted in undesirable
outcomes on the UCY data set while the Social- LSTM performed far above expec-
tations. We think the reason is that the UCY dataset is much more crowded than other
data. Therefore, our model loses its competitiveness because of its disability to learn
the interactions.

Simulations. We chose some pedestrians from our data set and ran a simulation of our
planning algorithm. In our situation, we used several pedestrians and static barriers to
block the car as it planned its path to the goal which had been set. The following figures
show the paths of cars and pedestrians in some cases, and we used the same color map
in order to make a comparison between different paths easier. The red dot represents the
goal, and the block in the red rectangle represents the static barrier. The 3D plot also
displays the paths of pedestrians and the car, and the z-axis is time (higher means
longer from the initial time).

Table 1. Data comparison among models

error (m)         models
data Line. SF. Sin. S-LSTM

Zara_1[3] 0.47 0.4 0.26 0.22

Zara_2[3] 0.45 0.4 0.25 0.25

UCY[3] 0.57 0.48 0.46 0.27

Total 1.49 1.28 0.97 0.74
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On track (1), the car has to the pedestrians because of the existence of the static
barrier. After turning, it accelerates toward the goal. As shown in Fig. 21, the speed of
the car goes up without deceleration. In addition, in Fig. 22, the distances between the
car and the pedestrians never become smaller than our predefined safety threshold
(lower than 3 m) to cause the risk of collisions. As a result, though the path looks
reckless, the car actually prioritized safety above time (Figs. 20 and 23).

Fig. 20. Track (1)

Fig. 21. Track (1) v-t graph
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Fig. 22. Track (1) distance-t graph

Fig. 23. Track (1) 3D graph

Fig. 24. Track (2)
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On the other hand, on track (2), as shown in Fig. 24, instead of driving straight to
the goal, it chooses to stop and wait for the pedestrians in front of it to clear out. This
decision reflects that the car had perceived the risk of collision. Therefore, our algo-
rithm has the ability to answer the simple but crucial question—of who should go first,
the car or the pedestrians? (Fig. 25).

Finally, to compare the algorithm’s performance when different predictions are used
to generate a path, we designed a metric function to evaluate how appropriate the paths
are. This function consists of measurements of the paths from different dimensions,
including the total distance the car travels, the risk of collisions between pedestrians
and the car at every time step, etc. These functions are all added up with their weights.
The expression of the metric is shown below:

M ¼ Wtime�tþWdist�sþWacc�
X

a2i þWturn�
X

d2i þWcoll�
X

ri

Where different W stand for different weights and are different from those used for
planning, t is the total time cost, s is the total distance. ai and di are the accelerations
and the turning angle at time stepi. a is the function to evaluate the risk of collision,
defined by the following expression:

It is actually almost the same as the Ccoll in the A* search. The only difference is that
xi and yi stand for the true positions of pedestrians instead of predicted ones. Therefore,
the metric can evaluate the true risk of the path (Table 2)

Apparently, the path generated by the LSTM prediction outperforms the others
because in all of the cases tested, the cost metric of the paths with LSTM prediction is
lower than those with simple prediction algorithms. Therefore, we can draw the con-
clusion that a more accurate prediction can indeed assist the planning algorithm in
generating a better path.

Fig. 25. Track (2) 3D graph
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5 Conclusions

When an autonomous car meets a pedestrian at a crossing, should the car go first or the
pedestrian? This problem has to be solved to approach our self-driving dream.
Focusing on this problem, we use two LSTM models and A* to designed two modules
that are indispensable to autonomous driving and robotic navigation: prediction and
planning. Although these two parts have received significant coverage previously, by
research, we effectively built a connection between these two sections on our algo-
rithms. These experiments show that computers can generate optimal paths with pos-
itive outcomes. It also illustrates that these algorithms have a promising future.
Admittedly, our methods are relatively easier than those recent researches have pro-
posed. We did not take the interactions among pedestrians into account like what the
mainstream of researches tries to do; we did not use the interpolation curve to make our
path smooth rather than discrete. Nevertheless, we have proven that using a better
scheme for prediction in motion planning matters a lot by combining and applying
previous researchers’ intelligence.
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