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Abstract

Plants have been utilized as food, feed, and fodder since the dawn of civilization.
Plants are also thought to be a rich source of bioactive compounds with a variety
of pharmacological actions. Saponins are one such group of molecules which are
present in various plant species. As triterpenoid glycosides, they have a 30C
oxidosqualene precursor aglycone moiety (sapogenin), which is then linked with
glycosyl residues to form saponin. These saponins have a unique platform in the
field of pharmaceutical and nutraceutical industries. Saponins are used for the
treatment of various diseases which include cancer, diabetic, cardiac, hepatic, and
nervous disorders. The production of saponins through conventional approaches
is time-consuming and hard to extract pure compounds, and thus to achieve this,
in vitro methods have been developed and enhanced the production and extrac-
tion of the metabolites. The present chapter focuses on the in vitro production of
saponins through various tissue culture techniques such as shoot, callus, cell
suspension, adventitious root, hairy root culture, and applications of bioreactors
at commercial level. The chapter also focuses on biosynthetic pathway, extraction
methods, and biological activities of saponins.
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10.1 Introduction

Saponins are plant secondary metabolites derived from mevalonic acid pathway
which are amphipathic glycosides of triterpenes and steroids, often also called as
steroidal glycoalkaloids. ‘Sapo’ in Latin refers to soap as these compounds produce
foams when shaken with aqueous solutions (Mugford and Osbourn 2012). Saponins
are large molecules containing a hydrophilic sugar moiety at one end separated from
hydrophobic (lipophilic) non-sugar triterpene or steroid moiety. This property
enables them to form a micelle and act as a detergent (Mishra et al. 2017). The
non-sugar component is called aglycone (sapogenin) and composed of triterpenoid
or steroidal backbone and the sugar component is called glycone and composed of
molecules like arabinose, xylose, glucose, galactose, fructose, rhamnose, and
glucuronic acid (Moghimipour and Handali 2015) Fig. 10.1. Based on their molecu-
lar and chemical nature, they are divided into triterpenoid (30 carbon atoms) and
steroidal saponins (27 carbon atoms with 6-ringed spirostane or 5-ringed furostane
skeleton). Dammaranes, tirucallanes, lupanes, hopanes, oleananes, taraxasteranes,
ursanes, cycloartanes, lanostanes, cucurbitanes, and steroids are among the 11 sapo-
nin classes. In the plant kingdom, oleananes are found more often (Kregiel et al.
2017) Fig. 10.2.

Triterpenoid saponins play a vital role in plant physiology during the external
stress conditions. Apart from these due to their pharmacological properties, they are
extensively used in various fields of medicine (Yao et al. 2020). The antiviral
properties of saponins inhibit the replication of Herpes simplex virus type-1 and

Fig. 10.1 Structure of Saponin. (Source: Moghimipour and Handali 2015)
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Polio virus type-2 (Amoros et al. 1987). Plants extracts with saponins are used as
animal feed for dairy and beef cattle as they inhibit rumen ciliate protozoans
(Holtshausen et al. 2009), also suppress methane emission and change the fermenta-
tion patterns (Hu et al. 2005). Saponins in plants act as ‘phytoprotectants’ or
‘phytoanticipins’ as they act as a defence molecule against microbes and pest attack.
They also play an important role in cell membrane permeability. Apart from these,
they possess anti-inflammatory, anti-microbial, hyperlipidemic, and hypoglycemic
activity (Desai et al. 2009). The triterpenoids play a major role in preventive and
curative healthcare, perfume industries, cosmetics, flavouring, food, and beverage
industries. (Biswas and Dwivedi 2019).

Depending on its growth phase and development, as well as seasonal variations,
various plant species synthesize and accumulate varying quantities of saponins in
different plant regions (Table 10.1). Saponin production may also be stimulated in
response to external biotic stress, such as herbivores and disease attacks. Abiotic
stresses such as light, temperature, and nutritional deficiency can all have an impact
on both the quality and amount of saponin content. It has been revealed that at the
molecular level, their synthesis is assisted by the transcriptional activation of their
respective biosynthetic genes via a complicated signalling cascade including the

Fig. 10.2 Structure of triterpenoid and steroidal saponins. (Source: Moghimipour and Handali
2015)
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jasmonate and salicylate hormones. Exogenous effect of stress-causative factors
(elicitors) on secondary metabolite synthesis is frequently used to upregulate pro-
duction of these essential bioactive metabolites (Lambert et al. 2011; Biswas and
Dwivedi 2019).

However, the synthesis of this therapeutically significant class of bioactive
compounds in the plant system in vivo is exceedingly low, leading to massive
overuse of wild plant populations for their procurement by the pharmaceutical
companies. Furthermore, with little or no planned re-cultivation, these techniques
frequently endanger the plant populations. Plant tissue culture techniques like cell
and organ cultures serve as an alternative for sustained and quality synthesis of these
metabolites. The possibility of scaling up these cultures to the commercial level
contributes to the industrial potential of metabolite synthesis using tissue cultures
(Namdeo 2007; Biswas and Dwivedi 2019).

Table 10.1 Saponin content of some selected plant materials

Sl.
No. Name of the plant Source Saponin content Reference

1 Chenopodium quinoa
Willd

Seed 7.51–12.12 mg
OAE/g

Han et al. (2019)

2 Sapindus mukorossi
Gaertn.

Pericarp 280.55 � 6.81mg/
g

Deng et al. (2019)

3 Aloe vera (L.) Burm. f. Leaves 65.89 mg OAE/g Akbari et al. (2021)

4 Aesculus hippocastanum
L.

Seed 3–6% Güçlü-Ustündağ and
Mazza 2007)

5 Primula grandis L. Roots 15–20% Włodarczyk et al.
(2020)

6 Glycyrrhiza glabra L. Roots 3.6 g/200 g Hajimohammadi et al.
(2017)

7 Yucca schidigera Roezl. Truck 10 Oleszek et al. (2001)

8 Trigonella foenum-
graecum L.

Seed 0.98% Chaudhary et al. (2018)

9 Panax notoginseng
(Burkill) F.H.Chen

Root 9.26–46.52 mg/g Cui et al. (2019)

10 Glycine max (L.) Merr. Seed 1173.5 to
3582.3 mg/100 g

Lee et al. (2020)

11 Avena sativa L. Seed
bran

4.6% Ralla et al. (2018)

12 Medicago sativa L. Aerial
parts

6.5–9.5 mg/g DW Zhang et al. (2021)

13 Bacopa monnieri (L.)
Pennell

Leaves 13–38.12 mg/g
DW

Bhardwaj et al. (2019)

14 Centella asiatica (L.)
Urban

Leaves 1.2–2 mg/g DW Mangas et al. (2008)

15 Gymnema sylvestre R. Br. Leaves 397.9 mg/g DW Sheoran et al. (2015)

16 Ziziphus joazeiro Bark 2–10% Ribeiro et al. (2014)
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The present chapter deals with the production of saponins from cell and organ
cultures and engineering strategies for enhanced metabolite content. Also, emphasis
has been given for the biosynthesis of saponins and the key genes involved in the
biosynthetic pathway have been mentioned. Furthermore, the different extraction
and quantification methods employed for saponins and their potential biological
activities have been discussed.

10.2 Biosynthesis of Saponins

Saponins are broadly classified as steroidal saponins or triterpenoid saponins based
on the type of aglycone backbone from which it is derived. While triterpenoid
saponins are synthesized majorly by dicotyledonous plants and are the most abun-
dant class of saponins, steroidal saponins are mainly synthesized by monocotyle-
donous plants. Both triterpenoid and steroidal saponins are synthesized from the
same oxidosqualene precursor which is 30 carbon long and linear. While the
triterpenoid aglycone backbone contains all 30 carbons of oxidosqualene, the steroi-
dal aglycone backbone retains only 27 carbons and loses 3 methyl groups. If
additional nitrogen is incorporated to the steroidal aglycone backbone, it functions
as a precursor for the biosynthesis of steroidal glycoalkaloids which may also be
sometimes considered as saponins (Augustin et al. 2011; Friedman 2006; Ginzberg
et al. 2009; Itkin et al. 2013).

The steroidal aglycone and triterpenoid aglycone being isoprenoids are
synthesized using Isopentenyl pyrophosphate (IPP) as precursors that are converted
from Acetyl CoA through the Mevalonate (MVA) pathway which is also known as
3-Hydroxy-3-methylglutaryl-CoA-reductase (HMGR) pathway. Further,
Isopentenyl diphosphate isomerase (IDI) isomerizes IPP to allylic form
dimethylallyl pyrophosphate (DMAPP). One molecule of the 5 carbon DMAPP
then condenses with two molecules of 5 carbon IPP to give a 15-carbon immediate
prenylated precursor of saponins, called Farnesyl pyrophosphate (FPP). Squalene
synthase is a key enzyme in saponin biosynthesis. It catalyses the formation of a
30-carbon precursor, squalene, by the condensation of two molecules of FPP.
Squalene is then epoxidized by the action of squalene epoxidase to form
2,3-oxidosqualene. A variety of cyclizing enzymes of the class oxidosqualene
cyclase carry out the cyclization of 2,3-Oxidosqualene to form polycyclic structures.
This reaction is the branching point between the metabolism of primary and
specialized triterpene in higher plants.

The 2,3-Oxidosqualene cyclization results in one of the earliest inherent
diversities to the triterpenoid saponins aglycones, accounting for its tendency to
give rise to a vast array of triterpenoid scaffolds arising from a single substrate due to
several carbocation rearrangements in the cyclization process. Majorly, there are
9 classes of triterpene backbones in plants synthesized by either specific or multi-
functional Oxidosqualene cyclase to produce either single or multiple products
through a single cyclization reaction of 2,3-Oxidosqualene (Vincken et al. 2007).
One such cyclized structure, namely Cycloartenol, is a tetracyclic precursor of

10 In Vitro Production of Saponins 233



primary terpene formed by 2,3-Oxidosqualine cyclization catalysed by Cycloartenol
synthase. Cycloartenol is a precursor for numerous phytosterols in angiosperms
including carbon sitosterol, while all other cyclization products get involved as
precursors for specialized triterpenes synthesis. The cholesterol backbone of these
Cycloartenol derivatives undergoes several glycosylations and oxygenations to give
rise to Spirostanol or Furostanol derivatives containing an oxygen heteroatom in
their aglycone structure that further forms steroidal saponins (Thakur et al. 2011).
Aglycones such as Solanidine, Solasodine, Tomatidine, and Demissidine are formed
by cholesterol precursors that are utilized by steroidal glycoalkaloids, where an
amine group is incorporated as a heteroatom instead of oxygen, through a series of
side-chain modifications (Itkin et al. 2013; Ginzberg et al. 2009).

These triterpene aglycones are, although, majorly oxidized by multiple Cyto-
chrome P450-dependent monooxygenases (P450s), several other modifications are
also carried out that contribute to the extended diversity in the structure of the
aglycone backbone by adding a second level of complexity. Various transferases
including UDP-dependent glycosyltransferases (UGTs) and acyltransferases
catalyses the modification of reactive functional groups and normalize the polarity
of scaffolds that were introduced as a consequence of repeated oxidations on the
triterpene backbone in order to enhance its structural diversity.

Throughout this biosynthesis process of triterpenoid, steroidal saponins, and
steroidal glycoalkaloids, the key classes of enzymes are oxidosqualenecyclase,
P450-dependent monooxygenase, and UDP-dependent glycosyltransferases. Addi-
tionally, numerous transferases and other tailoring enzymes also play a significant
role. The saponins’ biosynthesis pathway is illustrated in Fig. 10.3.

10.3 In Vitro Production of Saponins

In vitro technique is unique approach for the production of plant secondary
metabolites. There are various reports regarding the production of secondary
metabolites from plants through in vitro culture of plant tissues/explants (Verpoorte
et al. 2002; Murthy et al. 2014a). Saponins are one of the major pharmaceutically
important compounds found in various parts of the plant spp. and various in vitro
cultures such as shoot, callus, cell, and root cultures reported the presence of
saponins (Murthy et al. 2014a; Biswas and Dwivedi 2019). This section is
concentrating on the production of saponins via shoot culture, callus culture, cell
suspension culture, adventitious root culture, and hairy root culture (Table 10.2).

10.3.1 Shoot Culture

In vitro shoot culture is one of the best-known tissue culture methods to isolate
saponins. Some important plant spp. producing saponins via shoot cultures have
been presented. Praveen et al. (2009) established Bacopa monnieri shoot culture in
both semisolid and liquid medium and evaluated the bacoside A content and found
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Fig. 10.3 Biosynthetic pathway of Saponins. (Source: Reproduced from Kumar et al. 2016)
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Table 10.2 List of various explants and culture system used for the production of saponins

Sl.
No. Plant source Explants

Culture
system Saponins Reference

1 Agave salmiana
Otto ex Salm-
Dyck

Axillary
shoot

In vitro
plants

Tigogenin
glycoside

Puente-Garza
et al. (2017)

2 Astragalus
glycyphyllos L.

Shoot Callus, shoot,
and
suspension
cultures

Cycloartane
saponin

Shkondrov
et al. (2019)

3 Bacopa monnieri
(L.) Pennell

Leaf and stem Shoot culture Bacoside A Sharma et al.
(2013)

Sharma et al.
(2015)

Aerial part Shoot culture Triterpenoid
saponin
glycosides

Watcharatanon
et al. (2019)

Leaf Cell
suspension
culture

Bacosides Koul and
Mallubhotla
(2020)

4 Calendula
officinalis L.

Seedlings and
Young leaf

Cell
suspension
culture

Oleanolic
acid

Wiktorowska
et al. (2010)

Mature
embryo

Hairy root
culture

Alsoufi et al.
(2019a)

Alsoufi et al.
(2019b)

5 Centella asiatica
(L.) Urban

Node Shoot culture Asiaticoside Prasad et al.
(2013)

Leaf Callus
culture

Centellosides Mangas et al.
(2008)

Leaf Cell
suspension
culture

Bonfill et al.
(2011)

Leaf Hairy root
culture

Kim et al.
(2010)

6 Chlorophytum
borivilianum
Santapau and R.
R.Fern

Leaf sheath Callus
culture

Stigmasterol
and
Hecogenin

Bathoju and
Giri (2012)

7 Codonopsis
pilosula Franch.

Seedling Hairy root
culture

Total
saponins

Yang et al.
(2020)

8 Eryngium
campestre L.

Epicotyl Shoot culture Triterpenoid
saponins

Kikowska et al.
(2016)

9 Eryngium
maritimum L.

Apical and
axillary buds

Adventitious
root cultures

Triterpenoid
saponins

Kikowska et al.
(2014)

10 Eryngium planum
L.

Axillary buds Shoot/callus/
cell
suspension

Triterpenoid
saponins

Kikowska et al.
(2019)

(continued)
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maximum in shoots cultured in liquid medium (2.2-fold) when compared to shoots
grown on semisolid medium. Effect of various concentrations of sucrose and pH on
in vitro shoot culture and bacoside A production in Bacopa monnieri was examined
by Naik et al. (2010) and reported lower concentrations of sucrose and that pH
treatments enhance the production of bacoside A. Continuation of earlier work, Naik

Table 10.2 (continued)

Sl.
No. Plant source Explants

Culture
system Saponins Reference

11 Gymnema
sylvestre R. Br.

Leaves and
stalks

Cell
suspension
culture

Gymnemic
acids

Chodisetti et al.
2015,
Chodisetti et al.
(2013)

Cotyledons
and young
leaves

Hairy root
culture

Nagella et al.
(2013),
Praveen et al.
(2014)

12 Helicteres
angustifolia

Young leaves Callus
suspension
cultures

Total
saponins

Yang et al.
(2019)

13 Panax ginseng
C.A. Meyer

Stem Cell
suspension
culture

Ginsenoside Huang et al.
(2013)

Huang and
Zhong (2013)

Root Adventitious
root cultures

Wang et al.
(2013)

Hairy root
cultures

Liang et al.
(2009)

14 Panax
quinquefolium L.

Seedlings Hairy root
cultures

Ginsenoside Kochan et al.
(2018)

15 Panax
vietnamensis Ha
& Grushv.

Leaf
segments

Callus
culture/
in vitro plants

Ginsenoside Nhut et al.
(2015)

Shoot Hairy root
culture

Majonoside
R2,
dammarane

Ha et al. (2016)

16 Ruscus aculeatus
L.

Phylloclades,
rhizomes, and
seeds

Root-
rhizome
culture

Ruscogenin Khojasteh et al.
(2019)

17 Silene vulgaris
(Moench) Garcke

Leaf Hairy root
culture

Segetalic
acid and
gypsogenic
acid

Kim et al.
(2015)

18 Zingiber
montanum (J.
König) Link ex
A. Dietr.

Rhizome
buds

Callus/cell
suspension

Total
saponins

Rajkumari and
Sanatombi
(2020)
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et al. (2011) studied the effect of macroelements and nitrogen source, and an
increased amount of bacoside A content was reported in the shoot cultures grown
in the higher concentration of nitrogen. Heavy metals such as manganese, zinc, and
copper also affect the production of bacoside A in the shoot culture of Bacopa
monnieri (Naik et al. 2015). Various media, medium strength, and carbon source
alter the accumulation of bacoside A content in the shoot culture of Bacopa monnieri
and found maximum in the treatments with full-strength MS medium, 2% sucrose
and carbon source in combination with glucose and fructose (Naik et al. 2017).
Prasad et al. (2013) worked on the accumulation of biomass and asiaticoside in
Centella asiatica multiple shoot culture using fungal elicitors at different doses and
culture age. Treatment with 3% v/v culture filtrates of Trichoderma harzianum in a
culture medium on the tenth day influenced the biomass and asiaticoside accumula-
tion by 2.53 and 2.35-fold when compared to untreated shoots in the culture cycle of
35 days. Interestingly, Nhut et al. (2015) showed that light-emitting diodes influence
the accumulation of ginsenosides in the in vitro plant culture of Panax vietnamensis.
Shkondrov et al. (2019) found in vitro shoot culture of Astragalus glycyphyllos
yields double the amount of cycloartane saponins when compared to wild grown
plants.

10.3.2 Callus Culture

In tissue culture, callus is an undifferentiated mass of cells that serves as the basic
structure and the most important stage for development of embryos, shoots/roots,
and friable cells by modifying the cultural conditions. The callus is also a source of
secondary metabolites of particular plant spp. from which it has originated.
Researchers have induced the callus culture of Centella asiatica for the production
of centellosides and also studied the genes responsible for the biosynthesis of
centellosides and found expression of the 5.8S rRNA gene (Mangas et al. 2008).
In a callus culture of Eryngium planum, the application of methyl jasmonate elicitor
in Murashige and Skoog (MS) medium fortified with 3% sucrose accumulated 1.2-
fold triterpenoid saponins when compared to untreated callus culture (Kikowska
et al. 2019). Yang et al. (2019) investigated the Helicteres angustifolia callus
suspension culture for the estimation of phytochemical contents and found the
potential source of total saponins in the culture.

10.3.3 Cell Suspension Culture

Cell suspension culture creates the avenue to obtain plant-based metabolites. It has
the advantage over other culture method as it gets even/sufficient quantities of
nutrients and cultural conditions, which induces the cells to grow faster and to
maintain stability. Bacopa monnieri cell suspension cultures were tested with vari-
ous elicitors (salicylic acid and jasmonic acid) and precursors (sodium nitroprusside,
calcium pantothenate, and cholesterol) at different concentrations for the induction
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of bacoside content, and in elicitor treated cultures, elevated biomass and bacoside
content was observed on 6th–9th day (Koul and Mallubhotla 2020) and salicylic acid
found to be the best suitable for the induction of bacoside content among the tested
elicitors and precursors. Shkondrov et al. (2019) determined the cycloartane
saponins’ accumulation in suspension culture of Astragalus glycyphyllos.
Wiktorowska et al. (2010) studied the effect of various elicitors (Jasmonic acid,
chitosan, yeast extract, pectin, and fungal strain Trichoderma viride) on the produc-
tion of oleanolic acid using cell suspension cultures of Calendula officinalis. Cell
suspension cultures treated with jasmonic acid after 72 h found to be the most
efficient elicitors used and accumulated 9.4-fold oleanolic acid when compared to
untreated culture. In another study, biotic elicitors (extracts of Agrobacterium
rhizogenes, Aspergillus niger, Bacillus subtilis, Escherichia coli, and Saccharomy-
ces cerevisiae) were used to induce gymnemic acids from the cell suspension culture
of Gymnema sylvestre and all the elicitors treated cultures showed positive response
on the accumulation of gymnemic acids (Chodisetti et al. 2013). In continuation of
earlier study, researchers applied methyl jasmonate and salicylic acid in cell suspen-
sion culture and yielded optimum gymnemic acid content at 72 h after methyl
jasmonate treatment (Chodisetti et al. 2015).

10.3.4 Adventitious Root Culture

Adventitious root culture as a differentiated organ culture serves as an excellent
system for the production of secondary metabolites as it grows relatively fast and
stably without any harmful molecules (Murthy et al. 2014b). Kikowska et al. (2014)
performed an experiment with adventitious root cultures of Eryngium maritimum to
test the nutritional factor and plant growth regulators on the production of saponins.
Results found that elevated accumulation of triterpenoid saponins of about 3.2-fold
in in vitro-derived roots was observed compared to field grown plant roots. Adven-
titious root cultures grow continuously in the liquid media and presence or absence
of exogenous auxins does not affect. Wang et al. (2013) studied the effect of methyl
jasmonate in adventitious root cultures of Panax ginseng for the production of
ginsenoside content, and 10 mg/L methyl jasmonate for 24 h treatment increased
the accumulation of ginsenoside with 4.76-fold higher than control.

10.3.5 Hairy Root Culture

Transformed hairy roots are induced by infecting the explants with Agrobacterium
rhizogenes, which has the higher capacity biosynthesis of secondary metabolite
compared to non-transformed roots (Chandra and Chandra 2011). Kim et al.
(2015) induced hairy root culture using leaf explants of Silene vulgaris, and analysed
the triterpenoid saponins like segetalic acid and gypsogenic acid accumulation was
found to be 5 and 2-fold higher after the treatment of methyl jasmonate respectively
when compared to the control roots. Panax vietnamensis is an important plant
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considering its peculiar pharmacological active saponins, namely majonoside R2
and dammarane. Hairy root culture of P. vietnamensis contains ginsenosides and
majonoside R2, and dammarane saponins (Ha et al. 2016). Ginsenosides were
induced in hairy root cultures Panax quinquefolium using trans-anethole elicitor,
and trans-anethole activates the synthesis of saponins irrespective of exposure time
(Kochan et al. 2018). Hairy root culture of Calendula officinalis is subjected to
elicitor treatment (jasmonic acid and chitosan) for the stimulation of triterpenoid
biosynthesis (Alsoufi et al. 2019a). Elicitor such as jasmonic acid, was very effective
with respect to the accumulation of 20-fold oleanolic acid saponins in the hairy root
tissue and 113-fold in the medium. Alsoufi et al. (2019b) selected abiotic elicitors
(cadmium and silver ions, UV-C irradiation, and ultrasound) to induce triterpenoid
biosynthesis from hairy root culture of Calendula officinalis. Heavy metals, UV-C
irradiation, and ultrasound stimulated 12-fold, 8.5-fold, and 11-fold of triterpenoid
biosynthesis, respectively. Recently, Yang et al. (2020) established the hairy root
culture of Codonopsis pilosula and determined the total saponins’ content from the
grown hairy roots.

10.4 Bioreactors: Scale-up Techniques

The secondary metabolites production requires the optimum cell growth in the cell/
organ culture. Adequate nutrients, balanced mixing, and oxygen supply minimize
the plant cell damage which also depends on the species and cell lines selected
(Georgiev et al. 2013). Other parameters such as temperature, pH, oxygen concen-
tration, carbon dioxide, and substrate concentrations also control the production of
secondary metabolites. Bioreactors in general possess the basic function which
provides low shear stress, sufficient oxygen supply, and better mixing system of
cells to maintain their optimum physiological conditions and regulate the metabo-
lism of different environmental factors (Murthy et al. 2014b). Bioreactors are the
important tools in the field of bioprocessing industry, which allow the optimum rate
of multiplication of quality grade metabolites in a short duration of time with lesser
cost. Various kinds of bioreactors are utilized for the production of secondary
metabolites/saponins among stirred tank bioreactor (STB) which is most common.
The advantage of these bioreactors is that they provide enough space for the cells to
accumulate in different stages and also have the capacity to scale up nutrients
because of their huge sizes (Gantait et al. 2020). For large-scale production of
secondary metabolites/saponins, airlift bioreactors (ALB’s) are also selected as one
of most favourite bioreactors by researchers and industrialists as they provide
maximum oxygen transfer and reduced cell shearing, which in turn give maximum
yield (Gantait et al. 2020). For the reference purpose, some of the bioreactor types,
culture system, and saponins are listed in the Table 10.3.

Applications of bioreactor enhance the multiplication of Bacopa monnieri in
in vitro shoot culture rate and which in turn lead to propagate at commercial level
(Saha et al. 2020). Jain et al. (2012) investigated shoot culture of Bacopa monnieri
using nodal explants and found increased biomass accumulation when 10% aeration
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was applied in Growtek® bioreactor. In another study, two different bioreactors,
Growtek® bioreactor and ALB, were used for bacosides production from Bacopa
monnieri in in vitro shoot cultures, and optimum bacoside content was obtained in
the biomass cultured in ALB system when compared to Growtek® bioreactor
culture. As ALB provides enough aeration, it supplies the maximum oxygen for
the synthesis of bacosides (Sharma et al. 2015).

Embryogenic tissues of Panax ginseng were cultured in two different types of
bioreactors, STB and ALB, using flat-blade turbine and a paddle impeller; interest-
ingly, higher biomass and optimum ginsenoside saponins production was observed
in the ALB compared to STB (Asaka et al. 1993). The use of STB in a two-stage
culture mode of cell suspension culture of Panax quinquefolium yields maximum

Table 10.3 List of various types of bioreactors and culture system used for the production of
saponins

Sl.
No Plant source

Culture
system Bioreactor type Saponins Reference

1 Astralagus
membranaceous
(Fisch.) Bunge

Hairy root
culture

Airlift
bioreactors

Astragalosides Ionkova
et al. (2010)

2 Bacopa
monnieri (L.)
Pennell

Shoot culture Airlift
bioreactors

Bacosides Sharma
et al. (2015)

Saha et al.
(2020)

3 Centella asiatica
(L.) Urban

Cell
suspension
cultures

Bioreactor Centellosides Loc and
Nhat (2013)

4 Glycyrrhiza
glabra L.

Hairy root
culture

Stirred tank
bioreactor

Glyrhizzin Mehrotra
et al. (2008)

5 Panax ginseng
C.A.Mey

Adventitious
root cultures

Bioreactor (with
sparging air)

Ginsenosides Jeong et al.
(2009)

Cell
suspension
and
adventitious
root cultures

Stirred tank
bioreactor, airlift
bioreactors,
bubble bioreactor

Murthy
et al.
(2014a, b)

Murthy
et al. (2017),
Adil and
Jeong
(2018)

Hairy root
cultures

Airlift
bioreactors,
bubble bioreactor

Gantait et al.
(2020)

6 Panax
quinquefolium L.

Cell
suspension
cultures

Stirred tank
bioreactor

Ginsenoside Wang et al.
(2012)

7 Solanum
chrysotrichum
(Schldl.)

Cell
suspension
cultures

Airlift
bioreactors

Antifungal
saponins

Salazar-
Magallón
and de la
Peña (2020)
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ginsenosides (Wang et al. 2012). Using 5-L bioreactor, Loc and Nhat (2013)
standardized the protocol for the production of asiaticoside in cell suspension culture
of Centella asiatica, the parameters included rate of aeration, size of inoculum, and
speed of agitation. Recently, Salazar-Magallón and de la Peña (2020) carried an
experiment for the production of antifungal saponins with a transformed cell line
from cell suspension culture of Solanum chrysotrichum using ALB and found
in vitro and in vivo antifungal activity of saponins against fungal pathogens.

Kim et al. (2004) studied the adventitious root cultures of Panax ginseng using
various vessels (cone, bulb, balloon, and cylinder type) in ALB's and proved the
balloon type of ALB is most appropriate for the accumulation of biomass and
ginsenosides. Kim et al. (2005) worked on the aeration rate and sparger pore size
and diameter and found great influence on the ginsenoside accumulation. Paek et al.
(2009) found that ALB's are most suitable bioreactors for the production of biomass
and ginsenosides from the adventitious root cultures of Panax ginseng. Different
bioreactors, STB’s and bubble column bioreactors (BCB’s) with various capacities,
were applied for the production of ginseng hairy root culture by Jeong et al. (2003)
and maximum yield of hairy roots in 5-L and 19-L BCB's with 38 and 55-folds
increment of biomass was obtained on 40 and 39 days of culture, respectively.
Palazón et al. (2003) carried an experiment for the production of ginsenosides
from ginseng hairy roots; it includes wave bioreactors or spray bioreactors, culture
period, and medium exchange. In this study, wave bioreactor emerged as a
promising system to grow hairy roots and found 28-fold biomass accumulation
and enhanced ginsenoside content at the end of 56 days of culture when medium
exchange was carried for every 14 days. Yu et al. (2003) found ALB's are the most
promising bioreactors for the production of ginsenosides from ginseng hairy root
culture.

10.5 Extraction and Detection Techniques of Saponins

Saponins are being isolated from different plant sources for their diversified eco-
nomic and pharmacological activities. The saponins are distributed all over the plant
body right from aerial parts and root regions. Presence of different functional groups
and sugar units bound to the aglycone component of the saponins makes it very
difficult in extraction technique. There are chances in which saponins may get
hydrolysed and esterified in extractions. So it is bit challenging in the extraction of
saponins (Runner 2006). Quantification of saponins is done similar to that of other
metabolites using spectroscopic and chromatographic methods. For isolating the
pure saponins from the plant source, preparative liquid chromatography is employed
(Kim and Park 2001). But, for the estimation, HPLC (High-performance liquid
chromatography) is the most accepted technique.
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10.5.1 Extraction Techniques of Saponins

Right from initial times, researchers were using conventional methods to isolate the
saponins from different plant sources. Different plant sources show different
efficiencies with respect to the various extraction methods.

10.5.1.1 Conventional Methods
Soxhlet extraction was carried out using various types of solvents suitable for
particular plant sources. There are many reported research articles which used
soxhlet extraction for the isolation of saponins (Bajad et al. 2019). Different
parameters influence the extraction procedure like time taken to extract the
metabolites from the plant sample, nature of solvent, and its boiling point. In this
extraction, the sample will be placed in the porous chamber made out of cheese cloth
and vapours of the desired solvents are sent through it which ultimately takes out the
target metabolites from the tissue. Polar solvents like water, ethanol, and methanol
are suitable for the extraction of saponins through soxhlet extraction (Cheok et al.
2014). Reflux extraction is another method of extraction of metabolites where the
plant sample is always kept in contact with desired polar solvents and subjected to
continuous boiling, and once desired change and time are reached, it can be filtered
and the extracts are used for the quantification of the desired metabolites with
specific techniques (Tao et al. 2013). Maceration is also employed for extracting
saponins and the principle behind it is solid-liquid extraction (Takeuchi et al. 2009).
In this technique, the sample is soaked along with the desired solvents and chemicals
for the required time, temperature, and stirring to aid the extraction of the metabolites
(Verza et al. 2012). Solvent partitioning (liquid-liquid isolation) is also employed to
effectively isolate the saponins (Kim and Park 2001; Cheok et al. 2014). Along with
the above-mentioned conventional methods, there are many advanced techniques
which can help in extraction of desired saponins. These techniques are environment-
friendly and help us to conserve solvents. The main advantage is that the time taken
for the isolation of the metabolites is comparatively less when compared to conven-
tional methods.

10.5.1.2 Advanced Techniques
In ultrasound-assisted extraction, specific frequencies of sound waves are given to
the tissue which helps us to extract the desired metabolites. Conceptually, it is
similar to that of sonication. The time given for the extraction, solvent, and the
frequency are the important parameters. The time taken for the extraction of saponins
and related compounds is relatively less when compared to conventional methods
like soxhlet extraction (Jadhav et al. 2009). Microwave-assisted extraction is most
accepted technique for the isolation of metabolites in the recent times (Deore et al.
2015). The time required for the extraction of desired metabolite is comparatively
less when compared to other techniques, usually the time taken for extraction will be
around few minutes (6–8 min). Microwaves are given for the sample which is
already associated with desired polar solvents like ethanol and methanol where
extraction becomes very easy (Kerem et al. 2005). Accelerated solvent extraction
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is another technique employed to isolate saponins and other metabolites (Zhang et al.
2013). The conventional and advanced techniques employed for extraction studies
have been mentioned in Table 10.4.

10.5.2 Techniques for Detection of Saponins

Detection of saponins from the plant sample is done both qualitatively and quantita-
tively. Qualitatively to detect the saponins from the plant sample, foam test is
conducted. If the foam persists for more than 15 min it confirms, the presence of
saponins (Tadhani and Subhash 2006). Quantitatively, it is detected using chro-
matographic and spectrophotometric techniques.

Chromatographic techniques are employed for the quantification of plant second-
ary metabolites. In the same way, saponins are also quantified using high-
performance liquid chromatography (HPLC) and are most widely accepted. Type
of column used, flow rate, wavelength, and solvents used in the mobile phase are the
important parameters considered for the quantification of saponins. Chromatogram
and the peaks graduated help us to understand the presence of desired metabolites.
Furthermore, these chromatographic techniques are modified by adding different
components like mass spectroscopy, diode array detection, and evaporative light
scattering detector, which help us to study the isolated molecules at atomic level
(Guajardo-flores et al. 2012). Acetonitrile and water are most widely used solvents
for eluting saponins from the samples.

In the spectrometric method, measuring the colour developed upon chemical
reaction between desired metabolite and chemicals is the basic principle. Chemical
standard used and wavelength at which colour measured are the important
parameters in spectrometric methods. Vanillin (8%) along with sulphuric acid
(72%) develops red-purple colour with plant sample which is later measured,
which proves the presence of saponins (Le et al. 2018). The details of some of the
detection methods for saponins are mentioned in Table 10.5.

Since saponins have such diversified economic and pharmacological uses, scien-
tific community should design advanced techniques for the extraction of metabolites
at large scale with minimum expenses. In the same way, the quantifying techniques
can also be revised which can give more information of the desired molecule at less
expenses.

10.6 Biological Activities of Saponins

Among various phytochemicals of the plant kingdom, saponins constitute an impor-
tant class of bioactive molecules; this is attributed to the numerous biological
activities exhibited by different aglycones of saponins, majorly the steroidal and
the triterpenoid saponins (Bruneton 1999). These activities range from antitumor,
gastroprotective, and antihyperlipidemic potential to their ability to regulate blood
glucose and promote bone marrow haematopoiesis.
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Saponins are amphiphilic molecules, consisting of both hydrophilic and hydro-
phobic moiety. The structural complexity, particularly the molecular structure,
enables it to interact with the lipid components of the plasma membrane including
sterols, proteins, and phospholipids and these interactions result in the formation of
aggregates; this property majorly accounts for the wide range of biological activities
that saponins have (Lorent et al. 2014) (Table 10.6). In addition to this, the ability of
saponins to undergo chemical changes during processing or storage and their
glycosylation pattern also determine the biological activities (Augustin et al. 2011;
Güçlü-Ustündağ and Mazza 2007). Antifungal, anti-parasitic, antibacterial, and
antioxidant are few of the minor activities of saponins, in addition to the activities
mentioned below:

10.6.1 Anti-tumor Activity

One of the most important biological activities of saponins include antitumor
activity. This property is exhibited by major saponins like dammarane or oleanane
as well as their derivatives such as theasaponin. The activity is operated by different
mechanisms by different classes of saponins, some of the major ones include
reducing the synthesis of DNA, causing damage to DNA, inhibiting tumour angio-
genesis, altering the host susceptibility to mutations, and by increasing
immunosurveillance and apoptosis (Shibata 2001). Saponins are found to act on
some of the major types of cancers such as breast cancer, lung cancer, liver cancer,
colon cancer, and gastric cancer. The impact of aglycones on the antitumor activities
has been studied and it is concluded that factors such as number of hydroxyl groups
(Wang et al. 2007), site of hydroxyl group, lipophilicity of sugars (Mimaki et al.
2001), and sequence of sugars present (Bang et al. 2005) affect the activity of
saponins. According to a study, spirostanes such as polyphyllin D show strong
anticancer activity by inducing endoplasmic reticulum stress-mediated apoptotic
pathway by the accumulation of unfolded or misfolded proteins, followed by
mitochondria-mediated pathways by the downregulation of anti-apoptotic and
upregulation of pro-apoptotic factors, which eventually leads to the apoptosis of
tumour cells (Siu et al. 2008; Cheung et al. 2005); dioscin shows similar activity in
addition to the antiproliferative activity against cancer cells (Wang et al. 2006). In
contrast to this, dammarane saponins like OSW 1 damage the mitochondria and its
cristae and triggers the calcium-dependent apoptotic pathway (Zhou et al. 2005). The
cytotoxic effect of avicin D has been demonstrated by Haridas et al. (2009) where it
was shown that saponin downregulates some of the major factors involved in
apoptosis such as cyclin D1, c-myc, VEGF, and Bcl-2; this is done by decreasing
the level of IL-6 and dephosphorylation of Stat-3. Platycodon D is another antineo-
plastic agent that operates by generating reactive oxygen species and activating
CASPASE 3, thereby inducing apoptosis (Shin et al. 2009). Few other mechanisms
underlying antitumour activity include inhibition of COX-2/PGE-2 pathway (Han
et al. 2013), upregulation of proapoptotic proteins like Bcl-2 and Bax, generation of
ROS, inhibition of wnt/beta catenin signalling pathway, downregulation of few other
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Table 10.6 Saponins and their pharmacological activities

Sl.
No. Saponins Activity Mechanism Reference

1 Notoginsenoside
R1

Anti-atherosclerosis Inhibition of
plasminogen activator
inhibitor 1

Zhang & Wang
(2006)

2 Ginsenosides Anticoagulant
activity

Increasing the
synthesis of
plasminogen activators
and antagonistic
activity of platelet
activating factors

Jung et al. (1998)
Zhang et al.
(1997)

3 Sea cucumber
saponins

Anti-hyperuricemic
activity

Inhibition of enzymes
xanthine oxidase and
adenosine deaminase

Xu et al. (2011)

4 Platycosides Anti-inflammatory
activity

Inhibition of NF-κB
activation and MAPK
signalling pathways

Jang et al. (2013)

5 Maesa Saponins,
oleanolic saponin

Haemolytic activity Bursting of erythrocyte
membrane due to the
interaction between
sterols of membrane
and saponins

Voutquenne et al.
(2003) Baumann
et al. (2000)
Sindambiwe
et al. (1998)

6 Cucumarioside
A2-2, and
Frondoside A

Immunomodulatory
activity

Stimulation of
cytosolic calcium
concentration,
lysosomal activity,
ROS formation, and
natural cellular defence
barrier

Aminin et al.
(2009)

7 Oleanolic acid Anti-HIV activity Inhibition of in vitro
HIV-1 protease
activity

Mengoni et al.
(2002)

8 Ziyu glycoside Promotion of bone
marrow
hematopoiesis

Reduction of
suppressive cytokines
and activation of FAK
and Erk1/2 pathways

Chen et al.
(2017)

9 Ginsenoside Rg
1

Neuroprotective
activity

Inhibition of
mitochondrial
apoptotic pathway and
increase in activity of
choline
acetyltransferase

Leung et al.
(2007)
Yamaguchi et al.
(1997)

10 Oleanolic acid Molluscicidal
activity

Formation of pores
resulting in leakage of
liquids due to the
interaction between
saponins and
cholesterol of the
membrane

de Paula Barbosa
(2014)
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proteins like cyclin D, cdk-4, and MDM2, and upregulation of caspase 3/9, p21, p53
expression which eventually leads to cell cycle arrest or apoptosis (Wang et al. 2018;
Cui et al. 2018). Furthermore, targeting the three main family members of MAPKs,
namely, p38, JNK, and ERK, and inducing the formation of massive vacuoles
containing lysosomes and autolysosomes that is characteristic of autophagy is
another way of killing the cancer cells which is mainly performed by the saponin
jujuboside B (Xu et al. 2014).

10.6.2 Anti-hyperglycemic Activity

Triterpene saponins such as saponins of Panax ginseng, Charantin, and saponins
from Asparagus officinalis L., have shown the ability to improve the uptake of
glucose and insulin sensitivity in the liver cells (Hu et al. 2014; Kim et al. 2009; Zhu
et al. 2020). Ginsenoside Rb1 acts as a hypoglycemic agent by regulating glycolipid
metabolism and increasing the insulin sensitivity, which are achieved by activation
of the Peroxisome proliferator-activated receptor gamma (PPAR-γ), thereby improv-
ing glucose homeostasis (Kwon et al. 2012). In vitro studies have revealed that
ginsenoside activates insulin signalling pathways such as phosphorylation of insulin
receptor substrate-1 and protein kinase B (PKB) and the activity of
phosphatidylinositol 3-kinase (PI3K); this in turn leads to the increased translocation
of GLUT receptors in the adipose tissue (Shang et al. 2008). In addition to this,
saponins target glucose metabolizing enzymes in order to normalize blood glucose
level. Diosgenin is a steroid saponin which is known to promote glycogenolysis by
increasing the levels of enzymes such as Phosphofructokinase and pyruvate kinase
(Raju and Chinthapally Rao 2012. Lee et al. (2011) have reported that ginsenoside
Rb2 inhibits gluconeogenesis by upregulating SHP (Short heterodimer partner),
which inhibits the mRNA expression of gluconeogenic enzymes such as Glucose-
6-phosphatases and phosphoenolpyruvate carboxykinase. The inhibitory effect of
saponins against carbohydrate hydrolysing enzymes including pancreatic alpha
amylase and alpha glucosidase and their potential to reverse the atrophic pancreatic
beta cells as shown by Oleifera Saponin A1 (Di et al. 2017) further establishes
saponins as an effective antidiabetic agent. Another hypoglycemic mechanism of
saponins involves regulation of AMPK/NF-κB signal pathway, improvement of
lipid metabolism in diabetic subjects, and inhibition of reactive oxygen species
formation resulting in reduced oxidative stress and normal functioning of the
kidneys (El Barky et al. 2016; Wang et al. 2019).

10.6.3 Anti-hyperlipidemic Activity

One of the common lipoprotein abnormalities involves decreased levels of HDL
cholesterol and increased levels of LDL cholesterol and triglycerides (Gupta et al.
1994); these conditions are closely associated with diseases like coronary heart
disease, atherosclerosis, and diabetes. Thus, modulating lipid metabolism or levels
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of TC, TG, HDL, and LDL is one way of functioning as an antihyperlipidemic agent
and this is efficiently carried out by saponins such as soyasaponins, ginsenosides,
and trigonelline. One way of doing this is by influencing the lipid biosynthetic
pathway; this mechanism was demonstrated by Hu et al. (2010), where the dietary
saponins could inhibit the mRNA expression of SREBP-1c; inhibition of this
transcription factor leads to a reduced expression of lipogenic genes like fatty acid
synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) (Horton et al.
2002), thereby inhibiting enzymatic activity and eventually decreasing lipid synthe-
sis. Another mechanism is by increasing the activity of carnitine palmitoyl transfer-
ase (CPT), an important enzyme in beta oxidation of fatty acids; increased activity of
CPT results in reduced triglyceride synthesis due to reduced flux of fatty acids.
Hypocholesterolemia is another activity of saponins which is operated either by
inhibiting the enzymes of cholesterol biosynthetic pathway such as 3-hydroxy-3-
methyl-glutaryl-CoA reductase (Elekofehinti et al. 2012) or by increasing the dual
transporters in the liver, namely ABCG55 and ABCG8, which transport free choles-
terol into bile thereby reducing their level in the liver (Ji and Gong 2007). Further,
activation of AMPK/ACC signalling pathway by total saponins (Xu et al. 2018)
increased expression of lipoprotein lipase (Eu et al. 2010) and reduced expression of
fatty acid binding protein 4 (FABP4) (Bhavsar et al. 2009), which are few other
mechanisms involved in hypolipidemic effects of saponins.

10.7 Commercial Utilization and Prospects

Biotechnology makes possible to use the plant-based compounds and their
derivatives in the pharmaceutical/nutraceutical industries. It is necessary to follow
the suitable method of cultivation to achieve enhanced production of secondary
metabolites from plants. Commercial scale bioreactors were manufactured by South
Korean company Kihyung Plant Co., Ltd. The CBN Biotech Company, South
Korea, used a commercial scale bioreactor to produce ginseng adventitious root.
The company produces nearly 35 tons of adventitious roots of ginseng per year,
which are used in industries like food, cosmetics, and pharmaceutical (Murthy et al.
2014b). This is one of the fine examples of application of biotechnological tool to
meet the commercial need. By looking at the biosafety and toxicological evaluation
of ginseng adventitious roots for the human consumption, the United States Food
and Drug Administration (USFDA) and Korean Food and Drug Administration
(KFDA), ISO (9001/2000), have approved (2,030,950, dated: 06/07/2002) products
of ginseng adventitious roots and their commercial production. The ginsenosides are
one of the most important saponins produced from ginseng roots which have the
important medicinal value and high global market. These metabolites achieve the
total revenue of 2 billion American dollars. United States of America, Canada,
China, South Korea, Japan, and European countries are the major producers and
commercial users of ginsenosides (Kim et al. 2013; Gantait et al. 2020). In Japan,
company named NITTO DENKO CO. produces ginseng cell culture using large
scale bioreactors (20,000 and 25,000 L) and markets the food products from ginseng
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which are very healthy and nutritious since 1988 (Adil and Jeong 2018). Hairy roots
are one of important sources of the saponins and other metabolites; the
company named ROOTec Bioactives AG in Witterswil, Switzerland, is one such
company which produces hairy roots at industrial level (Talano et al. 2012). The
company produces high quality compounds using applied biotechnological tool to
meet the consumers’ need and world market, especially pharma and cosmetics. The
compounds are more efficient and production is rapid and is of reasonable cost
compared to chemical synthesis and conventional production. For the production of
optimum/increased level of hairy roots biomass, ROOTec came with a new bioreac-
tor named “ROOTec Mist Bioreactor” (Talano et al. 2012). Some of the saponin
compounds which are used in the pharmaceutical field are Madessol®, Centellase®,

and Blastoestimulina®. These extracts are used in the form of tablets, drops,
ointments, powder, and injections (Gallego et al. 2014).

10.8 Conclusion and Recommendation

Saponins are plant-derived triterpene glycosides that have commercial applications
in the food, pharmaceutical, and cosmetic industry. Saponins being a chief metabo-
lite present in many medicinally important plants, there is a need to prove their
pharmacological ability which in turn helps in formulating the medicines in high
market demand. There is a huge demand for these metabolites (saponins) because of
their pharmacological importance and there is a need for their extensive mass
production using biotechnological applications. There are ample of research reports
on the production of saponins via in vitro method, and their applications at the
industrial/commercial level. With the help of plant tissue culture approaches like
callus and organ cultures, the secondary metabolite production can be enhanced. In
the recent times, bioreactors serve as important biotechnological tools for the
metabolite enhancement at the cellular level. Further, saponins production can be
elevated by the identification and manipulation of genes which encode the key
enzymes and alter the gene expressions, which in turn can be achieved through
metabolomics, proteomics, and transcriptomics. Metabolic engineering strategy can
be applied for the enhanced production of metabolites in less time and space.
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