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Abstract Poroelastic materials are widely used in many engineering applications.
However, the problems of poroelasticity are usually complicated, and their analytical
solutions are not often found. In this paper the semi-plane of poroelastic material
is considered for the case when the boundary is loaded by mechanical load, and
it is fully drained. The problem is formulated in a plane statement regarding two
displacements of the solid skeleton and the pore pressure. The initial problem is
reduced to a one-dimensional problem with the help of an infinite Fourier transform.
The one-dimensional problem is formulated as a vector boundary-valued problem.
The general solution of the vector homogeneous equation is constructed with the
help of matrix differential calculation. According to it, the corresponding matrix
equation is considered, and its fundamental solutions were derived. The vector of
unknown constants is found for two subcases (when the integral transform parameter
is greater than zero and when it is less than zero) from the boundary conditions. So,
the analytical solution of the initial problem is derived. The displacements, stress
and pressure inside the semi-plane are investigated. The cases of distributed and
concentrated load are considered.
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1 Introduction

The mathematical modelling of poroelastic materials is a relevant problem in many
areas of science and engineering, such as development of oil and gas fields and others.
The theory of poroelasticity was developed by Terzaghi [1] for the one-dimensional
case. The three-dimensional case and the generalization of the poroelasticity theory
was done byBiot [2]. In [3] a formulation of Biot’s linear theory suitable for problems

N. Vaysfeld · Z. Zhuravlova (B)
Odessa I.I. Mechnikov National University, Odessa 65082, Ukraine
e-mail: z.zhuravlova@onu.edu.ua

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Abdel Wahab (ed.), Proceedings of the 4th International Conference on Numerical
Modelling in Engineering, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-16-8806-5_10

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8806-5_10&domain=pdf
mailto:z.zhuravlova@onu.edu.ua
https://doi.org/10.1007/978-981-16-8806-5_10


152 N. Vaysfeld and Z. Zhuravlova

of soil mechanics was proposed. The equations of consolidation were reformulated
in terms of undrained coefficients in [4].

The static contact problem about a rigid punch on the free surface of a linear
porous elastic half-plane was solved with the use of a Fourier transform and a sin-
gular integral equation in [5]. The dynamic response of a poroelastic half-plane soil
medium subjected to moving loads was studied analytically/numerically under con-
ditions of plane strain in [6]. The loading function was presented there by a Fourier
series expansion.

It is well known that the apparatus of mathematical physics’ boundary problems
allows successful modeling of many complex dynamic problems of elasticity and
destruction [7–9]. Authors of the present investigation set as their goal the application
of the apparatus of generalized integral transforms and discontinuous problems to
the solving of poroelasticity problems.With this aim the solving of the knownmodel
problem is proposed. It is derived by analytical transforms, and the exact formulae
for the displacements, stress and pore pressure are found.

2 Statement of the Problem

The poroelastic semi-infinite plane y > 0 is considered. It’s boundary y = 0 is loaded
by the load l(x), and perfect drainage conditions are fulfilled [10]:

σy|y=0 = −l(x), τxy |y=0 = 0, p|y=0 = 0 (1)

Here p(x, y) is pore pressure, σy(x, y), τxy(x, y) are normal and shear effective
stresses.

The system of equilibrium and storage equations has the following form [11]
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where u(x, y) = ux (x, y), v(x, y) = uy(x, y) are displacements of the solid skele-
ton, κ = 3 − 4μ is Muskhelishvili’s constant, μ is Poisson ratio,G is shear modulus,
α is Biot’s coefficient, Sp is storativity of the pore space, k is permeability.

The stress state of the semi-plane, which satisfy (1)–(2) should be found.
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3 One-Dimensional Problem

The initial problem (1)–(2) is reduced to the one-dimensional problem with the help
of infinite Fourier transform applied with regard to variable x :

⎡
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⎦ =
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−∞

⎡
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⎦ eiγxdx

The one-dimensional problem in the transform space is formulated in vector form
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the homogeneous equation in (3) is constructed with the help of matrix differential
calculation [12]. Accordingly to it the corresponding matrix equation is consid-
ered L2Yγ = 0. The matrix Yγ is chosen in the form Yγ = eηy I and substituted
into the matrix equation. So, the equality L2eηy I = M(η)eηy is derived, where
M(η) = Iη2 − Rη + P .

The solution of the matrix homogeneous equation is constructed in the form [13]

Y (y) = 1

2πi

∮

eηyM−1(η)dη,

here M−1(η) is the inverse matrix to M(η).
The determinant of the matrix M(η) has four different roots η1,2 = ±γ, η3,4 =

±
√

γ2 + Sp
k + α2(κ−1)

GK (κ+1) , so there are derived four fundamental matrix solutions

Yi (y), i = 1, 4. The matrix solution Y3(y) corresponding to the root√

γ2 + Sp
k + α2(κ−1)

GK (κ+1) is not considered, because the components of the matrix are
increasing when y > 0.

The general solution of the problem (3) has the following form

yγ(y) = Y−(y)

⎛
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⎞
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Here Y−(y) =
{
Y1(y) + Y4(y), γ < 0,

Y2(y) + Y4(y), γ > 0,
ci , i = 1, 2, 3 are constants which are

found for each form of Y−(y) from boundary conditions in (3).

4 Analytical Solution

After inversion of the expression (4) the analytical solution of the initial problem (2)
has the following form
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(5)
Here ci, j , i = 1, 2, j = 1, 2, 3 are constants found from boundary conditions in (3),
index i = 1 corresponds to the case when γ < 0, and index i = 2 corresponds to the
case when γ > 0.

5 Graphical Results and Discussion

The calculations were done for Ruhr sandstone [10], where G = 1.33 · 1010 N/m2,

μ = 0.12,α = 0.637, k = 2 · 10−13 m4/N · s, Sp = 3.9215 · 10−11 m2/N.
The case with concentrated load l(x) = δ(X) is considered, and the results are

presented on Figs. 1 and 2. As the load is symmetric, pore pressure and normal
effective stress are symmetric. The biggest absolute values for these functions are
reached when x = 0.

At the line y = 1 pore pressure (Fig. 1) is positive, decreasing to zero some way
away from the point x = 0. This is caused by the drainage, which starts at the bound-
ary of the semi-plane y = 0, andwhich produce a tendency for shrinkage of the semi-
plane’s boundary. The effective stress σy(x, 1) (Fig. 2) is negative, which is agreed
with the compressive concentrated load. Stress’s σy(x, 1) peak is at the point x = 0,

where the load is applied. The case with distributed load l(x) =
{
1,−1 < x < 1

0, x /∈ [−1, 1]
is considered. The results are shown in Figs. 3 and 4. The load is symmetric, so pore
pressure and normal effective stress are symmetric. The biggest absolute values for
these functions are reached when x = 0.

The pore pressure (Fig. 3) is positive at the line y = 1, decreasing to zero some
way away from the point x = 0. The values of p(x, 1) for this load are bigger than
for the case with the concentrated load. The values of effective stress σy(x, 1) (Fig. 4)
for this load are also bigger by absolute value than for the case with the concentrated
load.
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Fig. 1 Pore pressure

Fig. 2 Effective stress

Fig. 3 Pore pressure



156 N. Vaysfeld and Z. Zhuravlova

Fig. 4 Effective stress

6 Conclusions

1. The analytical solution for poroelastic semi-plane is constructed with the help of
the integral transform method and apparatus of matrix differential calculation.

2.Normal and shear effective stress, andpore pressure are investigated for different
mechanical loads.

3. The comparison of the given problem results was done for the case when
parameter α = 0 with the given known solution for elastic half-space.

4. The proposed approach can be used for a more complicated shape of domains
weakened by defects.
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