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Abstract Deep learning is a subfield of machine learning and artificial intelli-
gence technique. It employs neural network tasks like image processing, computer
vision, voice recognition, machine translation, medical information processing, self-
driving vehicles, predictive forecasting, robotics and control, cybersecurity, natural
language processing, bioinformatics, and countless others. The performance of a
neural network is determined by a variety of factors, and activation functions are an
essential element in the design of a neural network. The hidden layer’s activation
feature defines the extent to which the networkmodel learns the training data set. The
type of prognostications made by the model is regulated by the activation functions
present at the output layer. This paper presents a comprehensive review of research
studies on different activation functions aimed toward deep learning applications.

Keywords Deep learning · Neural network · Machine learning · Artificial
intelligence · Activation function

Introduction

Deep learning is a form of hierarchical learning. It comprises algorithms and topolo-
gies to solve a wide variety of issues. Deep learning is a feature-learningmethod with
many levels of representation. Thus, it will be easy to understand nonlinear repre-
sentations one layer at a time [1]. The lower-level features are minor details that are
used to transform the representation at one level to build high-level features on top of
it [2]. Thus, the complex functions can be learned using such transformations. Over
the last few decades, deep learning has become a very popular and most powerful
tool as it can handle a huge quantity of data. Deep learning architectures, which are
outstandingly, expanded the number and types of problems that neural networks can
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Fig. 1 Simple neural network

handle. Deep learning has shown several advancements by researchers and academi-
cians in the last two decades [3]. Neural networks are a novel architecture imitating
biological neural networks [4]. The rudimentary building block of artificial neural
networks is a neuron. A neuron is a mathematical function that simulates the func-
tioning of a biological neuron [5]. Neural networks are composite computer codes
written with many basic, highly interconnected computing components that mimic
human biological brain structure operations to simulate data models of human brain
functioning and processing. Figure 1 shows the simple neural network. The neural
network comprises three layers, namely activation function, learning technique, and
weights. All these layers include neurons that are interlinked to form a network [6].
Its elements are validated depending on whether the neuron is used for input, output,
or in one of the hidden layers.

The two key hyperparameters which control the architecture or topology of neural
networks are the total number of layers and the number of total nodes in each hidden
layer as shown in Fig. 2.

Input layer: It receives input either through an outside source or through other
neighboring nodes. Every node is attached to another node of the succeeding layer.
Each connection has a specific weight. Depending on its degree of importance,
weights are assigned to a neuron in relation to other inputs. Once the entire node
values from the input side are multiplied by their corresponding weights and totted
up, the value for hidden layers is generated [6]. The output of the input layer can be
given by the equation:

yi =
∑

(weights ∗ input + bias) (1)

It can range from −infinity to +infinity. So it is necessary to bound the output to
get the desired prediction or generalized results.

Hidden layers: Hidden layers are always found between the input and output
layers. It is always shrouded from the outside world. Hidden layers may vary from
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Fig. 2 Complex neural network

network to network that we selected. The number of hidden layers in a neural network
is determined by the problem’s nature and size. Once the hidden layer gets infor-
mation from the input side, it performs all the computational tasks and provides the
result [6, 7]. This result is then forwarded to the output layer. Hidden layers refine
the input weightings until the marginal error of the neural network is small.

Output layer: The output nodes are known collectively as the output layer, and
they are responsible for bringing out the final result. This output layer is designed
differently to contour and improve the final results of the iterative task [8]. The output
layer acquires the input from the hidden layers and uses its neurons to complete the
computations, after which the output is generated.

Activation Function

In neural networks, activation functions are mathematical functions used to represent
each neuron present in the network. The activation function of a neuron decides
whether it should be turned on or turned off depending on the input or set of input
values [9]. Activation functions facilitate normalizing the output of all the neurons
and map them into a range within 1 and 0 or −1 and 1.

The activation functions can be classified mainly into the following types:

1. Identity or linear activation function
2. Nonlinear activation functions.
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Fig. 3 Linear function

Identity or Linear Activation Function

The input values multiplied by their corresponding weights from each neuron are
given as input to an activation function. The activation function produces an output
corresponding to the input values [10]. A neural network is nothing but a linear
regression model without a linear activation function. Linear activation function has
confined power and also has limited capacity to solve the composite input data. The
equation of a linear function is alike to that of a straight line, i.e., f (x) = a * x and it
ranges from − ∞ to∞. The graphical representation is shown in Fig. 3.

When a linear activation function is employed in themulti-layered neural network,
irrespective of howmany layers are present in the network all the layers will be linear.
Therefore, the final layer is purely a linear transformation of the final layer [11]. The
linear function f (x) has an invariable derivative and also it does not rely on the input
value x. Thus, the linear function is unable to perform backpropagation every time
to train the model. The gradient is pretty much the same hence it is not possible to
improve the error.

Nonlinear Activation Function

Nonlinear activation functions can be used to represent any imaginable process as a
computational function in the neural network [12]. They enable the model between
the network inputs and outputs, to develop a composite mapping. These are essential
to learn andmodel the nonlinear type of composite data such as images, video, audio,
and data sets. Thus, to resolve the problems of a linear type of activation function,
often nonlinear types of activation functions are used [13]. They have an input-related
derivative function that permits backpropagation. Nonlinear functions often allow a
deep neural network to be built up by stacking multiple hidden layers of neurons.
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Fig. 4 Binary step
activation function

Thus, it is possible to understand the composite data sets with high levels of precision
using deep neural networks.

Binary Step Activation Function

The step function is among the most basic activation function available, which
provides binary output [9]. That is why it is also called a binary step function. Here,
we consider a threshold value, when the input passes the threshold limit the func-
tion produces a value 1(true) and then the neuron is activated. If the input does not
pass the threshold value, the function produces a value 0(false) and then the neuron
is deactivated. That is why they are very useful for binary classification studies. A
graphical representation of the binary step activation function is shown in Fig. 4.

Mathematically, binary step activation function can be described as

f (x) =
{
0, for x < 0
1, for x ≥ 0

}
(2)

Sigmoid or Logistic Activation Function

The sigmoid function resembles an “S” shaped curve. It can be used to represent the
anticipated values to probabilities. The sigmoid function distributes the input values
of any size to output values in the interval between 0 and 1, normalizing the output
of each neuron [14]. Graphical representation sigmoid activation function is shown
in the below fig. Here, the output is not zero-centered as shown in Fig. 5.

Mathematically, sigmoid activation function can be described as

f (x) = 1

(1 + e−x )
(3)

The above function is exclusively monotonic in its entire region and it is easily
differentiable. However, its derivative is notmonotonic. There is almost no ambiguity
in the estimation of very low or very high variation in the values of x, which creates
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Fig. 5 Logistic/sigmoid
function

a problem of vanishing gradient. That leads to a situation where the network refuses
to learn further or being too sluggish to succeed in an accurate prediction. During the
testing period, the logistic sigmoid function may end up causing the neural network
to become stuck.

Tanh Function

Tanh activation function works almost always better than the sigmoid function. It is
a mathematically modified version of the sigmoid function that transforms input to
output with values ranging from −1 to 1 [15]. The gradient is stronger for tanh than
the sigmoid activation function. The major advantage of the tanh activation function
is that its negative inputs are always represented as strongly negative; zero inputs are
represented near to zero which is not the same for sigmoid function as the range for
it is between 0 and 1 as shown in Fig. 6.

Fig. 6 Tanh function
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The mean of the activations coming out of the hidden layer is closer to having a
zero mean. Therefore, the data are more centered, making learning easier, and faster
for the next layer. The function and its derivative are both monotonous.

Mathematically, tanh activation function can be described as

tan h(x) = 1 − e−2x

1 + e−2x
(4)

The main disadvantage of the tanh activation function is that its gradient will
experience a very small value and even it may accomplish a near-zero value. This
can thwart the gradient descent. The most difficult aspect of implementing these
functions is that it demands the exponential term, which results in nonlinear behavior.

Arctan Function

The arctan function is similar to the sigmoid and tanh function and is obtained by the
inverse of the tangent function. This activation function maps input to accelerating
and decelerating output values ranging between (−π /2, π /2). The arctan function
graph is a slightly flattered S-shape compared to the tanh function, which provides
better classification power [11]. Arctan function can be mathematically described as

f (x) = tan−1(x) (5)

Figure 7 shows the graphical representation of arctan function.
For the larger values of the input, its derivative converges to zero. Contrarily, the

derivative of the sigmoid activation function converges exponentially to zero.

Fig. 7 Arctan function
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Softmax Function

The Softmax function is another type of mathematical function that always produces
an output ranging from 0 to 1 irrespective of whether the input values are positive,
negative, zero, or greater than one. The cumulative of all the probabilities is equals to
1.Thus, the Softmax function is used to compute the normalized output probability
distribution comprised of K probabilities from the input vector consisting of K real
numbers. The formula for the Softmax functions can be specified as follows [16]:

σ(zi ) = ezi
∑K

j=1 e
z j

(6)

The above expression calculates the input exponential value as well as the sum
of all input exponential values. The Softmax function’s output is proportional to the
exponential input value as well as the sum of the exponential values.

The graph shown in Fig. 8 shows the variation of output probabilities corre-
sponding to the variation in the input values. To overcome the issues of multi-class
classification, the Softmax function can be used as the activation function in the
output layer of neural network models.

Softsign Function

Softsign mathematical function is again a different type of activation function
employed in neural networks. It almost resembles the hyperbolic tangent activa-
tion function but the main difference between them is that, unlike the tanh function
which converges exponentially the softsign function converges in a polynomial form
[17]. The value of softsign function is zero-centered and it ranges between −1 and
+1, so the network learns effectively.

Fig. 8 Softmax function
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Fig. 9 Softsign function

Figure 9 shows the graphical interpretation of the softsign function. The formula
for softsign functions can be specified as follows:

f (x) = 1

(1 + |x |) (7)

Softsign activation function is characterized by a high degree of nonlinearization
and good error tolerance. Thus, it can be used in neural networks to transform the
input into nonlinear distribution. The main advantage of the softsign function is that
its output is centered on zero and its asymptote lines are smoother [11]. Thus, the
output saturation reaches steadily to 0 on both sides. This alleviates the problem of
gradient vanishing to some degree.

Rectified Linear Unit (ReLU) Function

In DL models, the rectified linear unit (ReLU) is one of the most famous and oftenly
utilized activation functions. This function conserves the characteristics of a linear
function. It also prevents the vanishing gradient problem seen in earlier forms of
activation functions by rectifying the values of the inputs less than zero to zero
otherwise; it will direct the input to output [18]. ReLUmaps output ranging between
0 and 1 and it can be represented as

f (x) =
{
x, if x ≥ 0
0, if x < 0

}
= max(x, 0) (8)

The below graph shown in Fig. 10 represents the equation of the ReLU activation
function.
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Fig. 10 ReLU function

ReLU incorporates faster AF learning that outperforms other AFs including the
sigmoid and tanh functions in terms of efficiency and generalization [11]. It will
be easier to train the varieties of neural network models using ReLU as a default
activation function.

Exponential Linear Units (ELUs) Function

ELU also known as exponential linear unit is another form of activation function
which is similar to the ReLU with certain variations. The ELU activation function
can be specified mathematically as follows:

f (x) =
{

α(ex − 1), x ≤ 0
x, x > 0

}
(9)

The equation strictly outputs x-value for positive values of input x, which is the
same as ReLU. In the case of negative input, the output will be α times (ex − 1).
Whereα is a hyperparameter that controls the value of negative inputs for which ELU
saturates. This is an excellent way of handling the negative inputs [18]. The graphical
contrast between the ReLU and ELU activation functions is shown in Fig. 11.

ELUs have negative values that try to bring the mean of the activations closer to
0. This enables quicker learning when the gradient is closer to the natural gradient. It
does not experience the issue of dying neurons because the gradient of ELU is non-
zero for all negative values. ELU is a steady and differentiable activation function at
all points.

Swish Function

The swish activation function is an innovative activation function that can be effec-
tively used in deep learning models across a variety of complicated data sets.
Mathematically, the swish function can be defined as follows:
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Fig. 11 Comparison between ReLU and ELU activation functions

f (x) = x

(1 + e−x )
(10)

The function is just the multiplication of the input x with the sigmoid function
and its graphical representation is shown in Fig. 12.

Swish is unrestricted in the upper portion of the graph, therefore, the output would
not be saturated to themaximumfor large values of input [19].However, it is restricted
in the lower portion of the graph; therefore, for negative inputs, it does not return a
zero as is the case for ReLU. Swish is smooth, non-monotonic, and continuous at all
points; this differentiates it from most of the common activation functions.

Flatten-T Swish (FTS) Function

FTS, or flatten-T Swish (FTS), was introduced by Chieng as a novel activation
function. Flatten-T swish incorporates activation features of both swish and rectified

Fig. 12 Swish function
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Fig. 13 Flatten-T swish function

linear units (ReLUs) activations functions together into an innovative one [20]. It is
used to cope with the negative cancelation property in ReLU. Mathematically, FTS
is formulated as follows:

FTS(x) =
{ x

1+e−x , x ≥ 0
0, x < 0

}
(11)

When the value of x ≥ 0, the FTS function has properties identical to that of the
swish activation function. If the value of x is less than zero, then the function acts as
ReLU. The graphical representation of the FTS function is shown in Fig. 13.

FTS has network limitations like dynamicity, pliability, and nonlinear representa-
tion capacity. Table 1 gives a summary of activation functions and their corresponding
equations, derivatives, and applications.

Conclusion

Deep learning approaches employneural networks consisting of several hidden layers
to perform complex tasks. In the design of neural networks, the activation function
plays a vital role. The hidden layer’s activation function dictates howwell the network
model learns the training data set. The kind of predictions themodelwill offer is deter-
mined by the activation function employed in the output layer. Vanishing gradient is
an unstable behavior that inhibits the training of deep neural networks with saturated
activation functions. As the network’s layers become deeper, the training efficiency
and precision encounter numerous challenges which stimulate the development of
different kinds of activation functions. Thus, activation functions are an important
component of networks and selecting proper activation functions and analyzing their
impact on the network will assist in optimizing the efficiency of the DL model.
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Table 1 Activation functions and their corresponding equations

Function Computation equation Derivative Application

Binary step
activation
function

f (x) =
{
0; for x < 0

1; for x ≥ 0

}

f (x)′ =
{
0; for x �= 0

?; for x = 0

}
Perceptron
linear
classifier

Sigmoid
activation
function

f (x) = 1
(1+e−x )

f (x)′ = f (x)(1 − f (x)) Logistic
regression
classification

Tanh function tan h(x) = 1−e−2x

1+e−2x f (x)′ = 1 − f (x)2 Classification
between two
classes

Arctan
function

f (x) = tan−1(x) f (x)′ = 1
1+x2

Learn
complex
patterns in
the data

Softmax
function

σ(zi ) = ezi∑K
j=1 e

z j
σ
(
z j

)′ = σ
(
z j

)(
1 − σ

(
z j

))
Normalize
the output of
a network

Softsign
function

f (x) = 1
(1+|x |) f ′ = 1

(1+|x |)2 Predict the
multinomial
probability
distribution in
the output
layer

Rectified
linear unit
function

f (x) =
{
x; if x ≥ 0

0; if x < 0

}

= max(x, 0)

f (x)′ =
{
1; if x ≥ 0

0; if x < 0

}
Prevent the
exponential
growth in the
computation

Exponential
linear units
function

f (x) =
{

α(ex − 1), x ≤ 0

x, x > 0

}

f ′(x) =
{

f (x) + α; if x < 0

1 if x ≥ 0

}
Introduces
nonlinearity
into the
output of a
neuron

Swish
function

f (x) = x
(1+e−x )

f ′(x) = f (x) + 1
1+e−x (1 − f (x)) Achieves

higher test
accuracy in
very deep
networks

(continued)
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Table 1 (continued)

Function Computation equation Derivative Application

Flatten-T
swish
function

f (x) =
{

x
1+e−x , x ≥ 0

0, x < 0

}

f ′(x) =
{

f (x) + 1
1+e−x (1 − f (x)); x ≥ 0

0; x < 0

}

Improved
classification
accuracy and
converges
twice as fast
as ReLU
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