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Preface

This volume contains the proceedings of the 4th International Conference on Numer-
ical Modelling in Engineering: Volume 2: Numerical modelling in Mechanical and
Materials Engineering. Numerical Modelling in Engineering NME 2021 is the 4th
NME conference and is held Online via MS Teams, during the period 24–25 August,
2021. PreviousNMEconferenceswere celebrated inGhent, Belgium (2018),Beijing,
China (2019) and Online (2020).

The overall objective of the conference is to bring together international scientists
and engineers in academia and industry in fields related to advanced numerical tech-
niques, such as FEM,BEM, IGAand their applications to awide range of engineering
disciplines. The conference covers industrial engineering applications of numerical
simulations to Civil Engineering, Aerospace Engineering, Materials Engineering,
Mechanical Engineering, Biomedical Engineering, etc. The presentations of NME
2018 are divided into 2main sessions, namely (1) Civil Engineering and (2)Mechan-
ical and Materials Engineering. This volume is concerned with the applications to
Mechanical and Materials Engineering.

The organising committee is grateful to keynote speaker, Professor Yaroslav
D. Sergeyev, University of Calabria, Rende, Italy and Lobachevsky State Univer-
sity, Nizhni Novgorod, Russia, for his keynote speech entitled ‘Computations with
numerical infinities and infinitesimals’.

Special thanks go to members of the Scientific Committee of NME 2021 for
reviewing the articles published in this volume and for judging their scientific merits.
Based on the comments of reviewers and the scientific merits of the submitted
manuscripts, the articles were accepted for publication in the conference proceedings
and for presentation at the conference venue. The accepted papers are of a very high
scientific quality and contribute to advancement of knowledge in all research topics
relevant to NME conference.

vii



viii Preface

Finally, the organising committee would like to thank all authors, who have
contributed to this volume and to those who have presented their research work
at the conference in MS Teams.

Zwijnaarde, Belgium Professor Magd Abdel Wahab
Chairman of NME 2021
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Dynamic Analysis of 3D Solid Structure
Using a Consecutive-Interpolation Over
Polyhedral Element Mesh

Hau Nguyen-Ngoc, H. Nguyen-Xuan, and Magd Abdel Wahab

Abstract In this study, we investigate the dynamic performance of the three-
dimensional solid structures by using the latest development of a consecutive-
interpolation scheme. The structure is discretized into finitely arbitrary polyhedral
elements. The bounded faces of an element can be non-planar. The interpolation
scheme is constructed through twomain steps. The first step uses the piecewise linear
shape functions, which are also formulated for arbitrary polyhedral elements. The
second step is formulated based on the fact of continuity of the nodal strains, which
could only be satisfied by post-processing in the conventionally polyhedral finite
element method (PFEM). The natural frequencies of the solid structures are anal-
ysed by a dynamic problem. The efficiency of the method is approved by comparing
the obtained solutions to those of the conventional finite elementmethod (FEM) using
tetrahedral elements and PFEM, which are two methods effectively implemented for
complex solids.

Keywords Consecutive-interpolation scheme · Dynamic problem · Natural
frequencies · Arbitrary polyhedral elements · Complex solids
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1 Introduction

Polyhedral shape is a 3D geometry that is favourite by nature and can be seen around
us, such as turtle shells, honeycomb, pineapple, crystals, etc. In the framework of
computational analysis, the polytopes were firstly applied in FEM in 1970s when
the interpolation schemes over polygonal domains were developed. Wachspress [1]
was a pioneering scientist presented linear interpolation formulation over elements
with more than four vertices based on element geometry and rational functions,
whichwere solved by using special technique. These interpolation functions arewell-
known asWachspress shape functions. This is the first step to change from traditional
FEM using tetrahedral or hexahedral elements to the use of a more general mesh of
polyhedral elements. The polygonal/polyhedral finite element method provides a
great potential in modelling problems of polycrystalline materials [2], intermediate
elements to connect different meshes sharing a same boundary [3], cell base material
design [4]. Additionally, the pFEM is also applied to the problems of topology
optimization [5], plates [6] or fluid flows [7].

In the earlier development of the polygonal/polyhedral finite element method, the
interpolation scheme was firstly proposed for convex 2D polygons with arbitrary
number of vertices [1]. Thereafter, more general polygonal elements, which possess
irregular (concave) shapes, were taken into account to increase the flexibility of the
polygonal finitemesh [8]. In the three-dimensional problems, the simplest polyhedral
interpolants were presented for convex polyhedron bounded by triangular faces [9].
Whereas, the polyhedral elements with arbitrary number of vertices and edges, and
the facets which can be non-planar, are the latest arbitrary elements [10, 11].

The consecutive interpolation (CI) scheme was firstly developed for two-
dimensional mechanics problems discretized into linear triangular elements [12],
in which the nodal displacement unknowns are approximated through two steps.
Firstly, the interpolation scheme is assumed to be similar to conventional FEM.
Whereas, the problem domain is discretized into 4-node triangular elements and the
conventional finite formulations were formulated based on linear shape functions of
triangles. It should be noted that only the shape functions and its derivatives were
constructed. Secondly, the consecutive shape functions with high-order polynomials
were re-formulated based on the average nodal derivatives. Due to the process of
formulating the consecutive shape functions, it can be named as a twice-interpolation
finite element method. The adjacent nodes of interest element are considered for
interpolating the objective variables, which are displacements, strains and stresses,
in the CI scheme. Thus, it will increase the smoothness of the obtained solutions.
After that, the method was implemented in different element types. For example, the
2D elasticity problems meshed into quadrilateral elements were presented by Bui
et al. [13]. For 3D problems, tetrahedral and hexahedral elements can be found in
the studies of Nguyen et al. [14, 15].

In this study, the consecutive interpolation scheme over 3D arbitrary star-convex
polyhedral elements based on piecewise linear shape functions [16] is implemented
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in the analysis of dynamic problems of solid structures. Then, the efficiency of the
method will be further investigated.

2 Formulations of Consecutive Interpolation Over
Arbitrary Star-Convex Polyhedron (CIPFEM)

Let us consider a three-dimensional domain Ω with a boundary G = Gt ∪ Gu and
Gt ∩ Gu = ∅. Whereas, the bounded domain Ω is divided into a set of n finite non-
overlapping arbitrary polyhedral elements,Ω ≈ Ωh = ⋃n

1�e. The consecutive shape
functions and their derivatives based on PFEM at a point of interest x are explicitly
formulated as follows:

Ns(x) =
ne∑

i=1

(

∅i (x)Li
s + ∅i x (x)L

i

s,x + ∅iy(x)L
i

s,y + ∅i z(x)L
i

s,z

)

(1)

∇Ns(x) =
ne∑

i=1

(

∇∅i (x)Li
l + ∇∅i x (x)L

i

s,x + ∇∅iy(x)L
i

s,y + ∇∅i z(x)L
i

s,z

)

(2)

where ∅i (x), ∅i x (x), ∅iy(x) and∅i z(x) are the auxiliary functions formulated as:

∅i = Ni + N 2
i (�1 − Ni ) − Ni

(
�2 − N 2

i

); i ∈ {1, . . . , ne} (3)

∅i x =
ne∑

j=1, j �=i

(
x j − xi

)[
N j N

2
i + 0.5Ni N j

(
�1 − Ni − N j

)]; i ∈ {1, . . . , ne} (4)

where xi and xj are the x-coordinate of nodes i and j of element containing point of
interest x, respectively. The formulations of ∅iy and ∅i z are similar to the Eq. (4),
in which the x-coordinates are replaced by y- and z-coordinates instead. Ni is the
piecewise linear shape functions (PFEM) of node vi at point of interest x.

L
i

s,x ,L
i

s,y andL
i

s,z are the average derivatives of each vertex vs based on the s-node
support region Ri, which is the collection of all polyhedral element connecting to
vertex vi, as follows:

∇L
i

s =
∑

e∈Ri

We∇L
i[e]
s (5)

and∇L
i[s]
j =

∑

s∈Si
Wk∇Li[s]

j (6)
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with Si is the collection of all sub-tetrahedra connecting to vertex vi of interest
element. Wk and We are the weight functions given as

Wk = Vk
∑

k̃∈Si Vk̃

,with k ∈ Si andWe = Ve
∑

ẽ∈Si Vẽ
,with e ∈ Ri (7)

where Vk and Ve are the volume of each sub-domain in Si and volume of element in
Ri, respectively. L = N is the PFEM shape functions.

The natural frequency of the solid structure is determined based on the equation

Kd + Md̈ = 0 (8)

where d and d̈ are the displacement and acceleration fields, respectively.
K and M are the stiffness matrix and mass matrix of the problem’s domains

formulating by using CI shape functions as follows

K = Ki j =

⎡

⎢
⎢
⎢
⎣

∫
�
BT
1DB1d�

∫
�
BT
1DB2d� . . .

∫
�
BT
1DBnd�∫

�
BT
2DB1d�

∫
�
BT
2DB2d� . . .

∫
�
BT
2DBnd�

...
...

. . .
...∫

�
BT
nDB1d�

∫
�
BT
nDB2d� . . .

∫
�
BT
nDBnd�

⎤

⎥
⎥
⎥
⎦

(9)

andM = Mi j =

⎡

⎢
⎢
⎢
⎣

∫
�
NT

1ρN1d�
∫

�
NT

1ρN2d� . . .
∫

�
NT

1ρNnd�∫
�
NT

2ρN1d�
∫

�
NT

2ρN2d� . . .
∫

�
NT

2ρNnd�
...

...
. . .

...∫
�
NT

nρN1d�
∫

�
NT

nρN2d� . . .
∫

�
NT

nρNnd�

⎤

⎥
⎥
⎥
⎦

(10)

with B is the transformation matrix and N is the matrix of CI shape functions.

3 Numerical Analysis

The dynamic analysis of the CIPFEM is performed for an experimental complex
cantilever step-beam. The first three natural frequencies of the beam are predicted
by present method and, then, they are compared to those of PFEM [11, 17], T4,
ANSYS, empirical data [18] and CT4. The codding is performed on the MATLAB
program. The dimensions of the cantilever step-beam are 463.55 mm in length and
3.175 mm in width. The beam is made of aluminium with Young’s modulus E =
60.6 GPa, density ρ = 2664 kg/m3 and Poisson’s ratio ν = 0.3.

Various mesh types are used, which are shown in Fig. 1. Whereas, tetrahedral
elements are used for T4 and CT4 methods. Structured and unstructured polyhedral
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a) Step-beam dimensions. Unit in mm b) Tetrahedral mesh for T4 and CT4

c) Unstructured polyhedral elements    d) Structured polyhedral elements

Fig. 1 Illustrations of step-beam and meshes used for numerical analysis

elements are for PFEM and CIPFEM. Table 1 presents the meshes used for numer-
ical investigation, in which h (mm) is the average element size of the mesh. In the
table, the solutions of mode 1 natural frequency obtained by numerical approaches
are compared to that of empirical results. As it can be observed that the errors in
percentage of the first mode frequency predicted by present CIPFEM for the coarsest
mesh are respectively 7.5 and 1.5% corresponding to structured and unstructured
polyhedral meshes, respectively. While CT4 produces 22.1% error, and for predic-
tions of PFEM and T4, those values are orderly 35.9, 45.4 and 89.9%. In the second
mesh, those errors of CIPFEM frequency reduce to 0.5 and 0.0%. The data shows that
the predictions of CIPFEM in terms ofmode 1 natural frequency of the complex step-
beam are converged with a very coarse mesh, which is superior to CT4 that reaches
convergence at the third mesh. Additionally, the results obtained by CIPFEM are far
more accurate than conventional PFEM and T4 due to the higher order of CI shape

Table 1 Details of mesh resolutions and errors in percentage of mode 1 natural frequency of results
obtained by numerical approaches compared to empirical results

Structured
polyhedral mesh

CIPFEM-S Unstructured
polyhedral mesh

CIPFEM-U Tetrahedral mesh CT4

No. of
Ele.

h f (Hz) No. of
Ele.

h f (Hz) No. of
Ele.

h f (Hz)

1396 4.8 11.4 1876 4.8 10.8 5793 4.7 13.0

2920 3.8 10.6 3317 3.5 10.6 13,966 3.5 11.5

7500 2.8 10.5 7961 2.7 10.5 25,052 2.8 10.7

13,989 2.2 10.5 12,768 2.2 10.5 43,347 2.3 10.6

* The empirical frequency of mode 1 is f 1 = 10.63 Hz
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Fig. 2 Convergence graph of the first natural frequency using various numerical approaches

functions. Figure 2 illustrates the data of firstmode frequency inTable 1,which shows
the convergence trend with respect to element size h. Herein, the visible comparison
of the obtained mode 1 frequency is carried out for various numerical methods. As
it can be seen that, the results of CIPFEM for structured mesh are similar to those of
unstructured mesh, which shows the present CIPFEM is not sensitive to the distor-
tion of the mesh and it can work well for various mesh types as long as the elements
are star-convex. As expected, after convergence, the frequencies of CIPFEM are
reaching the reference ones, which are the solution of ANSYS. There is a small gap
(1.8%) between ANSYS and experimental results because the real beam cannot be
exactly numerically modelled. There is always an error due to constructing activity,
non-homogeneity of material, etc. The second meshes of all the studied cases are
used for further investigation of the natural frequencies of the first threemodes, which
are shown in Table 2. The table also shows the differences in percentage between
values of corresponding methods and experimental data. As it can be seen, 0.8% is
the maximum deviation of CIPFEM’s results, while that difference of CT4 is 8.2%.

Shortly, in this numerical example, the natural frequencies of the first 3 modes
of an experimental step-beam are used to evaluate the present CIPFEM. It can be
concluded that the CIPFEM can be used effectively to predict the natural frequencies

Table 2 Comparison of natural frequencies between experimental data, CIPFEM and CT4

Mode Exp CIPFEM_S CIPFEM_U CT4

f (Hz) f (Hz) Error (%) f (Hz) Error (%) f (Hz) Error (%)

m1l 10.6 10.6 0.5 10.6 0.0 11.5 7.8

m2l 66.8 66.5 0.4 66.7 0.0 72.2 8.2

m1b 49.4 50.0 1.2 49.8 0.8 50.3 1.8
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of dynamic problems. The solutions of CIPFEM reach the exact values with very
coarse mesh compared to CT4, PFEM and T4. Additionally, the method can be
applied for various element types as long as they are arbitrary star-convex polyhedral
elements, which include 4-node tetrahedral elements.

4 Conclusion

This article presents the implementation of CIPFEM in dynamic analysis of three-
dimensional solid structures. The MATLAB program is used to compile the studied
method. The empirical natural frequencies of a cantilever step-beam were used to
evaluate those values approximated by CIPFEM. Some conclusions are derived as
following:

• With the same mesh size, the CIPFEM gives more accurate results than CT4,
PFEM and conventional FEM using linear tetrahedral elements (T4). Therefore,
the CIPFEM can be used effectively for dynamic problems of three-dimensional
solid structures.

• The CIPFEM can be applied for various element types, which is a great advantage
for complex structures meshing into arbitrary star-convex elements.
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Study of Forced Vibrations of a
Two-Layer Plate Under Harmonic Load

Vitaly N. Paimushin, Vyacheslav A. Firsov, Victor M. Shishkin,
and Ruslan K. Gazizullin

Abstract We propose a technique for the numerical study of the dynamic response
under forced harmonic vibrations of a rectangular two-layer plate consisting of a
main rigid layer and a low-rigid damping layer. The material of the rigid layer is
considered to be isotropic and perfectly elastic. The dynamic deformation of the
damping layer material is described by linear physical equations of a viscoelastic
solid, which represent a generalization of the Kelvin-Voigt hypothesis for the case
of a complex stress state. It is believed that a plate with a damping layer deforms
according to the classical Kirchhoff-Love hypotheses. A rectangular two-layer finite
element with twenty degrees of freedom has been developed to model the inertial,
stiffness and damping properties of the plate layers. A system of differential motion
equations of a finite element model of the plate under harmonic load is obtained.
A solution of the resulting system is sought in the form of decomposition of nodal
displacement vector of the finite-element model according to eigenforms, which
leads to a system of equations of a significantly smaller order relative to the vector of
modal coordinates of the plate. Numerical experiments were carried out to determine
the dynamic response of a rectangular hingedly supported two-layer plate under the
action of a surface harmonic load with a frequency varying from zero to 200 Hz
for the cases with and without taking into account the damping properties of the
viscoelastic layer material. The plate was divided into 144 elements (12 elements
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in the direction of each side). It is shown that taking into accont of the damping
properties significantly limits the vibration amplitudes and dynamic stress of the
plate only under vibrations in the resonance zone. At the same time, far from this
zone the damping properties of thematerial can be practically ignored. It is noted that
in the case of the uniform harmonic pressure applied over the whole area of the plate,
the resonance oscillations are excited only at those frequencies which correspond to
the eigenforms with an odd number of half-waves in the direction of each side of the
plate. To determine the lower part of the spectrum of eigenforms and frequencies the
subspace iteration method has been used.

1 Introduction

Modern thin-walled structures have a rather dense spectrum of natural frequencies
and can operate under a wide frequency range of disturbing forces. This fact compli-
cates the use of traditional methods of detuning from resonance and application of
various kinds of damping devices. This is especially true for aircraft designs, where
the use of such methods and devices is practically excluded. Hence, the ability of
the structure itself to damp dangerous resonant vibrations, preventing the occurrence
of significant displacements and overloads, becomes crucial. However, it should be
noted that the majority of structural materials (such as metals, alloys and composites)
along with their high strength and stiffness have a very low damping capacity [1].
Moreover, for many structures the main cause of energy dissipation under resonance
is friction in the joints of their individual elements (structural damping), which is a
difficult to predict factor. Therefore, in order to increase the damping parameters and
to reduce the dynamic stress of thin-walled structures, their elements are often made
as a two-layer structures which are consist in thickness of a rigid durable layer and a
relatively low-rigid coating with high damping properties. Such elements as a way to
reduce overloads are currently widespread in aircraft shipbuilding, automotive and
civil construction [2]. Various elastomers, mastics and polymeric compounds are
used as damping coatings.

The aim of this work is a numerical study of the forced vibrations of a rectangular
plate with a viscoelastic damping layer under a harmonic load varying over a wide
frequency range (including resonance) based on the finite elementmethod. This study
makes it possible to evaluate the effect of the damping properties of the viscoelastic
layer on the dynamic stress of the plate over the entire range of specified frequencies.

2 Rectangular Finite Element with Viscoelastic Damping
Coating

The element consists of two layers (Fig. 1): a rigid isotropic layer 1 and a low-rigid
damping layer 2 (Fig. 1a). The element is under the action of a surface dynamic load
q(x, y, t). Since the viscoelastic damping layer is low-rigid, it can be assumed that
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Fig. 1 Rectangular finite element of a two-layer plate

the element is deformed according to the classical Kirchhoff–Love hypotheses. The
nodes of the element are located on the middle surface of layer 1. Each node i(i =
1, 2, 3, 4) has five degrees of freedom (Fig. 1b): deflection wi ; displacements ui , vi
in the plane 0xy and angles θi , ψi of rotation about the axes 0x, 0y, respectively.

Let us introduce vectors

u =

⎧
⎪⎪⎨

⎪⎪⎩

u1
u2
u3
u4

⎫
⎪⎪⎬

⎪⎪⎭

, v =

⎧
⎪⎪⎨

⎪⎪⎩

v1
v2
v3
v4

⎫
⎪⎪⎬

⎪⎪⎭

, w =

⎧
⎪⎪⎨

⎪⎪⎩

w1

w2

w3

w4

⎫
⎪⎪⎬

⎪⎪⎭

, θ =

⎧
⎪⎪⎨

⎪⎪⎩

θ1
θ2
θ3
θ4

⎫
⎪⎪⎬

⎪⎪⎭

, ψ =

⎧
⎪⎪⎨

⎪⎪⎩

ψ1

ψ2

ψ3

ψ4

⎫
⎪⎪⎬

⎪⎪⎭

.

The displacements u, v of an arbitrary point of the middle surface of an element are
represented by the expressions

u = Su, v = Sv, (1)

where S is the row matrix of basis functions Hi (i = 1, 2, 3, 4) depending on the
dimensionless coordinates ξ = x/a and η = y/b of the element:

H1 = (1 − ξ) (1 − η)/ 4 ; H2 = (1 + ξ) (1 − η)/ 4 ;
H3 = (1 + ξ) (1 + η)/ 4 ; H4 = (1 − ξ) (1 + η)/ 4 .

Dependencies (1) can be represented as a single matrix expression

{
u
v

}

= Hrα, (2)

where

H =
[
H1 0 H2 0 H3 0 H4 0
0 H1 0 H2 0 H3 0 H4

]

; rα = {u1 v1 u2 v2 u3 v3 u4 v4}.
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To reproduce the bending state of the plate, we define the deflection w in the
form

w = fT c,

f = {1 x y x2 y2 xy x2y x y2 x3 y3 x3y x y3},
c = {c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11}.

(3)

According to the accepted hypotheses, the angles of rotation of the plate cross sections
with x and y coordinates are defined by expressions

θ = ∂w

∂y
= ∂ fT

∂y
c, ψ = ∂w

∂x
= ∂ fT

∂x
c. (4)

Element nodes have coordinates x1 = −a, y1 = −b, x2 = a, y2 = −b, x3 =
a, y3 = b, x4 = −a, y4 = b. Substituting these coordinates into expressions (3)
and (4), we obtain a system of twelve linear algebraic equations

Ac = rβ (5)

with a matrix A depending on the coordinates of the element’s nodes and the right-
hand side rβ = {w1 ψ1 θ1 w2 ψ2 θ2 w3 ψ3 θ3 w4 ψ4 θ4}. After finding the vec-
tor c from system (5) and its substitution in approximation (3), we come to the
expression

w = fTA−1rβ,

From here, we can find the basis functions that determine the relationship between
the deflection w and the components of the finite element vector rβ :

N j = fTA j ( j = 1, 2, ... , 12).

Here A j are the j-th columns of the matrix A−1, which is inverse to the matrix A.
However, it should be noted that the procedure for analytical inversion of the

matrixA using traditional (manual) technologies is practically unrealistic. The solu-
tion to the problem can be found in the application of symbolic calculation mode of
the mathematical package MATLAB [3], which makes it possible to quickly find the
functions N j :
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N1 = (2 − 3ξ − 3η + 4ξη + ξ 3 + η3 − ξ 3η − ξη3)/8,

N2 = a(1 − ξ − η − ξ 2 + ξη + ξ 2η + ξ 3 − ξ 3η)/8,

N3 = b(1 − ξ − η − η2 + ξη + ξη2 + η3 − ξη3)/8,

N4 = (2 + 3ξ − 3η − 4ξη − ξ 3 + η3 + ξ 3η + ξη3)/8,

N5 = a(−1 − ξ + η + ξ 2 + ξη − ξ 2η + ξ 3 − ξ 3η)/8,

N6 = b(1 + ξ − η − η2 − ξη − ξη2 + η3 + ξη3)/8,

N7 = (2 + 3ξ + 3η + 4ξη − ξ 3 − η3 − ξ 3η − ξη3)/8,

N8 = a(−1 − ξ − η + ξ 2 − ξη + ξ 2η + ξ 3 + ξ 3η)/8,

N9 = b(−1 − ξ − η + η2 − ξη + ξη2 + η3 + ξη3)/8,

N10 = (2 − 3ξ + 3η − 4ξη + ξ 3 − η3 + ξ 3η + ξη3)/8,

N11 = a(1 − ξ + η − ξ 2 − ξη − ξ 2η + ξ 3 + ξ 3η)/8,

N12 = b(−1 + ξ − η + η2 + ξη − ξη2 + η3 − ξη3)/8

Having functions N j , the deflection w can be represented as

w = Nrβ = [ N1 N2 ... N12 ] rβ (6)

According to the Kirchhoff–Love hypotheses, it can be assumed that each layer
of the plate is in a plane stress state with normal stresses σx , σy and shear stress τxy .
These stresses correspond to linear strain εx , εy and shear angle γxy determined by
geometric relationships

εx = ∂

∂x

(

u − z
∂w

∂x

)

= ∂u

∂x
− z

∂2w

∂x2
, εy = ∂

∂y

(

v − z
∂w

∂y

)

= ∂v

∂y
− z

∂2w

∂ y2
,

γxy = ∂

∂x

(

v − z
∂w

∂y

)

+ ∂

∂y

(

u − z
∂w

∂x

)

= ∂v

∂x
+ ∂u

∂y
− 2z

∂2w

∂x∂y
.

The z coordinate for layer 1 varies within the limits −h1/2 ≤ z ≤ h1/2 , for layer
2 within the limits h1/2 ≤ z ≤ h1/2 + h2. It is convenient to write the presented
dependencies in dimensionless coordinates ξ and η of the element:

εx = 1

a

∂u

∂ξ
− z

1

a2
∂2w

∂ξ 2
; εy = 1

b

∂v

∂η
− z

1

b2
∂2w

∂η2
;

γxy = 1

a

∂v

∂ξ
+ 1

b

∂u

∂η
− 2z

ab

∂2w

∂ξ∂η
.

(7)

Let us introduce the vector ε = {εx εy γxy} and differentiating operators

AT
α =

[
1
a

∂
∂ξ

0 1
b

∂
∂η

0 1
b

∂
∂η

1
a

∂
∂ξ

]

, AT
β =

[
1
a2

∂2

∂ξ 2
1
b2

∂2

∂η2
2
ab

∂2

∂ξ∂η

]
.
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Then dependences (7) can be represented as a single matrix expression

ε = Aα

{
u
v

}

− zAβw. (8)

Substituting then representations (8) and (2) into (6), we obtain the connection
between strains and nodal displacements of the finite element:

ε = AαHrα − zAβNrβ.

The resulting expression can be represented as

ε = Bαrα − zBβrβ, (9)

where

Bα = AαH = [
Bα,1 Bα,2 Bα,3 Bα,4

]
, Bβ = AβN = [

Bβ,1 Bβ,2 ... Bβ,12
]
.

BlocksBα,i (i = 1, 2, 3, 4) andBβ, j ( j = 1, 2, ..., 12) are definedby expressions

BT
α,i =

[
1
a

∂Hi
∂ξ

0 1
b

∂Hi
∂η

0 1
b

∂Hi
∂η

1
a

∂Hi
∂ξ

]

, BT
β, j =

[
1
a2

∂2N j

∂ξ 2
1
b2

∂2N j

∂η2
2
ab

∂2N j

∂xi∂η

]
. (10)

Thematerial of the rigid and damping layers of the plate is considered as isotropic.
To take into account the material elastic and damping properties, linear physical
dependences can be used

σ k = Dkε + Dg,k ε̇. (11)

These dependences represent a generalization of the Kelvin–Voigt model [4, 5] for
the case of the material complex stress state. Here σ k = {σx σy τxy}k (k = 1, 2)
are stresses k-th layer of the plate; Dk, Dg,k are the stiffness matrix and the damping
matrix of thematerial of this layer, respectively. For an isotropic viscoelastic material
in a plane stressed state, the matrices Dk and Dg,k will be of the following form [6]:

Dk =
⎡

⎣
Ek/(1 − ν2

k ) Ekνk/(1 − ν2
k ) 0

Ekνk/(1 − ν2
k ) Ek/(1 − ν2

k ) 0
0 0 Gk

⎤

⎦ ;

Dg,k = 1

πω

⎡

⎣
Ekδε,k/(1 − ν2

k ) Ekδε,kνk/(1 − ν2
k ) 0

Ekδε,kνk/(1 − ν2
k ) Ekδε,k/(1 − ν2

k ) 0
0 0 δγ,kGk

⎤

⎦ .

Here Ek ,Gk , δε,k , δγ,k are elastic moduli and logarithmic decrements of vibrations of
the layers’material under tension-compression and shear; νk are Poisson’s ratios;ω is
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the circular frequency of material deformation. Taking into account (9), dependences
(11) are obtained as follows:

σ k = Dk(Bαrα − zBβrβ) + Dg,k(Bα ṙα − zBβ ṙβ). (12)

The first summand in (12) represents the elastic part of the stresses, which linearly
depends on the nodal displacements rα and rβ of the element, the second summand
is the inelastic part arising from the damping properties of the material and linearly
depending on the nodal velocities ṙα and ṙβ .

Let us write down the virtual work of the elastic part of the stresses in the rigid
layer of the plate on the virtual strain δε of this layer:

δA1 = −
h1/2∫

−h1/2

a∫

−a

b∫

−b

δεTD1(Bαrα − zBβrβ) dxdydz.

Substituting here relation (9), we obtain

δA1 = −
h1/2∫

−h1/2

a∫

−a

b∫

−b

(δrTαB
T
α − z δrTβ B

T
β )D1(Bαrα − zBβrβ) dxdydz.

After integration over the z coordinate, the last expression takes the form

δA1 = −h1δrTα

a∫

−a

b∫

−b

BT
αD1Bαdxdy rα − h31

12
δrTβ

a∫

−a

b∫

−b

BT
β D1Bβdxdy rβ. (13)

Let us introduce a vector r(e) = {rα rβ} containing all nodal displacements of the
finite element. Taking into account this vector, expression (13) can be reduced to the
form

δA1 = −δ
(
r(e)

)T
K1r(e)

whereK1 is the block-diagonal matrix representing the contribution of layer 1 to the
stiffness matrix of the finite element:

K1 =
[
Kαα,1 0
0 Kββ,1

]

.

Blocks Kαα,1 and Kββ,1 defined by expressions

Kαα,1 = h1

a∫

−a

b∫

−b

BT
αD1Bαdxdy = h1ab

1∫

−1

1∫

−1

BT
αD1Bαdξdη, (14)
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Kββ,1 = h31
12

a∫

−a

b∫

−b

BT
βD1Bβdxdy = h31

12
ab

1∫

−1

1∫

−1

BT
βD1Bβdξdη. (15)

From expressions (10) it follows that the product BT
αD1Bα quadratically depends

on the dimensionless coordinates ξ and η of the element. In this case, the Gaussian
formula [7] with two points in each coordinate direction can be used to calculate the
integral in (14) accurately.

1∫

−1

1∫

−1

BT
αD1Bαdξdη =

2∑

m=1

2∑

n=1

BT
α (ξm, ηn)D1Bα(ξm, ηn)QmPn, (16)

where ξ1 = η1 = −0.57735 and ξ2 = η2 = 0.57735 are coordinates of Gaussian
points; Q1 = Q2 = P1 = P2 = 1 are weight factors. In the product BT

βD1Bβ , the
largest sum of the degrees of coordinates ξ and η, as again follows from (10), is
equal to four. Therefore, to accurately calculate the integral in (15), it is necessary to
take the Gaussian quadrature with three points along each of the element coordinates
ξ and η:

1∫

−1

1∫

−1

BT
βD1Bβdξdη =

3∑

m=1

3∑

n=1

BT
β (ξm, ηn)D1Bβ(ξm, ηn)QmPn, (17)

ξ1 = η1 = −0.77460; ξ2 = η2 = 0; ξ3 = η3 = 0.77460;Q2 = P2 = 0.88888;Q1 =
Q3 = P1 = P3 = 0.55555.

Similarly, the contribution to the stiffness matrix of the element of the second
(damping) layer is obtained:

K2 =
[
Kαα,2 Kαβ,2

KT
αβ,2 Kββ,2

]

;

Kαα,2 = h2ab

1∫

−1

1∫

−1

BT
αD2Bαdξdη; (18)

Kαβ,2 = −1

2
h22

(
h1
h2

+ 1

)

ab

1∫

−1

1∫

−1

BT
αD2Bβdξdη; (19)

Kββ,2 = h32
12

(

3
h21
h22

+ 6
h1
h2

+ 4

)

ab

1∫

−1

1∫

−1

BT
βD2Bβdξdη. (20)
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The integrals in expressions (18) and (19) are found at the same Gaussian points and
weight factors as in formula (16). The integral in (20) is calculated by formula (17)
with the replacement of the matrix D1 in it by the matrix D2. The complete stiffness
matrix of a finite element is obtained by summing the contributions of the rigid and
damping layers:

K(e) =
[
Kαα,1 0
0 Kββ,1

]

+
[
Kαα,2 Kαβ,2

KT
αβ,2 Kββ,2

]

.

In a similar form one can write down a finite element damping matrix:

C(e) =
[
Cαα,1 0
0 Cββ,1

]

+
[
Cαα,2 Cαβ,2

CT
αβ,2 Cββ,2

]

.

ThematrixC(e) blocks are found according to the same formulas as the corresponding
matrixK(e) blocks with the replacement of stiffness matrices Dk (k = 1, 2) in them
by damping matrices Dg,k .

Let us proceed to the construction of the finite element massmatrixM(e). Building
this matrix, we can consider that the volume forces of inertia are caused only by
accelerations ẅ in the direction of the 0z axis of the element. Let us write down
virtual work of these forces on virtual displacements δw of the element:

δA = −hρ

a∫

−a

b∫

−b

δw ẅ dxdy. (21)

Here h = h1 + h2 and ρ = (ρ1h1 + ρ2h2)/h are the thickness and average density
of the element, respectively. To represent the displacements w when determining the
inertial forces, we can take a bilinear approximation similar to representations (1):
w = Sw. Substituting this approximation into (21), we obtain

δA = −hρ δwT

a∫

−a

b∫

−b

STS dxdy ẅ.

The last expression can be represented as

δA = −δwTM(e)
w ẅ,

where

M(e)
w = hρ

a∫

−a

b∫

−b

STS dxdy = hρ ab

1∫

−1

1∫

−1

STS dξdη .

The integral in the resulting expression is calculated using the Gauss formula with
two points in each coordinate direction:
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1∫

−1

1∫

−1

STS dξdη =
2∑

m=1

2∑

n=1

ST (ξm, ηn)S(ξm, ηn)QmPn. (22)

It should be noted that the resulting matrix M(e)
w is constructed with respect to

the nodal displacements wi (i = 1, 2, 3, 4) of the finite element and has dimensions
of 4 × 4, and the total mass matrix M(e) of the element should have dimensions of
20 × 20 (in accordance with the number of nodal displacements in vector). To form
the necessary matrix we can use the following procedure

M(e) = LT M(e)
w L,

where L is control matrix of 4 × 20 size consisting of ones and zeros.
It remains to form the vector of external nodal forces (load vector) of the finite

element, which can be obtained from the expression for the virtualwork of the surface
load q(x, y, t):

δA =
a∫

−a

b∫

−b

δw q(x, y, t) dxdy . (23)

We represent the surface load and deflection w in the form

q(x, y, t) = Sq(t), w = Sw.

Here q(t) is the vector of q(x, y, t) values at the nodes of the finite element. Substi-
tuting these representations into expression (23), we obtain

δA = δw

a∫

−a

b∫

−b

STS dxdy q(t).

Hence, the components of external nodal forces in the direction of displacements wi

of the element are obtained

P(e)
w (t) =

a∫

−a

b∫

−b

STS dxdy q(t) = ab

1∫

−1

1∫

−1

STS dξdη q(t).

The integral in the last expression is calculated by formula (22). To form the load
vector of the finite element relative to the nodal displacements r(e), one can use the
previous control matrix L:

P(e)(t) = LTP(e)
w (t).
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3 Formation of the System of Resolving Equations

To obtain motion equations of a finite element, we use the Lagrange equations of the
second kind, taking its nodal displacements r(e) as generalized coordinates:

d

dt

(
∂T (e)

∂ ṙ(e)

)

− ∂T (e)

∂r(e)
= Q(e). (24)

Here, T (e) and Q(e) are the kinetic energy and the vector of generalized forces,
respectively, which take into account the elastic, damping and external nodal forces
of the finite element.

The expression for T (e) can be represented as a homogeneous quadratic form of
the element’s nodal velocities ṙ(e):

T (e) = 0.5 (ṙ(e))
T
M(e)ṙ(e).

This gives

d

dt

(
∂T (e)

∂ ṙ(e)

)

= d

dt

(
M(e)ṙ(e)

) = M(e)r̈(e),
∂T (e)

∂r(e)
= 0. (25)

The vector Q(e) in Eq. (24) can be determined using the expression

Q(e) = −∂U (e)

∂r(e)
− ∂�(e)

∂ ṙ(e)
+ P(e)(t), (26)

where, U (e), �(e) are the potential deformation energy of the finite element and the
Rayleigh dissipative function, represented in the form of the corresponding quadratic
forms

U (e) = 0.5 (r(e))
T
K(e)r(e), �(e) = 0.5 (ṙ(e))

T
C(e)ṙ(e).

Taking this into account, expression (26) takes the form

Q(e) = −K(e)r(e) − C(e)ṙ(e) + P(e)(t). (27)

After substituting (27) and (25) into (24) we obtain the system of differential motion
equations of a finite element

M(e) r̈(e) + C(e)ṙ(e) + K(e)r(e) = P(e)(t). (28)

Combining Eq. (28) for all finite elements by the method of direct stiffness
[8, 9], we obtain the equations of motion for the finite element model of the plate

Mr̈ + Cṙ + Kr = P(t). (29)



20 V. N. Paimushin

HereM, C,M, r, P(t) are the mass matrix, damping matrix, stiffness matrix, vector
of nodal displacements and vector of external nodal forces of the marked model,
respectively.

To solve system (29),weuse the expansion of the vector r in termsof eigenformsof
vibrations: r = F s(t), where F is a rectangular matrix, the columns of which are the
m lowest eigenforms, s(t) is the column of generalized coordinates. Substituting this
expansion into (29) and then using the procedure of the Bubnov-Galerkin method,
we arrive at a system of differential equations for the vector s(t):

MF s̈ + CFṡ + KFs = Q(t),

MF = FTMF, CF = FTCF, KF = FTKF, Q(t) = FTP(t).
(30)

In the case of harmonic load, the vector Q(t) can be represented in the form
Q(t) = Q0eipt , whereQ0 = FTP0; i is an imaginary unit; p is the circular frequency
of the load change; P0 is the amplitude vector of the external nodal forces of the
plate. System (30) in this case takes the form

MF s̈ + CFṡ + KFs = Q0e
ipt . (31)

The solution to system (31) will be sought in the form

s(t) = diag[ei (pt−φ)] s0. (32)

Here diag[ei (pt−φ)] is a diagonal matrix with elements ei (pt−φk ); φk is phase shift of
the vector components s0 relative to the corresponding vector componentsQ0. After
substituting (32) into system (31) and canceling the common factor eipt , we arrive
at the system of linear algebraic equations

[
KF − p2MF pCF

pCF −KF + p2MF

] {
sa
sb

}

=
{
Q0

0

}

. (33)

Vectors sa and sb consist of components

sa, k = s0, k cosφk, sb, k = s0, k sin φk .

This gives the vector s0 elements and the tangents of the angles φk :

s0, k=
√

s2a, k + s2b, k ; tgφk = sb, k/sa, k .

To clarify the φk influence on the dynamic response of the plate, let us consider
the case φk = 0. To implement such a case, the equalities sa, k = r0, k , sb, k = 0 must
be satisfied. System (33) in this case takes the form
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[
KF − p2MF pCF

pCF −KF + p2MF

] {
s0
0

}

=
{
Q0

0

}

. (34)

This gives two independent systems of equations:

(KF − p2MF)s0 = Q0, (35)

pCFs0 = 0. (36)

System (35) gives a vector s0 in the absence of damping and far from resonance.
System (36) at s0 �= 0 can be realized only under static loading (p = 0) or under the
condition CF = 0.

The same result can be obtained using substitution (32) in the caseφk = 0. System
(31) in this case takes the form

(−p2MF + i pCF + KF)s0 = Q0, (37)

Equating the real and imaginary terms on the left and right sides of system (37), we
arrive at the previous systems of equations

(KF − p2MF)s0 = Q0, pCFs0 = 0.

4 Numerical Experiments

Let us consider rectangular two-layer plate with dimensions 480 × 560mm which
is hinged at all edges and consists of rigid and viscoelastic layers. It is assumed
that the plate is under the action of a surface load q(t) = q0eipt with amplitude
q0 = 95 N/m2 and frequency p = 2π f at f = [0; 200]Hz. The rigid layer material
is D16AT aluminum alloy, the material of the viscoelastic layer is technical rubber.
Hard layer thickness is 1 mm, rubber layer thickness is 3.6 mm. Characteristics of
alloy D16AT are following: Young’s modulus E = 7.2 · 1010 N/m2; shear modulus
G = 2.77 · 1010 N/m2; Poisson’s ratio ν = 0.3; logarithmic decrements of vibrations
in tension-compression and shear δε = δγ = 0.005; densityρ = 2700 kg/m3.Rubber
characteristics are the following: E = 5.3 · 106 N/m2; G = 2 · 106 N/m2; ν = 0.49;
δε = 1.23; δγ = 1.1; ρ = 1345 kg/m3. The plate was divided into 144 finite elements
(12 elements in the direction of each side). To determine the nodal displacements in
the expansion r = F s(t), 12 lower eigenforms were taken into account.

Table 1 shows 12 natural frequencies of vibrations found from a system of homo-
geneous equations (K − ω2M)F = 0 by the method of iterations in a subspace [10,
11]. In order to reduce the amount of necessary calculations, the symmetry and strip
structure of the matrices K and M were taken into account.
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Table 1 Natural frequencies of plate vibrations

j f j , Hz j f j , Hz

1 11.2816 7 72.1762

2 25.9891 8 81.2843

3 31.2542 9 89.8884

4 46.1702 10 107.8782

5 51.6157 11 111.0019

6 66.0542 12 116.0356

Fig. 2 Deflection
amplitudes w0 of the plate
center: squares denote the
dependence with damping,
circles denote the
dependence without damping

The results in Fig. 2 shows the deflection amplitudesw0 of the plate center depend-
ing on the frequency p, found by solving system (34) (with damping taken into
account) and by system (35) (without damping). Figures3, 4 and 5 demonstrate the
amplitudes of normal stresses σx,0 and σy,0 on the bottom surface in the center of the
plate and the amplitudes of shear stresses τxy,0 in the corner of the plate, depending on
the frequency f = p/(2π) of forced vibrations, found on the basis of the previous
systems of equations.

Analyzing the results from Figs. 2, 3, 4 and 5, one can see a noticeable difference
between the results of calculations for the plate with and without damping only in
the neighborhood of the resonance frequencies. Meanwhile, far from resonance the
results are practically the same in both cases. It is interesting to note that from the
surface load q(t) = q0eipt applied over the entire area of the plate, resonant oscil-
lations are excited only at those frequencies that correspond to eigenforms with an
odd number of half-waves in the direction of each side of the plate. This corresponds
to the classical concepts of the forms of resonant vibrations of a hingedly supported
plate under the action of a load q(t) = q0eipt constant over the area. Of the twelve
natural frequencies found such frequencies are f1, f5, f6 and f10.
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Fig. 3 Amplitudes of
normal stresses σx,0 on the
bottom surface in the center
of the plate: squares denote
the dependence with
damping, circles denote the
dependence without damping

Fig. 4 Amplitudes of
normal stresses σy,0 on the
bottom surface in the center
of the plate: squares denote
the dependence with
damping, circles denote the
dependence without damping

Fig. 5 Amplitudes of shear
stresses τxy,0 on the bottom
surface in the corner of the
plate: squares denote the
dependence with damping,
circles denote the
dependence without damping
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Peterson Charts for Functionally Graded
Rotating Hollow Disks with an Eccentric
Hole

M. Cais, D. Casagrande, and H. M. A. Abdalla

Abstract It is well known that fractures in elastic bodies initiate at locations of
stress concentrations, which could arise due to geometrical discontinuities. While
there are several works available in the literature about fracture mechanics studies
for homogeneous bodies (both experimental and analytical), only a few studies ana-
lyzed the effects of geometrical discontinuities in bodies made of nonhomogeneous
materials. The present study aims to fill this gap analyzing the effect of a circular
eccentric hole in functionally graded hollow disks subject to centrifugal body forces.
The material is assumed to be linearly elastic and isotropic, while its properties
radially vary in a prescribed law. The effect of the non-homogeneity on two suit-
ably defined stress concentration factors is numerically forecast by means of finite
element method. Graphical charts are then provided to assess critical stresses and
thoroughly discussed. Comments on the location of the eccentric hole such that stress
concentrations attain their minimum are finally addressed.

Keywords Functionally graded materials · Stress concentration · Hollow disks ·
Eccentric hole · Peterson charts · Finite element analysis

1 Introduction

Functionally graded materials (FGMs) are multiphase materials with spatially vary-
ing properties tailored to satisfy specific requirements encountered in engineer-
ing applications. From continuum mechanics viewpoint, they are nonhomogeneous
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materials whose compositions and volume fractions of the constituents are gradu-
ally varied, thus giving a microstructure in the material with continuously graded
properties. So far, there is a very large number of researches available in theoretical
analysis, numerical simulations, and experimental observations [1]. Works reporting
the analysis of functionally graded beams [2], plates [3], and other various struc-
tures have been increasing in time. In particular, several attempts have been made
dealing with axisymmetric structures such as tubes [4], rotating disks [5] and vessels
[6], and their optimum response to an actual environment has been considered in
both analytical [7, 8] and numerical forms by means of commercial softwares [9],
gradient-based methods [10] and meta-heuristic algorithms [11].

Parallel to these researches, nevertheless, in comparison with Peterson’s treatises
for homogeneous structures [12, 13], a little progress has been made concerning the
interaction of the flow of the stress in FGMs with functional geometrical discon-
tinuities such as re-entrant corners, grooves, holes, notches, fillets, etc. Such stress
raisers are accounted for by the so-called stress concentration factors (SCFs), suitably
defined taking into account the analyzed component, boundary and load conditions
and the nature of the discontinuities. In fact, most of the literature assessing SCFs
in FGMs principally concerns plates subject to uni- or bi-axial load with a central
hole or an edge crack, e.g., [14–18], whereas studies dealing with geometrical dis-
continuities in axisymmetric bodies, to the extent of the authors’ knowledge, have
not been addressed yet.

In the present article, a preliminary study on the effect of a circular eccentric hole
in functionally graded hollowdisks subject to centrifugal body forces is addressed.As
the intuition suggests, theSCFachieves its high value as the eccentric hole approaches
either the inner or the outer radius where the maximum hoop stress occurs at the
innermost or outermost point of the eccentric hole, respectively, and therefore there
will be an optimal location of the eccentric hole such that SCFs attain their minimum
values. Accordingly, the SCFs have been defined as the ratio of these peak stresses
to a reference stress taken to be the hoop stress at a radial distance corresponding
to the center of the hole in a zone where no interruption to the flow of the stress
is encountered, e.g., circumferentially distant. Such stress raisers are forecast by
means of a two-dimensional (2D) Finite Element (FE) model, whose validity is
firstly examined within a discontinuity-free rotating disk with a specific class of
material gradation functions. In particular, it is assumed that no interactions exist
between the two constituent’ phases and both Young’s modulus and density radial
distributions are supposed to vary according towidely accepted power-law functions,
so that closed form expressions are derivable and consequently a comparisonwith the
proposed FE model is made. Consequently, an eccentric circular hole is introduced
and SCFs are numerically forecast for different radial positions as well as hole sizes.



Peterson Charts for Functionally Graded Rotating Hollow Disks with an Eccentric Hole 27

2 Description of the FE Model

In this Section, the 2DFEmodel is briefly described. Figure1 shows a schematic view
of such model, whose inner and outer radii are denoted by Ri and Ro, respectively.
Only the quarter of the disk is modeled for symmetrical issues. An eccentric circular
hole of radius Rh and at distance Rc from the origin is introduced, whose center lies
on the X-axis. Such geometrical discontinuity introduces an interruption of the flow
of the stress, giving rise to a concentration of the stress field in this region.

A natural and straightforward attempt to best mimic the nonhomogeneity of the
disk is to partition it into many radial layers and consider each layer as isotropic
and homogeneous and having the same material properties. Adjacent layers there-
fore present different properties such that the resulting piecewise constant variation
approximates the prescribed material property distributions. Given the distributions
of mechanical and physical properties, ad-hoc routines have been written to assign
elements associated with each layer their properties and to numerically assess the
stress field when subject to a constant angular velocity ω around the Z-axis. It is
worth noting that displacement constraint must be applied in a way that the simpli-
fied model in Fig. 1 reproduces the behavior of the entire disk. To this purpose, while
horizontal displacements for nodes laying on the line AB and vertical displacements

Fig. 1 Description of the
simplified FE model,
definitions of Ri , Ro, Rc and
Rh and mesh detail in the
vicinity of the eccentric hole
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for nodes laying on lines CD and EF have been identically set to zero, the semi-
circumferenceDE has not been constrained, where a finer mesh compared to the rest
of the model has been employed to better simulate the stress concentration.

3 Validity of the Model

In this Section, the validity of the proposed FE model is addressed. Hence, closed
form expressions of the stress field are necessarily needed. The stress response of
discontinuity-free disks has been analytically treatedundermany load scenarioswhen
Poisson’s ratio is constant and Young’s modulus obeys a power law dependence on
the radial coordinate (see e.g., [10, 19–21]):

E(r) = ̂E

(

r

Ri

)n

, (1)

where ̂E is the Young’s modulus of the material at the inner surface and n is the grad-
ing index, offering therefore a direct opportunity to be compared with FE numerical
results on the line AB, and hence a straightforward key to compute reference (or
nominal) stresses for the SCFs.

Assuming no interactions between phases, both Young’s modulus and the density
may be modeled by Voigt’s rule of mixture [22], leading to the following density
distribution:

ρ(r) = Ecρm − Emρc

Ec − Em
+ ̂E(ρc − ρm)

Ec − Em

(

r

Ri

)n

(2)

and the following lower and upper bounds for the grading index:

ln (Em/̂E)

ln (Ro/Ri )
≤ n ≤ ln (Ec/̂E)

ln (Ro/Ri )
. (3)

Subscripts m and c in Eqs. (2) and (3) refer to the metal and ceramic components,
respectively.

Following the analysis reported in [10], the radial stress is determined by solving
the boundary value problem:

{

r2σ ′′
r + [3 − r(ln E)′]rσ ′

r + ν̂r(ln E)′σr = ρω2r2[r(ln E)′ − r(ln ρ)′ − ν̃],
σr (Ri ) = σr (Ro) = 0,

(4)
where ν̂ = ν − 1 < 0, ν̃ = 3 + ν > 0 and a prime (.)′ denotes the first derivative
with respect to the radial coordinate. For the sake of simple notation, the dependence
on r has been omitted in Eq. (4). Closed form solutions for both stresses are reported
in the Appendix.
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Fig. 2 Normalized radial and hoop stress distribution throughout the radius in MC ad CM func-
tionally graded hollow disks. FE solutions are extracted along the line AB

Figure2 shows analytical and FE solutions normalized stresses along the line AB
for Ro/Ri = 6 and associated with the two possible graded scenariosMC and CM,
which are the functionally graded disks with ̂E = Em and ̂E = Ec, respectively. The
selected materials are Alumina (Ec = 390 GPa, ρc = 3.9 × 10−9 t/mm3) and Steel
(Em = 210 GPa, ρm = 7.8 × 10−9 t/mm3), while ν = 0.3. It is worth to highlight
how closed form solutions and numerical simulations are in agreement, ensuring the
validity of the FE simplified model. Moreover, radial and hoop stresses arising in the
MC disk are considerably less than those exhibited by the CM one if subject to the
same ω.

4 Numerical Evaluation of SCFs

In this Section, the numerical forecast of the stress localization due to the presence
of the eccentric hole is addressed. From the nature of the applied load, infinitesimal
elements of the disk are stressed more circumferentially than radially. As mentioned
in the Introduction, the SCF, denoted herein by K similarly to engineering textbooks,
e.g., [23], is defined as the ratio of the peak stress and a reference stress. This latter
depends on the problem at hand. Here, it has been chosen to be the hoop stress on
the line AB at a radial coordinate corresponding to the center of the eccentric hole,
Rc. This choice is convenient to suitably enhance peculiar aspects dealing with the
optimal radial location of the hole, reported below.

As far as the hoop stress is concerned, from the nature of the geometrical aspect of
the considered disk, the peak stress corresponds to either the innermost or outermost
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points of the eccentric hole (points D and E, respectively, Fig. 1), depending on its
radial location. Similar to [24], two stress concentration factors can be therefore
defined as follows

Ki = (σθ )D

σθ (Rc)
, Ke = (σθ )E

σθ (Rc)
. (5)

To broaden the analysis to include arbitrary constituents, a parameter accounting
for base materials bulk properties is needed. Let (η := Eo/Ei , δ := ρo/ρi ) be this
parameter, where subscripts i and o refer to the inner and outer borders, respectively.
At this preliminary stage, only base materials with Young’s moduli and densities
with η = 2.0 and ρ = 0.5 are considered. Note that this is almost the case of Steel-
Alumina MC functionally graded structures as well as whenever Eo = 2Ei and
ρo = ρi/2. The reversed scenario is also considered, namely the CM structure with
Eo = Ei/2 and ρo = 2ρi .

Numerical values for the stress concentration factors Ki and Ke as Rc increases
are shown in Fig. 3a, b, respectively, for the two graded structures for Ro/Ri = 5
and for two instances of the radius of the eccentric hole Rh . Both figures show that
there exists an optimal location of the eccentric hole, namely when Ki and Ke attain
their minimum values. Unlike Ki , it is observed that the behavior of Ke for both
graded structures is marginally influenced by Rh far from the outer border, where Ke

considerably increases as Rh increases. Moreover, the localization of the flow of the
stress is likely more accentuated in theMC structure with respect to CM. A similar
comment holds for Ki , unless Rc approaches the inner border.

Finally, a comment on the optimal location of the eccentric hole for different
instances of Ro/Ri and Rh is addressed. For brevity, this interest is investigated
only for MC graded structures, where stresses due to centrifugal body forces, as
previously illustrated in Fig. 2, are remarkably lower than those arising in CM ones.
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Fig. 3 FE results for stress concentration factors at the a innermost and b outermost points with
Ro/Ri = 5. Solid and dashed lines correspond to MC (η, δ) and CM (1/η, 1/δ), respectively,
namely interchanging base materials at inner and outer surfaces
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Table 1 Optimal location of the eccentric hole forMC structures for different instances of Rh and
Ro/Ri

Rh

Ro − Ri

Ro

Ri
= 3

Ro

Ri
= 4

Ro

Ri
= 5

0.0250 0.500 0.453 0.411

0.0375 0.511 0.466 0.444

Accordingly, Table1 lists optimal values of Rc−Ri
Ro−Ri

, which shows that the concentration
of hoop stress at the innermost point attains its minimum for radial positions almost
close to (Ro − Ri )/2, independently from the dimension of the eccentric hole.

5 Conclusions

In this article, a preliminary study on the effect of an eccentric hole on the interrup-
tion of the flow of the hoop stress in functionally graded hollow disks is numerically
forecast by means of finite element method. Two stress concentration factors cor-
responding to the innermost and outermost points of the hole have been suitably
defined and Peterson charts have been provided for a specific case of functionally
graded disks whose properties obey a widely accepted gradation law. Charts have
been commented and the influence of the dimension of the hole has been addressed.
In particular, it is found that both concentration factors attain a minimum value for a
specific radial location of the eccentric hole, which has been listed in a tabular form
for different aspect ratios of the disk and different radii of the eccentric hole.

Appendix

The radial and hoop stresses are given by

σr (r) = Arm1 + Brm2 + C1r
2 + C2r

n+2

and

σθ (r) = A(1 + m1)r
m1 + B(1 + m2)r

m2 + C1

(

1 + 3ν − nν

ν̃ − n

)

r2

+ C2

(

17 + 6n + 2nν + 3ν

ν̃

)

rn+2,
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respectively, where m1,2 = n − 2 ± √
n2 − 2nν + 4

2
,

C1 = (n − ν̃)(Ecρm − Emρc)ω
2

(8 + nν − 3n)(Ec − Em)
,

C2 = ν̃(ρm − ρc)ω
2
̂E

(8 + nν − 3n)(Ec − Em)Rn
i

,

A = C1R
2−m1
i

[

(Ro/Ri )
2−(Ro/Ri )

m2

(Ro/Ri )
m2−(Ro/Ri )

m1

]

+ C2R
n+2−m1
i

[

(Ro/Ri )
n+2−(Ro/Ri )

m2

(Ro/Ri )
m2−(Ro/Ri )

m1

]

,

B = C1R
2−m2
i

[

(Ro/Ri )
2−(Ro/Ri )

m1

(Ro/Ri )
m1−(Ro/Ri )

m2

]

+ C2R
n+2−m2
i

[

(Ro/Ri )
n+2−(Ro/Ri )

m1

(Ro/Ri )
m1−(Ro/Ri )

m2

]

.
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Use of the Chebyshev Collocation
Method for Vibration Analysis
of Carbon-Nanotube Reinforced
Composite Beams with Elastic Boundary
Conditions

Desmond Adair and Martin Jaeger

Abstract An investigation of the vibration behaviour of carbon-nanotube reinforced
composite beams utilizing both traditional and non-traditional boundary conditions
is carried out. The Timoshenko formulation is chosen so as to include the effects
of deformation of shear and rotary inertia and to obtain the coupled equations of
motion which govern vibration of the beam. The Chebyshev collocation method is
employed to solve the governing equations to determine the frequencies of the beams
with different boundary conditions and compressive loading imposed. Correctness
and dependability of the Chebyshev collocation method are validated by comparison
with previous results found in the literature for the traditional boundary conditions.
Calculations will also be presented for non-traditional (elastic) boundary conditions
for different parameters.

Keywords Chebyshev collocation · Timoshenko · Mechanical vibration ·
Carbon-nanotube · Composite

1 Introduction

A most promising reinforcement material for use when building multifunctional
composites to produce high strength structures are carbon nanotubes otherwise
known as CNTs. This is because of their excellent mechanical, thermal and physical
characteristics. More conventional composite materials, for example glass fibre rein-
forced polymers, as used extensively in the production of aerospace structures, wind
turbines, sailing boats, etc., are generally manufactured from high volume fillers,
which can lead to problems like de-bonding between fibre and the polymer matrix
interface. This type of problem can be alleviated using CNTs where, when small
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amounts of CNTs are added to the polymeric matrices, significant improvements in
strength and the mechanical properties of the given polymeric composite most often
result [1].

The coupled equations of motion which govern carbon nanotube reinforced
composite (CNTRC) beam behavior can be solved by an efficient method called the
Chebyshev collocation (CCM).HereChebyshev functions in the formof polynomials
are utilized when solving integral–differential equations with sufficient correctness
and dependability, and, with a fast convergence rate [2–5]. A number of papers on
the modelling of carbon nanotube reinforced composite beams have been recently
published. For example, a comprehensive reviewpaper [6] andmethods of calculation
ranging from using the Ritz method [7] to finite-element modelling [8].

When dealing with realistic applications, damaged or inadequate boundary condi-
tions may also be simulated using translational and/or rotational springs. In this
investigation, the CCM is applied to investigate the displacement characteristics of
CNTRC beams with different traditional and non-traditional boundary conditions
specified by a combination of the coefficients of the two types of springs.

2 Carbon Nanotube Reinforced Composite Beams
(CNTRCs)

A CNTRC beam can be prepared by including single-walled carbon nanotubes
(SWCNTs) within an isotropic polymeric matrix. Here, the beam’s length is l, and
thickness is h, and, elastic boundary conditions, compactly described by trans-
lation and rotation springs are used, as shown on Fig. 1a. Various patterns of
carbon-nanotube reinforcement across the sections can be used as illustrated on
Fig. 1b.

The properties of a CNTRC beam are usually calculated by the use of the mixture
rule to give the effective Young’s and shear moduli

E11 = η1Vs E
s
11 + VpE

p (1)

Fig. 1 a The CNTRC beam showing the elastic-elastic boundary conditions. b Patterns of cross-
section reinforcement
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η2

E22
= Vs

Es
22

+ Vp

Ep
(2)

η3

G12
= Vs

Gs
12

+ Vp

G p
(3)

Here, Es
11, E

s
22 and G

s
12 are defined as the Young’s and moduli and shear modulus

of the single-walled carbon nanotubes, respectively, while, E p and Gp are the equiv-
alent for the polymeric matrix. The volume fractions, Vs and Vp for the carbon
nanotube and polymer matrix, respectively, combine as

Vs + Vp = 1 (4)

The size-dependent material properties of the single-walled carbon nanotubes are
considered by introducing the CNT efficiency parameters, ηi (i = 1, 2, 3) and are
determined by matching the elastic moduli of the CNTRCs estimated by molecular
dynamics modelling with the results calculated using the mixture rule. From this the,
Poisson’s ratio (ν) and mass density (ρ) of the beams are

ν = Vsν
s + Vpν

p (5)

ρ = Vsρ
s + Vpρ

p (6)

where, νs, ν p and ρs , ρ p are respectively the Poisson ratios and densities of the
single-walled carbon nanotubes and polymeric matrix. For the different patterns of
reinforcement over the cross-sections, mathematical functions are used as described
below [9, 10]

U−Dbeam : Vs = V ∗
s (7a)

O beam : Vs = 2

(
1 − 2

|z|
h

)
V ∗
s (7b)

X beam : Vs = 4
|z|
h
V ∗
s (7c)

V beam : Vs =
(
1 + 2z

h

)
V ∗
s (7d)

Here, V ∗
s is the CNTs’ volume fraction and this can be found from [9, 10]

V ∗
s = Ws

Ws + (ρs/ρm)(1 − Ws)
(8)
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Here, Ws is the CNTs’ mass fraction.

3 Displacement Governing Equations

The Timoshenko beam formulation is selected here, so as to include rotary inertia and
shear deformation. For a given beam, the displacement at a specific point in relation
to the x and z axes can be given by u(x, z, t) and w(x, zt) respectively where

u(x, z, t) = u0(x, t) + zϕ(x, t), w(x, z, t) = w0(x, t) (9)

Here, u0(x, t) and wo(x, t) are the local point displacements at the centre plane
(z = 0), ϕ is beam cross-section rotation, and t is time. Based on the displacement
field described by Eq. (9), the normal strain (εxx ) and shear strain (γxz) can be
expressed

εxx = ∂u0
∂x

+ z
∂ϕ

∂x
, γxz = ∂wo

∂x
γ (10)

Based on the elastic constitutive law, the normal and shear stresses take the form

σxx = E11(z)

1 − ν(z)2
εxx , τxz = E11(z)

2[1 + ν(z)]
γxz (11)

The governing equations, fromHamilton’s principle, which also account for axial
and rotary inertia for vibration and buckling analyses are

∂Nx

∂x
= I0

∂2u0
∂t2

+ I1
∂2ϕ

∂t2
(12)

∂Qx

∂x
− Nx0

∂2w0

∂x2
= I0

∂2w0

∂t2
(13)

∂Mx

∂x
− Qx = I1

∂2u0
∂t2

+ I2
∂2ϕ

∂t2
(14)

In the above the stress resultants are Nx , Mx and Qx are

Nx = A11
∂u0
∂x

+ B11
∂ϕ

∂x
(15)

Mx = B11
∂u0
∂x

+ D11
∂ϕ

∂x
(16)
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Qx = Ks A55

(
∂u0
∂x

+ ϕ

)
(17)

In these equations the shear correction factor is Ks = 5/6 and A11, B11,D11 and
A55 are the components of stiffness obtained from.

[A11, B11, D11] =
h/2∫

−h/2

E11(z)

1 − ν(z)2
[
1, z, z2

]
dz, A55 =

h/2∫
−h/2

E11(z)

2[1 + ν(z)]
dz (18)

The components of moment of inertia are

[I0, I1, I2] =
h/2∫

−h/2

ρ(z)
[
1, z, z2

]
dz (19)

To solve the governing equations (Eqs. 12–14), with the E-E boundary conditions
shown on Fig. 1a, expressions for the boundary conditions are.

For x = 0,

u0 = 0, Qx + kT Lw0 = 0, Mx + kRLϕ = 0 (20a)

For x = l,

u0 = 0, Qx − kT Rw0 = 0, Mx − kRRψ = 0 (20b)

Here, kT L , kRL , kT R, kRR are the translational and rotational spring constants.
The quantities are now non-dimensionalized

X = x

l
, (ũ, w̃) = (u0, w0)

h
, η = l

h
, Nx0 = Ñx0

A110

(a11, a55, b11, d11) =
(

A11

A110
,
A55

A110
,

B11

A110h
,

D11

A110h2

)

(a11, a55, b11, d11) =
(
A11h2

D110
,
A55h2

D110
,
B11h

D110
,
D11

D110

)

τ = t

L

√
A110

I00
,
(
I 0, I 1, I 2

) =
(

I0
I00

,
I1
I00h

,
I2

I00h2

)

� = A110h2

D110
, ω = �l

√
I00
A110
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βT L = kT L L

A110
, βT R = kT RL

A110
, βRL = kRL L

D110
, βRR = kRRL

D110
(21)

On using these dimensionless quantities, a dimensionless form of the governing
equations of motion are now

a11
∂2Ũ

∂X2
+ b11

∂2ϕ

∂X2
= Ĩ0

∂2Ũ

∂τ 2
+ Ĩ1

∂2ϕ

∂τ 2
(22)

Ksa55

(
∂2W̃

∂X2
+ η

∂ϕ

∂X

)
− Nx0

∂2W̃

∂X2
= Ĩ0

∂2W̃

∂τ 2
(23)

b11
∂2Ũ

∂X2
+ d11

∂2

∂X2
ϕ − Ksa55η

(
∂W̃

∂X
+ ηϕ

)
= �

(
I 1

∂2Ũ

∂τ 2
+ I 2

∂2ϕ

∂τ 2

)
(24)

The boundary conditions in dimensionless form become

For X = 0, Ũ = 0

Ksa55
∂W̃

∂X
+ Ksa55ηϕ + βT L W̃ = 0 (25)

Ksa55
∂W̃

∂X
+ Ksa55ηϕ + βT L W̃ = 0

For X = 1 : Ũ = 0

Ksa55
∂W̃

∂X
+ Ksa55ηψ − βT RW̃ = 0 (26)

b11
∂Ũ

∂X
+ d11

∂ψ

∂X
− βRRψ = 0

4 The Chebyshev Collocation Method

Displacement problems involving CNTRC beams with various boundary condi-
tions can be modelled using the Chebyshev collocation method (CCM) [11]. The
techniques is based on the Gauss–Chebyshev-Lobatto method which constructs an
interpolation grid in the interval [−1, 1], specifically
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x j = cos

(
jπ

N

)
, j = 0, 1, 2, 3, . . . , N (27)

A differentiation Chebyshev matrix, DN , of dimensions (N + 1) by (N + 1) is
created from the grid points by using Lagrange polynomials of degree N at each of
the points by the differentiation of the polynomials, and then assessing the result at
each of the points [11]. The elements of the matrix, DN , are

(DN )00 = 2N 2 + 1

6
, (DN )NN = −2N 2 + 1

6
(28a)

(DN ) j j = −x j

2
(
1 − x2j

) , j = 1, 2, 3, . . . N − 1 (28b)

(DN )i j = c j (−1)i+ j

c j
(
xi − x j

) , i �= j, i, j = 0, 1, 2, . . . , N (28c)

Here

ci =
{
2, i = 0 or N
1, otherwise

(29)

A change in the range of the independent variables for both the governing equa-
tions and boundary conditions (Eqs. 22–26) is needed from X ∈ [0, 1] to ζ ∈ [−1, 1]
by the use of the relationship ζ = (2X − 1),∈ [−1, 1]. Also, for the separation of
temporal and spatial terms the following is used

Ũ (X, τ ) = U (X)eiωt (30a)

W̃ (X, τ ) = W (X)eiωt (30b)

ϕ(X, τ ) = ψ(X)eiωt (30c)

Here ω is the dimensionless natural frequency. On substituting the displacement
functions and changing the range, Eqs. (22–26) can be rewritten as

4a11
∂2U

∂ζ 2
+ 4b11

∂2ψ

∂ζ 2
= −I 0ω

2U − I 1ω
2ψ (31)

Ksa55

(
4
∂2W

∂ζ 2
+ 2η

∂ψ

∂ζ

)
− 4Nx0

∂2W

∂ζ 2
= −I 0ω

2W (32)

Ksa55

(
4
∂2W

∂ζ 2
+ 2η

∂ψ

∂ζ

)
− 4Nx0

∂2W

∂ζ 2
= −I 0ω

2W (33)
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At ζ = −1 : U = 0

2Ksa55
∂W

∂ζ
+ Ksa55ηψ + βT LW = 0 (34)

2b11
∂U

∂ζ
+ 2d11

∂ψ

∂ζ
+ βRLψ = 0

At ζ = 1 : U = 0

2Ksa55
∂W

∂ζ
+ Ksa55ηφ − βT RW = 0 (35)

2b11
∂U

∂ζ
+ 2d11

∂φ

∂ζ
− βRRφ = 0

To solve vibration problemswith the Chebyshev collocationmethod, the left-hand
sides of Eqs. (31–33) can be written, using the Chebyshev differentiation matrix [11]

EM1 = 4a11([1 0 0] ⊗ D2) + 4b11([0 0 1] ⊗ D2) (36)

EM2 = Ks(4([0 1 0] ⊗ D2) + 2η([0 0 1] ⊗ D1)) − 4Nx0([0 1 0] ⊗ D2) (37)

EM3 = 4b11([1 0 0] ⊗ D2) + 4d11([0 0 1] ⊗ D2) − Ksηa55(2([0 1 0] ⊗ D1) + η([0 0 1] ⊗ I )) (38)

Here ⊗ is the Kronecker product and sizes of EM1, EM2 and EM3 are
(N + 1) × 3(N + 1). Here N is the number of Chebyshev points. Stacking these
matrices together gives an overall matrix of size 3(N + 1) × 3(N + 1)

EM =
⎡
⎣EM1
EM2
EM3

⎤
⎦[δ]T (39)

Here [δ]T is the displacement vector given as

[δ]T = [
U1 U2 . . . UN+1 W1 W2 . . . WN+1 ψ1 ψ2 . . . ψN+1

]T
(40)

At each end of the beams the displacements are U1 W1 ψ1 UN+1 WN+1 ψN+1

and so a displacement vector can now be written as

[δ]T = [W1 ψ1 UN+1 WN+1 ψN+1 U2 U3. . . UN W2 W3 . . . WN ψ2 ψ3 . . . ψN ]T
(41)

For the boundary conditions of Eqs. (34, 35), at ζ = −1
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([0 0] ⊗ [1 0 0 . . . . . . 0])[δ]T = 0([0 0] ⊗ [1 0 0 . . . . . . 0])[δ]T = 0 (42)

2Ksa55([0 1 0] ⊗ [D1(1, :)])[δ]T + Ksa55η([0 0 1] ⊗ [1 0 0 . . . . . . 0])[δ]T

+ βT L([0 1 0] ⊗ [1 0 0 . . . . . . 0])[δ]T = 0 (43)

2b11([100] ⊗ [D1(1, :)])[δ]T + 2d11([001] ⊗ [D1(1, :)])[δ]T (44)

and for ζ = 1

([1 0 0] ⊗ [0 0 0 . . . . . . 1])[δ]T = 0 (45)

2Ksa55([0 1 0] ⊗ [D1(N + 1, :)])[δ]T+Ksa55η([0 0 1] ⊗ [0 0 0 . . . . . . 1])[δ]T

+Ksa55η([001] ⊗ [0 0 0 . . . . . . 1])[δ]T (46)

2b11([1 0 0] ⊗ [D1(N + 1, :)])[δ]T + 2d11([0 0 1] ⊗ [D1(N + 1, :)])[δ]T
− βRR([0 0 1] ⊗ [0 0 0 . . . . . . 1])[δ]T = 0

(47)

A systemof algebraic equations can nowbe formed on application of the boundary
equations

[
[Sbb] [Sbd ]
[Sdb] [Sdd ]

]{
[δb]
[δd ]

}
= ω2

[
[0] [0]
[0] [Mdd ]

]{
[δb]
[δd ]

}
(48)

Here, b, d are subscripts which refer to the points used to write the algorithm
of the boundary conditions and the equations of motion, respectively. Here Sbb and
Sbd have sizes of 6 × 6 and 6 × (3(N + 1) − 6), respectively. The size of Sdb is
(3(N + 1) − 6) × 6 and the size of Sdd is (3(N + 1) − 6) × (3(N + 1) − 6). Mdd

is the inertia matrix with a size the same as Sdd and can be written as

Mdd = −
⎡
⎣ I 0[I ] 0[I ] I 1[I ]

0[I ] I 0[I ] 0[I ]
�I 1[I ] 0[I ] �I 2[I ]

⎤
⎦ (49)

Here [I ] is the identity matrix of size (N − 1) × (N − 1).
The free frequency results can be solved by setting Nx0 = 0 and for loaded

CNTRC beams Nx0 is included.
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5 Numerical Results

Numerical results for the natural vibrations of CNTRCbeams, with various boundary
conditions, are first presented to validate the viability and exactness of the present
method. This is followed in a further section with calculations involving an anal-
ysis when the beams are bounded by non-classical boundary conditions while
experiencing compressive loading.

5.1 Free Vibration Analysis of CNTRC Beams

Here, with Nx0 = 0, after discussion of validation, key parameters which represent
the characteristics of CNTRC beam vibrations, for example, η = l/h, the CNT
volume fraction and the boundary spring stiffnesses are investigated.

For validation of the present method, the first three calculated non-dimensional
frequency parameters � = ωl

√
ρ p[1 − (v p)2/E p for various CNT distributions

and boundary conditions are compared with those published by Lin et al. [12],
and, Yas and Samadi [10]. The comparisons are given in Table 1. The geomet-
rical and material constants of the beams used here to make comparison were
l/h = 15, Es

11 = 600GPa, Es
22 = 10GPa,Gs

12 = 17.2GPa, E p = 2.5GPa, vs
12 =

0.19, v p = 0.3, ρs = 1400 kg/m3, ρ p = 1190 kg/m3. Although the results are
generally lower than those of Refs. [10, 12] there is fairly good agreement.

The first three dimensionless free frequencies � = ωl
√

ρ p[1 − (v p)2/E p with
C-S boundary conditions are shown in Table 2. The frequencies are seem to get larger
in line with the volume fraction.

Table 1 Results for the first three frequency parameters � = ωl
√

ρ p[1 − (v p)2/E p for various

CNT distributions and different boundary conditions (l/h = 15, V ∗
s = 0.28)

Distributions Modes S–S C-F

Ref. 12 Ref. 10 Current Ref. 12 Ref. 10 Current

U-D beam 1 1.4348 1.4401 1.3999 0.5600 0.5612 0.5520

2 4.1050 4.1362 4.0658 2.4449 2.4614 2.2439

3 6.8595 6.9245 6.8345 5.2005 5.2446 5.1692

X beam 1 1.6409 1.6493 1.6342 0.6566 0.6586 0.6499

2 4.4333 4.4752 4.3821 2.6763 2.6987 2.6712

3 7.2258 7.3068 7.1199 5.5589 5.6150 5.5491

V beam 1 1.3975 1.4027 1.3891 0.4753 0.4761 0.4653

2 3.8370 3.8639 3.7982 2.2543 2.2685 2.2452

3 6.6976 6.7618 6.6259 4.9590 5.0007 4.8912
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Table 3 Dimensionless free frequencies of CNTCR beams with E-E boundary conditions (β =
βRL = βRR = βT L = βT R, V ∗

s = 0.16)

U-D beam O beam V beam

β η = 5 η = 10 η = 5 η = 10 η = 5 η = 10

10−2 0.1389 0.1387 0.1388 0.1385 0.1387 0.1384

10−1 0.4461 0.4259 0.4300 0.4168 0.4364 0.4243

100 1.2538 0.9917 1.1482 0.9519 1.2002 0.9901

101 1.8522 1.4999 1.5966 1.2637 1.8329 1.4821

102 2.1098 1.7561 1.9540 1.5481 2.0548 1.7084

103 2.2985 2.0365 2.2203 1.9487 2.2541 1.9568

104 2.3662 2.1161 2.2962 1.9411 2.3385 1.9978

Fig. 2 Dimensionless
fundamental frequencies
with elastic-elastic boundary
conditions βT L = βT R =
10, βRl = βRR=10.
(V ∗

s = 0.16)

The results for CNTRC beams with non-classical boundary conditions (E-E) are
given in Table 3. The variation of the spring constants is from 10−2 to 104 and it can
be observed that the frequency increases with the value of β for each type of CNTRC
beam.

Figure 2 shows the variation of the dimensionless fundamental frequencies for
four types of CNTRC beams versus thickness ratio. E-E boundary conditions were
used here. As can be observed, the beam frequencies dropped rapidly as the thickness
ratio increased.

5.2 Analysis of Compressed CNTRC Beams

Here the vibrations with the CNTRC beam subjected to compressive loading, and
with non-classical boundary conditions are studied. On Fig. 3 is shown the rela-
tionship of the dimensionless frequency as the compressive loading increases for
different CNTRC beam types. It should be noted that when Nx0 = 0, the natural
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Fig. 3 Fundamental
frequency versus the
compressive loading of the
beams with the elastic-elastc
boundary condition βT L =
βT R = βRL = βRR =
102

(
η = 15, V ∗

s = 0.16
)

Fig. 4 Fundamental
frequency versus the
compressive loading of U-D
beams for different
non-classical boundary
conditions
(η = 15, V ∗

s = 0.16)

frequency is found. As the compression is increased a steady decline in frequency is
observed until reaching zero, at which point the value of Nx0 is the critical buckling
loading.

Figure 4 also shows frequency versus compressive loading of a U-D beam. The
variation for each of the non-classical boundary conditions are similar to that already
shown on Fig. 3.

6 Conclusions

The vibration characteristics, both natural and loaded, of CNTRC beams, with both
traditional and non-traditional boundary conditions, have been explored. The Cheby-
shev collocation method was utilized to solve the governing equations based on the
Timoshenko formulation. The accuracy of the developed model and solution method
was tested with results from the literature, and comparison was found to be satisfac-
tory. For different boundary conditions and volume fractions it was found for each
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that the natural frequencies which were highest were those of the X beam. Also, as
the beam thickness ratio increased then the free frequencies for each of the CNTRC
beam types decreased quite dramatically. Regarding the beams’ vibration character-
istics when under compression, it was found that the frequencies decreased greatly as
the compression loading increased with the variation of the decrease noted as being
dependent on the nature of elastic boundary condition used and on the nature of the
CNTRC beam used.
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Analytical, Numerical and Experimental
Analysis of the Creep Behaviour
of Polyethylene Polymers

A. Mostafa, D. G. S. Sanchez, N. Sirach, R. V. Padilla, and H. Alsanat

Abstract Polyethylene (PE) is a semi-crystalline polymer that has been used for
decades in many different applications. Two commonly used forms of PE are
high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene
(UHMWPE). Since the material is used in various industrial applications, ranging
from prosthetic joints to rotational moulded tanks, the need to understand itsmechan-
ical behaviour under different loading scenarios is of high importance. Creep is
a particularly important mechanical property for polymers due to their relaxation
characteristics associated with prolonged loading of the polymers’ chains. As such,
understanding the creep behaviour of PE products is very important for its long-term
performance. In the present investigation, experimental testing, analytical analysis
and numerical modelling using the finite element (FE) method have been conducted
on HDPE and UHMWPE samples subjected to tensile load, step-loaded creep, short-
term creep, and long-term creep. Boltzmann superposition principle was utilised to
predict the long-term creep behaviour using short-term creep test results. The adopted
stress relaxation models, using Maxwell elements, successfully captured the experi-
mental viscoelastic and viscoplastic response of PE. A parametric investigation was
conducted using ABAQUS FE software to obtain the optimum Prony series compo-
nents that can accurately simulate the creep behaviour under constant and stepped-
loading scenarios. The results showed great agreement between the experimental,
analytical and numerical methods. The developed FE models can be used to predict
the serviceability of PE products after prolonged exposure to constant loading cases.
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1 Introduction

Polyethylene (PE) is a semi-crystalline polymer that has been used for decades in
many different industries around the world. PE has had a rapid increase in consump-
tion in the past few decades, where its production doubles every four years, making
up about 31% of plastic production worldwide [1]. As production and applications
of PE increase, there is a necessity for methods to determine the reliability of the
material under different loading scenarios. As such, the mechanical characteristics of
PE, such as tensile strength, impact strength, thermal stability, compressive strength
and creep modulus, have been investigated in recent years to determine their feasi-
bility under different applications [2]. The creep behaviour is particularly critical
in engineering applications where products are under constant loads for extended
periods of time. The ability for PE to withstand loading for prolonged periods has
allowed it to become widely used within the manufacturing and hydraulic industries
[3]. One of many applications of PE can be seen in pipe and tank systems, where
high creep resistance is required due to the constant loading subjected to the pipe or
tank [4]. Since PE materials’ behaviour widely differs depending on the materials
morphology and cross-linking density of the long/short chains, understanding the
creep behaviour of a wide range of PE products is critical for its safe and efficient
application in industry.

Creep testing is an important experimental method for determiningmany different
material characteristics, including the physical aging and viscoelasticity of a non-
linear material [5]. The experimental procedure for creep testing is often very time
consuming and can require holding the material under a constant load for up to
10,000 h depending on the test standard [6, 7]. Due to the extensive time require-
ments for creep testing, this can be a very expensive and time-consuming process
for manufacturers. As a result of this, various attempts have been proposed in the
literature for determining the short- and long-term creep behaviour of PE analyt-
ically [5, 8, 9]. To minimise manufacturing time and costs, a simple and reliable
means of determining the long-term creep behaviour of polymers from short-term
experimental data is necessary to reduce costs.

Research has also been conducted to determine the inelastic deformation of poly-
mers and predict the creep behaviour of linear low-density polyethylene using finite
element analysis [10, 11]. However, to the authors’ knowledge, the implementation
of such an approach has yet to be presented and tested with HDPE. The limita-
tions of existing analytical models for the creep prediction of polymers are based
on one-dimensional analysis. The implementation of finite element approaches for
the creep analysis of polymers will enable three-dimensional analysis, allowing for
more complex structures to be modelled, such as PE rotational moulded tanks. The
development of an accurate finite element model that can predict the long-term creep
behaviour of HDPE andUHMWPE polymers using short-term creep data will signif-
icantly reduce manufacturing costs by eliminating costly, long-term experimental
procedures.
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There are currently a limited number of studies to date on the short- and long-
term creep behaviour of HDPE and UHMWPE polymers. In addition, there are
limited analytical and numerical studies to date that can accurately predict the creep
behaviour of polymers. The reliability of modelling is still unknown across various
factors and conditions such as varying dimensions, loading scenarios and polymer
morphologies, limiting its application in design. This paper aims to expand the under-
standing of the creep response of HDPE and UHMWPE polymers by experimentally
conducting creep tests on several polymers subjected to varying loading conditions.A
one-dimensional analytical model is developed that utilised four Maxwell models to
predict the behaviour of the experimental results. Additionally, a three-dimensional
finite element model is developed to predict the long-term creep behaviour of HDPE
and UHMWPE polymers based on short-term creep data.

2 Experimental Methods

2.1 Test Programme

In this study, three types of commercial grade PE samples were used, including
two types of HDPE, namely HDPE 100 and HDPE 300, and one type of
UHMWPE, namely Polystone 7000. These samples were tested under different
loading scenarios to understand their mechanical behaviour. These loading scenarios
included displacement-controlled tension tests, load-controlled tension tests, strain-
rate-controlled tension tests, step-loaded creep tests, short-term creep tests, and long-
term creep tests. All specimens were tested under axial tension using a 1 kN MTS
universal testing machine (UTM).

Dog-bone test coupons were cut from a large sheet for each polymer type using
a computer numerical control (CNC) machine. For each polymer type tested, all the
test coupons were cut from the same sheet. The test coupons had a total length of
165 mm, gauge length of 50 mm, and gauge width of 13 mm, which is in accordance
with ASTMD638 [12]. The nominal thickness of all three polymer sheets was 3mm.
Prior to testing, the cross-sectional dimensions of each test coupon were recorded
using digital callipers with a tolerance of 0.01 mm. These recorded measurements
were used for the analysis of test results.

2.2 Loading Schemes

Each of the three different PE types were subjected to monotonic displacement-
controlled, load-controlled and strain-controlled tension. For each of these tests, the
specimens were continuously loaded until fracture occurred, or until the maximum
stroke of the test machine was reached. For the displacement-controlled tension tests,
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the UTM was operated under a displacement-controlled setting at a constant rate of
5 mm/min. For the load-controlled tension tests, five different loading schemes were
conducted at rates of 1, 5, 10, 30 and 60 N/s. For the strain-controlled tension tests,
the feedback from the extensometer was used to control the loading rate of the UTM.
There were three different strain-controlled loading schemes and they were 0.005,
0.01 and 0.05 mm/mm/min.

In addition to monotonic tension tests, creep tests were also conducted on each
of the three different PE types. The creep tests included step-loaded creep, short-
term creep and long-term creep. The creep tests were conducted with guidance from
ASTM D2990 [7]. The step-loaded creep tests were conducted over nine hours,
whereby the specimens were loaded to 4 MPa and held at this stress for three hours,
then loaded to 6 Mpa and held for three hours, then loaded to 8 Mpa and held for
the final three hours. Once the final stress increment had been held for three hours,
the load was released, and testing was concluded. The short-term creep tests were
conducted for 24 h, where the test specimen was held at a constant prescribed stress
value for the entirety of the test. Six different loading schemes were used for the
short-term creep tests, and these prescribed stress values were 2, 4, 6, 8, 10, and 12
Mpa. The long-term creep tests were conducted for 72 h, and the specimen was held
at the prescribed stress value for the entirety of the test. The different prescribed stress
values for the long-term creep tests were 4, 6 and 8 Mpa. A constant loading rate of
5 N/s was used for all the creep tests until the desired prescribed stress increment was
achieved. After this, the UTM held the stress at this level for the required length of
time by slightly adjusting the crosshead position when necessary. All the creep tests
in this study were automatically executed by a real-time controlling program, where
the displacement and loading readings from the MTS machine were the controlling
parameters.

2.3 Test Setup and Instrumentation

The axial deformation of all the test specimens was recorded using an extensometer
that was fastened to the specimen at the mid-length. The extensometer had a gauge
length of 50mm. For the specimens tested under a strain-controlled rate, the feedback
from the extensometerwas used to control the loading rate of the testmachine. Biaxial
strain gauges were also attached to the mid-length of some test coupons to measure
the axial and lateral displacement at this region to determine the value of Poisson’s
ratio. These biaxial strain gauges had a gauge length of 5 mm, gauge resistance of
120 � and gauge factor of 2.08. Poisson’s ratio readings for the different polymers
were obtained from the biaxial strain gauge readings. A data logging system was
used to measure all the load, displacement and strain values.
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3 Analytical Analysis

3.1 Linear Viscoelastic and Viscoplastic Modelling

By considering the Boltzmann superposition [13] principle of linear systems, a point
in time of the materials response can be expressed as the addition of the loading
responses of small intervals of the materials history. The stress, strain and relaxation
time (τ) relationship is expressed as:

σ(t) =
∫ t

−∞
φ(t − τ)ε̇(τ)dτ (1)

where φ(t − τ) is known as a transient stress relaxation function and ε̇ is the strain-
rate. Alternatively, the strain of the material at time t can also be expressed integrally:

ε(t) =
∫ t

−∞
J (t − τ)σ̇(τ)dτ (2)

In which J (t − τ) represents the transient creep compliance function and σ̇ is the
stress-rate. Since material aging is not considered, stress and strain depend on the
material’s loading history. As such, Eqs. 1 and 2 can be rewritten as:

σ(t) =
∫ t

0
φ(t − τ)ε̇(τ)dτ (3)

ε(t) =
∫ t

0
J (t − τ)σ̇(τ)dτ (4)

Since creep is a slow, progressive deformation under constant stress, the one-
dimensional history of stress σ being dependent on time t can be treated as a step
function initiating at time zero:

σ(t) = σ0H(t) (5)

where σ0 is the constant stress and H(t) is the unit step function, considering that
H(t) = δ(t) where δ is the Dirac delta function. By substituting Eq. (5) into (4) the
creep compliance becomes:

J(t) = ε(t)

σ0
(6)

In which the intercept of the creep curve on the strain axis is the instantaneous
elasticity J0 fromwhich the relaxation phase can be implemented into the Boltzmann



54 A. Mostafa et al.

superposition integral. However, as a transient response is expected, an exponential
is implemented within relaxation. Equation 6 can be expressed in differential form
[13], thus the monotonical increment of the creep function can be written as:

J(t) = J0 + +
∫ t

0
Y (τ)

[
1 − e

t
τ

]
dτ (7)

By considering discrete values, Y (τ ) can be further simplified:

Y(τ) =
∑N

i=1
Ciδ(τ − τi ) (8)

where δ is the Dirac delta function. Therefore, by substitution:

J(t) = J0 +
∑N

i=1
Ci

[
1 − e

t
τ

]
(9)

Furthermore, by substituting Eq. 9 into Eq. 4 and integrating, the following is
obtained:

ε(t) = J0σ(t) + σ(t)
∑N

i=1
Ci −

∑N

i=1
Cie

− t
τi

∫ t

0
e

τ
τi σ̇(t)dτ (10)

If only one relaxation time τ1(N = 1) is considered, then:

ε(t) = J0σ(t) + C1σ(t) − C1e
− t

τ1

∫ t

0
e− τ

τ1 σ̇(t)dτ (11)

By differentiating with respect to t and manipulating the equation, it can be
expressed as:

(J0 + C1)σ (t) + τ1 J0σ (̇t) = ε(t) + τ1ε̇(t) (12)

where C1 is an empirical constant. Alternatively, if multiple relaxation times τN (N
> 1) are considered, the differentiation formulation of linear viscoelastic modelling
takes the following form:

[
p0 + p1

∂

∂t
+ p2

∂2

∂t2
+ . . .

]
σ(t) =

[
q0 + q1

∂

∂t
+ q2

∂2

∂t2
+ . . .

]
ε(t) (13)

where pi and qi are functions of J0 (i.e. instantaneous creep compliance), Ci and
τi.
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3.2 Linear Viscoelastic Behaviour

Viscoelastic behaviour can be expressed in terms of a combination of springs and
dampers, such as the Maxwell model. Based on Eq. 11, the following equation can
be formed:

J(t) = Je + Jv(t) = 1

E0
+

∑N

i=1

1

Ei

{
1 − e− t

τi

}
(14)

where E0, EiandN are the instanteneous elastic modulus, time-dependent elastic
modulus and the number of Maxwell elements in the system, respectively. The
instantaneous elastic compliance is Je = 1

E0
, and the viscoelastic time effects are

represented by:

Jv(t) =
∑n

i=1

1

Ei

{
1 − e− t

τi

}
(15)

where τi = ηi

Ei
represents the viscous moduli of the dampers (ηi ). However, defor-

mation is assumed to be quasi-static, inertia is neglected, and the force or stress is
the same for both the spring and dashpot, as represented in Fig. 1 [13].

By substituting Eq. 14 into Eq. 5, the governing equation of the viscoelastic model
can be obtained as follows:

ε(t) =
∫ t

0

{
1

E0
+

∑N

i=1

1

Ei

{
1 − e− t−τ

τi

}}
˙σ(τ)dτ (16)

Fig. 1 Maxwell model
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3.3 Linear Viscoplastic Modelling

When considering viscoplastic behaviour, the creep compliance, J(t), can be
expressed by a power law:

J (t) = Je + Jp(t) = 1

E0
+ C0t

C1 (17)

where Je = 1
E0

is the instantaneous elastic component and Jp = C0tC1 is the
time-dependent viscoelastic component. By substituting Eq. 17 into Eq. 5:

ε(t) =
∫ t

0

{
1

E0
+ C0(t − τ)C1

}
˙σ(τ)dτ (18)

where E0,C0andC1 are the material constants. However, as polymers do not behave
linearly due to their viscoelastic and viscoplastic properties, the Maxwell model
needs to be represented in a non-linear manner.

3.4 Non-Linear Viscoelastic Modelling

The creep behaviour of most polymer materials showed significant dependency on
both the stress level and time. As a result, linear modelling can be implemented when
the stress is low. The creep compliance, J, is dependent on stress, strain and time,
thus the material properties of the polymer can be correlated with stress and strain.
As such, a non-linear model can be represented using the following approach:

J (σ, t) = Je(σ) + Jv(σ, t) = 1

Eo(σ)
+

∑n

i=1

1

Ei (σ)

{
1 − e− t

τi (σ)

}
(19)

where E0(σ), Ei(σ) and τi(σ) are functions of stress. By substituting Eq. 19 into Eq. 5:

ε(t) =
∫ t

0

{
1

E0(σ)
+

∑η

i=1

1

Ei (σ)

{
1 − e− t−τ

τi (σ)

}}
σ̇(τ)dτ (20)

3.5 Non-linear Viscoplastic Modelling

For a viscoplastic model, creep compliance, J(σ,t), can be written as:
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J (σ, t) = Je(σ) + Jp(σ, t) = 1

E0(σ)
+ C0(σ)tC1(σ) (21)

where E0, E1 and C1 are all functions of stress. The viscoplastic creep strain can be
represented as follows:

ε(t) =
∫ t

0

{
1

E0(σ)
+ C0(σ)tC1(σ)

}
σ̇(τ)dτ (22)

3.6 Linear Interpolation of Material Parameters

Due to the non-linear creep response of HDPE and UHMWPE (distinct creep curve
for each load level), curve fitting is necessary for themodelling procedure to represent
the materials behaviour accurately. Since creep tests were conducted under different
stress levels, particular sets ofmaterial propertieswill be required for each stress level.
However, for stresses that were not experimentally tested, the material parameters
are obtained through linear interpolation. As such, the following equation can be
used to obtain the material parameters using the linear interpolation technique:

E0 = E0(σm) + σ − σm

ση − σm
[E0(σn) − E0(σm)] (23)

where E0 represents the instantaneous elastic modulus of the material as a function
of the stress used in the experimental tests (σm and σn). Where σm < σ < ση. The
equation used for linear interpolation of the material parameters can be expressed
as:

xi(σ) = 1

Ei(σ)
= xi(σm) + σ − σm

σn − σm
[xi(σn − xi (σm))] (24)

The following equations represent linear interpolation for a viscoplastic model:

C0 = C0(σm) + σ − σm

σn − σm
[C0(σn) − C0(σm)] (25)

C1 = C1(σm) + σ − σm

σn − σm
[C1(σn) − C1(σm)] (26)
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3.7 Least-Squares Regression

Polymers such as HDPE and UHMWPE are known to have viscoelastic properties,
and as such, non-linearity within the creep response of the material is expected
since the its behaviour is dominated by the stress level and time. The following
approach of least-square fitting can be implemented to define the Maxwell models
unknown parameters and define the number of elements (N) required to represent the
experimental data with minimal error. Based on the creep curves determined from
Eq. 1 under constant stress, the developed strain can be expressed as:

ε(t) = σc

{
1

E0
+

∑N

i=1

1

Ei

{
1 − e− t

τi

}}
(27)

where σc denotes the constant engineering stress, and E0, Ei and τi are constants
defining the strain–time curve at stress σi . By assuming unknown variables such as
the relaxation time and instant creep compliance, linear least-square fitting can be
used with Eq. 27. This equation becomes linear with variables x0 = 1

E0
and xi = 1

Ei
:

ε(t) = σc

{
x0 +

∑N

i=1

{
1 − e− t

τi

}
xi

}
(28)

As a result, the least-square error fitting can be represented as:

f (xi ) =
∑Mk

j=1

(
ε j − ε j

∧)2
(29)

where Mk is the number of strain measurements, ε j
∧

is the strain measurement at
time ti , and ε j are the corresponding theoretical values. By setting d f

dxi
= 0, f (x)

can be minimised to a set of linear simultaneous equations with respect to material
parameter xi :

[A]N∗N {x}N∗1 = {F}N∗1 (30)

where,

Ai j =
∑Mk

P=1

{
σc

[
1 − e

− tp
τ j

][
1 − e− tp

τi

]}
(31)

Fi =
∑Mk

P=1

{
(εP
∧ − σcxo)

[
1 − e− tp

τi

]}
(32)

As such, i, j = 1, …, N represents the number of Maxwell models used within
the creep model. Similarly, εP

∧

represents strain measurement at time t = tp, Mk is
the number of strain measurements considered in Eqs. 29 and 32, and xo is evaluated
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Table 1 Tensile test results

Polymer type Elastic modulus
(E) (MPa)

Maximum stress
(σ f ) (MPa)

Poisson’s ratio (υ) Yield stress (σ y)
(MPa)

HDPE 100 1238 25 0.488 25

HDPE 300 1129 23 0.459 23

UHMWPE 831 33 0.485 21

directly from the material’s instantaneous response, such that:

xo = 1

E0
= ε0

∧

σc
(33)

whereby ε0
∧

is the instantaneous strain measured at t = t0 ≈ 0.
This approach was implemented within MATLAB software to determine the

number of elements needed to achieve the minimum possible fitting error. Due to the
excessive number of data points obtained from experimentation, data thinning was
undertaken prior to MATLAB modelling to reduce the model’s computation time.

4 Experimental and Analytical Results

4.1 Displacement Rate Tensile Tests

Tension tests were conducted on each of the different PE types under a displacement-
controlled setting until failure. All the test samples failed by crazing rupture in
the excessively stressed zone of the test coupon. The mechanical properties of the
different polymer types were determined based on the average results from these
tests. The test results are shown in Table 1, which include the elastic modulus (E),
the maximum stress (σf), the yield stress (σy), and the Poisson’s ratio (υ).

4.2 Load Rate Tensile Tests

Based on the load-rate tension testing, stress versus strain was graphed for each
material at five different rates, including 1, 5, 15, 30 and 60 N/s. It was found that
as the loading rate increased, the viscous behaviour became less prominent as the
materials elasticity allowed for greater stresses to be reached at a higher rate. Figure 2a
and b show a stress–strain plot of each polymer type subjected to continuously
increasing load at a rate of 1 N/s and 60 N/s, respectively. The HDPE polymers
have a significantly different stress–strain response to the UHMWPE polymer as
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Fig. 2 Stress–strain response a three different polymer types subjected to a load-rate of 1 N/s; b
three different polymer types subjected to a load-rate of 60 N/s

seen in both figures. This difference shows the impact that the morphology and
molecular structure has on polyethylene polymers. In addition, the rigidity increases
as the load rate increases, since at high load rate, molecular chains are incapable of
sliding as fast as the load being applied. As a result, all three materials reached yield
earlier as the loading rate increased. The PE100 and PE300 reached a yield point
of 25 MPa and 23 MPa, respectively, followed by strain softening as the material
continued to extrude until rupture. The specimens failed soon after the yielding
point since the crosshead movement of the UTM increased rapidly as it attempted to
continue increasing the load. The failure modes of the PE100 samples subjected to
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Fig. 3 Typical failure modes
of PE100 specimens subject
to load-controlled tension

different loading rates is shown in Fig. 3, where samples with progressively slower
loading rates is shown from right to left. The PE300 samples exhibited similar failure
modes. The PE7000 specimens exhibited a different stress–strain response to PE100
and PE300, where the material reached a yielding point at 21 MPa, followed by
strain hardening until rupture. The ultimate strength of the PE7000 samples was
approximately 33 MPa, which is significantly greater than the yield stress of the
material.

4.3 Strain Rate Tensile Tests

Similar to the response of the specimens under different load rates, increasing the
strain rate resulted in a change in elastic modulus. At all three of the different strain
rates (i.e. 0.005, 0.01 and 0.05), viscoelastic behaviour was prominent. This shows
that when the materials were exposed to controlled increases in strain, it enabled
extrusion at a more controlled rate, causing the ultimate strain to be much greater
than that seen in the tensile load rate results. As seen in Fig. 4, the ultimate strain of
both PE100 and PE300 greatly increased compared to the load rate tests shown in
Fig. 2 due to the ability of the material to extrude viscoelastically. However, since
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Fig. 4 Stress–strain response a three different polymer types subjected to a strain-rate of 0.05 1
s ;

b PE100 three different strain-rates of 0.05 1
s , 0.005

1
s , and 0.01 1

s

PE7000 has much denser chain cross-links and a different morphology than HDPE,
the strain rate and load rate responses were very similar. Based on the test results,
UHMWPE (PE7000) has a greater ultimate strength than HDPE, however it has a
lower elastic modulus and yield stress. Figure 5 shows the damage modes of the
strain-rate controlled tension tests of both PE7000 and PE300.
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Fig. 5 Typical failure modes of the strain-rate controlled tension tests a PE7000 and b PE300

4.4 Creep Test Curve Fitting

Based on Maxwell’s model, Eq. 34 is implemented within MATLAB to predict the
behaviour of the creep tests analytically. The use of non-linear least square regression
was used to attain the minimum possible error. However, due to the large number of
data points and the noise in the data trend obtained from the test, the overall amount
of error obtained from least square regression was estimated based on the standard. A
for loop was used to iterate the number of Maxwell models until the desired amount
of error for the model was low enough. The results of this modelling approach were
compared with various experimental tests to determine the accuracy and reliability
of the model.

Step-loaded creep

Step-loaded creep was conducted to enable predictions of the PE behaviour under
different loads. Further reasoning can be made as the materials loading conditions
are changing, causing the material to experience a faster strain rate due to the lack
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Fig. 6 Experimental and analytical response of step-loaded creep of PE100

of relaxation the material can achieve due to the previously experienced deforma-
tion. The Maxwell model outlined earlier is tested against the experimental data to
validate the reliability of the model. Figure 6 shows that using a dash pot and spring
with four Maxwell elements enables the step-loaded creep PE100 experimental data
to be predicted with minor deviation. This prediction is possible due to the known
behaviour of a damper and a spring, where the dash pot represents the relaxation,
and the elastic strain is represented by the spring. The damping behaviour is seen
in Fig. 2 since the materials became more rigid at a faster rate due to the resistance
to deformation triggered by the molecular structures inability to deform as fast.
Inability of the PE relaxation can be seen within Fig. 4 as PE100 shows an increase
in ultimate tensile strength as strain rate increases. A similar response is shown in
Figs. 7 and 8 for PE300 and PE7000, respectively. However, it is evident in Fig. 8
that PE7000 experiences greater deformation than the PE100 and PE300 specimens
(i.e. greater y-axis values). This outcome can be explained since the PE7000 spec-
imen has a lower elastic modulus, and as a result, has a lower resistance to creep
deformation. The difference in the responses between the materials is caused by the
morphology of thematerial, as bothHDPE andUHMWPEhave differentmicrostruc-
tures. Similar to HDPE, UHMWPE undergoes a change in material properties based
on the loading condition due to itsmorphology changing and adapting to the stress. In
addition,UHMWPE is dependent on its crystalline and amorphous phases, where any
alteration to the phases can affect its mechanical behaviour [14]. However, the four
elementMaxwell model represented all materials at each step accurately, showing its
reliability to model the step function correctly. Based on these results, the behaviour
of the material can be predicted under varying loading scenarios.

The stepped behaviour can be represented by the Boltzmann’s superposition prin-
ciple, whereby it states that the sum of the strain outputs resulting from stress input
component equates to the strain output resulting from the total stress input [16].
The Boltzmann’s superposition principle is shown schematically in Fig. 9 [15]. The
behaviour can be explained in further detail if a constant stress, σ1, is applied over a
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Fig. 7 Experimental and analytical response of step-loaded creep of PE300

Fig. 8 Experimental and analytical response of step-loaded creep of PE7000

given time t = t1, then:

σ(t) = σ1H(t − t1) (34)

which gives a creep strain equal to:
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Fig. 9 Boltzmann superposition principle

ε(t) = σ1J(t − t1)H(t − t1) (35)

Short-term creep

Short-term creep tests were conducted for each material at five different constant
stresses. The results from these tests gave insight into the materials creep response,
allowing for further validation of the Maxwell model at four elements and the deter-
mination of Prony series constants within ABAQUS. As seen in Fig. 10, PE100
was tested at five different stresses. As per the creep compliance (ε/σ), strain experi-
enced by thematerials increases non-linearly due to the increase of creep acceleration

Fig. 10 Experimental and analytical curve fitting of the short-term creep response of PE100
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caused by the increase of stress. Accurate curve fitting was achieved for each stress
level using four Maxwell elements with an average range of error of 0.5–4%. Based
on the results from experimentation, the strain increased at a consistent rate until the
material reached a state of relaxation. This behaviour can also be seen in Fig. 11 for
PE300, however, the strain is greater than PE100. The causes of this are expected
to be due to a combination of the materials viscoelasticity being more instantaneous
due to lower plastic deformation and PE300 having a lower ultimate strength. As a
result, this shows that PE300 has a greater relaxation time than PE100.

Similar to PE300, PE7000 exhibits a non-linear response, with the only difference
being the additional strain experienced by thematerial. This outcomeprovides insight
into the materials composition, showing that the morphology of UHMWPE is more
compact than that of HDPE. The morphology of PE7000 results in a lower yielding
point, causing the viscoelastic behaviour to have a longer relaxation time than that
of HDPE. This behaviour is evident in Fig. 12, where the material behaves similar
to HDPE at lower stresses. However, once a high enough stress is experienced (i.e.
12 MPa), the materials resistance to deformation is significantly reduced due to the
relaxation of the material and its varying material properties.

Long-term creep

Long-term creep tests were conducted to understand the mechanical behaviour of
the PE under constant stress, allowing for comparison with the short-term behaviour
of the material. As shown in Fig. 13, the materials mechanical behaviour does not
change, however irreversible plastic deformation becomes highly prominent within
PE7000 due to the change in its chain cross-linking structure once stress is applied.
The deformation can be explained due to the viscoelastic behaviour of the material,
whereby an increase in strain rate over time yields a positive slope, even after the
material reaches a state of stability. The irreversible plastic deformation increases
with an increase in the constant stress. It is evident in Fig. 13 that theMaxwell model
was able to curve fit the materials behaviour accurately with small deviation. An

Fig. 11 Experimental and analytical curve fitting of the short-term creep response of PE300
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Fig. 12 Experimental and analytical curve fitting of the short-term creep response of PE7000

Fig. 13 Experimental and analytical curve fitting of the long-term creep response of PE7000
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Fig. 14 Experimental and analytical curve fitting of the long-term creep response of PE100

overall error of 10% within the 8 MPa curve was achieved due to the experimental
data being greatly dispersed due to the amount of data points provided to the curve fit.
The error is depicted in the initial behaviour of thematerial due to the steep curvature.
The cause of error was likely due to the fluctuation in the extensometer readings,
where stepped displacement readings were obtained due to sensitivity issues.

Figure 14 shows the long-termcreep response ofPE100 subjected to three different
loading scenarios. The difference in behaviour between the PE100 and PE7000 is
further highlighted as the strain of the PE7000 differs from that of the PE100 shown
in Fig. 14. This can be seen in the variation in creep compliance between the two
materials, where PE7000 specimens subjected to all load scenarios up to 8 MPa
initially experience a compliance greater than 4000, whilst none of the PE100 spec-
imens subjected to 8 MPa or less exhibit compliance greater than 4000 even at the
highest stress. This is anticipated due to the difference in morphology between the
two materials, which results in a different stiffness. In addition, the radius of the
transition between the initial linear portion and the almost-horizontal portion of the
response is greater for the PE7000 specimens. In contrast, the PE100 specimens
have a short transition between the initial linear portion and the almost-horizontal
portion of the response. Both materials experience an increase in non-linearity at
greater stresses due to the differences in material properties and chains structure. It
is shown in Fig. 14 that the Maxwell model made good predictions of the test results
with minimal deviation and error. The model predicts unknown factors such as the
relaxation time and compliance constants through curve fitting.
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Fig. 15 Experimental and analytical curve fitting of the long-term creep response of PE300

Figure 15 shows the long-term creep responses of the PE300 specimens, where
similar to PE100, PE300 resists deformation more than PE7000. However, its resis-
tance to plasticity is lower than that of PE100, whereby the compliance achieved by
PE300 is greater than PE100. Similar to the other polymer types, the four element
Maxwell model can represent the long-term creep behaviour of PE300 with low
deviation and error.

5 Finite Element Modelling

5.1 Overview

The finite element software ABAQUS was used to model the step-loaded, short-
term and long-term creep tests conducted in this study using Prony series. Firstly,
MATLAB was used to normalise the data from the Maxwell model, allowing for
input data to be evaluated within ABAQUS directly. The normalisation of data was
achieved by dividing the theoretical data J(t) by J (0), which was gathered from
the curve fitting within MATLAB. From this, the Prony elements were able to be
determined, which resulted in the development of a finite element model of each
material. Validation of the model was achieved at n number of Maxwell elements
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subjected to constant load, hence undergoing creep. As a result, a single element
should output the same amount of extension and strain. However, since a single
element is represented as a single homogeneous body, determining the actual strain
of a coupon cannot be analysed by a single element as it is made up of numerous
connected elements. As a result, convergence of the FE model is dependent on the
accuracy of the Maxwell model curve fitting, as this provides an accurate represen-
tation of the materials creep behaviour once the modelled data is normalised within
MATLAB, as stated previously.

5.2 Model Description

The use of density, elastic, and viscoelastic material properties were used tomodel all
the polymers in this study. The density of thematerials provided by themanufacturers
were used for modelling (0.95 g/cm3 for PE100 and PE7000, and 0.96 g/cm3 for
PE300). For the elastic properties of each material, the elastic modulus and Poisson’s
ratio obtained from tension tests were used, and these values can be found in Table 1.
For the viscoelastic properties, the use of the normalised datawas implementedwithin
ABAQUS, allowing for the determination of the Prony series which theoretically
represents the viscoelastic properties. ABAQUS determined the Prony series based
on the desired allowable average root-mean-square error. In most cases, the error
was set to 0.01, or 0.001 when applicable, whilst the maximum number of terms in
the Prony series was kept at four. Once the Prony values were determined, they were
entered in the viscoelastic properties in ABAQUS.

Due to computational limitations, meshing the entire part with the same size
elements was not practical. As a result, the coupon was partitioned to enable finer
mesh in the gauge length segment, while the grip segments had a coarser mesh. This
reduced the computational time while keeping the model highly accurate. Different
mesh sizeswere trialled at the gauge section,whereby themesh sizewasprogressively
made smaller until the model results were no longer influenced by the mesh. The
grip segments of the coupon within ABAQUS were kept at a 5 mmmesh size, whilst
the gauged segment was trialled at 0.05, 0.1, 0.5, and 1 mm. It was found that at a
mesh size of 0.1 mm, the results became consistent for all the ran models. As a result,
0.1 mm mesh was utilised in the gauge segment of the FE models. The meshed FE
model is shown in Fig. 16.

The element type used throughout the entirety of all the models was the same.
Structured meshing technique was adopted using continuum solid elements C3D20,
which is a 20 node-quadratic brick element with full integration and hour-glass
control. The boundary conditions of the model were setup such that they resembled
the experimental procedure. One of the grip sections of the coupon was assigned
ENCASTRE boundary conditions, where no translational or rotational motionwould
be allowed in the x, y or z directions. The other grip of the coupon was fixed for
rotation in the x, y and z direction, and fixed for translation in the y and z direction.
This constraint allowed for loading since translation was enabled in the x direction,
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Fig. 16 Meshing of the finite element model

allowing for movement to occur only in the lengthwise direction. The boundary
conditions applied to the model are shown in Fig. 17.

5.3 Numerical Results

Short-term creep

Figure 18 shows the contour plot of the FE results of a short-term creep test of PE100
under a constant loading of 12 MPa. This model was developed based on the 4 MPa
short-term creep curve fitting, fourMaxwell elementmodel input inABAQUSas four
Prony series. ABAQUS does not treat the entire body as a single element, so a single
element within the gauge region is selected to assess the results. As such, Fig. 19
shows the strain versus time response of the coupon. It is seen that convergence
is achieved as the strain experienced by the coupon reaches approximately 0.0831,
whilst the experimental outcome of the corresponding coupon was 0.0807, giving
an error of 2.97%.

Determination of a Prony series was obtained based on the normalised data for
PE300 at 8 MPa, which allowed for an accurate prediction of the model behaviour
at higher stress levels. Figure 20 shows the short-term strain convergence using a
four Prony series element under 8 MPa. Compared with the experimental results
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Fig. 17 Boundary conditions of the finite element model

Fig. 18 Contour plot of the axial strain of PE100 subjected to short-term creep at 12 MPa

(Fig. 11), the convergence of the strain was achieved with an error margin of 7.48%.
On the other hand, PE100 strain convergence using Prony series was not in good
agreement with the experimental results, which may be attributed to the sensitivity
of the extensometer or load cell, and the alignment of the test coupons.
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Fig. 19 Strain–time response of PE100 subjected to short-term creep at 12 MPa

Fig. 20 Strain–time response of PE300 subjected to short-term creep at 8 MPa

The short-term numerical creep results of PE7000 are shown in Fig. 21. Compared
with experimental results (Fig. 12), it is shown that convergence was also achieved
with minimal error due to the curve fit deviation. Nonetheless, an error percentage of
2.31%wasobserved,whereby the experimental results output a strain of 0.528 and the
FEmodel outputs a strain of 0.541. Since themodelwas able to represent thematerials
behaviour with minimal error, the material’s response was depicted accurately in
terms of its viscoelastic reaction subjected to constant stress. Convergence of the
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Fig. 21 Strain–time response of PE7000 subjected to short-term creep at 12 MPa

model could also be further improved using a lower deviation when curve fitting
with the Maxwell model.

Long-term creep

The accuracy of the FE model for long-term creep was determined by comparing the
FE results to the experimental results from the three-day creep tests. The normalised
data allowed for the determination of the models four element Prony series. From the
determination of the Prony series, the system’s reliability was able to be determined
by comparing the strain output from the FE model to the experimental test. It was
found that for the 4 MPa specimens, the experimental strain was 0.02035, and the
FE strain was 0.02509. The strain–time curve attained from the FE model can be
seen in Fig. 22. The variation in strain between the experiment (Fig. 13) and the FE
model may be attributed to the uncertainties in the experimental testing as discussed
in the numerical short-term creep results.

The reliability of the modelling approach can be further analysed through deter-
mination of a Prony series at each experimental load. It is understood that the Prony
series of 4MPa would have a greater error when simulating a different load, however
the error will be dependent on the strain rate of the material. Since the normalised
data set is based on the strain rate, the values will significantly deviate as a greater
load is applied. As a result, convergence by determination of a singular Prony series
is only applicable to the load from which the Prony series is determined.

Determination of the Prony series parameters depends on the accuracy of the
experimental data and the curve fitting approach, whereby the time is increased to
achieve an accurate curve fit since more data points are considered. In essence, the
inaccuracy within the determination of the Prony series differs as the strain rate
changes per unit stress, causing the PE100 FE model to have a range of error of 1
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Fig. 22 Strain–time response of PE7000 subjected to long-term creep at 4 MPa

to 10%, which is similar to the short-term FE model. The contour plot of the axial
strain and the FE long-term creep results of the PE100 under 4 MPa are depicted in
Figs. 23 and 24, respectively. It was found that the FE model achieved a strain of
0.00816, whilst the experimental test achieved a total strain of 0.00888, resulting in a
margin of error of 7.87%. As the material is represented accurately in the FE model,
normalisation of the data did not allow for a curve fit lesser than 1E−6 mean-square
error as the desired amount of Prony series elements was set at four based on the

Fig. 23 Contour plot of the axial strain of PE100 subjected to long-term creep at 4 MPa
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Fig. 24 Strain–time response of PE100 subjected to long-term creep at 4 MPa

optimised amount of Maxwell models. Similar outcome was achieved at stress level
of 8 MPa (Fig. 25).

The accuracy of the Maxwell models is further supported by the FE results of
the PE300 long-term creep response under 4 and 6 MPa as shown in Figs. 26 and
27, respectively. For the 4 MPa tests, the experimental strain was 0.0129 (Fig. 15)
and the FE strain was 0.01426, giving an error of 10.54%. For the 6 MPa tests, the
experimental strain was 0.0230 (Fig. 15) and the FE strain was 0.0227, giving an
error of 1.39%. Summary of the experimental and FE results is shown in Table 2.

Fig. 25 Strain–time response of PE100 subjected to long-term creep at 8 MPa
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Fig. 26 Strain–time response of PE300 subjected to long-term creep at 4 MPa

Fig. 27 Strain–time response of PE300 subjected to long-term creep at 6 MPa
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Table 2 Results from the
experimental tests and finite
element models

Creep test Experimental
strain

FE strain Error (%)

HDPE 100
short-term
(12 MPa)

0.08139 0.08381 2.97

HDPE 300
short-term
(8 MPa)

0.03350 0.03600 7.48

UHMWPE
short-term
(12 MPa)

0.52878 0.54100 2.31

HDPE 100
long-term
(4 MPa)

0.00888 0.008162 7.87

HDPE 300
long-term
(4 MPa)

0.12700 0.12900 1.39

UHMWPE
long-term
(4 MPa)

0.02035 0.02509 6.77

6 Conclusions

The viscoelastic and viscoplastic behaviour of three different polyethylene poly-
mers were investigated in this study, including two types of HDPE and one type of
UHMWPE. The polymers were subjected to different loading conditions, including
displacement-controlled tension, load-controlled tension, strain-controlled tension,
step-loaded creep, short-term creep and long-term creep. An analytical model that
incorporated four Maxwell elements was used to predict the experimental results.
The model provided an accurate curve fit by determining unknown factors such as
the relaxation time and initial creep compliance. This model was found to make
predictions with a high level of accuracy. Finite element models were then devel-
oped to predict the short-term and long-term creep behaviour of the HDPE polymers
using Prony Series elements. The finite element models also made good predictions
of the creep behaviour of the HDPE polymers. It was found that the accuracy of
the model was dependent on the accuracy of the short-term creep experimental test
results. Overall, Maxwell’s model enabled the creep behaviour of the two different
polymer morphologies to be predicted accurately. This shows the reliability of this
model for using short-term creep data to predict the long-term creep response of the
material.
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Numerical Investigation of Lithium
Battery Using Heat Pipes in Electric
Vehicles

Zhao Liu, Jin Zhao, Chao Wang, Yangjun Qin, and Hang Zhang

Abstract The battery thermal management system plays a crucial role for lithium-
ion battery in electric vehicles because of its susceptible performance during fast
discharging. In this study, the Newman, Tiedemann, Gu, and Kim (NTGK) electro-
chemical model is applied to investigate the numerical simulation on the tempera-
ture distribution within battery when discharging at various rates, which is compre-
hensively validated with experimental data. Following the verification, a three-
dimensional heat pipe integrated system (HPIS) is designed with a novel thermal
resistance model on the basis of equivalent thermal circuit method. The combination
of thermal resistance between pipes and fins at the condenser section greatly predicts
the temperature distribution of the system. Then the simulation model is employed
to obtain the cooling efficiency of heat pipe (HP) under transient conditions. The
temperature difference and maximum temperature of the battery pack under natural
and forced air convection are compared. Implementation of insulating board over-
comes the thermal runaway and propagation to protect the lithium-ion battery during
a rapid discharging rate of adjacent cell. Simulation results reveal that theHPIS-based
battery pack not only improves the heat dissipation capability, but also provides the
thermal runaway protection to ensure the battery cell safety.

Keywords Lithium-ion battery · NTGK model · Heat pipe · Thermal resistance

1 Introduction

Coupled with the deepening of energy crisis and more environment pollution, new
energy vehicles have been adopted worldwide due to their effective operation and
lower pollutant emissions in automobile industry. Nowadays, challenge for new
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energy vehicles is to look for an appropriate energy storage system,which can support
high mileage, fast charging and stable driving performance [1]. Lithium-ion battery
possesses higher energy density, large specific power, lower self-discharging rate,
longer cycle life and lighter weight than other kinds of rechargeable batteries for
electric and hybrid vehicles (EV/HEV) [2].

However, lithium-ion batteries are sensitive to changes in ambient temperature,
because the high temperature above 50 °C that will significantly decline the recov-
erable power and capacity particularly, shorten the life cycles and accelerate the
degradation of battery efficiency. The optimal operating temperature range of power
battery is generally from 20 to 45 °C, within which the battery will keep great balance
between performance and cycle life. Themaximum temperature difference of battery
cell should be within 5 °C [3, 4].

Numerical research efforts have been made to study the mathematical models
for different kinds of batteries to figure out the mechanism inside the cell body
and connection between the electrical and chemical characteristics, as well as the
thermal behavior under various working conditions [5]. Newman et al. [6] built up a
lithium-ion battery model based on formula through fitting the diffusion coefficient
in carbon electrode. Tiedemann et al. [7] proposed an equivalent resistance model to
analyze batteries’ behavior. Gu [8] used an experimentally polarization expressions
to describe the losses between the positive and the negative electrodes and to predict
the behavior of Zn/NiIOOH batteries, such as the potential and current distribution,
power, capacity and energy under instantaneous conditions. Kim et al. [9] proposed
a two-dimensional thermal model of the distribution of potential and current density
on the electrodes of a lithium-ion battery by means of the finite element method.
Chacko and Chung [10] designed a fully coupled three-dimensional transient elec-
trothermal model based on the finite volume method. By comparing the numerical
simulation results with the experimental data, the voltage, current, temperature and
state of charge (SOC) of the battery model collected under dynamic conditions were
predicted more accurately.

All of the mathematical battery models designed aim to fully understand the
reaction procedure of power battery. At present, due to the development of electrical
technology of EV, power batteries are in eagerly demand than ever before. In order
to achieve higher energy density and increase mileage, more batteries will be added
to the battery pack. Therefore, for security reasons, it is urgent to enhance the battery
thermal management system (BTMS) to lower the cell temperature and mitigate the
temperature uniformity of the battery modules [11, 12]. Likewise, the BTMS should
also meet the requirements for EV, such as: lightweight, compactness, convenient
operation and maintenance, low cost and lower power consumption.

In the thermal control of the lithium-ionbattery pack, plenty of strategies havebeen
implemented to maintain high performance in batteries. Up to now, the approaches
of BTMS can be performed with active and passive. The extraction of the waste
heat from the integrated system by applying external energy consumption is the
main mode of the active thermal management. Nevertheless, this cooling system
is insufficient to provide cooling rates because of the low heat transfer coefficient.
The active system principal weakness is to add equipment, like fans, pipes, fluid
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circulation pumps and heat exchangers, which cost additional power [13]. The other
approach, the passive BTMS, makes use of heat pipes or phase change material
(PCM) to extract excess heat. There are a large amount of works using heat pipes
in the EV that analyzed thermal variations in the batteries. The merits of heat pipe
are high thermal conductivity, low thermal resistance, and the excellent isothermal
property among the evaporator and condenser zones [14].

Wu et al. [15] validated that heat pipewith additional aluminumfins using external
fans on the condenser section could greatly reduce the cell temperature. Tran et al.
[16] designed a new cooling system of heat pipe with chimney ventilation to enhance
the heat dissipation without any power consumption that kept the battery temperature
lower than 50 °C. Zhao et al. [17] investigated a battery thermal management (BTM)
combining an ultra-thin aluminum heat pipe with wet cooling by comparing with
other four cooling strategies. Famouri et al. [18] predicted a transient analysis of
micro flat heat pipe, in which the efficiency of heat transfer coefficient was estimated
by combining experimental data. Above all, the cell temperature and uniformity of
battery pack is effectively regulated within optimal range with well-designed BTM.

Numerous structural optimization methods have been applied in the heat pipe
cooling system so as to enhance the thermal performance. Chen et al. [19] calculated
the velocities of the cooling channels by combining a flow resistance network model
and the cell temperature by analyzing a heat transfer model to optimize the config-
uration of the cooling system under the constant heat generation rate. Liu et al. [20]
designed a “segmented” thermal resistance model to determine the thermal param-
eters of heat pipe and integrated that into the three-dimensional battery model for
numerical simulation. Hatata et al. [21] conducted an orthogonal numerical test to
obtain the sensitivity of various parameters of a batterymodule with cylindrical cells.

In this article, a three-dimensional electrochemical model is developed with a
novel thermal resistance network, which has been used to analyze the dynamic
thermal characteristics of the battery pack. The remained of this article is organized
as follows: Sect. 2 validates the experimental results with the numerical data obtained
by the NTGK model in ANSYS Fluent; Sect. 3 establishes a geometric HPIS-based
battery pack and a novel equivalent thermal resistance circuit; Sect. 4 describes a
numerical model setup and solutions. And mesh sensitivity analysis is conducted in
this section; in Sect. 5, temperature distribution of the structure is testified to predict
the battery thermal performance. Novel equivalent method of HP is compared with
traditional one, which reveals the thermal behaviour within the battery. Improvement
of the cooling effect and heat insulation efficiency of theHPISwith natural/air-forced
convection under rapid discharging rates are discussed; finally, Sect. 6 concludes this
article.
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2 Measurements and Validation

2.1 Experimental Setup

In the experimental test, the preliminary object is to acquire the time-wise variations
of the cell surface temperature and temperature distribution of batteries. Figure 1
schematically illustrates the experimental setup diagram. The integral elements of the
experimental facility are (1) the battery testing system (NEWARE, EVT-100V200A)
that controls the discharging rate at 1C, 2C and 3C respectively; (2) the data acquisi-
tion system for monitoring and recording temperature, voltage, and current data; (3)
the computer (HP Z4 G4) to record the tested data; (4) The air conditioner which is
used to maintaining a constant ambient temperature; (5) Lithium-ion battery (CATL
S5E897, 148 × 26.5 × 94 mm) (6–10) thermocouples measure the temperature of
battery surface. Charged and discharged though the power battery testing system, the
battery is placed inside the air conditioner under at constant ambient temperature,
the bottom of which insulates from the baseboard.

Before the experimental test, according to the CATL product instruction, the
battery need to be calibrated preliminarily. The calibration steps are as follows:
first, the battery is fully charged with a constant current 14000 mA (1/3C) up to
4.2 V in standard charging pattern. Next, the current value is reached to 2100 mA
under constant voltage. Then, fast charging and discharging can be utilized. After
the calibration procedure, the battery can be tested under the specified conditions.

In this experiments, three identical batteries, discharged from 4.2 to 2.75V, are put
in the conditioner and discharge on different conditions to obtain the thermal prop-
erties. Temperature and heat generation rate are monitored at the constant ambient
temperature of 25 °C with three various discharge currents of 42,000, 84,000 and
126000 mA corresponding to 1C, 2C and 3C discharging rates, respectively. The

Fig. 1 Experimental setup
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Table 1 Discharge processes Battery no Process Current (mA) Shelving time (h)

1 Discharge 42,000 3

Charge 14,000 1

2 Discharge 84,000 3

Charge 14,000 1

3 Discharge 126,000 3

Charge 14,000 1

procedure of experimental research for each battery cell is shown in Table 1. Shelving
time is oneof themost significant steps in the experiment so as to ensure the completed
electrochemical reaction after test.

2.2 Model Description

A three-dimensional numerical model of ternary lithium-ion battery is built by Solid-
works, of which the physical parameters are presented in Table 2. The positive
electrode material is Al 1060 and negative electrode material is Cu. Then an electro-
chemicalmethod is implemented through theNTGKmodel [22] approach inANSYS
Fluent. Heat generated of the cell in this model can be mainly divided into internal
resistance heat and reaction heat [23]. The volumetric current transfer rate jEch of the
battery is calculated as following:

jECh = aY
[
U − (φ+ − φ−)

]
(1)

where φ− and φ+ are the potential of negative and positive electrodes, a is the specific
area of the electrode sandwich sheet in the battery, the model parameters Y and U
are functions of the battery depth of discharge (DOD):

U =
(

5∑

n=0

an(DoD)n

)

− C2
(
T − Tref

)
(2)

Table 2 Physical parameters of ternary lithium battery

Material Density (kg·m3) Specific heat,
(J·kg−1·K−1)

Thermal conductivity
(W·m−1·K−1)

Positive electrode Al 2680 900 234

Negative electrode Cu 8933 385 398

Battery cell NCM 2316 700 kz = 18.2;
kx = ky = 24.1
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Y =
(

5∑

n=0

bn(DoD)n

)

exp

[
- C1

(
1

T
− 1

Tref

)]
(3)

where C1 and C2 are the NTGK model constants of battery-specific. an and bn are
constants tested by the experimental data. T and Tref is the measuring and reference
temperature.

The electrochemical reaction heat qEch is calculated as:

·
q

ECh
= jECh

[
U − (φ+ − φ−) − T

dU

dT

]
(4)

The battery surface radiation effects are negligible. Energy equation is imposed
and a convection heat transfer coefficient of 10 W · m2 · k−1 is defined as boundary
condition on the surfaces of the battery under a constant temperature condition of
298 K. The model is included a SIMPLE algorithm and a first-order upwind scheme
to determine the energy and momentum.

2.3 Validation

As shown in Fig. 2, the temporal and spatial temperature are evaluated for three
different discharging rates over time. The relative results indicate that the battery
surface temperature raises by increasing the discharging rate. It is obvious that the
average temperature in the numerical model is consistent with the experimental data.
At the end of test process, the average temperature of the cell is evaluated as 37,

Fig. 2 Experimental
validation for
electrochemical model
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48 and 42.6 °C and the maximum deviations of the temperature are 2.9, 4.5 and
4.9% for the discharging rates of 1C, 2C and 3C, respectively. Therefore, the thermal
behaviour of battery cell can be predicted by the three-dimensional electrochemical
model.

3 Design of Heat Pipe Cooling System

3.1 Geometric Model

HP can work spontaneously without additional external power and transfer a large
amount of heat in a long distance, which can be described by three processes: at first,
the evaporator section absorbs heat, and then heat is transferred to adiabatic section,
finally dispersed by the condenser section [24]. In addition, HP can immediately
emerge phase change to transfer heat within a minor temperature difference [25].
Figure 3a presents the novel HPIS, including insulating board to prevent thermal
runaway from one battery out of control, two batteries to be heat source, thermal
grease to reduce the superficial thermal resistance, aluminum plate to enhance the
thermal conductivity between the battery and the heat pipe, heat pipes and cooling
fins to transfer heat. Each of the batteries are surrounded by the insulating board
or the aluminum plate, which form a sandwiched configuration. The cylindrical HP
can be inserted properly into the aluminum plate by using the thermal grease. The
geometry of the HPIS is shown in Fig. 4b. The overall length of HP is 150 mm, in
which the evaporator section is 95 mm with 6.5 mm radius and condenser section
is 40 mm with 10 mm radius, and the space between HPs is 25 mm. The interval
distance between cooling fins is 5 mm. The thermal dispassion system is coupled
with natural air convection on the condenser section and passive cooling equipment
fins.

3.2 Equivalent Circuit Model of HPIS

In the equivalent circuit model of HPIS, the thermal behaviour of the entire cooling
system is idealized by analogy with thermal resistance. The thermal equivalence
is represented in Fig. 4. The specific areas express diverse components within the
BTMS. For the heat pipe, heat transfer from liquid pool in the evaporator section
to condenser section is ascended by the pressure difference, which is filled with
working fluid in a saturated state. The vapor is generated by the outer heat source on
the phase process in the evaporator section and carries heat to the condenser section,
inwhich the liquefied liquid is brought back to the liquid pool due to the gravity force.
Therefore, the phase-change process works continuously. In the equivalent model,
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Fig. 3 Heat pipe integrated
system: a schematic of the
battery cooling system; b
geometry of the heat pipe
integration

the thermal resistance circuit is principally composed of two sections: integrated
thermal system and heat pipe structure.

With regard to the integrated system, Rf, Rg, Ra, Rb and Ri are the thermal resis-
tance of aluminum fin, thermal grease, aluminum plate, battery and insulating board
respectively; Rf,g, Rh,g, Ra,g, Rb,g and Ri,b are the contact thermal resistance at the
surfaces of adjacent parts.

For the second section, the most significant equivalent circuit of the integrated
system is the thermal resistance of heat pipe. Re,w, Rc,w and Rw,a are the thermal resis-
tance due to the wall of condenser and evaporator, and radial direction. The thermal
resistance Re,r and Rc,r are due to the radial transfer of evaporator and condenser
section. Rl,v, Rv,l and Rv,a are the thermal resistance due to the gas–liquid interface
and axial direction of vapor flow, which can be neglected on account of minor errors
with calculation due to their extremely small order ofmagnitude. A segmented equiv-
alent model of HP is more accurate to express heat transfer and thermal performance
than the original one that is simply separated into liquid and gas section. In addition,
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Fig. 4 Equivalent circuit model of HPIS

the equivalent circuit is applied to calculate the physical parameters and conditions
for numerical simulation.

In the evaporator section, the thermal resistance Re can be expressed as:

Re = R1
h,g + Re,w + Re,randKe = 1

ReAe
(5)

⎧
⎪⎪⎨

⎪⎪⎩

R1
h,g

= 1
Aeoα1

wall

Re,w = I n
(

do
di

)

2πLeλw

Re,r = 1
Aeiαe

(6)

where Ke is the heat transfer coefficient of liquid pool; Ae, Aeo and Aei are the mean,
outer and inner surface area of evaporator section; α1

wall and αe are the heat transfer
coefficient of outer wall and liquid film; do and di are the diameter of outer and
inner wall; Le is the length of evaporator section and λw is the equivalent thermal
conductivity.

In the condenser section, the thermal resistance can be described as:

Rc = R2
h,g
+ Rc,w + Rc,r + RfandKc = 1

RcAc
(7)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R2
h,g

= 1
Acoα2

wall

Rc,w = I n
(

do
di

)

2πLcλw

Rc,r = 1
Aciαc

Rf = 1

αf(Afin1 + ηfinAfin2)

(8)

where Kc is the heat transfer coefficient of vapor region; Ac, Aco and Aci are the
mean, outer and inner surface area of condenser section; α2

wall and αc are the heat
transfer coefficient of outer wall and radial direction; Le is the length of cooling
section; η f in and α f are the heat transfer coefficients of fin efficiency and aluminum
fin; A f in1 and A f in2 are the surface area of thermosyphon between fins and surface
area of fins.

4 Numerical Model

Numerical survey is utilized to observe to investigate the thermal behaviour on the
temperature distribution of battery system. The transient simulation is performed in
the ANSYS Fluent. The numerical model considers following assumptions: (1) The
radiation effects on the surface of the battery canbenegligible; (2) the surface between
solid and gas is no slip and the contact surface between solids is coupled; (3) heat
pipe is regarded as two-section solid conductor with various thermal conductivity
due to the different thermal resistance. Table 3 lists the initial specifications of the
HPIS.

4.1 Parameters Setup and Solution

The boundary condition parameters are significant segment for simulation process.
A time-dependent solution is set up due to the battery discharge course obtained by
the NTGK model, in which the battery is discharged from 4.2 to 2.75 V and the

Table 3 Thermal properties of apparatus

Density (kg·m3) Specific heat, (J·kg−1·K−1) Thermal conductivity
(W·m−1·K−1)

Insulating board 30 1380 0.03

Thermal grease 1600 1700 4.15

Aluminum plate/fin 2719 871 202.4

Heat pipe 2702 903 2000
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original depth of discharge (DoD) is set as 0. The nominal cell capacity is 42Ah.
Virtual battery connection is established to connect the two cells in series. The energy
equation is on. The ambient temperature is set as 25 °C and the initial temperature
of the integrated system is identical with that. A convective heat transfer coefficient
of 10 W·m-2·K-1 is defines as boundary condition on the surfaces of solids.

The dynamic thermal behaviour of the cooling system is modeled by a transient
simulation with a fixed time step of 20 s. Pressure–velocity coupling is set as simple
algorithm and the objections of the momentum and energy are set as second-order
upwind scheme in the stereoscopic model. In addition, under-relaxation factors are
0.7 for momentum and 1.0 for energy in solution controls.

4.2 Mesh Sensitivity Analysis

The HPIS is meshed with various grid sizes in order to reduce the amount of calcu-
lation and to ensure the accuracy of calculation results. The variance with different
meshes of the battery maximum temperature is shown in Fig. 5. Along with the
grid number increasing from 609,254 to 1,034,692, the deviation of the maximum
temperature of battery is merely 0.02% that can be ignored, therefore, the mesh
number of 609,254 is adopted. In addition, the skewness of mesh metric is tested to
keep precise quality, of which the standard deviation maintains a stable level of 0.12
when the grid numbers can barely affect the simulation results.

Fig. 5 Grid sensitivity test
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5 Results and Discussion

5.1 Method Comparison

In order to analyze the efficiency of heat transfer of the “traditional method” and
the “novel method”, the maximum temperature and temperature difference in single
battery of the HPIS at 3C discharge under natural convection are presented in Fig. 6.
The battery cell temperature is gradually increased with the SOC declining, which is
identical to both methods. The temperature distributions of the batteries are similar
between cell 1 and cell 2 due to the symmetrical structure. In novel method, the
maximum temperature of the battery reaches 47.2 °C that is lower than the 48.5 °C
in traditional circuit model at the end of discharge. Moreover, the temperature differ-
ences aremaintained stable upward trend at initial dischargingprocess, then increased
sharply at the final stage (about SOC < 0.1). The temperature difference of one
battery in latest method is reduced by 11.86% compared with original calculation
when segmented heat pipe model is applied. In addition, the range of temperature is
optimal to ensure the system safety, and is appropriate below 50 °C. Consequently,
the precision of proposed novel thermal resistance method of heat pipe integrated
into the HPIS model is higher than the traditional model.

Fig. 6 Temperature variations between two methods at 3C discharging rate
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5.2 Temperature Distribution Analysis

The battery cycle life is greatly influenced by the maximum temperature and temper-
ature difference of the battery pack. A notable temperature fluctuation in both battery
and system can result in unexpected thermal runaway. Thus, considering the thermal
performance of theHPISwith novelmethodunder constant discharging rate in natural
convection, the temperature distribution of the battery and HPIS system is analyzed
at 1C, 2C and 3C discharging rate at ambient temperature of 25 °C.

Figure 7 presents the maximum temperature variation of two cases during
discharging process. Due to the symmetrical structure, only one battery cell curve
is shown. Without the HPs installed, the temperature of the battery pack increases
dramatically. At the end of the 1C and 2C discharging rate, themaximum temperature
of the battery reaches 34.2 and 46.0 °C. However, the battery temperature exceeds
50 °C that is completely out of security range under 3C discharging rate. The exterior
parts of the system can easily transfer the heat to the surrounding medium through
convection while the heat in the interior battery will continue to accumulate, which
may avoid thermal dissipation. After the installation of HPIS, the maximum temper-
ature of the battery decreases by 3.8 °C at the end of 1C discharge. Furthermore,
the battery temperature differences between two structures extend to 5.8 and 6.7 °C
under 2C and 3C discharging rate respectively, that is significantly increased by the
higher discharging rate.

Moreover, the temperature differences of the pack (�Tpack) and of the battery
cell (�Tcell) are presented in Fig. 8. At the end of 3C discharge, �Tpack can up
to 12.5 °C with HPIS and 15.7 °C without HPs that may slightly slow down the
upward trend of temperature, between which the difference value reaches 3.2 °C. In
addition, the maximum �Tcell is 2.3 °C with HPIS, which is much higher than the
initial battery pack of 1.0 °C, because the HPs contact with the single surface of the

Fig. 7 Maximum
temperature of the pack at
various discharging rate
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Fig. 8 Temperature difference curves at 3C discharging rate

cell with better heat dissipation performance and the opposite one is only in contact
with the insulating board with lower cooling efficiency, but the temperature value is
no more than 5 °C.

The temperature distribution of HPs at condenser section, confirming the number
of HPs according to the x-axis direction, reveals the thermal characteristic of HPIS
system.As is presented in Fig. 9, although the temperature ofHP 1 and 5 is the highest
value from 318.1 to 317.6 °C among HPs along the x position due to the scattered
pipes distribution and insufficient effect of marginal heat transfer, the maximum

Fig. 9 Temperature
distribution at HPs’
condenser section along the
X position
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temperature difference between HPs is below 0.2 °C. Besides, the thermal distri-
butions of HP 2, 3 and 4 become minimal, and the temperature range of HP 3 is
from 318.0 to 317.4 °C possessing good heat dissipation performance at the end of
condenser position, which indicates the fairly temperature uniformity of the pipes.

5.3 Improvement of Thermal Performance

As mentioned above, HPIS helps reduce the maximum temperature of battery
conspicuously. However, under the natural convection at high discharging rate,
the battery temperature cannot be maintained within the optimal operating
range(<45 °C). In order to control the battery temperature under proper extent, it
is necessary to implement forced air convection on the condenser section of HPs,
which extremely enhances the cooling performance.

Numerical simulations using the previous model with the 148× 10× 47 mm gas
cabin are undertaken by adopting the various air volume flow rates. As is shown in
Fig. 10, The maximum temperature of batteries is predicted under 3C discharging
rate. Compared to the natural convection, the air convection of 12.69m3h-1 can
decrease the maximum temperature by 0.36 °C. The temperature of battery can be
controlled below 45 °C under the air convection higher than 25.38m3h-1 at the end
of 3C discharging rate. It is worth nothing that the air-cooling efficiency increases
with the raising depth of discharge.

Fig. 10 Maximum temperature of battery under various convection strategies
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Fig. 11 Temperature difference of battery under various convection strategies

However, the uniformity of battery temperature has reduced due to the unique
surface of the prismatic cell contacting with HP and excellent heat transfer charac-
teristic. As is presented in Fig. 11, the variation of battery temperature difference
is compared. For the battery with natural air convection, the temperature difference
can be controlled well below 1.5 °C at first, but exceeded to 2.2 °C while the battery
is fully discharged. After adding the forced air cooling, the thermal consistence
of battery cell decreases sharply, of which the maximum temperature difference
reaches 3.3 °C with 25.38m3h-1 but is still within the optimum temperature by
5 °C. Moreover, the marginal effect of increasing air flow rate toward the gas cabin
from 12.69m3h-1 to 25.38m3h-1 become negligible. Therefore, considering both the
lower maximum temperature and less thermal uniformity, a forced air convection of
25.38m3h-1 appears to prove the improvement of thermal performance of the HPIS
by accelerating volume flow and enhancing heat dissipation.

5.4 Evaluation of Heat Insulation Efficiency

Although the HPIS has been verified to be effective in the light of cooling efficiency,
the phenomenon of thermal runaway should also be attached great importance to.
Considering the heat dissipation of one battery pack to the adjacent cell at the end
of 3~8C discharging rate, the thermal blocking effect of insulating board should
be tested. In this part, the predicted maximum temperature and trigger time (when
adjacent cell temperature is above 50 °C) of the battery with the insulating board of
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1 mm, 1.5 mm, 2 mm respectively compared to non-board model under natural air
convection are analyzed.

The maximum temperature of the battery caused by adjacent one at high
discharging rate under four schemes is presented in Fig. 12. The battery heat dissi-
pates rapidly without insulation, in which the battery temperature exceeds 50 °C at
the end of 4C discharging rate. when implementing the insulating board of various
thickness, the thermal runaway situation has been effectively controlled. The highest
values are 52.4 °C at 4C rate and 51.9 °C at 6C rate with 1 mm and 1.5 mm board
respectively. In addition, the cell temperature can be maintained below 50 °C with
2 mm insulating board at the end of 7C rate. Although the thermal value is slightly
higher than trigger value reaching50.73 °Cunder 8C rate, the rangeof the temperature
decrease is acceptable to ensure battery safety.

As can be seen from the bar in Fig. 13, the time is variable in four cases at 6, 7 and
8C discharging rate. The trigger time is slightly reduced from 300 to 160 s, taking up
almost 25% and 13% of discharge time due to the high thermal conductivity between
batteries. But the values increase gradually with the thickness of the insulating board.
There is no trigger time under low discharging rate and 460 s of 39% discharging
time at 8C rate when 2 mm board is applied, which suggests that a thicker plate is
installed next to the battery is an effective method for blocking the spread of the heat.

The low thermal conductivity of the insulating board slows down the heat transfer
speed of the runaway battery, providing opportunity for rapid heat transfer. In short,
the present HPISwith insulating board showed a significant improvement in the level
of insulation ability.

Fig. 12 Thermal performance of adjacent battery with different insulating board
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Fig. 13 Trigger time of
maximum temperature at 6,
7 and 8Cdischarging rate

6 Conclusion

High operating efficiency and better thermal performance are two critical quanti-
ties that the lithium-ion battery should possess. For tackling with the thermal accu-
mulation and runaway within the battery during fast discharging, numerous efforts
are undertaken to optimize the thermal characteristic of HP to maintain the battery
under damaged temperature with high uniformity. A newHPIS is introduced for effi-
cient cooling to enhance the working performance of the battery. The novel method
is calculated by equivalent thermal resistance network with forced air convection,
which reveals the dynamic heat behaviour inside the cells and pipes. To prevent the
propagation of thermal runaway between the adjacent batteries, an insulation strategy
is proposed and testified. The numerical model is calibrated and comprehensively
validated by comparing the initial predicted data with experimental results. Some
conclusions are summarized as follows:

1. TheNTGKmodel shows the considerable accuracywith the validation of exper-
imental, which has successfully predicted the electrochemical behaviour of the
battery. The average deviation coefficient of temperature between experimental
data and simulation results is below 10 °C.

2. The proposed novel thermal resistance method is testified more accuracy
compared with the traditional equivalent model by assessing the temperature
distribution of battery pack. The maximum temperature decreases to 1.3 °C and
temperature difference reduces by 11.86% when equivalent network model is
applied.

3. HPIS-based battery pack displays outstanding heat transfer performance at 3C
discharging rate with natural air convection, where the maximum temperature
is 6.7 °C lower than the non-HPs structure. Although the temperature difference
of the battery cell increases to 2.3 °C, which is still below the optimum value
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of 3 °C. The temperature distribution of HPs at condenser section presents the
fairly temperature uniformity of the pipes.

4. In order to enhance the efficiency of heat transfer of the HPIS, the air-forced
convection is implemented tomaintain the battery operating under amuch cooler
condition. An air volume flow of 25.38 m3h−1 can control the battery temper-
ature below 45 °C at the end of 3C discharging rate, where the temperature
difference performs with a small fluctuation.

5. The combination of reasonable heat insulation measures can ameliorate the
thermal runaway phenomenon. By varying the thickness of insulating board, the
influence of the high-rate discharging battery to adjacent one can be reduced.
The battery temperature is well controlled below 50 °C with 2 mm insulating
board.
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Modeling the Intercooling
of a Multi-stage Compression in Gas
Turbines Using Absorption Chiller

Kirolos A. Amin, Mohamed ElHelw, and Osama A. Elsamni

Abstract The intake ambient conditions have significant influences on the perfor-
mance of gas turbine plants, specifically in hot and dry locations. Cooling the
compressor intake air has become one of the most common techniques for increasing
the gas turbine efficiency. In the present paper, a new idea for cooling the intake air
and the air at inlet to each compressor stage using a single-effect absorption chiller
is proposed and modeled. The absorption chiller is driven by the heat dissipated
in the inter-stage cooling. A mathematical model of the integrated gas turbine-
absorption chiller is developed, validated, and assessed under different ambient
conditions for two cities in Egypt, namely Alexandria (warm-humid), Aswan (hot-
arid) on a daily and annual basis. The effect of ambient conditions variations on
the net power production, thermal efficiency, specific fuel consumption, and CO2

emission are investigated. The results show that for cities with hot-dry climates such
as Aswan, especially in June, the thermal efficiency of the proposed system is better
than the conventional configuration by 3.164%. Using this technique, the power
output increases by 5.683%. Additionally, the emission reduction of 5.536 percent.
However, in humid regions like Alexandria, due to losing the amount of condensed
water in air precooling and low average ambient temperature compared to Aswan,
the performance enhancement is not significant.
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Nomenclature

Cp Specific heat at
constant pressure,
[kJ/kg.K]

Subscripts

h Enthalpy, [kJ/kg] a Air

P Pressure, [kPa] g Gas

T Temperature, [°C] f Fuel

ρ Density, [kg/(mˆ3]) amb Ambient

x Solution
concentration, [%]

is Isentropic

χ Dryness fraction, [−] C·C Cooling capacity

RH Relative humidity, [%] p Pump

LHV Lower heat value,
[kJ/kg]

c Compressor

Q̇ Heat transfer rate,
[kW]

evap Evaporator

W Work done, [kW] abs Absorber

COP Coefficient of
performance, [−]

des Desorber

rp Pressure ratio, [−] cond Condenser

SFC Specific fuel
consumption,
[kg/kWh]

SHX Solution heat exchanger

HR Heat rate, [kJ/kWh] GT Gas Turbine

bwr Back work ratio, [−] PM Proposed Model

εCO2 Carbon dioxide
emissions, [kg/kWh]

Abbreviations

Greek letters CONVBC Conventional Brayton Cycle

�P Pressure drop, [kPa] VARS Vapor absorption refrigeration system

γ Specific heat ratio, [−] ISO International Organization for
Standardization

ω Moisture content, [kg
moisture/kg dry air]

EES Engineering Equation Solver

η Efficiency, [%] TIC Compressor Inlet Temperature

ε Effectiveness, [−]

A/F Air to fuel ratio, [−]
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1 Introduction

Due to high ambient temperatures and relative humidity inMiddle East region during
summer, there are significant impacts on gas turbine performance.When the ambient
temperature increases, the air mass flow rate decreases, leading to a reduction of
the net power provided by the gas turbine plant. From this point of view, in order
to improve the performance of gas turbine power plants, many researchers have
investigated alternative turbine intake cooling strategies. The first innovation of a
gas turbine intake air-cooling system was in 1987 in Michigan gas turbine power
plant, using direct air-cooling (Gupta et al. [1]). In 1992, the off-peak ice picker
was also used in the USA as a cooling system (Yingjian et al. [2]). Generally, the
techniques of cooling the air at inlet to the compressors of gas turbine plants can
be classified into main four techniques: high-pressure fogging, evaporative cooling,
absorption chiller, and mechanical refrigeration system. This inspired many studies,
summarized below.

The spraying of droplets of demineralized water into air inlet ducts is known as
high-pressure fogging. This method of cooling was studied and assessed by Majdi
et al. [3], Najjar et al. [4], Alhazmy et al. [5], Barakat et al. [6], Athari et al. [7],
Comodi et al. [8], Ehyaei et al. [9]. According to the results and recommendations
of the theoretical and practical researches, a spray cooler may increase power and
enhance the efficiency of a gas turbine plant. However, in warm and dry locations,
it works more efficiently, it is substantially cheaper than cooling coils, but that need
huge amount water, in order to act well.

In the evaporative cooling, the latent heat of vaporization is used to reduce the
ambient temperature from the dry-bulb to the wet-bulb temperature. Najjar et al.
[4], Popli et al. [10], Santos et al. [11], Mohapatra and Sanjay [12], Marzouk et al.
[13], White and Meacock [14] studied the potential of gas turbine power plants
by suggesting the use of evaporative cooling. The findings showed that the wet-
bulb influence on the inlet air temperature limits the capacity improvement, and this
approach needs a considerable amount of water for optimal operation. It is especially
useful in hot arid locations.

As a precooling technology, the absorption chiller recuperates the waste heat
from the gas turbine exhaust gases. The impact of compressor intake air cooling
using an absorption chiller was theoretically investigated by many researchers such
as Majdi et al. [3], Najjar et al. [4], Popli et al. [10], Santos et al. [11], Zainali
et al. [15], Mohapatra et al. [16], and Mohanty et al. [17] at different operating and
climatic conditions. According to the research’s findings, the absorption chiller has
the advantage of being able to cool the input air to a certain temperature, increase
the plant’s output power, and increase the GT’s efficiency. However, the heat input to
the vapor absorption refrigeration system depends on the GT exhaust gasses which,
in turn, reduces the heat exchangers life time and increases the maintenance costs.

To cool the ambient air entering a mechanical refrigeration system, it must pass
through a chilling coil. This implies that the ambient air’s wet-bulb temperature
has no impact on mechanical refrigeration systems. The reduction of GT inlet air
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temperature by using vapor compression refrigeration system was studied by Najjar
et al. [4], Santos et al. [11], Mohapatra and Sanjay [12], Mohapatra et al. [16],
Mohammed et al. [18], Al-ansary et al. [19], and Dawoud et al. [20]. There was
notable deterioration in the total energy production, although the mechanical chiller
enables full control over the intake conditions of the compressor. This is because the
electricity needed to drive the mechanical refrigeration cycle is deducted from the
gas turbine output.

It can be concluded here that the fogging system and sprays directly to the air
intake of the compressor have two major drawbacks. They are; the possibility of the
compressor blades damage if some water droplets penetrate the compressor, and the
impracticality of the fogging system in places where the relative humidity is already
high. Additionally, evaporative cooling is similar to the fogging system, except the
compressor inlet does not have direct water injection. However, the performance is
restricted by the site’s wet-bulb temperature reading which is limited by the rela-
tive humidity of the surrounding air. Usually, the precooling using an absorption
chiller utilizes waste heat from gas turbine exhaust gases which is not clean due
to fouling caused by the flue gases passing over the tubes of the absorption chiller
generator, resulting in a reduction in the heat exchangers lifetime. Although the
mechanical refrigeration system can adjust the inlet air to any desired value, the
lower the temperature it can reach, the less net power output is obtained.

In the present paper, the gas turbine performance including intake air precooling
andmulti-stage intercoolingusing absorption chiller is investigatedunder the ambient
conditions for two cities in Egypt representative of different climatic conditions in
summer, namely Alexandria (which is considered warm-humid), and Aswan (which
is considered hot-arid) on a daily and annual basis. The motivations of the present
study are mainly focused on the following items:

• Improving performance of gas turbines for power generation at different ambient
conditions.

• lowering the compressor inlet temperature which is down to 5°C, which is much
lower than the previous studies.

• Using the heat generated during the compression to be recovered and utilized in
driving the absorption chiller instead of the exhaust of the gas turbine. This would
keep the absorption chiller clean from the flue gases, reduce the maintenance cost,
and increase heat exchangers lifetime.

• Reducing the power plant-specific fuel consumption, and CO2 Emission.

2 Proposed Mathematical Model Analysis

The proposed model consists of a gas turbine with three stages of compression inte-
grated with absorption chiller with regeneration, these stages are separated by two
steps of intercooling techniques, as shown in Fig. 1. The gas turbine performance and
the cooling capacity of the absorption chiller are developed, and assessed using Engi-
neering Equation Solver (EES) [21]. The present paper studied the performance of



Modeling the Intercooling of a Multi-stage Compression … 105

Fig. 1 Schematic layout of the proposed model utilizing precooling and intercooling technologies
using Single-Effect H2O–LiBr absorption chillers

the proposed model, compared to the conventional Brayton cycle using perfect inter-
cooling in which the air is cooled by cooling water as shown in Fig. 2. Comparisons
include the output power, thermal efficiency, heat rate, specific fuel consumption, and
environmental impact at different ambient conditions. Themain input parameters are
shown in Table 1.

• In the thermodynamic analysis of the integrated gas turbine and absorption chiller
cycles, the following assumptions are made:

• Each VARS and gas turbine component is examined as a control volume consid-
ered to be in a steady-state, with pressure drop and heat losses to the surroundings
disregarded.

• The impacts of kinetic and potential energy are insignificant.
• As a gas turbine working fluid, air is considered ideal in the Brayton cycle.
• Heat is meant to be constantly added during combustion.
• The solution and refrigerant valves are isenthalpic.

The conservation equations for the mass and energy are applied to all compo-
nents and the following thermodynamics relations are presented for three identical
compression stages.Note that the subscript of the variables appearing in the following
equations are written according to the notations of Figs. 1 and 2. The pressure ratio
of each compressor stage (rP) is given by:

rP1 = P2
P1

, rP2 = P5
P4

, rP3 = P8
P7

(1)
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Table 1 The proposed model
input parameters [11, 22]

Item Rate

Ambient pressure, [kPa] 101.3529

Gas lower heating value, [kJ/kg] 48,235.63

Total Compression ratio of the cycle, [-] 30

Compressor Air Inlet Temperature, [°C] 5

Compressor isentropic Efficiency, [%] 85.4

Turbine isentropic Efficiency, [%] 86.8

Combustion chamber Efficiency, [%] 99

Regeneration Effectiveness, [%] 90

where the inlet and outlet air pressures of the compressors are respectively P1 = Patm,

P2,P4,P5,P7 and P8. The equation specifies the isentropic outlet temperatures that
exits the compressors is determined by Eq. (2). Taking the air specific heat ratio
γa = 1.4,

T2s
T1

=
(
P2
P1

) γa−1
γa

,
T5s
T4

=
(
P5
P4

) γa−1
γa

,
T8s
T7

=
(
P8
P7

) γa−1
γa

(2)

where the inlet and outlet air temperatures of the compressor are respectively T1,

T2,T4,T5,T7andT8. The compressors isentropic efficiency (ηis)C1,2,3) expressed as:

ηis)C1 = T2s − T1
T2 − T1

, ηis)C2 = T5s − T4
T5 − T4

, ηis)C3 = T8s − T7
T8 − T7

(3)

The compressors work ˙(WC1,2,3) can be calculated as:

ẆC1 = ṁa(h2 − h1), ẆC2 = ṁa(h5 − h4), ẆC3 = ṁa(h8 − h7) (4)

The regenerator energy balance is expressed as:

ṁa(h9 − h8) = ṁg(h11 − h12) (5)

The regeneration efficiency (ηreg) is considered in this study as:

ηreg = h9 − h8
h11 − h8

(6)

The energy balance in the combustion chamber:

ṁah9 + ṁ f × LHV = ṁgh10 (7)
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ṁg = ṁa + ṁ f (8)

The heat added is also indicated as:

Qadd = ṁgh10 − ṁah8 (9)

where the calorific value (LHV) assumed to be around 48,235.63 kJ/kg, Combustion
chamber efficiency can be calculated as:

ηC.C = Qadd

ṁ f × LHV
(10)

This equation determines the air to fuel ratio (A/F):

A

F
= ṁa

ṁ f
(11)

The exhaust gases temperature is given by Eq. (12), Taking specific heat ratio for
gases γg = 1.4

T11s
T10

=
(
P11
P10

) γg−1
γg

(12)

The isentropic efficiency of a turbine allows us to calculate the actual temperature
drop:

ηis)g.T = T10 − T11
T10 − T11s

(13)

The compressors total work ẆC can be calculated as:

ẆC = ẆC1 + ẆC2 + ẆC3 (14)

The output net production of the GT ˙(Wnet) is calculated by:

Ẇnet = ẆGT − ẆC (15)

The specific fuel consumption (SFC) is determined by:

SFC = 3600

AFR × Ẇnet
(16)

The GT efficiency (ηth,GT) can be determined by:
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ηth,GT = Ẇnet

Q̇add × ηC.C
(17)

The heat rate (HR) can be expressed as:

HR = 3600

ηth)GT
(18)

The back work ratio (bwr) of the cycle is:

bwr = ẆC

ẆGT
(19)

For the current analysis, the total mass and solution balance equations for each
component of the VARS Single effect are:

∑
ṁin −

∑
ṁout = 0 (20)

∑
ṁinxin−

∑
ṁout xout = 0 (21)

The energy balance for each component can be expressed as:

(∑
ṁinhin −

∑
ṁout hout

)
+

∑
Qin −

∑
Qout + W = 0 (22)

The equations of energy balance for some components of the VARS Single effect
cycle are expressed as follows:

• Evaporator:

Q̇evap = ṁ22h22 − ṁ21h21 (23)

• Absorber:

Q̇abs = ṁ22h22 + ṁ18h18 − ṁ13h13 (24)

• Condenser:

Q̇cond = ṁ19h19 − ṁ20h20 (25)

• Desorber:

Q̇des = ṁ19h19 + ṁ16h16 − ṁ15h15 (26)
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Fig. 3 The average ambient temperatures and relative humidity throughout the year [23]

Using a coefficient of performance (COPVARS), the performance of VARS can be
measured as:

COPV ARS = Q̇evap/Q̇des (27)

3 Climatic Conditions in the Selected Cities in Egypt

Throughout the year, the ambient temperature of Alexandria and Aswan cities in
Egypt is above the ISO requirement of 15 °C. The fluctuations in temperature and
relative humidity throughout the year are seen in Fig. 3. These data are based onAtlas
weather conditions [23]. The highest, average, and lowest temperatures for Alexan-
dria, as shown in Fig. 3, are 31, 24, and 18.4 °C respectively, and are 41.4, 29.5,
and 22.9 °C respectively for Aswan. It may be established that the ambient temper-
ature and the ISO condition differ by an average of 9 and 14.5 °C for Alexandria
and Aswan respectively. The highest relative humidity is 71 percent at Alexandria in
July and August and 42 percent at Aswan in December, and the minimum are 65 and
16 percent for both cities respectively, as shown in Fig. 3. This means that Aswan
can be classified as a hot and dry region, as contrasting to the nature of the climate
in Alexandria.

4 Thermodynamic Modeling Results and Verification

The results are presented in three subsections. In the first subsection, the proposed
model was validated using previous studies. The second subsection shows the
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Table 2 Comparison of other simulation model and predicted performance parameters

Simulation [13] Predicted [EES Model] Discrepancy (%)

Fuel mass flow rate, [kg/s] 14.59 15 2.8

Heat rate, [kJ/kWh] 9435 9108 3.471

GT thermal efficiency, [%] 37 37.84 2.276

Total needed cooling capacity,
[MW]

14.10 14.02 0.5492

predicted parameters of the proposed model compared to the conventional Brayton
cycle at the same climatic conditions. Finally, the third subsection presents the
environmental impact assessment.

4.1 Verification and Error Analysis

To validate the proposed model, each component is compared with similar previous
studies separately. The gas turbine and VARS models developed in Sections were
validated through other published simulation, modeled by Ali Marzouk, and Abdalla
Hanafi [13] to show the accuracy of the thermodynamicmodeling. The error compar-
ison results showed in Table 2, are calculated using the discrepancy which is defined
by Eq. (28) were examined.

Discrepancy =
(
ValuePredicted[EESModel] − ValueRef erence

V alueRef erence

)
× 100 (28)

It was not possible to directly validate the expected performance features of this
paper’s suggestedmodel as therewas no current experimentalwork utilizing the same
model. This is why the simulation described by Ali Marzouk, and Abdalla Hanafi
is used to verify the findings of this study. It was verified under ISO standards.
Table 2 presents a comparison of predicted and Simulation model [13] performance
parameters for 264.344 [MW] gas turbine located at Korymat, southern Egypt using
absorption chiller as a precooler at ISO conditions (101.3 kPa atmospheric pressure,
15°Cambient temperature, and60%RH).This is a positive sign of agreement because
the prediction differences are within 3.4%.

4.2 Results and Discussion

In EES software, the simulation and coding were achieved using both the calculation
and simulation of the analyzed gas turbine and the cooling system. EES software also
simulates the gas turbine cycle with pre-cooling and intercooling systems. A typical
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state point results from the EES model of the VARS Single effect cycle presented in
Table 3. For each state point, the predicted pressure, temperature, concentration of
LiBr, enthalpy, and solution flow rate show that the single effect H2O−LiBr VARS
operates between two pressure level (9.660 and 0.620 kPa). Table 4 presented the key
performance parameters of the conventional Brayton cycle and the proposed model
at the same input parameters and ambient conditions. In the provided comparison,
the predicted performance parameters were assessed for [1 kg/s] dry air. The heat
dissipated in the inter-stage cooling powered absorption chiller cools down [TIC] to
5 °C.

Table 3 Typical state point results from EES model of the H2O − LiBr VARS Single effect cycle

State
point

Temperature
(◦C)

Enthalpy
(kJ/kg)

Pressure
(kPa)

Vapor
fraction (−)

Mass flow
rate (kg/s)

LiBr
concentration
(%)

13 41.6 129.5 0.620 0.000 2.5000 61.9

14 41.6 129.5 9.660 0.000 2.5000 61.9

15 80.0 201.5 9.660 0.000 2.5000 61.9

16 101.1 253.0 9.660 0.000 2.3975 64.6

17 59.4 178.0 9.660 0.000 2.3975 64.6

18 47.8 178.0 0.620 0.007 2.3975 64.6

19 127.0 2738.4 9.660 0.000 0.1025 0.0

20 32.1 134.5 9.660 0.000 0.1025 0.0

21 0.2 134.5 0.620 0.053 0.1025 0.0

22 1.1 2502.5 0.620 1.000 0.1025 0.0

Table 4 Comparison predicted performance parameters of the conventional Brayton cycle, and the
proposed model at Alexandria and Aswan cities in Egypt in August

Variable and unit CONVBC
Alexandria

PM Alexandria CONVBC Aswan PM Aswan

Compressor inlet air
temperature [°C]

30.4 5 40.9 5

Net power production
[kW]

827.4 825.5 788.1 826.1

Thermal efficiency
[%]

48.47 49.42 47.95 49.43

Heat rate [kJ/kWh] 5464 5249 5565 5248

Back work ratio [−] 0.3447 0.3164 0.3578 0.3163

Specific fuel
consumption
[kg/kWh]

0.1195 0.1148 0.1217 0.1148

CO2 Emissions
[kg/kWh]

0.3217 0.3134 0.3307 0.3134
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4.2.1 The Influence of Weather Conditions Throughout the year
on Specific Work Net

In Fig. 4, the specific net-work for the conventional Brayton cycle and the proposed
model throughout the year for two cities in Egypt representative of different ambient
conditions, Alexandria (warm-humid), Aswan (hot–arid) is being described. The
predicted performance parameters are assessed for [1 kg/s] dry air.As shown inFig. 4,
in the conventional Brayton cycle, the lowest specificwork net that happens, is clearly
seen to be lower than the specificwork net at the proposedmodel.While the proposed
model, the highest specific work net can be achieved, and it also remains constant
at the high ambient temperature and relative humidity, which means that the output
work has been improved. In Fig. 5, the proposedmodel increases the specificwork net
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Fig. 6 Monthly average thermal efficiency throughout the year

at Alexandria by 0.3218 percent in June and by 1.05 percent in January and reduces
by 0.2357 percent and 0.1075 percent in August and July respectively. It increases
by 5.683 percent and 2.537 percent at Aswan in June and January respectively. This
means the specific work net enhancement is increased significantly at the weathering
conditions of high ambient temperature and low relative humidity.

4.2.2 The Influence of Weather Conditions Throughout the Year
on Thermal Efficiency

The thermal efficiency for the conventional Brayton cycle and the proposed model
throughout the year is demonstrated in Fig. 6. As the ambient air temperature and
relative humidity increase, gas turbine thermal efficiency decreases significantly. The
conventional Brayton cycle thermal efficiency is seen to be lower than the thermal
efficiency at the proposed model and decreases even because of the rise in ambient
temperature and relative humidity. While the proposed model, the highest thermal
efficiency can be achieved, and it also remains constant along the year for the two
selected cities. In Fig. 7, the proposed model improves thermal efficiency in August
by 1.965%. It is enhanced by 1.06% percent in January at Alexandria. In Aswan, the
thermal efficiency of the proposed model increases by 3.164% and 1.483% in June
and January respectively.

4.2.3 The Influence of Weather Conditions Throughout the Year
on Specific Fuel Consumption

The specific fuel consumption is demonstrated in Fig. 8. Specific fuel consumption
is an indicator of how much fuel needs to be consumed to produce electricity. When
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Fig. 7 Proposed model thermal efficiency enhancement throughout the year
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Fig. 8 Monthly average specific fuel consumption throughout the year

the ambient temperature and relative humidity rise the gas turbine’s work increases.
Hence the basic fuel consumption of the gas turbine increases significantly. Proposed
model specific fuel consumption is seen to be lower than SFC at CONVBC and
remains constant at different ambient conditions during the year. In Fig. 9, the specific
fuel consumption decreases in August by 3.394% and by 2.091 percent in January
at Alexandria. In Aswan, the SFC of the proposed model decreases by 5.797 and
2.824% in June and January respectively.
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Fig. 9 Proposed model specific fuel consumption reduction throughout the year

4.3 Environmental Impact Assessment

The traditional supply of energy from coal, natural gas, and oil can help increase the
greenhouse effect. This explains the combustion as it provides an understanding of
the processes producing CO2 and NOx, which are the two most critical forms of gas
turbine emissions. TheCO2 emissionsmust be considered significant in all the carbon
atoms in the fuel, as there is increasing public interest in greenhouse gas emissions
into the atmosphere. The power plants using fossil fuels emit substantial amounts
of CO2. In Fig. 10, the graph illustrates the CO2 emission for the conventional
Brayton cycle and the proposedmodel throughout the year. The proposedmodel CO2

emission is seen to be lower than CO2 emission at CONVBC and remains constant at
different ambient conditions during the year. In Fig. 11, the CO2 emission decreases
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Fig. 10 Monthly average carbon dioxide emission throughout the year
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Fig. 11 Proposed model carbon dioxide emission reduction throughout the year

in August by 2.558 percent and by 1.705 percent in January at Alexandria. In Aswan,
it decreases by 5.536 percent and 2.65 percent in June and January respectively.

5 Conclusions and Recommendations

The employment of absorption chiller in hot-arid regions, as pre-cooler and inter-
cooler technique in a gas turbine plants, provides the considerable potential to
enhance GT performance by recording a significant drop in temperature. Lowering
the inlet air temperature of 5 °C results in an augmentation in gas turbine output
capacity of 2.455 to 5.683%, enhancement in thermal efficiency of 1.483 to 3.164%,
reduction in specific fuel consumption of 2.824 to 5.797%, and reduction in CO2

emission of 2.65 to 5.536%. Overall, the research findings indicate that the absorp-
tion chiller system exhibits the best performance enhancement in hot and dry ambient
conditions. However, in humid climates, this technique declines the gas turbine effi-
ciency substantiallywith inlet air cooling since thewater vapor in the air is condensed
and removed. Others think the performance of some gas turbines (depending on
specific processes) might improve as the humidity increases, whereas the perfor-
mance of others could decrease under the same conditions since water content influ-
ences the thermodynamic properties of the input air. So, it recommended in such
climates to utilize the amount of condensed water in cooling by injected it again into
the air at the following stages leading to additional cooling. In fact, the selection
of the suitable technique of cooling based on the location and climatic conditions
of the power station. Finally, the optimal system may be modeled on the ambient
conditions at each facility, according to the descriptions given above and the targets
necessary, such as improving power output, lowering pollutant emissions, etc.
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On the Design and Performance Analysis
of Deadlock Controller for Automated
Manufacturing Systems with Unreliable
Resources
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Abstract Deadlock problems in highly automated manufacturing system (AMS)
have recently received considerable interest from both industry and academia. In
most of the researches, structural analysis and reachability graph analysis have been
used to develop deadlocks prevention policies for AMSs based on ordinary petri nets.
These policies are considered for deadlock problems inAMSwith shared and reliable
resources, while AMS are timed and subjected on unreliable resources. To provide
a solution for this circumstances, this research developed appropriate methods for
designing controller and analyzing of AMSs with shared and unreliable resources
taking into account deadlocks problems. The proposed controllers enable systems to
be worked with improved performance and high resource utilization based on timed
petri nets. In this research a case study is provided to demonstrate the usefulness of
the deadlock-control algorithm to ensure no occurrence of deadlocks in AMS. The
flexible manufacturing system has been modelled using Visual Object Net version
2.a software and the simulation is done for 26 days (8 h per day). A performance
comparison between two developed policies, failures causing scrapping and process
resumes subsequent to repair, is made. Moreover, some issues are recommended to
select the best policy.
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1 Introduction

An automated manufacturing system (AMS) comprises of interconnected different
components such as robots, machine tools, fixtures, and buffers. These different
product components engage in the manufacturing system at different points of time.
The system generally process these components based on a stated sequential arrange-
ment of operations and specified resource sharing. The resource sharing causes the
event of deadlock states in an AMS through its operation [1–4]. Hence, there is a
need for an effective deadlock-control algorithm ensuring these deadlocks do not take
place in an automated manufacturing system. Petri nets are a widely used mathemat-
ical and a major graphical tool suitable for model development, analysis, and control
of deadlocks in AMSs. Petri nets are utilized to define the features and behavior of
an AMS, such as synchronization, conflict, and sequences. In addition, they could
be used to provide behavioral properties, for example, boundedness and liveness
[5]. To forbid the deadlock problem occurrences in AMS, several approaches were
extracted from a Petri net tool. These approaches are categorized into three strate-
gies: detection and recovery of deadlock, avoidance of deadlock, and prevention of
deadlock [5, 6]. Three control criteria are proposed for designing and evaluating
a supervisor for AMS, such as behavioral permissiveness, complexity of structure,
and complexity of computation [5]. Hence, the goals of many researches are to
design deadlock prevention policies with liveness-enforcing supervisors including
the above mentioned criteria [5]. The deadlock control for AMS is designed for both
reliable and unreliable resources. In case of AMSwith reliable resources mainly two
techniques analysis for deadlock prevention are available using Petri net. They are
structural analysis [7, 8] and reachability graph analysis [9–11].More often structural
analysis is applied using structural objects of Petri nets, for example resource transi-
tion circuits and siphons. Here, control steps are simple and a monitor is required to
be added with each empty minimal siphon to prevent itself from to be non-emptied,
but the shortcomings of this method are that suboptimal result can be obtained for
controlled system and the number of control places is linearly dependent on a net
size [12].

The reachability graph analysis needs listing of all or a part of reachablemarkings.
This leads to a state explosion problem. The reachability graph is divided into live
zone and deadlock zone. In deadlock zone, first met bad markings are extracted
and defined. In this case, Deadlock is eradicated by creating a monitor place and
incorporated to prevent the first met bad markings from being reached. This process
involves iterations to prevent all first met bad markings [13]. Several policies are
developed to prevent the deadlock states; such as theory of region, siphon control
methods, and iterative methods [8, 10, 13–18].

For unreliable resources, the existing deadlock methods were developed for
class of petri net. Lawley and Sulistyono [19] investigated resource allocation
in manufacturing systems using unreliable resources by developing policies of
supervisory control. In this case, supervisory control allocate system buffer space
which enables the system continuing to produce all part types without the failed
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resource when an unreliable resource fails. Hsieh [20] developed nominal supervi-
sory algorithms to study the proposed controlled assembly/disassembly Petri net for
assembly/disassembly processes with unreliable resources. In addition, he studied
the condition under which the system can still operate in case of resource failures.
Wang et al. [21] proposed robust supervisory controllers for the resource allocation
systems of a single-unit with unreliable resources. The first policy safeguards robust
operation in case of one unreliable resource, while the second policy makes sure
robust operation in case of several unreliable resources, considering that at a time
maximum one resource is in a failed state. Chew et al. [22] designed two super-
visors controller ensuring robust operation for systems where part types may need
several unreliable resources by using a central buffer. Liu et al. [23] developed a
robust deadlock prevention control system suitable for unreliable resources for a
class of Petri nets focusing on divide-and-conquer deadlock control strategy. Yue
et al. [24] proposed a controller for deadlock avoidance policy suitable for a class of
AMS with several unreliable resources by using the modified Banker’s Algorithm
and residual resource capacity constraints. Yue et al. [25] also presented a robust
supervisory control policy for avoiding deadlock in AMS subjected on unreliable
workstations. The presented policy is developed based on two variants of Banker’s
Algorithm. Wang et al. [26] developed deadlock prevention controller for AMS in
case of resources failure and the designed supervisor comprises of three controller
to fulfil the desired properties to ensure the deadlock-free processing of AMS.

From the literature, it is evident that most researches have utilized structural anal-
ysis and reachability graph analysis to develop policies of deadlock prevention for
AMSs based on ordinary Petri nets. These policies are considered for deadlock prob-
lems in AMS with reliable resources while AMS are consist of unreliable resources.
However, very few researches have addressed deadlock prevention for AMS in case
of unreliable resources. Therefore, there is a need for amethodology for performance
analysis of AMSwith unreliable resources taking into account deadlocks and suggest
controllers that enable systems to be operated with improved performance and high
resource utilization centered on timed as well as stochastic Petri nets.

2 Fundamentals of Petri Nets

APetri net or place/transition net N is a four—tuple (P, T, F,W )where P is a finite
non-empty set of places, and T is a finite non-empty set of transitions. Elements in
P ∪T are called nodes with P ∪T = ∅ andP ∩T = ∅, P and T are represented by
circles and bars, respectively. F ⊆ (P×T )∪(T × P) is the set of directed arcs (with
arrows) that join the places with transitions and vice versa.W : (P×T )∪(T ×P) →
N is a mapping that assigns a weight to an arc, where N = {1, 2, ...}.N is called
an ordinary net if∀p, t ∈ F ,W (p, t) = 1, denoted asN = (P, T, F). N is called
a weighted net if there exists an arc between p andt,W (p, t) > 1. Given a net
N = (P, T, F,W ) and node a ∈ P ∪ T, ·a = {b ∈ P ∪ T |(b, a) ∈ F} is called
the preset of nodea, while a· = {b ∈ P ∪ T |(a, b) ∈ F} is called the postset of
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nodea. A marking M of N is a mappingM : P → I N , whereI N = {0, 1, 2, ...}.
(N , M0) is a net system or marked net and denoted asPN = (P, T, F,W, Mo),
where M0 : P → {0, 1, 2, ...} is an initial marking ofPN . For a Petri net modeling
FMS, M0 represents the different raw parts that are to be synchronously processed
in the system, and the state of resources, such as machines and robots. A transition
t ∈ T is enabled at marking M if∀p ∈ ·t, M(p) ≥ W (p, t), which is denoted as
M[t〉. When a transition t fires, it removes W (p, t) tokens from each placep ∈ ·t ,
and depositsW (t, p) tokens in each placep ∈ t ·. Thus, it reaches a new markingM ′,
denoted asM[t〉M ′, whereM ′(p) = M(p) − W (p, t) + W (t, p). A net is self-loop
free or pure if for all a, b ∈ P ∪ T,W (a, b) > 0 andW (b, a) = 0. Incidence
matrix [N ] in a net N is an integer matrix that consists of |P| rows and |T | columns
with[N ](p, t) = W (t, p) − W (p, t).

Let (N , Mo) be a Petri net withN = (P, T, F,W ). A transition t ∈ T is live if
for allM ∈ R(N , Mo), ∃M ∈ R(N , M), there is a firing sequence M ′[t〉 holds.
A transition is dead at Moi f � t ∈ T, M0[t〉 holds. M ′ is said to be reachable
from M if there exist a firable finite transition sequenceδ = {t1, t2, t3, ...tn}, and
markingsM1,M2,M3,..., and Mn − 1 such thatM[t1〉M1[t2〉M2[t3〉M2...Mn−1[tn〉M ′,
which is denoted as M[δ〉M ′, satisfying the state equationM ′ = M + [N ]−→δ ,
where δ →: T → N is a mapping t in T to the number of occurrences of t
inδ, and called a Parikh vector or a firing count vector. The set of markings reach-
able from M in N is called the reachability set of Petri net (N , M) and repre-
sented asR(N , Mo). A net N with initial marking Mo is said to be k-bounded if for
allM ∈ R(N , Mo), M(p) ≤ k(k = {1, 2, 3, . . .}). A net is said safe if all its places
are safe, the number of tokens in each place p does not exceeds one.

P-vector (place vector) and T -vector (transition vector) are column vectors. The
former I : P → Z catalogued by P , and called a P-invariant or place invariant if
I 
= 0 and I T · [N ] = OT . The latter J : T → Z catalogued by T , and called a
T -invariant or transition invariant if J 
= 0 and [N ]. J = 0 where Z is the integers
set. If each element of I is non-negative the P-invariant I is called a P-semiflow or
place semiflow. Suppose I be a place invariant of a Petri net with (N , Mo) and M is
a reachable marking from the initial marking Mo. Then, I T M = I T Mo. Let ||I || =
{p|I (p) 
= 0} be a support of place invariant I and can be classified into three parts.
Firstly, ||I ||+ is a positive support of place invariant I , and ||I ||+ = {p|I (p) > 0}.
Secondly, ||I ||_ is a negative support of place invariant I , and ||I ||_ = {p|I (p) < 0}.
Finally, I is a minimal place invariant if ||I || is not a superset of the support of any
other one and its components are mutually prime. Let li ’s be the coefficients of Place
invariant I if for all pi ∈ P, li = I (pi ). Because an ordinary and weighted Petri nets
do not deal with sensors and actuators, an extended Petri nets has been developed to
deal with both sensors and actuators, it called automation Petri net (APN). APN is
an eight-tuple (P, T, F, I n, En, X, Q, Mo) where P , T , F , and Mo are explained
above. In is an inhibitor arc that denoted by an arc with small circle (not arrow),
an inhibitor arc connects an input place p to a transition t, transition t is enabled if
the input place p have tokens less than the inhibitor arc weight I n(p, t). En is an
enabling arc that represented by an arc with empty arrow, an enabling arc connects
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an input place p to a transition t , transition t is enabled if the input place p have
tokens at least equal the enabling arc weight En(p, t). X = {x1, x2, . . . , xm} is a
set of firing conditions associated with the transitions, which can be recognized as
external events such as sensor readings.Q = (q1, q2, . . . , qn} is set of actions that
can be assigned to the places, Q may be more than one action in any place. In the
APN, the movement of tokens between their places represents the behavioural of the
APN and is achieved by the firing of the enabled transitions.

3 Methodology

Like any other research study; it is very important to select the appropriate method-
ology for deadlock controller design for AMSs using unreliable resource and
analyzing the performance for developed method. Figure 1 illustrates the steps of the
proposed methodology, which are described as follows:

3.1 Deadlock Prevention Method

This section describes a method that is inspired by Li et al. [15] and called an
elementary siphons control method. The strict minimal siphons (SMS) in a Petri
net are categorized into elementary and dependent. In the sequel,

∏
is defined to

represent the set of strict minimal siphons, where
∏

E is the sets of elementary one
and

∏
D is the sets of and dependent (redundant) one. Unless specified otherwise,

while we mention a siphon, we refer to a strict minimal one.

Definition (Li et al. [8]) Let S ⊆ P be a siphon of N . P-vector λS is called the
characteristic P-vector of S if ∀p ∈ S, λS(p) = 1, otherwise λS(p) = 0.

Definition (Li et al. [8]) Let N = (P, T, F) be a net with |P| = m, |T | = n
and we assume N has k SMS, S1, S2, …, and SK , m, n, k ∈ IN. Let λSi(ηSi) be
the characteristic P(T)—vector of siphon Si , i ∈ 1, 2, . . . n. We define [λ]kxm =
[λS1, λS2, . . . , λSk]T and [η]kxn = [λ]kxm · [N ]mxn is called the characteristic P(T)-
vector matrix of the siphons of N , where [N ]mxn is an incidence matrix.

Finding elementary siphons is relatively easy in a Petri net system (N , MO) given
all siphons. For doing this, firstly, matrix [λ] is created and then [η], the number of
elementary siphons in N is the rank of [η]. Afterwards, linearly independent vectors
can be come across in [η]. Last of all, the siphons corresponding to these linearly
independent vectors are the elementary siphons in the net system (N , MO).

Theorem (Li and Zhou [27]) Let N be an ordinary Petri net and S1-Sn be the siphons
in N with respect to elementary siphons. Control place VS is added to N, the new net
system is denoted as (N1, M1) and the initial token of place control VS is computed
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Fig. 1 Proposed methodology
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as M(VS) = MO(S) − ξS, 1 ≤ ξS ≤ MO(S) − 1, whereξS is denoted as the control
depth variable of siphon S, which implies the minimum number of tokens that siphon
can hold. Then S is invariant-controlled.

Theorem (Li and Zhou [15]) Let (N , MO) be a net system and S0 be a strictly
dependent siphon with respect to elementary siphons, S1, S2, …, andSn. If S1, S2,
…, and Sn are invariant controlled by adding control places Vs1, Vs2, …, and Vsn,
and M0(S0) >

∑n
i=1 ai. M0(Si) − ∑n

i=1 ai. ξSi holds; then S0 is controlled, where ai
is a constant.

Based on the elementary siphons concept, the applied deadlock prevention
algorithm presented by Li and Zhou [27] is stated below:

Policy for elementary siphons

Input: A model based on Petri net (N ,M0)

Output: A Petri net system that is controlled (N1,M1).
Step 1: Pinpoint all the strict minimal siphons of Petri net model N using INA software.
Step 2: The SMS T -vector matrix[η].
Step 3: Find all the elementary siphons with regard to N . All other remaining are the dependent
siphons.
Step 4: Add a control place V s for each elementary siphon S as such that:
– The input and output arcs (all weights are ones) of V s are linked to the source transitions that
have routes directing to the sink transitions and connected from the taking places of S
correspondingly.

– Calculate the initial place control token VSM(MVs) = M0(S) − ξS, 1 ≤ ξS ≤ M0(S) − 1.
Step 5: Reiterate Step 4 till all elementary siphons are taken into account.
Step 6: Adjustξi . in a way that all dependent siphons are controlled.

To demonstrate the above algorithm, the Petri net model illustrated in Fig. 2 is
considered. The model comprises of a single robot R that processes a part at a time,
one machine M that holds a part at a time, one loading buffer (I1), and an unloading
buffer (O1). One part type is processed in the manufacturing system (PA). The robot

Fig. 2 Petri net model
constructed for an AMS
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Fig. 3 Controlled Petri net
model

reaches the loading buffer, grips, and loads PA to the M. If M finishes its operation,
the robot reaches themachine, grips, and unloads the part to the unloading buffer. The
Petri netmodel comprises of four transitions and six places. The places can be defined
as the following set partition: P0 = {p1}, PR = {p5, p6}, and PA = {p2, p3, p4},
where P0, PR , and PA are the input, resources, and operation places, respectively.
The model has five reachable markings along with four minimal siphons. At least
one of siphon is a strict minimal siphon. Its augmented siphon is S = {p4, p5, p6}
(Fig. 3).

3.2 Failures Handling Policies

In a manufacturing system, the states of a machine comprises of idle, busy, failure,
starvation and blocking. Failure causes idleness and randomness in manufacturing
system and consequently failures influence the performance of manufacturing
system. The process of failure is characterized by using either of the two calcu-
lation: the process that counts the number of failures within a given period of time
or the statistical properties of the time between consecutive failures. The process
completion time is referred to the time a job spends on the processor which includes
the up time for processing and the down time in case of failures. The down time due
to failures is the span from the failure occurring to the repair activity completing.
The performance of the failure handling policies is very crucial for automated manu-
facturing system and it is measured by the factors such as failure reacting time,
the repair waiting time and the repairman utilization. Failure occurrence and failure
detection are different. Sophisticated programmed machinery can fail irrespective
of the machine status. If failure occur at idle, the failure can be detected imme-
diately and this is called operation-independent failure detection. Generally fail-
ures take place while the machines are processing jobs in a manufacturing environ-
ment. The failures that are occurred at any time span either idle or running, however
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detected during the operations of the machine, is called operation-dependent failure
detection. In operation-independent failure detection, repair activity is carried out
through the idle processes and there is no effect on the process completion time.
When the failure of machine occur, repairman receives signal to repair it. Other-
wise, it waits until any of repairman are available. Usually, the failed resources are
taken into consideration in service according to the FIFO rule. For a case of failure,
the unit being processed on the machine may resume being processed or take new
processing time, may be discarded or may take the same process for the beginning.
Two interrupted-job-handling policies will be considered in this study as followed:

(1) Failures Resulting Scrapping

Sometimes, particularly in high-speed automated manufacturing systems, the unit
being processed needs to be scrapped in case of a failure. The completion time in this
cases is the time a unit spends on the machine until its process is completed before
a failure occurs. Upon failure, the machine goes to repair before starting the process
new unit. In this case, down time does not include into the process completion time.

(2) Process Resumes Subsequent to Repair

In this policy, after repairing the resource the interrupted unit starts along with a
new processing time. Then, the unit leaves the process after its processing time is
completed. In this case, the process completion time is calculated by summing up
the following: processing time on machine until the failure occurs, down time as a
result of failures and processing time without stoppages.

Based on the failures resulting scrapping concept, the proposed policy is stated
as follows:

Policy one (Failures Resulting Scrapping)

Input: Model of Petri net (N ,M0) of an AMS, where N = (P0 ∪ PA ∪ PR, T, F,W ).
Step 1: Compute all elementary siphons for the Petri net (N ,M0).
Step 2: For each siphon elementary siphon, add a monitor Vs
Step 3: Determine all resources of system, for each one:
• Design transitions to represent breakdown resource, state of resource at failure, and repair
operation.

• Design places to represent failure, state of resource at failure, and repair operation.
• Add test arcs from “failure” place to state of resource at failure transitions.
• Add inhibitor arcs from “failure” place to start and end transitions of failed resource.
Step 4: Output (N1,M1).
Step 5: End.

To demonstrate the above policy one, the manufacturing process model subject
to failures is considered based on Petri nets for the perspective of taking repair
immediately. The manufacturing process model of a single station comprises of the
following components: a stochastic failure process and repair process, a machine,
a buffer with a suitable job arrival process and a buffer for output. The assumption
for the model is that failures may take place at any time. The transition representing
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‘break down’ simulates the failures of machine that can have different distribution
implying the failure rate.

Figure 4 shows failures causing scrapping, in the right block, the inhibitor arcs
from “failure” place to “t1”, “t2”, “t3” and “t4” transitions denoting the failure
is detected during the idle or operating states, and the job on the failed robot is
interrupted before the time delay µ finished. Moreover, a new job or finished job
from the input buffer or machine, respectively cannot start its processing in case of
the robot breakdowns.When a robot is repaired, it instantaneously processes the next
job or finished job from the machine. Transitions “t13”, “t14” and “t15” represent
the idle, loading, and unloading states of robot at failure, respectively. The test arc
from “failure” place to “t13”, “t14” and “t15” transitions denotes that if the failure is
detected the transitions enable to fire. Place (R state at failure) indicates the robot state
at failure. “t10” represent the breakdown occurrence for robot, “t11” represent detect
of failure, starting repairing, and deposit a token to Place (scrap) that denotes that
the part is scraped. Place (Repair) indicates the repairing operation. “t12” represents
represent the repair end and the robot is ready to start processing.

The same manner for machine in left block shown in Fig. 4, a new job or finished
job from the input buffer or robot, respectively cannot proceed its processing in
case the machine is broken down. When the machine is repaired, it instantaneously
starts processing the following job that coming from robot. Transitions “t8” and “t9”
represent the idle and busy states of machine at failure, respectively. The test arc
from “failure” place to “t8” and “t9” transitions denotes that if the failure is detected
the transitions enable to fire. Place (M state at failure) indicates the machine state at

Fig. 4 Policy one (Failures Resulting Scrapping)
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failure. “t5” represent the breakdown occurrence for machine, “t6” represent detect
of failure, starting repairing, and deposit a token to Place (scrap) that denotes that
the part is scraped. Place (Repair) indicates the repairing operation. “t7” represents
the repair end and the machine is set to start processing.

The policy two is modified policy of policy one, the proposed policy is stated as
follows:

Policy two (Process Resumes Subsequent to Repair)

Input: Model of Petri net (N ,M0)of an AMS, where N = (P0 ∪ PA ∪ PR, T, F,W ).
Step 1: Compute all elementary siphons for a given Petri net (N ,M0).
Step 2: Add a monitor Vs for each siphon elementary siphon in such a way that:
Step 3: Determine all resources of system, for each one:
• Design transitions to represent breakdown resource, state of resource at failure, repair
operation, and restart operation.

• Design places to represent failure, state of resource at failure, repair operation, restart
operation.

• Add test arcs from “failure” place to state of resource at failure transitions.
• Add inhibitor arcs from “failure” place to start and end transitions of failed resource.
• Add inhibitor arcs from “, restart” places to restart idle transition.
Step 4: Output (N1,M1).
Step 5: End.

To demonstrate the above policy two, Fig. 5 is the modified model of Fig. 5,
which in right block the inhibitor arcs from “restart” places to restart idle transition

Fig. 5 Policy two (Process Resumes Subsequent to Repair)
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denote that the restart idle will be fired if there is no failure occurred at busy state
of robot. Transitions “t16”, “t17” and “t18” represent the restart operation in case
of idle, unloading, and loading states of robot at failure, respectively. If “t16” fires
the robot will be operated in idle place, if “t17” fires the robot will be operated in
unloading place, and if “t18” fires the robot will be operated in loading place.

The same manner for machine in left block as illustrated in Fig. 5 the inhibitor arc
from “restart” place to restart idle transition denotes that the restart idle will be fired
if there is no failure occurred at busy state of machine. Transitions “t7”, and “t8”
represent the restart operation in case of idle and busy states of machine at failure,
respectively. If “t7” fires the machine will be operated in idle place, and if “t8” fires
the machine will be operated in busy place.

4 Case Study

The section describes a case study alongwith the application of the proposedmethod-
ology. The production sequence of the case study is presented in Fig. 6a and several
studies have been consulted in this case study (Uzam [13], Chen et al. [25, 28],
and Nasr et al. [29]). The components of the system are: two robots (R1 and R2;
each robot can hold a part at a time), four machines (M1, M2, M3, and M4; each
machine can process one part at a time), two loading buffers (I1 and I2), and two
unloading buffers (O1 and O2). PA and PB are contemplated in the system config-
uration. The developed Petri net model for case study is presented in Fig. 6b. The
parameters of selected case study are shown in Table 1. They are number of places,
number of transitions, set partition, SMS, dependent siphons, elementary siphons,
reachable markings. Using the adopted elementary siphons algorithm the required
monitor calculation is stated as follows. The rank of [η] is 3 since the first row

Fig. 6 a Production sequence of the case study and b Petri net model for the case study
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Table 1 Main parameters of
case study

Parameter Value

No. of places 19

No. of transitions 14

Set partition P0 = {p1, p19}
PR = {p13, . . . , p18}
PA = {p2, . . . , p12}

SMS 5

Dependent siphons 2

Elementary siphons 3

Reachable markings 282

ηS1 can be linearly represented by the second and fourth rows, and first row ηS3
can be linearly represented by the fourth and fifth rows. Therefore, S1and S3 are
dependent siphons and S2 ,S4 and S5 are elementary siphons. For elementary siphon
S2 ,S4 and S5, due to Theorem 3.1, we add amonitors VS2, VS4 and VS5 for them. VS2

has presetVS2 = {t4, t5, t13}, postsetVS2 = {t4, t5, t13},VS2 = {t1, t11},M(VS2) = 2,
andξS2 = 1. VS4 has presetVS4 = {t7, t11}, postsetVS4 = {t1, t9},M(VS4) = 3,
andξS4 = 1. VS5 has preset VS5 = {t4, t13}, postsetVS5 = {t2, t11},M(VS5) = 3,
andξS5 = 1. Figure 7 shows the controlled system of the Petri net model in Fig. 6a
Production sequence of the case study and Fig. 6b Petri net model for the case study
after adding monitors using the applied algorithm. The results of the algorithm that
is applied for case study with regard to the numbers of monitors, arcs, and reachable
states are presented in Table 2.

After applying the proposed method, the model is working now without deadlock
state. So, this model will be extended to timed petri net and unreliable resource. Two
policies for unreliable resources are proposed in Sect. 3.3 and applied to evaluate the
performance of these policies in FMSs Fig. 7 illustrate the developed Petri net model
with Failures Causing Scrapping policy. Moreover, second policy that is Process
Resumes after Repair was applied on the developed Petri net model, as illustrated in
Fig. 8.

Required monitor calculation:

N = −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0

0 −1 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0

0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 −1 1 0 0 0 0 0 0 0 1 0 0 0 −1 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 −1 0 0 1 0 0

0 0 0 0 0 −1 1 0 0 0 0 0 0 1 0 0 0 −1 0

1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1

(continued)
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(continued)

0 0 0 0 0 0 0 −1 1 0 0 0 0 0 −1 0 0 1 0

0 0 0 0 0 0 0 0 −1 1 0 0 0 0 1 0 −1 0 0

0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 1

λ = 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0

0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0

0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0

0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0

η = −
1

0 0 0 0 0 1 0 −
1

0 0 0 1 0

−
1

0 0 1 1 0 0 0 0 0 −
1

0 1 0

0 −
1

0 0 −
1

0 1 0 −
1

0 0 0 1 0

0 0 0 −
1

−
1

0 1 0 −
1

0 1 0 0 0

0 −
1

0 1 0 0 0 0 0 0 −
1

0 1 0

5 Computational Results and Analysis

The purpose in analysis of flexible manufacturing system is to evaluate the proposed
policies and their performance. In this case study, as the above mentioned four
machines, two robot and two buffer for input and output. Time for machines, robots,
MTTF and uptime were assigned. The FMS has modeled using Visual Object Net
version 2.a Software. The simulation is run for 8 h per day, 26 days. The results
of Visual Object Net simulation in terms of the throughput, utilization resources,
percentage of repair time and idle time percentage can be summarized as follows.

Figure 9 through 12 show throughput, utilization resources, percentage of repair
time and idle time percentage, respectively. For the throughput, in Fig. 9, reliable
system model attains greater produced number of part A and part B compared to
proposed policies. Moreover, policy one provides greater produced number of part
A and part B than policy two. From the Fig. 10, it can be found that reliable model
obtains utilization better than proposed policies at M1, M2, M3, R1 and R2, and
attains same utilization atM4 andR2. In addition, policy one obtains utilization better
than policy two atM1,M3,M5, R1 and R2. The Fig. 11 indicates that, both proposed
policies have the same percentage of repair time for all resources. Finally, From the
Fig. 12, it can be found that reliable model obtains idle time percentage better than
proposed policies at M1, M2, and M3, and approximately the same percentage at R1
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Table 2 Supervisor
performance analysis of
applied algorithm for case
study

Parameter SMS ES

Monitors number 5 3

Arcs number 21 13

Reachable states number 182 205

and R2. In addition, policy one obtains idle time percentage better than policy two
at M1, and M3, while policy two obtains idle time percentage better than policy one
at M2, and M4, and approximately the same percentage at R1 and R2.

6 Conclusion

Research works have been dedicated on the development of deadlock prevention
controller based on Petri nets for AMS having properly worked resources. Never-
theless, in reality AMS come across unpredicted resource failures. To address this
issue, a robust deadlock prevention controller for an AMS with unreliable resources
has been proposed in this research. The developed robust controller ensures the
liveness of the controlled system in the existence of resource failure. In this paper, a
methodology has been illustrated systematically in the context of an automatedmanu-
facturing system. At the first step, a supervisor is designed to prevent the deadlock
using the elementary siphons control method. Later, two policies, Policy one: Fail-
ures Resulting Scrapping and Policy two: Process Resumes Subsequent to Repair, are
proposed to handle the failures occurrence in the resources. Finally, the models are
simulated usingVisualObjectNet (Version 2.a) to investigate and evaluate the perfor-
mance analysis of proposed polices such as utilization of resources and throughput.
When it is required, normal and inhibitor arcs are utilized to connect controllers with
system model. In this instance, the developed supervisor can ensure no deadlock
occurrence in case of resource failure. The results shown that the proposed policies
are qualified with robustness and liveness for unreliable systems. Furthermore, by
using the proposed policies it is realized that the resource utilization and productivity
are different for the case study due to conflict situation in placers. Performance anal-
ysis of selected case study showed that the variation in utilization and throughput for
system under the reliable and unreliable resources. Moreover, the proposed Failures
Resulting Scrapping policy provides greater produced number of parts than Process
Resumes Subsequent to Repair policy compared with reliable system. Therefore,
the applying Process Resumes Subsequent to Repair policy lead to the increase in
total completion time for the parts and selecting this policy depend on the cost and
manufacturer policy. The proposed methodology is useful to develop supervisory
controller for automated manufacturing systems with unreliable resources and to
analyze the system to evaluate the effectiveness of the developed model.
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Fig. 9 System throughput
for the Petri net model
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Fig. 10 System utilization
for the Petri net model
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Fig. 11 Percentage of repair
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Fig. 12 System idle time for
the Petri net model
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The Device to Simulate Movement
of Teeth Jaw

Ho Thi Thuy Duong, Tran Nam Cuong, Nguyen Thu Khoa,
Nguyen Tran Kim Hoang, and Nguyen Tuong Long

Abstract This paper presents equipment to simulate the motion of the lower jaw
when chewing. The device is designed with a jaw attached to the denture. The lower
jaw will be held and moved like the environment in the mouth. The main principle of
the device is based on the new ideas of the marginal motion of incisors on the vertical
plane (Posselt diagram) and the trajectory of the jaw on the horizontal plane (Gothic
arc). The horizontal and vertical motions of the lower jaw transform into two linear
translationalmotion and rotationmotion around the fixed axis. The structure of device
is designed to simulate the mean chewing force in a range of 7–15 kg (70–150 N).
Translational motion using belt transmission mechanism and movement around the
fixed axis using the gears transmission mechanism is applied in order to achieve the
requirement of design. This paper uses the finite element method to calculate and
optimize components of the device by ANSYS software, then the implementation
of model will be carried out. The main load-bearing component calculated are: the
durability of the lower jaw attachment having a yield stress of 0.5643MPa. The yield
stress value of the components is less than the yield stress of plastic PLA material
70 MPa, the components will meet the durable operation of the device. The part
of device is manufactured by 3D printing technology with PLA material. Stepper
motor will be used to provide movement for the whole system and controlled by
Arduino. A loadcell is used to collect data of acting force on the upper jaw. The
model was built with three basic testing phases (opening, closing, and occlusion)
and a graphic user interface which makes the device more friendly to users. The
device is successfully built with many mechanisms of the lower jaw that allows
the movements corresponding the mean chewing force, which helps doctors having
multiple options to examine dentures. In the future, we will improve software and
frequently update user requirements to build more complex motion trajectory as well
as improve the precision of the device.
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Keywords Mechanics · Simulate movement · Posselt · The lower jaw

1 Introduction

The dental problems are one of the issues that are being concerned. It is not only
related to beauty but also related to health problems. Currently, the most common
dental problems are tooth decay and tooth loss, and teeth are an important part of the
body. Teeth have a huge role in creating balance on the face, determining the ability to
pronounce and starting point of the process of digesting food and absorbing nutrients.
Methods protect the structure of teeths to limit damage and have timely orthodontic
interventions. Regarding the problem of tooth loss, it can be restored by implanting
dentures. Since this method is the most common, the quality of the denture should be
taken into care. In this research, we propose device as a reasonable foundation that
can support denture quality control devices and ensure medical quality. The quality
of dentures must be ensured, otherwise it can easily lead to the risk of infection,
pulpitis, gingivitis, bleeding gums, impaired chewing function and jaw deformation.

At the same time the problem of researching this dental device is more and
more popular. Many research are strongly developed such as simulating the chewing
process for the purpose of testing dental materials and implants and for the purpose
of analyzing food samples [1] and a design of mastication robot for texture anal-
ysis of foods in similar environment of human masticatory process respect [2–4].
The research method of motion simulation device is carried out according to the
following procedure: Firtly, the pathology of tooth loss is increasingly popular.
Secondly, building a computational model based on the orbital data of themandibular
teeth is obtained from the experiment. Thirdly, performing calculations based on
experimental parameters. Finally, creating pilot device.

Being aimed at the problems of existing literatures and the demand for force
detection in the process of denture replacement, a device to simulation movement
of teeth jaw (BK-DD) is proposed, designed, fabricated and tested. The BK-DD can
simulate the real masticatory movement of human to the largest extent and obtain
the mean chewing force of a lower jaw effectively in a range of 7–15 kg (70–150 N)
[8]. At the same time, the BK-DD can provide denture performance tests for the
individual dental patient.

2 Actuation Lower Jaw Movement Analysis

2.1 Degrees of Freedom of Lower Jaw Analysis

Human stomatognathic system is mainly composed of the teeth, the jaws and the
masticatory muscles. Human teeth can be divided into incisors, canines and molars,
which have a laterally zygomorphic and transversely zygomorphic distribution [5].
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Fig. 1 Degrees of freedom
of lower jaw analysis

When lower jaw performs biting function, crushing and chewing, the biomechanical
system of the lower jawwill movewith six degree of freedom (DOF) according to the
trajectory recorded by the midpoint located on lower jaw Fig. 1. These movements
are rotational and translational movements at the temporomandibular position. A
translational motion moves the lower jaw to the side (left and right), a translational
motion moves the lower jaw forward—backward and at each convex condyle in the
temporomandibular perform two rotations. With the flexible movement of the lower
jaw is easy to bite, tear, chew, and crush food. Besides, it helps a lot for the salivary
system to soften food before it goes to the stomach, which helps protect the digestive
system.

Because of flexibility of the musculature, it is difficult to model the design of a
device with a movable joint that meets the needs for the degrees of freedom of the
lower jaw. Through the kinematic analysis of human mandible, it is found that the
mandible movement only needs three main degrees of freedom.

2.2 Degrees of Freedom of BK-DD Analysis

The main principle of the device is design bases on the new ideas of the marginal
motion of incisors on the vertical plane (Posselt diagram) and the trajectory of the
jaw on the horizontal plane (Gothic arc) Fig. 2 [2, 8]. Maximum dimension drawn
on 2D plane Table 1 [2, 3]. The horizontal and vertical motion of the lower jaw
transforms into two linear translational motion and rotation motion around the fixed
axis. Movements are the translational degrees of freedom in X and Y directions, and
the rotational degrees of freedom in X.

If a point is marked located on lower jaw performs marginal movement in all
directions, the point will draw a shape in space [8]. It is the borderline for the
mandibular range of motion. Marginal movements of the mandible are the maximum
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Fig. 2 The border movement at the incisor point

Table 1 Maximum
dimension drawn on 2D plane
[3]

Stages Symbol Dimention (m)

The mouth opens widest Hmax 0,05

The lower jaw forward and
backward

Lmax 0,012

The lower jaw to the side (left and
right)

Wmax 0,015

positions that the point can be reached. The horizontal and vertical motion of the
lower jaw transforms into two linear translational motion and rotation motion around
the fixed axis Fig. 3.

Fig. 3 BK-DD Degrees of
freedom analysis
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Belt transmission 
mechanism
The lower jaw 
forward and 
backward

Movement 
around the 
fixed axis
The mouth 
opens - closes
backward

Belt transmission 
mechanism
The lower jaw to the 
side (left and right)

A loadcell is used
to collect data

Fig. 4 Schematic diagram of the BK-DD

3 BK-DD Design

3.1 BK-DD Platform

Translational motion using belt transmission mechanism and movement around the
fixed axis using the gears transmission mechanism in order to archive requirement
of design. When the lower jaw performs the movement of opening and closing the
mouth, the lower jaw performs the hinge movement. Movement around the fixed
axis is using the gears transmission mechanism. When the stepper motor starts the
torque transmission causes the gear transmission to drive the shaft. At the bearing
position is responsible keeping the shaft from moving along the axis (Fig. 4).

3.2 Simulation and Examination of and Extimate Durability
of the Lower Jaw Attachment

Due to the simple problem so it is possible to use the program default mesh size that
has been computed for the object size. In addition, since we used the convergence
history tool, the meshes in the important areas were smooth again based on the
results so the initial mesh size is acceptable.Mesh statistics: 156,131 nodes và 90,319
elements.

The value of torque is calculated according to the maximum torque of the motor
in the model, reaching a value of 2,8 N.m [6]. The chosen material is PLA plastic
listed material. The mesh has been optimized via the Convergence tool in the results
section of the von Mises stress so that the results will be converged on stress and
the related results will correlate with the stress results. Because the object is fixed at
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Fig. 5 The jaw attachment stress result

Table 2 The lower jaw
attachment and PLA plastic
material stress

Stress (MPa) Preferences

The jaw attachment simulation
result

0.5643 –

PLA plastic material 70 [7]

the jaw attachment side and the moment at the shaft hole, the material will be pulled
and compressed more at the shaft hole and the region with special geometry, which
is the jaw frame curve, so the stress will be concentrated at the shaft hole and the
transition between the two aforementioned regions, the maximum stress at one point
is 0,5643 MPa and less than the yield stress, which is 70 MPa [7]. But that point is
geometrically degenerated, therefore its value does not need to be considered (Fig. 5
and Table 2).

3.3 Pratical Model

The BK-DD is manufactured and located in the Centre of Computational Mechanics.
Firstly, the manufaction is the machining of mechanical parts. Secondly, the parts
of device are manufactured by 3D printing technology at Centre of Computational
Mechanics. Finally, the control circuit of BK-DD is designed (Fig. 6).
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Fig. 6 The device to simulate movement of teeth jaw (BK-DD)

3.4 Data Collection Method and Control System

The research has two goals. Firstly, survey the functional orbital in fact to build a
method functional orbital program. Secondly, build the actuator, exploit the newly
established trajectory function, simulate this trajectory on the model. The study will
conduct experiments on humans, in order to get the orbit of the lower jaw and collect
coordinate data when performing chewingmovements using image processingmeth-
od.

The method of obtaining orbital data will be done by attaching a fixture marked
with a red dot determined in a fixed way, followed by the volunteer who performs
the chewing process and is simultaneously recorded in Fig. 7 in two vertical planes
with front view and left view, respectively.

Through processing algorithms in python programming language, the study
obtained a set of coordinates on three coordinate axis. Then, interpolating from
this data set, the research obtained a trajectory function Fig. 8. Based on the mechan-
ical analyze, the motions of the whole system have been modeled into three basic
movements: translation in the x-axis, translation in the y-axis, and rotation around
the x-axis.

Fig. 7 Data collection method; a Front view; b Left view
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Fig. 8 Data visualization

Table 3 Step motor
parameters [6]

Parameters Value

Step 1,8° (200 step/round)

Holding moment 0,4 N.m

Torque 0,022 N.m

Rotor inertia 5,4.10–6 kg.m2

Step error ±5%

Motor size 0,042 × 0,042 × 0,04 m

Shaft diameter 0,005 m

The design control diagram for NEMA 17 stepper motor [6] is open loop control
system. Central controller using Kit Arduino BLE SoC ESP 32 WeMos D1 R32,
microprocessor Espressif ESP32 dual core Tensilica LX6 processor for 240 MHz
processing speed and 328 KB RAM (Table 3).

The operating principle of the system is presented as follows:Based on the existing
derivative orbital equation, we discretized the equation into multiple coordinate
points equidistant along the trajectory. The central microcontroller will calculate
the number of steps (of the motor) to make the move between two adjacent points,
then convert into control pulses, then sent to the motor through the DRV8255 driver.
The motor group perform simultaneously to simulate the trajectory.

4 Conclusion

The BK-DD is proposed, designed, simulated, fabricated and tested that consists
of power system, control and driving system, and a loadcell is used to collect data
and suporting system. Durability of the lower jaw attachment maximum stress is
0.5643 MPa, which is less than the yield stress of PLA material [7]. The BK-DD
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can provide a trust mean chewing force in a range of 7–15 kg (70–150 N) [8]. The
interface is designed to be user-friendly, material expert or doctor operate easily the
device according to the intendeduse. The lower jawmovement according to trajectory
is performed base on the human sampling experiment, then building the movement
trajectory of the lower jaw from the experiment. The horizontal and vertical motion
of the lower jaw transforms into two linear translational motion and rotation motion
around the fixed axis.

The trajectory comparison indicates that this new decive is qualified to get a high
accuracy mandible movement. The future work will focus on the application in the
long-time performance of the denture quality test device and the application in device
design for denture quality. It will build foundation and premise for future applications
in the field of biomechanics.
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The Plane Problem of Poroelasticity
for a Semi-plane

Natalya Vaysfeld and Zinaida Zhuravlova

Abstract Poroelastic materials are widely used in many engineering applications.
However, the problems of poroelasticity are usually complicated, and their analytical
solutions are not often found. In this paper the semi-plane of poroelastic material
is considered for the case when the boundary is loaded by mechanical load, and
it is fully drained. The problem is formulated in a plane statement regarding two
displacements of the solid skeleton and the pore pressure. The initial problem is
reduced to a one-dimensional problem with the help of an infinite Fourier transform.
The one-dimensional problem is formulated as a vector boundary-valued problem.
The general solution of the vector homogeneous equation is constructed with the
help of matrix differential calculation. According to it, the corresponding matrix
equation is considered, and its fundamental solutions were derived. The vector of
unknown constants is found for two subcases (when the integral transform parameter
is greater than zero and when it is less than zero) from the boundary conditions. So,
the analytical solution of the initial problem is derived. The displacements, stress
and pressure inside the semi-plane are investigated. The cases of distributed and
concentrated load are considered.

Keywords Semi-plane · Poroelasticity · Integral transform

1 Introduction

The mathematical modelling of poroelastic materials is a relevant problem in many
areas of science and engineering, such as development of oil and gas fields and others.
The theory of poroelasticity was developed by Terzaghi [1] for the one-dimensional
case. The three-dimensional case and the generalization of the poroelasticity theory
was done byBiot [2]. In [3] a formulation of Biot’s linear theory suitable for problems
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of soil mechanics was proposed. The equations of consolidation were reformulated
in terms of undrained coefficients in [4].

The static contact problem about a rigid punch on the free surface of a linear
porous elastic half-plane was solved with the use of a Fourier transform and a sin-
gular integral equation in [5]. The dynamic response of a poroelastic half-plane soil
medium subjected to moving loads was studied analytically/numerically under con-
ditions of plane strain in [6]. The loading function was presented there by a Fourier
series expansion.

It is well known that the apparatus of mathematical physics’ boundary problems
allows successful modeling of many complex dynamic problems of elasticity and
destruction [7–9]. Authors of the present investigation set as their goal the application
of the apparatus of generalized integral transforms and discontinuous problems to
the solving of poroelasticity problems.With this aim the solving of the knownmodel
problem is proposed. It is derived by analytical transforms, and the exact formulae
for the displacements, stress and pore pressure are found.

2 Statement of the Problem

The poroelastic semi-infinite plane y > 0 is considered. It’s boundary y = 0 is loaded
by the load l(x), and perfect drainage conditions are fulfilled [10]:

σy|y=0 = −l(x), τxy |y=0 = 0, p|y=0 = 0 (1)

Here p(x, y) is pore pressure, σy(x, y), τxy(x, y) are normal and shear effective
stresses.

The system of equilibrium and storage equations has the following form [11]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2u
∂x2 + κ−1

κ+1
∂2u
∂y2 + 2

κ+1
∂2v

∂x∂y − α
G

κ−1
κ+1

∂ p
∂x = 0,

∂2v
∂x2 + κ+1

κ−1
∂2v
∂y2 − 2

κ−1
∂2u

∂x∂y − α
G

∂ p
∂y = 0,

∂2 p
∂x2 + ∂2 p

∂y2 − α
k

(
∂u
∂x + ∂v

∂y

)
− Sp

k p = 0

(2)

where u(x, y) = ux (x, y), v(x, y) = uy(x, y) are displacements of the solid skele-
ton, κ = 3 − 4μ is Muskhelishvili’s constant, μ is Poisson ratio,G is shear modulus,
α is Biot’s coefficient, Sp is storativity of the pore space, k is permeability.

The stress state of the semi-plane, which satisfy (1)–(2) should be found.
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3 One-Dimensional Problem

The initial problem (1)–(2) is reduced to the one-dimensional problem with the help
of infinite Fourier transform applied with regard to variable x :

⎡

⎣
uγ(y)
vγ(y)
pγ(y)

⎤

⎦ =
∞∫

−∞

⎡

⎣
u(x, y)
v(x, y)
p(x, y)

⎤

⎦ eiγxdx

The one-dimensional problem in the transform space is formulated in vector form

⎧
⎪⎪⎨

⎪⎪⎩

L2yγ(y) = 0,
(1 − μ)v′

γ(0) − iγμuγ(0) = 1−2μ
2G lγ,

u′
γ(0) − iγvγ(0) = 0,

pγ(0) = 0

(3)

Here L2yγ(y) = Iyγ" − Ry′
γ + Pyγ , yγ =

⎛

⎝
uγ(y)
vγ(y)
pγ(y)

⎞

⎠, I is identity matrix, R =
⎛

⎝
0 2iγ

κ−1 0
2iγ
κ+1 0 α

G
κ−1
κ+1

0 α
k 0

⎞

⎠ , P =
⎛

⎝
−γ2 κ+1

κ−1 0 αiγ
G

0 −γ2 κ−1
κ+1 0

αiγ
k 0 −γ2 − Sp

k

⎞

⎠. The general solution of

the homogeneous equation in (3) is constructed with the help of matrix differential
calculation [12]. Accordingly to it the corresponding matrix equation is consid-
ered L2Yγ = 0. The matrix Yγ is chosen in the form Yγ = eηy I and substituted
into the matrix equation. So, the equality L2eηy I = M(η)eηy is derived, where
M(η) = Iη2 − Rη + P .

The solution of the matrix homogeneous equation is constructed in the form [13]

Y (y) = 1

2πi

∮

eηyM−1(η)dη,

here M−1(η) is the inverse matrix to M(η).
The determinant of the matrix M(η) has four different roots η1,2 = ±γ, η3,4 =

±
√

γ2 + Sp
k + α2(κ−1)

GK (κ+1) , so there are derived four fundamental matrix solutions

Yi (y), i = 1, 4. The matrix solution Y3(y) corresponding to the root√

γ2 + Sp
k + α2(κ−1)

GK (κ+1) is not considered, because the components of the matrix are
increasing when y > 0.

The general solution of the problem (3) has the following form

yγ(y) = Y−(y)

⎛

⎝
c1
c2
c3

⎞

⎠ (4)
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Here Y−(y) =
{
Y1(y) + Y4(y), γ < 0,

Y2(y) + Y4(y), γ > 0,
ci , i = 1, 2, 3 are constants which are

found for each form of Y−(y) from boundary conditions in (3).

4 Analytical Solution

After inversion of the expression (4) the analytical solution of the initial problem (2)
has the following form

y(x, y) = 1

2π

⎡

⎣

0∫

−∞
(Y1(y) + Y4(y))

⎛

⎝
c1,1
c1,2
c1,3

⎞

⎠ e−iγx dγ +
∞∫

0

(Y2(y) + Y4(y))

⎛

⎝
c2,1
c2,2
c2,3

⎞

⎠ e−iγx dγ

⎤

⎦

(5)
Here ci, j , i = 1, 2, j = 1, 2, 3 are constants found from boundary conditions in (3),
index i = 1 corresponds to the case when γ < 0, and index i = 2 corresponds to the
case when γ > 0.

5 Graphical Results and Discussion

The calculations were done for Ruhr sandstone [10], where G = 1.33 · 1010 N/m2,

μ = 0.12,α = 0.637, k = 2 · 10−13 m4/N · s, Sp = 3.9215 · 10−11 m2/N.
The case with concentrated load l(x) = δ(X) is considered, and the results are

presented on Figs. 1 and 2. As the load is symmetric, pore pressure and normal
effective stress are symmetric. The biggest absolute values for these functions are
reached when x = 0.

At the line y = 1 pore pressure (Fig. 1) is positive, decreasing to zero some way
away from the point x = 0. This is caused by the drainage, which starts at the bound-
ary of the semi-plane y = 0, andwhich produce a tendency for shrinkage of the semi-
plane’s boundary. The effective stress σy(x, 1) (Fig. 2) is negative, which is agreed
with the compressive concentrated load. Stress’s σy(x, 1) peak is at the point x = 0,

where the load is applied. The case with distributed load l(x) =
{
1,−1 < x < 1

0, x /∈ [−1, 1]
is considered. The results are shown in Figs. 3 and 4. The load is symmetric, so pore
pressure and normal effective stress are symmetric. The biggest absolute values for
these functions are reached when x = 0.

The pore pressure (Fig. 3) is positive at the line y = 1, decreasing to zero some
way away from the point x = 0. The values of p(x, 1) for this load are bigger than
for the case with the concentrated load. The values of effective stress σy(x, 1) (Fig. 4)
for this load are also bigger by absolute value than for the case with the concentrated
load.
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Fig. 1 Pore pressure

Fig. 2 Effective stress

Fig. 3 Pore pressure
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Fig. 4 Effective stress

6 Conclusions

1. The analytical solution for poroelastic semi-plane is constructed with the help of
the integral transform method and apparatus of matrix differential calculation.

2.Normal and shear effective stress, andpore pressure are investigated for different
mechanical loads.

3. The comparison of the given problem results was done for the case when
parameter α = 0 with the given known solution for elastic half-space.

4. The proposed approach can be used for a more complicated shape of domains
weakened by defects.
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Crack Propagations in Functionally
Graded Material Using a Phase-Field
NURBS-Based Finite Element Approach

Khuong D. Nguyen, H. Nguyen-Xuan, and Magd Abdel Wahab

Abstract This study presents a hybrid phase-field formulation combining isogeo-
metric analysis with a local refinement multipatch algorithm (VUKIMS algorithm)
to predict damage in functionally graded material structures. The power-law index of
theMori–Tanakamixture rule will impact the critical force point.We have confirmed
that this approach is an effective computational tool for functionally graded mate-
rials. As a result, the effective size of cubic NURBS elements is half of a length-
scale parameter for balancing the achieved accuracy and computational cost in most
examples.

Keywords NURBS-based finite elements · Phase-field model · Functionally
graded material · Local refinement mesh

1 Introduction

Recently, functionally graded materials (FGMs) [1], which are an advanced material
in a family of composite materials, have become the most attractive for researchers.
The FGM is a functional composition of two different materials, for instance, metal-
ceramic and ceramic-ceramic. The mixture of rules, including exponential, sigmoid,
and power laws, allows FGM to possess a smooth and continuous gradation in the
domain. FGM prevails over a laminated composite material in structures working in
high-temperature gradients, including the nuclear, aerospace industry, because it can
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reduce the phenomena of residual stress components, de-bonding, and delamination.
Besides, relying on technology innovation based on 3D printing [2, 3], promising
to produce the functionally graded (FG) structures more efficiently. Through this
technology, FGM can becomemore prevalent in practical engineering by its benefits.
Therefore, the FGM failure must be exploited theoretically before manufacturing.

Additionally, the vital task of the solid mechanics field is initial and growth crack
prediction in a solid. This task can be solved by the fracture mechanics field concen-
trating on studying the failure modes of the structures under multiple loading types.
Numerousmethods have been introduced bymany previous works [4–6] for a predic-
tion of fracture failure mechanisms correctly. Using the stress intensity, the stress
intensity factor (SIF) concept was proposed to evaluate the energy of the crack tip
zone. Two categories, discrete and smeared approaches, were implemented to study
damage behaviors under a discontinuous zone. An enriched displacement variable
formulation within enriched elements, using a partition of unity method (PUM),
is proposed as a primary idea for such enriched formulation family [7–10], which
plays an outstanding role in the discrete approaches. However, crack merging and
branching challenges, tracking the crack pattern topology, and even crack initiation
still exists, particularly in three-dimensional fracture problems.

On the contrary, Miehe [11] firstly proposed a phase-field approach, as a smeared
method, to deal with the above issues.Without any criterion, the phase-field approach
effectively predicts a complex failure, including crack branching, kinking, and nucle-
ation [12–14]. It recently became the most attractive method for researchers because
it works well in multiple cracks, cracks merging [15]. A scalar auxiliary variable
is investigated for the phase-field approach in implementing discontinuous zones.
Typically, the phase-field approach is considered as a coupled-field problem that
contains both displacement and phase-field variables.

Recently, the phase-field model was proved to be a promising method for investi-
gating the damage mechanisms of composite materials, such as laminated composite
materials [16–18], fiber-reinforced composite materials [19, 20]. Some research uses
the phase-field model to compute the damage on FGM structures [21, 22]. However,
their limitation is on a family of C0-continuity elements limited, for instance, a finite
element approach, which was shown less accuracy than higher-order approaches.

Regarding a higher-order approximatedmethod, isogeometric analysis (IGA) [23]
uses a NURBS function as a basis function for the finite element approach. It was
built on higher-order continuity elements, which help to increase the accuracy of the
solution. A VUKIMS algorithm [24] was used to build a local refinement mesh to
reduce the unnecessary elements for the computation. Our previous study success-
fully applied IGA with the VUKIMS algorithm to compute crack propagation in a
homogeneous brittlematerial [25]. It helps the IGAapproach to overcome the compu-
tational cost to display accurately crack pattern topology. It requires tiny elements
used for the damaged areas. Besides, IGA has been a useful computational tool for
the FGM structures under static and dynamic analysis [26]. IGA can provide an
ultra-accurate solution with a coarse mesh level for the FGM structures by using
higher-order NURBS basis functions.
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This paper aims to extend this phase-field formulation success by combining IGA
with the VUKIMS algorithm, as a locally refined algorithm, from the homogenous
material to the functionally graded material. A tension single notched edge plate is
considered to demonstrate the accuracy and efficiency of current solutions compared
with the previous work.

2 A NURBS-Based Formulation for a Phase-Field Model

2.1 NURBS Basis Functions

A NURBS geometry (or NURBS surface) (S(ξ, η)), which was built by bivariate
NURBS basis functions (Rp,q

i, j (ξ, η)) on parametric space ξ and η, can be expressed
in [27] more detailed formulations

Sξ,η =
n∑

i=1

m∑

j=1

Rp,q
i, j (ξ, η)Pi, j (1)

where Pi,j stands for the n×m control points. The bivariate NURBS basis functions
are determined on � and H knot vectors corresponding to ξ- and η-coordination, as
given as

Rp,q
i, j (ξ, η) = wi, j Ni,p(ξ)Mj,q(η)

n∑
i=1

m∑
j=1

wi, j Ni,p(ξ)Mj,q(η)

(2)

where wi,j is the weight parameter of control points Pi,j while Ni,p, and Mj,q are B-
spline basis functions on each parametric coordination. For instance, the B-spline
basis function is built from a non-decrease, open and non-uniform knot vector � ={
ξ1, ξ2, . . . , ξn+p+1

}
, n control points, and p basis function order, as depicted by the

Cox-de Boor formulation as.
In the case of zero-order, p = 0,

Ni,0(ξ) =
{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(3)

and

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (4)
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where, 1 ≤ i ≤ n + p, p ≥ 1, and 0
0 is an assumption of zero number.

Typically, the displacement and phase-field variables are used to simulate a crack
propagation problem by using IGA and phase-field approach, as expressed as

u(ξ, η) ≈ û(ξ, η) =
n∑

i=1

m∑

j=1

Rp,q
i, j (ξ, η) · ui, j (5)

φ(ξ, η) ≈ φ̂(ξ, η) =
n∑

i=1

m∑

j=1

Rp,q
i, j (ξ, η) · φi, j (6)

where Rp,q
i, j (ξ, η) is a NURBS basis function, ui,j and φi, j are phase-field and

displacement variables corresponding to control point Pi,j, respectively.

2.2 Phase-field Formulation

With the phase-field approach, governing balance equations, as described as a strong
form, can be expressed for a coupled-field problem of the displacement and phase-
field variables as follows:

∇ · σ + b = 0 on � (7)

GC(x)
[

φ

l0
− l0�φ

]
− 2(1 − φ)H(ε, x) = 0 on � (8)

with the Neumann-type boundary conditions:

σ · n = t on ∂�t and∇φ · n = 0 on ∂� (9)

where t is the traction force on the boundary ∂�t and b is the body force. A history-
field parameter ofH := maxψe(ε, x) defined as a maximum value of strain energy.
For loading and unloading conditions, this parameter must satisfy the Karush–Kuhn–
Tucker conditions [28], as follows:

ψe − H ≤ 0,
.

H ≥ 0,
.

H(ψe − H) = 0 (10)

where the strain energy ψe is computed by

ψe(ε, x) = λ(x)
2

(tr(ε))2 + μ(x)(ε : ε) (11)
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In this study, an isotropic phase-field formulation is used. This work defined the
stress tensor, which is given as

σ = g(φ)
∂ψe0

∂ε
= g(φ)D : ε (12)

where a quadratic degradation function is defined g(φ) = (1 − φ)2. Typically, φ is
set equal to 1 to describe a fully broken domain. D is a tangent linear elastic tensor
of the material. The strain tensor ε is assumed as an infinitesimal strain tensor, as
defined as ε = symm[∇u].

From the strong form equations in Eqs. (7)–(9), the weak form equations can be
expressed by applying variational principles, as given as

∫

�

σδεd� =
∫

∂�t

t · δud� +
∫

�

b · δud� (13)

∫

�

{
GC

[
1

l0
φδφ + l0∇φ · ∇δφ

]
− 2(1 − φ)Hδφ

}
d� = 0 (14)

The approximations of the displacement u and the phase-field φ variables are
given as

u =
m∑

i=1

Ru
i ui , φ =

m∑

i=1

Riφi (15)

where m stands for the control point number on each element. Using the IGA
approach, Ri is defined as a NURBS basis function, as given in Eq. (2), corre-
sponding to control point ith on the NURBS surface. The shape function matrix is
expressed as follows:

Ru
i =

[
Ri 0
0 Ri

]
(16)

The derivative of the displacement and phase-field variables are given as

ε =
m∑

i=1

Bu
i ui and ∇φ =

m∑

i=1

Bφ

i φi (17)

where derivative matrices are depicted as

Bu
i =

[
Ri,x 0 Ri,y

0 Ri,y Ri,x

]T

, Bφ

i = [
Ri,x Ri,y

]T
(18)
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The virtual of both fields and their gradient tensor in Eqs. (13) and (14) can be
computed as

δu =
m∑

i=1

Ru
i δui and δφ =

m∑

i=1

Riδφi

δ =
m∑

i=1

Bu
i δui and ∇δφ =

m∑

i=1

Bφ

i δφi

(19)

The variational equilibrium equation of the external and internal work increments
for crackpropagationusingphase-field formulation is given for a quasi-static problem
as

δWint − δWext = 0 (20)

where δWint and δWext which are under the variational form of internal and external
energies can be expressed as

δWint =
∫

�

GC

l0
φδφd� +

∫

�

GCl0∇φ · ∇δφd�

+
∫

�

−2(1 − φ)Hδφd� +
∫

�

σδεd� (21)

δWext =
∫

�

b · δud� +
∫

∂�t

t · δud� (22)

The variational equilibrium equation in Eq. (20) is derived as

∫

�

GC

l0
φδφd� +

∫

�

GCl0∇φ · ∇δφd� +
∫

�

σδεd�

=
∫

�

b · δud�
∫

∂�t

t · δud� + 2
∫

�

(1 − φ)ψeδφd�
(23)

In this study, a staggered scheme is used to solve the nonlinear problem was first
investigated by Miehe [29]. A displacement control Newton–Raphson scheme is
proposed to minimize the internal potential energy.

The linear algebraic equation system can be computed as follows:

[
Kuu

i j 0
0 Kφφ

]{
�u
�φ

}
=

{ −rui
−rφ

i

}
(24)

The tangent stiffness matrices and the residual vectors of the displacement and
phase-field variables are given as
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Kφφ

i j = ∂rφ

i

∂φ j
=

∫

�

{
GCl0(B

φ

i )
TBφ

j +
[
2H + GC

l0

]
Ni N j

}
d� (25)

Kuu
i j = ∂rui

∂u j
=

∫

�

(Bu
i )

T (1 − φ)2DBu
j d� (26)

rφ

i =
∫

�

{
GC

[
1

l0
Niφ + l0(B

φ

i )
T∇φ

]
− 2(1 − φ)HNi

}
d� (27)

rui =
∫

�

(Bu
i )

Tσd� −
∫

�

(Nu
i )

Tbd� −
∫

∂�t

(Nu
i )

T td∂�t (28)

An elasticity material tensor D depends on point material location x, as given as:

D(x) = E(x)
(1 + ν(x))(1 − 2ν(x))

⎡

⎣
1 − ν(x) ν(x) 0

ν(x) 1 − ν(x) 0
0 0 1−2ν(x)

2

⎤

⎦ (29)

2.3 Functionally Graded Materials

Generally, in a functionally graded material (FGM), the material property distribu-
tions are graded by changing volume fraction functions. Typically, the FGM is a
composition of two distinct materials. It changes from 100% of the first compound
volume fraction to the second. It has the ability of smooth and continuous distribu-
tion concerning spatial directions by using a mixture rule. For instance, the volume
fractions of the first and the second materials with the material gradation along with
the y-axis corresponding to the top and the bottom edge, Vt and Vb, respectively, as
shown in Fig. 1, are given as

Vt =
(
1

2
+ y

h

)n

, Vb = 1 − Vt (30)

where n is a power parameter, h is the vertical edge length of the plate.
Mori and Tanaka have proposed a model in order to define graded functions

that satisfy continuous matrix and randomly particulate phase distribution, namely
the Mori–Tanaka scheme. The effective parameters of bulk modulus (K) and shear
modulus (μ) are expressed as

K − Kb

Kt − Kb
= Vt

1 + Vb
Kt−Kb

Kb+4/3μb

,
μ − μb

μt − μb
= Vt

1 + Vb
μt−μb

μb+ f1

(31)
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Fig. 1 A distributed
material property of FGM
along a y-axis

h/2

h/2

x

the second material

y the first material 

where f1 = μb(9Kb+8μb)

6(Kb+2μb)
, Kt and Kb are bulk modulus, and μt and μb are shear

modulus of the first and the second materials, which correspond to the top and
bottom edges. Hence, the remaining parameters, including Young’s modulus (E),
Poisson’s ratio (ν), and Lamé’s first parameter (λ), are defined as

E = 9Kμ

3K + μ
, ν = 3K − 2μ

2(3K + μ)
, and λ = K − 2μ

3
(32)

In terms of the criterion for fracture, a critical energy release rate GC is computed
from the fracture toughness, KIC by

GC = K 2
IC

E ′ (33)

where E ′ = E/(1 − ν2) is used for plane strain problem while E ′ = E is used for
plane stress problem. In FGM, GC variation is assumed as a graded function by using
rule mixture function depicted as

GC = GCt Vt + GCbVb (34)

where GCt and GCb are computed for the first and the second material on the top and
bottom edge, respectively.

In order to implement the material gradation in the structure, graded elements are
used by storing the material properties and fracture parameters on the Gauss points
of the elements, as described in Fig. 2. In this study, a full of (p + 1) × (q + 1)
Gauss–Legendre quadrature, located on each element, is used to evaluate an integral
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Fig. 2 Graded elements for
FGM

P(x)

GPs

approximation on an element. Here the polynomial orders, p and q, of basis functions
correspond to bidirectional NURBS surface.

3 Numerical Results

3.1 Verification Test of Tension Single Edge Notched Plate

This section demonstrates the accuracy of the current method by considering an
alumina Al2O3 / zirconia ZrO2 functionally graded square plate. The plate has a side
length of 1 mm. The plate is assumed as plane strain conditions. On the left side of
the plate, it has a single edge notched plate with a length of 0.5 mm and is applied a
tensile loading, as illustrated in Fig. 3. The rule of mixtures for this problem uses the
Mori–Tanaka scheme described in Eq. (31). Table 1 describes the elastic and fracture
parameters that are chosen the same as Hadraba [30]. Besides, a length-scale number
of l0 = 0.003 mm was chosen for this section.

In order to prove the advantages of non-conforming mesh multipatches IGA or
local mesh compared with traditional FEM, the first test, which is the material grada-
tion along the y-axis with 100% of Al2O3 at the bottom and 100% of ZrO2 at the top
of the plate, is considered with the power-law exponent parameter of n = 1. The top
edge is applied an incremental monotonic displacement vertically was �u = 10 nm
for the first 130 loading steps, and �u = 0.1 nm for the subsequent loading steps to
split the broken plate completely.

Firstly, both global and local refinement mesh of linear B-spline elements is vali-
dated in the present solution by Hirshikesh [21], who used the FE approach with
triangular elements (T3), as shown in Fig. 5. The coarsest mesh and their global
and local refinement mesh, using 12 patches to model this problem, are illustrated
in Fig. 4a with a length-scale number of 0.0075 mm. To implement the horizontally
pre-existing crack, two pairs of patches (2–3 and 6–7) are disconnected from their
variables on the interfaces. Because the predicted crack will propagate horizontally,
the patch numbers of 6, 7, 10, and 11 chosen to refine in order to build a local mesh
with a size of an element of h= l0 are shown in Fig. 4c, while Fig. 4b depicts a global
mesh that has all elements have the same effective size h = l0. There is a two-level
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Fig. 3 A description of the
geometry and boundary
conditions

Table 1 Material properties
of alumina Al2O3 and
zirconia ZrO2

Al2O3 ZrO2

E(GPa) 380 210

ν 0.26 0.31

K IC (MPa·m1/2) 5.2 9.6

mesh of the effective element size of h = l0 and h = l0/2 considered in this step. It
should be noted that the linear B-spline element is a particular case of a Q4 element
in FEM which shows more accuracy than the triangular one in the case of the same
numbers of elements.

In this first test, the linear B-spline element of four cases of the mesh with
different effective sizes and types of mesh are used to verify the present solution
with Hirshikesh [21] in the case of the power-law exponent parameter n = 1. The
computational time and the numbers of a degree of freedoms shown in Table 2 are
much different, although Fig. 5a shows minor deviations in both global and local
mesh cases. Significantly, computational time and the numbers of the degree of free-
doms of the local refinement mesh are much less than the global one. In particular,
the computational time of local refinement mesh can speed up is over 12 times and
16 times with the effective size of h = l0 and h = l0/2, respectively. In addition, the
required memory of the computer can be reduced due to the DOF numbers being
reduced over ten times and 14 times corresponding to two of the effective size level.
Hence, the obtained result can reduce the computational cost while maintaining
the solution’s accuracy thanks to the local refinement mesh. The time computing
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Fig. 4 The multipatch mesh
of the square plate: a the
coarsest mesh, a b global,
and c local refinement mesh
with the effective size of h =
l0 with length-scale l0 =
0.0075 mm
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(a) four cases of the mesh

(b) different effective sizes of local refinement mesh

Fig. 5 Reaction force versus displacement for linear B-spline elements

Table 2 DOF numbers and time consumption in the several cases of linear B-spline elements

Case of mesh Type of refinement
mesh

Effective element
size

DOF numbers Time consumption
(min)

1 global h = l0 55,488 1317

2 local h = l0 5148 106

3 global h = l0/2 218,700 3967

4 local h = l0/2 15,000 236
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Table 3 DOFnumbers and time consumption in the several cases of higher-orderB-spline elements
with local refinement mesh

Case of mesh Order approach Effective element size DOF numbers Time consumption
(min)

5 linear h = l0/4 51,228 690

6 linear h = l0/6 110,232 1446

7 cubic h = l0 7176 420

8 cubic h = l0/2 18,084 1164

9 cubic h = l0/4 56,376 3934

10 quartic h = l0 8298 901

11 quartic h = l0/2 19,734 2550

values of all results are evaluated in the same computer using AMD Ryzen 7 2700X
processor until the crack separates the plate.

It should be noted that the obtained results of the first and the second cases of the
mesh with the effective size of h = l0 are in good agreement with Hirshikesh [21].
However, the critical force point decreases when the effective size is set to half of
l0, including the third and fourth mesh (please see Fig. 5a). A convergence test is
considered by using four different sizes of the linear B-spline elements, including
h = l0, l0/2, l0/4, and l0/6 (please see Fig. 5b). Hence, we assume that when using
the effective size h = l0/6, the solution is a converged result. It is easy to see that the
used number of DOFs of this solution is high, approximately 110,232-DOFs, causing
a large memory consuming and costly computational time. Therefore, a higher-order
B-spline element can be used to gain a higher accuracy for the solutions than the
linear one.

Next, the higher orders of B-spline element, using local refinement mesh with
finer mesh, are considered to obtain more exact solutions. The DOF numbers and the
time consumption of different meshes are shown in Table 3, while Fig. 6 shows the
critical force points of these meshes. As a result, to balance the solutions’ accuracy
and computational cost, the cubic B-spline element is suitable for FGM structures
in the following analyses with effective size h = l0/2.

3.2 A Functionally Graded Material Square Plate

This section shows the effects of a power-law exponential parameter n in Eq. (30) on
critical force points of the FGM plate. The distributed material properties are shown
in Fig. 7. The cubic B-spline element is used to obtain the solutions for all analyses
with an effective size h = l0/2.

Curves of reaction force versus displacement result are illustrated in Fig. 8. The
results have been confirmed by Hirshikesh’s solutions [21]. However, the current
predictions of critical force points are lower than those in Ref. [21]. The differences
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Fig. 6 Curves of reaction force versus displacement for different mesh

occur becauseHirshikesh’s approach uses T3 elements shown to be less accurate than
cubic B-spline elements for the current approach. However, the trends in most cases
of the different power-law exponent parameters are the same with Hirshikesh [21].
Besides, the predicted crack path is illustrated in Fig. 9 with local refinement mesh of
the cubic B-spline elements with the power-law exponent parameter n = 1 and the
effective size h = l0/2. As a result, using the length-scale parameter l0 = 0.003 mm,
the crack topology is guaranteed as a highly accurate solution.

4 Conclusion

This study demonstrated the phase-field model as a practical computational tool to
solve the damage problem for an FGMplate. The proposed approach is a combination
of IGA and VUKIMS algorithms to build a locally refined mesh. This algorithm
helps the proposed approach to overcome the computational cost caused by phase-
field approximation. Moreover, the convergence rate of the numerical solutions can
be increased significantly by using higher-order B-spline elements. As a result, we
demonstrated that the cubic B-spline element is good for balancing the achieved
accuracy and the computational cost with the effective size h = l0/2. The previous
study confirmed the current numerical result accurately. Therefore, the phase-field
approach is promising to analyze crack propagation for the complex behavior of
advanced materials and complicated geometry domain in engineering practice.
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Fig. 7 The distributed
material properties
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Fig. 8 Reaction force versus displacement for various power-law indexes

Fig. 9 The predicted crack
path of the tension plate with
the power-law exponent
parameter n = 1
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Superfluid Core Cooling Influence
in the Braking Index of Young Pulsars

Carlos Frajuca and and Fabio da Silva Bortoli

Abstract A young pulsar is a neutron star that rotates and, as it has a high magnetic
field that provokes emission of electromagnetic radiation on its magnetic poles,
pulsates if the emission direction is aligned with Earth. The frequencies of these
electromagnetic pulses decrease with time. This decrease of frequency is quantified
by a quantity called braking index which symbol is n. There is a canonical model to
describe this process, in this model considers the pulsar magnetic a rotating dipole.
In this case n is equal to 3 in theory. In general observational data from pulsars
shows that the braking index is always lower than 3. This work sets a new piece
for this model, based on a small modification from the canonical one. This model
incorporates the influence of the cooling of the neutron star superfluid core as its
density increases as the pulsar cools down. This happens because of the increasing
of superfluid core density, causing the star to decrease its size as the temperature
also decreases, changing the inertia moment of the neutron star to a lower value
furthermore causing the rotation to accelerate or to decrease less. The result shows
that the influence of this process is important only when the star is very young.

Keywords Superfluid core · Pulsars · Braking index · Transient cooling

1 Introduction

Graviton Group is a research group in Brazil which studies gravity, the work is
mainly done in Gravitational Waves (GWs) related topics. As a neutron star is a
natural candidate for GW sources, the Graviton group also studies this kind of star.

Gravitational waves were finally detected after a long set of trials planned in 2010
[1] but started many years before. Finally the first detection was made in 2015 [2,
3]. Before that, gravitational waves emission reached very significant evidence with
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the decrease of orbit period of the binary pulsar PSR B1913+ 16, which is a binary
pulsar system. This was the first binary system ever discovered and, its orbital period
is decreasing in function of time, there were calculations that this decrease is due to
the emission of GWs [4]. The earliest experiments for GW detection happened in the
early sixty decade [5] with the detectors that are called resonant mass GW detectors
[6–9], but were not successful because they operated in the wrong frequency range
domain.

The Graviton group efforts for the detection of GW are done in a resonant mass
gravitational wave detector called Schenberg. Schenberg detector is a spherical mass
that vibrates as gravitational waves pass through, as it vibrates, six microwave para-
metric sensors on the sphere surface in a half dodecahedron distribution [10, 11]
mechanically amplifies and measures this vibration which is proportional to the GW
strength. The direction of these GWs can be calculated from the output signal of
these 6 sensors.

The microwave parametric sensors are resonant transducers coupled to a
microwave resonant cavitywhich needs a very puremicrowave signal with a very low
phase noise. The efforts of the Brazilian group are presented in [12–27] references.
Many of the articles presented in these references are made using Finite Element
Modeling (FEM) [28, 29].

2 Pulsars

Pulsars are modeled as stars made of neutrons with very high magnetic fields. These
stars form from the explosion and collapse of an original star that exploded as a super-
nova [30]. This star emits electromagnetic radiation due to its very high magnetic
field that accelerates electrons in its magnetic poles, as the star rotates in a different
axis, an observer in a direction that crosses these electromagnetic beams will see a
pulsate electromagnetic signal, this object is called a pulsar. These pulses are emitted
in very regular and well defined intervals, and are used to characterize the pulsar. As
the pulsar rotates it emits electromagnetic waves in the radio band and loses energy
by such emission.

This process can be modelled by a spherical magnetized dipole which rotates its
magnetic field axis misaligned with in relation to the rotation axis, this model is
called canonical because it is the more common one used to model a pulsar.

Observational data show that the pulses frequency of the pulsar is decreasing
in function of time, then the rotation of the star is also decreasing or the stars are
spinning down, according to the canonical model it happens because the star is
losing energy by emission of electromagnetic waves [31]. This decay can be, in
the canonical model, quantified using a dimensionless parameter called: the braking
index, and represented by the letter n, and can bewritten by the product of the angular
rotational velocity of the star by the second derivative in time of the angular rotational
velocity divided by the derivative in time of the angular rotational velocity of the star
squared. In the canonical model n should always be equal to three (3) for all pulsars.
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However, observations of many pulsars show that the real braking index is always
smaller than 3, implying that this canonical model should be modified [32]. In this
work the authors suggest that the cooling process of young neutron stars could make
the braking index smaller than 3.

3 The Neutron Star Cooling Down Process

Neutron stars are created by the remains of a Supernova explosion. Then the original
neutron star is very hot and very dense. The processes of cooling down a neutron
star are the so-called URCA processes.

The Direct “Urca” process (DURCA) is made by direct neutrino-emission, being
the simplest one. It can be described by:

b1 → b2 + l + v∗
1,

b2 + l → b1 + v1,

noting that l is a lepton, b1 and b2 are protons or neutrons and ν*l are antineutrinos
and νl neutrinos of the lepton.

ThemodifiedURCAprocess (MURCA) is a slightmodification from theDURCA
process and works at much lower densities and temperatures, it can also cool down
the neutron star but at a different rate, rates as low as 7 orders of magnitude less
emissivity. It can be described by:

n + N → p + N + l + v∗
1, (1)

p + N + l → n + N + v1 (2)

noting that N is a proton or a neutron (a nucleon), n is a neutron, p is a proton and
v*l is the antineutrino and νl is the neutrino of the correspondent lepton.

As a result, DURCA is the dominant process in the cooling down of neutron star
superfluid cores in young pulsars.

4 The Density of Neutron Star Increases as It Cools Down

The DURCA process happens due to the emission of neutrinos, the temperature of
the pulsar superfluid core decreases and, as a result, its density increases as shown
in Fig. 1 [34]. As the density increases, the radius of the star decreases making
the neutron star smaller. Using the angular momentum conservation the angular
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Fig. 1 Baryon density
versus temperature for
neutron star core density
assuming neutrality in global
and local charge. Source [33]

velocity of the neutron star should increase. That will be the case if there is only it
happening, but the neutron star is also losing angular momentum by the emission of
electromagnetic waves.

The cooling down of the neutron star should make the angular velocity decaying
less pronunciate. Let´s now try to quantify the process.

5 The Superfluid Core Cooling Down

Neutron star superfluid core cooling is a very complex process. In a period from one
hundred to one hundred thousand years, a double logarithmic scale graphic presents
a cooling in a straight line as can be seen on Fig. 2 [35].

6 The Potential for Neutron Matter

The potential of neutron matter in the neutron star superfluid core can be approx-
imated to the potential of a neutron inside a nucleus. This potential is shown in
Fig. 3, where a straight line tangent to the curve in the potential energy equal to zero
is plotted, this line represents a temperature of 109 K, which represents a thermal
energy for the neutron of around 0.1 MeV. This slope of such a line in that position is
about 0.001 fm/MeV. The question now is what happens to the curve if the temper-
ature decays to 108? The potential will shift to the left multiplying the change in
energy by the slope of the line. Then the neutrons will dislocate closer to one another
by 0.0001 fm.
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Fig. 2 The circulated region on the T∞ curve shows the period where the star cools down as a
straight line. This also shows an expression for temperature in funcion of time for the period between
100 and 100,000 years when the dominant process is the DURCA. Source [34]

Fig. 3 The neutron potential
is plotted versus the distance
from another neutron inside
the neutron matter
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7 Conclusions

As the distance between neutrons in the neutron matter decreases due to decrease in
temperature, the neutrons will dislocate closer to one another by a part in 10,000.
Neutron star has a radius of the order of 10,000 m, then the pulsar star will decrease
its size by about one meter in diameter as the age of the star changes from 100 to
100,000 years.

This results corroborates that young pulsars shrink as they cool down, making the
pulsars to have a braking index lower than 3 as the star decelerates less than without
the cooling. Nevertheless the result presented here represents a very small variation
to be measured in real pulsars, as this decrease in temperature and size occurs in a
very long time.
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Simulation of a 2D Large Transformation
Elastoplasticity Problem Using the ANM

Chafik El Kihal, Omar Askour, Youssef Belaasilia, Abdellah Hamdaoui,
Bouazza Braikat, Noureddine Damil, and Michel Potier-Ferry

Abstract In this paper, a high-order algorithm, based on the Asymptotic Numeri-
cal Method (ANM) is proposed, for the numerical solution of large-transformation
elastoplasticity problems in a 2D case. The ANM algorithm combines three tech-
niques: a Taylor series representation, a discretization technique and a continuation
procedure. In order to use the Taylor series representation, we show in particular how
to regularize the behavior law in the case of large elastoplastic transformations. The
objective is to define a behavior law that takes into account the two unilateral condi-
tions: the elastic-plastic transition and the elastic discharge. In this framework, the
2D problem is formulated using the Lagrangian formulation and discretized using
the Finite Element Method (FEM). A comparison between the results obtained by
the proposed approach and those obtained by the Abaqus code is presented. This
comparison has shown that the proposed modeling is efficient to solve this type of
problem.

Keywords Asymptotic Numerical Method (ANM) · Plasticity · Finite
deformations · Regularization · Finite Element Method (FEM)

1 Introduction

In this work, we extend, as in [1], the algorithm based on the ANM developed for the
resolution of the elasto-plastic structures problems in small deformations [1–3], to
the resolution of elasto-plastic problems in finite transformation and we discuss the
influence of the path parameter by introducing new parametrization. We also discuss
the influence of the regularization parameters. The ANM, is an alternative to the
classical methods to solve nonlinear problems [4, 5], it is based on the representation
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of the solution “branch” by “branch” [6]. Each “branch” is represented by using
Taylor series with respect to a path parameter. The ANM has been applied with
success to solve several problems in non-linear elasticity, in fluid mechanics and
in bifurcation problems [6]. Thanks to the regularization technique, it is possible to
solvewithANMstrongly nonlinear problemswith unilateral conditions encountered,
for example, in plasticity or in contact problems [6]. The plastic behavior induces
two unilateral conditions relating to the passage from the elastic state to the plastic
state and vice versa (discharge). To take these two conditions into account in finite
elasto-plasticity, we introduce as in the case of small deformation [2, 3] and in large
deformation [1], two regularization functions into the behavior equations involving
both the stress and its derivative. These regularizations allow us to apply the Taylor
series representation, and after the finite element method and a continuation method
to acquire the entire solution “branch” by “branch”. The formalism remains general
and applicable to any type of structures. Applications on elasto-plastic structures
are presented in the context of two-dimensional finite elements in plane stress. The
results obtained by the proposed approach are satisfactory in comparison with those
of Abaqus [7]. We will discuss on the numerical example the choice of the different
regularization parameters introduced to replace the initial problem into a regularized
one. We will also discuss the influence of a new parameterization.

2 Formulation of the Regularized Problem in Large
Deformation

We consider an elastoplastic solid occupying a domainΩ0 and subjected to a loading
C (t) {Fext } on the boundary ∂Ω0; where {Fext } is a given vector and C(t) is a time-
dependent load parameter. The equilibrium in the Lagrange configuration is written
in the matrix form:

∫
Ω0

〈δL 〉t [A( f )] {τ }dΩ0 = C(t)
∫

∂Ω0

〈δv}〉 {Fext }dS0 (1)

where {τ } is the Kirchhoff stress tensor, {L} is the velocity gradient vector with
respect to the Lagrange variable X , f is the inverse of the deformation gradient
tensor F , and v is the velocity vector. Where [A( f )] is the matrix representation of
gradient deformation inverse in the 2D case. We use the hypotheses of the additive
decomposition of the total strain rate {D}, into two parts, a plastic strain {Dp} and
an elastic strain {De}: {D} = {Dp} + {De}. The elastic behavior law part, can be
derived from the stress and elastic strain rate vectors relation in the following matrix
form: {

τ J
} = [

Celas
] ({D} − {

Dp
})

(2)

where
{
τ J

}
is the Jaumann stress tensor,

[
Celas

]
is the matrix representing of the

fourth order tensor of elastic constants. The Jaumann stress tensor is used to fulfill
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the objectivity of the behavior law and it can be express as the difference between
the Kirchhoff stress tensor and the rotations associated to the structure movement
that are represented by the non-symmetric part of the velocity gradient tensor. The
plastic behavior part is given by the normality condition:

{
Dp

} = λ̇

{
∂ fy
∂τ

}
= λ̇ {n} (3)

where λ̇ is the time derivative of the plastic multiplier, {n} is the flow direction vector
and fy is the yield function:

fy = q−τe
τe

; τe = τy + hεp; εp = ∫ √
3
2D

p : Dpdt = ∫
λ̇; q2 = 3

2τ
d : τ d (4)

where q is the equivalent stress, τe is the effective stress, τy is the yield stress, h is
the plastic modulus, εp is the equivalent plastic strain and τ d is the deviator of the
Kirchhoff stress tensor. In this case, the normal vector {n} is given by 3

2 . To express the
plastic strain rate, one must take into consideration the unilateral condition between
the plastic multiplier and the yield function, which can be reformulated in the form
of the Kuhn–Tucker’s condition:

λ̇ ≥ 0, fy ≤ 0, λ̇ fy = 0 (5)

By combining these equations. We get:

λ̇ = g( fy)〈n : D〉 (6)

The non-analytical functions g( fy) and 〈.〉 are expressed as:

{
g

(
fy

) = 0 i f fy < 0

g
(
fy = 0

) = 2μ
2μ+h

{ 〈n : D〉 = 0 i f n : D < 0

〈n : D〉 = n : D else
(7)

μ is the shear modulus. The non-regular character of the elasto-plastic law in finite
transformation is due to the fact that the two functions g(.) and 〈.〉 in (6) are not
analytical. In order to use a Taylor representation in the ANM, the equations in (7)
have to be regularized. Following the same idea as in [1–3], we replace the Eq. (7)
by the following equation:

λ̇ = G
(
fy

)
H(D) (8)

The function G regularizes the elastic-plastic transition and the function H regu-
larizes the elastic discharge:

G( fy) = η3
f 2y
2μ τe+η3(

3
2 + h

2μ (1+ fy))
; H (H − ξ) = η2

2 τ̇
2
c ; ξ = n : D (9)



188 C. El Kihal et al.

We have introduced two small given regularization parameters η2 and η3 and a typical
given value of the strain rate τ̇ 2

c . The von-Mises equivalent stress has also to be
regularized: q2 = 3

2τ
d : τ d + τ 2

y η1; where η1 is a small regularization parameter.
As a means to assess the capability of the proposed approach in a standard process
(elastic, plastic, elastic unloading), we impose a time-dependent load parameterC(t)
given by the following relation:

(
C − Cm

t

Tm

)(
C − Cm

(
2 − t

Tm

))
= η2

4C
2
m (10)

where Cm and Tm are given parameters and η4 is a fourth non-dimensional regular-
ization parameter in the problem. In order to clarify the computation of the use of
the ANM algorithm, we introduce the following quadratic equations:

F̂ = f 2y , Den = F̂
2μτe + η3

(
3
2 + h

2μ

(
1 + fy

))
, GDen = η3 (11)

This regularized problem of elastoplasticity in finite transformation can bewritten
in the following compact form:

R (U (t) ,C (t)) = 0 (12)

where R is the residual vector, U (t) is the unknown vector which has the following
components: (v, τ , τ j , D, Dp,G, H,ω, f, F, L , l, R, q, n, ξ, Den, fy, F̂, τe, λ̇)

and C(t) is a time-dependent scalar loading parameter.

3 Resolution Strategy Using the ANM

In the ANM, the unknown U and the loading C are represented in the form of a
truncated power series truncated at an order N as follow:

{
U (a) = U j + ∑N

i=1 a
kUk

C (a) = C j + ∑N
i=1 a

kCk
a ∈ [0, aamx ] (13)

where (U j ,C j ) is a known and given regular solution corresponding to amax is an
approximation of the validity range of the representation (13). In this paper, we
propose to use a new parameterization equation in the form:

a = α1
(
t − t j

)
t1 + α2

(
C − C j

)
C1 + α3

(
u − u j

)
u1 (14)

In (14), t and C are respectively the time and the load and u represents the displace-
ment which can be related to the velocity as follow:
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v = du

dt
, v = du

dt
= du

da
× da

dt
(15)

The coefficients αi , f or i = 1, 3 are equals to 0 or 1. In this paper, we shall discuss
the influence of the choice of these parameters. By injecting the Taylor series rep-
resentations (13) of the unknown U and the loading parameter C into the nonlinear
problem to be solved (12) we obtain, after term-by-term identification, the linear
problems verified by each term of the series (13):

order 1 :
∫

Ω0

〈δL〉 (
t [A ( f0)] {τ1} + t [A( f1)] {τ0}

)
dΩ0 = C1 (t) {Fext (δv)}

(16)

order k ≥ 2 :
∫
Ω0

〈δL〉 ( t [A ( f0)] {τk} + t [
A ( fk)

] {τ0}
)
dΩ0 = Ck (t) {Fext (δv)} +

{
Pnl
k

}

(17)
with (2 ≤ k ≤ N ), and where {τk} and { fk} are deduced from the series representa-
tion of the behavior law for k = 1 : N :

{τk} = L (vk) + {
τ nl
k

}
(18)

{ fk} = L(vk) + {
f nlk

}
(19)

The terms
{
Pnl
k

}
,
{
τ nl
k

}
,

{
f nlk

}
depend on the previous orders. We use a classical

FEM to solve these linear problems in velocity. The discretized velocity vectors {vk}
at order k are solution of linear problems having the same tangent matrix:

[Kt ] {v0} = C1{Fext } f or k = 1
[Kt ] {vk−1} = Ck{Fext } + {Pnl

k } f or k ≥ 2
(20)

where [Kt ] denotes the classical tangent stiffness matrix,
{
Pnl
k

}
is a vector that

depends on the previous orders.
The whole solution to the nonlinear problem (12) is obtained branch-by-branch

using a continuation path-following method [6]. The evaluation of the solution at the
end of each branch becomes the new starting point of the next branch. The validity
range amax of the parameter a can be estimated by the following relation (ε is a given
tolerance parameter):

amax({U }(i)) =
⎛
⎝ε

‖
{
U (i)

1

}
‖

‖
{
U (i)

N

}
‖

⎞
⎠

( 1
N−1 )

(21)

whereU (i) is a component of the vector {U }. In this work within plasticity, as in [2],
we define the validity range amax as the smaller one corresponding to each component
of the vector U (i):
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amax = in f (amax({U (i)}) (22)

Once amax calculated, the starting solution ({U (i)},C j ) in (19) to the next branch
is evaluated by U j = U ((amax)) and C j = C((amax)).

4 Numerical Application in 2D Case

The numerical application concerns a 2D plate with a circular hole in the middle,
of a length L = 100mm and a width l = 40mm. The mechanical characteristics of
the structure are: the Young modulus E = 200000MPa, the Poisson ratio ν = 0.3,
the initial yield stress τy = 240MPa, and a hardening modulus h = 2000MPa. The
circular hole is of radius r = 7.6mm in the center of the plate. The plate is subjected
to a traction force. The test involves applying a loading C (t) P on the right and the
left edges (see Fig. 1). We reproduce a typical process: elastic, plastic, and elastic
unloading. In (14) we choose the parametersCm = 33 and Tm = 33 for the evolution
of C(t). According to symmetry, we consider only the quarter of the plate. For the
discretization of the structure, we choose four nodes iso-parametric finite elements
for the velocity. The structure is then discretized with 18×18 nodes.

The parameters of regularization have been chosen as: η1 = 10−2, η2 = 10−4,
η3 = 9.10−5 and η4 = 5.10−3. This choice of such parametrization, is the result of
several conducted numerical studies to choose the optimum parameters for obtaining
the convergence of the solution branch with the minimum steps. We haven’t reported
this numerical study in this paper. In Fig. 2, we represent the solution obtained by
the proposed algorithm where we have represented the equivalent von-Mises stress
according to the equivalent plastic strain at the highlighted point (see Fig. 1). This
figure shows that the proposed algorithm is able to reproduce an elastoplastic loading
and unloading process in large deformation. In Fig. 2, we represent the obtained
solution in the case of a truncation order N = 15, a tolerance parameter ε = 10−3 and
a parametrization Eq. (14), defined by the coefficients α1 = 1, α2 = 1 and α3 = 0.
The curves obtained with the proposed algorithm are in good agreement with those
found by the code Abaqus in the three zones: elastic loading, plastic loading and
elastic discharge. The curve obtained by the ANM algorithm has required, in this
case, 125 “branch”, which correspond to 125 inversions of the tangent stiffness
matrix. The same solution by Abaqus has required 98 increment and 128 iterations,
which correspond to 226 tangent stiffness matrix inversions.

In order to discuss the influence of parameterization, we define six strategies
(a combination of time parameter (T), load parameter (C) and displacement (or
velocity) parameter (V) by giving the values 1 and / or 0 to each of the coefficients
αi (i = 1, 2, 3) in the parameterization Eq. (14) in the following form:
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Fig. 1 Tensile test for a 2D holey plate

Fig. 2 Response curve
equivalent stress versus
equivalent plastic strain. The
parameters of the algorithm
are N = 15, ε = 10−3.
Comparison with results of
the industrial code ABAQUS

PT: α1 = 1, α2 = 0, α3 = 0
PCT: α1 = 1, α2 = 1, α3 = 0
PTV: α1 = 1, α2 = 0, α3 = 1
PCV: α1 = 0, α2 = 1, α3 = 1
PV: α1 = 0, α2 = 0, α3 = 1
PCTV: α1= 1, α2= 1, α3= 1

with the notations: PT: Parameterization based on the time; PCT: Parameterization
based on load parameter and time; PTV: Parameterization based on time and displace-
ment Velocity); PCV: Parameterization based on load and displacement (Velocity);
PV: Parameterization based on displacement (Velocity); PCTV: Parameterization
based on load parameter, time and displacement (Velocity).

From Table1, it can be observed that for this large deformation elasto-plasticity
problem, and for each parametrization that by increasing the truncation order the
number of branches needed to draw the whole curve in Fig. 2 decreases as has been
classically observed in previous work of ANM. For all these tests, we can notice that
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Table 1 Influence of the truncation order N= 10, N= 15, N= 20, N= 30 and the parametrization
parameters on the number of ANM steps. Comparison with Abaqus

Order 10 Order 15 Order 20 Order 30

PT 165 126 112 104

PCT 166 125 111 103

PCTV 188 140 124 113

PTV 239 141 129 114

PCV 192 142 128 115

PV 191 187 171 168

Abaqus 226

the number of inverted matrices in the proposed algorithm and for all the parame-
terizations used, is always lower than the number of inverted matrices in Abaqus.
We can also observe from these numerical tests that the first two parameterizations,
the parameterization based on the time (PT) and the parameterization based on load
parameter and time (PCT) use the least number of matrix inversions, almost half
compared to Abaqus for order 20. The number of matrix inversions increases when
using a velocity-based parameterization.

5 Conclusion

In this work we proposed an algorithm based on the Asymptotic Numerical Method
ANM to solve elasto-plastic problems in finite transformations. In the framework of
the ANM, the elasto-plastic behavior law has to be replaced by regular ones in order
to represent the solution in the form of a Taylor series. A study of the influence of the
parameterization has been done numerically. The comparison between the results
obtained by the proposed algorithm and those obtained by the Abaqus code showed
that this numerical modeling is effective for solving elasto-plastic problems in finite
transformations.
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Modeling the Interface Between User
Skin and Wearable Equipment, a Case
Study

M. Filomena Teodoro

Abstract For an adequate building of wearable equipment, it is determinant to
consider comfort issues. The estimation of the contact between equipment and skin
is an important process to guarantee comfort. To estimate the contact, an approach
using nonlinear regressionwas used to get empiricalmodels. Eighty participantswere
subjected to compression and decompression tests, applying different indenters in
each participant. All collected data contributed to estimate empirical models.

Keywords Wearable equipment · Compression test · Soft tissue deformation ·
Comfort · Nonlinear estimation · Statistical modeling · ANOVA

1 Introduction

Rehabilitation equipment has a high rate of rejection/discontinuation of use (greater
than 30% [1]). A solution to overcome this problem is the use of simulation of the
contact between skin and equipment to develop rehabilitation equipments suitable for
the intended function, but which also take into account the comfort of the user [2]. For
this it is essential that the contact between the user and the equipment be quantified.
However, in order to numerically simulate the contact between equipment and the
skin, it is necessary to have equations that satisfactorily can reproduce themechanical
behavior of the skin, as well as the need to know the limits of load application for the
user’s safety and comfort [3]. Taking into account the variability of the mechanical
behavior of the skin, it is desirable that the determination of the coefficients of
those equations and the load application limits be based on experimental results.
The mechanical behavior of the skin depends on the place where the contact occurs,
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the gender and age of the individual, among other factors, as well as the used test
parameters. So, depending on somany factors, it is difficult to obtain such coefficients
and limits [4, 5].

The purpose of the study is to determine whether the mechanical behavior of
the skin can be modeled by performing a nonlinear regression [6] of experimental
data, if the results are consistent for a group of individuals and also to verify if, for
this group of participants, the load limits for safety and comfort remain stable. The
data was collected using compression and decompression tests in each participant,
applying distinct indenter diameters. To simulate the contact, empirical models were
developed using nonlinear fitting.

This article is divided in seven sections. An introduction starts the manuscript;
in Sect. 2 are presented some motivations and references; follows Sect. 3 with a
brief description of the used methodology; in Sect. 4 is performed the empirical
application; in Sects. 5 and 6 are detailed the results and is done the discussion; by
last the article ends with the conclusions.

2 Preliminaries

The aim for this research is as follows: discomfort is one of themain reasons for stop-
ping the use of rehabilitation devices. Pressure forces arising at the interface between
the person and the device causes discomfort. Mathematical models are required to
simulate skin-to-wear contact such an orthosis [4]. Considering the motivation, the
proper development of wearable equipment implies to take into account the comfort,
simulating skin contact with the equipment. Empirical models developed by nonlin-
ear fitting, described in Sects. 5 and 6, are a convenient tool for assessing comfort.
A sample of 80 young people was selected. Data were collected by compression
and decompression tests, taking into account the application of different indenter
diameters in each participant.

3 Methodology

3.1 Analysis of Variance

3.1.1 Experimental Design One Factor

The purpose of these methods is to compare k treatments (k ≥ 2) [7, 8]. Imagine a
random selection of k groups of individuals, each with size ni , i = 1, . . . , k. Each
group i supported the treatment i, i = 1, . . . , k. If each group has the same size,
the design is considered as balanced. If only two independent random samples are
studied (k = 2), t-tests are useful to compare the means of each group. The t-tests
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are adequate to compare two independent samples, but when there exist k > 2 inde-
pendent samples, it is usual to use the analysis of variance technique. The data of k
samples is usually written as yi j , with Y the value of the variable under study, for
individual j in sample i , j = 1, . . . , ni , i = 1, . . . , k. To compare simultaneously
the means of k groups it is usual to compare simultaneously all groups, for example
the parametric methods Scheffé [9] or Tukey are the most used. For a nonparametric
approach we can use Jonckheere–Terpstra test [10, 11] or even Kruskal Wallis test
[12, 13]. In [14] the author describes a wide number of nonparametric techniques.

3.1.2 Theoretical Model

Formal inference to compare means of different treatments implies the definition of
probabilistic models. It is supposed that the variable under study Yi associated to the
i th treatment is Gaussian with mean μi and variance σ 2. If Yi j is a random variable
(rv) associated to the observed value yi j the probabilistic model is given by (1)

Yi j = μi + εi j , ( j = 1, . . . , ni, i = 1, . . . , k), (1)

with εi j rv’s independents and Gaussian

εi j ∩ N (0, σ 2). (2)

The model can be rewritten as (3)

Yi j = μ + αi + εi j , (i = 1, . . . , k, j = 1, . . . , ni ). (3)

We are able to obtain confidence intervals at (1 − α) × 100% for each μi . Since
μ̂i = yi and from (1) and (2) we can conclude

yi ∩ N (μi , σ
2) (4)

following
yi − μi

σ/
√
ni

∩ N (0, 1) (5)

or, if σ is unknown,
yi − μi

S/
√
ni

∩ t[N−k]. (6)

The confidence intervals (CI) considering a confidence level (1 − α) × 100% for
each μi are given by (7)

yi − t[N−k;1−α/2]
s√
ni

≤ μi ≤ yi + t[N−k;1−α/2]
s√
ni

. (7)
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To investigate whether the treatments have identical means or not can be tested
the the hypothesis (8) using as statistical test the formula (6)

H0 : μ1 = · · · = μk versus H1 : some μi are not equal. (8)

A rejection of H0 means that there is experiential evidence that treatments differ
from each other. In terms of the effect of treatment αi , the above hypothesis can be
described as

H0 : α1 = · · · = αk = 0 versus H1 : some αi are not null. (9)

To perform the test defined by (9) it is necessary to calculate the total variability of
μ̂i = yi around μ̂ = y given by the sum of squares of treatment deviations (10)

SST RE AT =
k

∑

i=1

ni
(

yi − y
)2

. (10)

A large SST RE AT suggests that the treatments are distinct. It is necessary to take
its average value, dividing by the degrees of freedom (11)

MST RE AT =
∑k

i=1 ni
(

yi − y
)2

k − 1
(11)

and compare with the variability of each observation within the sample, i.e., with the
mean sum of squared errors defined as (12)

MSE = s2 =
∑k

i=1

∑ni
j=1

(

yi j − yi
)2

N − k
= SSE

N − k
. (12)

The F test statistic associated to test hypothesis (9) is given by (14)

F = average sum of squares due to treatments

mean sum of squares of residuals
(13)

= MST RE AT

MSE
∩ F(k − 1, n − k). (14)

The critical region of test (9), for significance level α is given by (15)

F|H0 > F(k−1,n−k,1−α). (15)

The total variability SST (16) is measured by the squared mean of the deviations
of each observation from the overall mean
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SST =
k

∑

i=1

ni
∑

j=1

(

yi j − y
)2

(16)

and can be decomposed by the sum of two terms: the inter-group variability given
by SST RE AT and a variability within each group SSE , given by (17)

SST = SST RE AT + SSE . (17)

4 Empirical Application

4.1 The Individuals

In order to achieve the proposed objectives, indentation tests were performed at a
specific point on the leg considering eighty healthy individuals, aged between 20 and
28 years, 40 women and 40 men. Some details can be found in Table1.

4.2 Experimental Methods

Forces perpendicular to the lower limb surface are applied at a velocity of 1mm/s
[2] until unbearable pain1 is perceived by the participant (see Fig. 1).

There are considered different spherical stainless steel indenters. They were
applied by increasing order of diameters: (see Fig. 2). The tests are performed with
each indenter considering increasing diameters for each location (5, 10, 15 and
20mm). Maximum force and deformation are measured in a specific location (see
Fig. 3), corresponding to a particular point of contact between lower limb and orthosis
AFO.

Table 1 Sample mean and sample standard deviation of mass and height for each group of partic-
ipants (Males and Females)

1 Perception of Pain: “Unpleasant emotional and sensory experience associatedwith tissue damage”
[15].
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Fig. 1 Forces perpendicular
to the lower limb surface are
applied at a velocity of
1mm/s until unbearable pain
is perceived by the
participant

Fig. 2 Different spherical
stainless steel indenters: 5,
10, 15 and 20mm of
diameter

The force is measured by the soft tissues test equipment with a force transducer
(0−250N) placed in the indenter; a potentiometer transducer (0−50mm) registers
the deformation (see Fig. 4, on left).

The results are collected at a sampling frequency of 40Hz. The indenter is posi-
tioned perpendicularly to the anatomic test point, approaching the skin and starting
the indentation at a constant speed. When the individual feels the maximum pain
limit, a controller acts and the indenter turns to its initial position, at the same speed.
In Fig. 4 (on right) we illustrate a test applied to a participant (22 years old, female
with a BMI of 22.8) with the leg supported during the tests, specifically the left
anterior part of the leg.
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Fig. 3 Participant test point

Fig. 4 Test Equipment (on left). Example how a test is applied. The leg is supported (on right)

Each test consisted by the compression of the test point until the individual felt the
maximum pain, allowing to register the maximum force FMax and the deformation
values δ. During the test, each individual verbalized the onset of pain, allowing to
obtain deformation and strength for the pain threshold. Each participant performed
five tests. A compression-decompression curve was obtained for each test (Fig. 5).
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Fig. 5 Representation of
typical compression and
decompression curves

Notice that Fig. 5 presents two separate parts: the compression curve (top) and decom-
pression curve (bottom).

5 Results

As expected, the maximum forces increased as the indenter diameter increased.
Results may be affected by previous local skin damage. We can confirm this fact
observing Fig. 6. The damage is evidenced when the indenter diameter is 20mm.

The test described in expression (8) was performed. Using formula (15) we
obtained a significant test (p − value < 0.005). There is statistical evidence that
the maximum force is strongly related on diameter of indenter. Also were compared

Fig. 6 Box-plot diagrams
for the maximum force per
indenter diameter. Diameter:
5, 10, 15 and 20mm
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Fig. 7 Force—deformation models using Cubic Polynomial Regression (left) and exponential
regression (right). Indenter diameter = 10mm. In red—estimated values, in blue—observed values

the results obtained per each pair of two distinct diameters. (à priori t-test and à
posteriori Scheffé simultaneous Confidence Intervals). When we consider the larger
diameter (20mm) the data is clearly distinct from the other cases. The maximum
force is different when compared with the remaining cases (p − value < 0.0001).
It is compatible with with the existence of damage when the indenter diameter is
20mm.

Tomodel the force versus deformation, an approach considering nonlinear regres-
sion was performed. Several models were obtained applying the logarithmic, the
exponential, the polinomial and the power regression. Considering the behavior of
the force versus deformation curve, only the regression with adjustment of the expo-
nential function, y = aebx and the regression with adjustment of the polynomial
function, in particular when y = axb, are advisable, the determination coefficient
R2 is above 0.90. Variables x and y are commonly named explanatory (or indepen-
dent) and explained (or dependent) variables, respectively. These two approaches
were applied to all the cases: the models that relate applied force and skin defor-
mation were estimated considering the four distinct diameters for the stainless steel
indenters.

As example of our actual work, the cases when diameters 10 and 20mm are
illustrated. In Fig. 7 we present the application of cubic polynomial regression (on
left) and exponential (on right) when diameter is 10mm.

When is considered the case diameter= 10mm, the exponential regression model
is less robust. The model has a lower capacity of explanation. The best model is
obtained by a cubic polynomial model, with a higher determination coefficient (rel-
atively to exponential fitting) and in accordance with [16].

When diameter = 20mm, both approaches are similar, with a good capacity of
explanation (Fig. 8).

Table2 shows the results obtained for the exponential regression, y = aebx . The
the coefficient of determination, R2, is very close to 1 (R2 = 0.9176). In particular,
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Fig. 8 Force—deformation models using Cubic Polynomial Regression (left) and exponential
regression (right). Indenter diameter = 20mm. In red—estimated values, in blue—observed values

Table 2 Estimates of the model coefficients using nonlinear regression. Exponential regression
case, diameter = 20mm

the estimate of parameter b indicates the relative variation �y/y of the variable y
(force), when the variable x (deformation) varies by one absolute unit (�x = 1mm).

Instead a polynomial of third order, we considered a monomial of third order
y = ax3 as the author of [16]. To confirm the third order of themonomial, itwas used a
power function y = axb, expecting that the estimate of parameter b be close to three.
The coefficients estimates are shown in Table3. The coefficient of determination,
is close to 1, R2 = 0.9792, greater than the R2 from exponential fitting case (see
Table2). This fact indicates that the power function is a better model of regression.
The estimate of parameter b is close to 3, the estimated model is close to a monomial
of third degree, confirming the author of [16]. Also, we notice that the estimate of
b represents the relative variation �y

y of the variable y (force) when the variable x

(deformation) varies by one relative unit (�x
x = 1).

All described models were validated and residual analysis was successfully com-
pleted.

Force and displacement values were recorded for pain threshold and maximum
supported pain. The maximum load limit to apply will always be the maximum pain,
which would indicate danger of injury. The pain threshold will be the recommended
loading for the equipment to be comfortable. These data was statistically treated in
two different groups, male and female. The results will be published in a future paper,
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Table 3 Estimates of the model coefficients using nonlinear regression. Power regression case,
diameter = 20mm

detailing the results, but, shortly, we can illustrate that both the maximum strength
and the strength at the pain threshold are, in general, higher in the male group and
also present a higher dispersion. The 1st and 3rd quartiles are also higher in the male
group than in the female group. However, the ratio between applied force at the pain
threshold (maximum pain) has a smaller dispersion for the male group.

6 Discussion

In rehabilitation equipment projects, it is important to simulate the contact between
them and the user. For this it is necessary to know equations representing themechan-
ical behavior of the skin and the load application limits in order to guarantee the user’s
safety. Indentation tests were performed at a specific point on the leg in eighty healthy
individuals, 40 women and 40 men. Force and deformation were recorded in each
test, namely the pair of values for pain threshold and for maximum pain. It appears
that both the exponential regression and the power regression show an adequate fit to
the experimental data, but the exponential regression shows worst approximation to
the experimental data. It is also observed that all pain threshold strength values are
greater than 1N, which makes it possible to use the range of forces greater than 1N
in the used regressions (e.g. logaritmic regression). Different behaviors between gen-
ders were found regarding strength and deformation supported in the pain threshold
and in themaximum pain. Themedian for the male gender for all values is higher, the
force presents a greater dispersion in relation to the female gender; the deformation
presents a smaller dispersion for the female group. The difference found between
genders can be justified bearing in mind that the anatomical location of the point
under test is an area where muscle tone is important. It is also verified that the range
of values for both strength and deformation in the pain threshold are similar for both
groups. This does not happen for maximum pain. Summarizing, we can establish
that:

• The maximum forces increased with the increasing diameters of the indenter,
however results may be affected by previous local skin damage;

• All the curves show similar shapes with good data fitting, even though they corre-
spond to different indenters and different levels of applied load;
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• The results for deformation and forces show some variations. The compression
curve is always above the decompression one;

• The deformation is in conformity with the expected maximum from the literature;
• The force is related with the displacement with models obtained by non linear
estimation;

• For 10 and 20mm diameter indenter cases, are presented cubic polynomial models
(approximately) and exponential models;

• These non-linearmodels were the best adjustment to the data. Validation ofmodels
and residual analysis were successfully completed.

7 Conclusions

In order to verify if it is possible to reproduce the mechanical behavior of the skin
by performing the regression of the experimental data, if the results are consistent
for a group of individuals and to verify if the load application limits in safety and
comfort remain stable for this group of individuals, leg point indentation tests were
performed on 80 participants. The results show that:

• The estimated models, using polynomial fitting are consistent with the literature;
• Power regression shows a good fit to the experimental curves.
• The empirical models, using exponential fitting have in general good performance
for a specific range of indenter diameter;

• At the pain threshold, force and deformation values are in the same range for both
genders.

• The exponential models can also provide a simpler equation with few parameters
to adjust and an easier physical interpretation of the relation between load and
deformation of the tissues.

This work shows that the use of either power regression or exponential regression
is feasible but that their coefficient values can have a significant variation. These
results show the need for continuity of tests, for other test parameters and for other
types of location in order to confirm the results obtained. New models are being
tested with more data using a wide range of individuals and new information about
physical and psychological conditions; As future work, an extended effort is needed
to characterize both the soft tissues properties and the level of tolerance for applied
pressure, deformation and force and hence the ability to design for comfort. Further
tests are needed with a larger sample and more indenter diameters and anatomic
locations.

Acknowledgements This work was supported by Portuguese funds through the Center of Naval
Research (CINAV), Portuguese Naval Academy, Portugal and The Portuguese Foundation for Sci-
ence and Technology (FCT), through the Center for Computational and Stochastic Mathematics
(CEMAT),University ofLisbon, Portugal, projectUID/Multi/04621/2019.The author also acknowl-
edges her colleagues P. Silva and C. Pina by their availability and ideas discussion.



Modeling the Interface Between User Skin and Wearable … 207

References

1. Mann W (2005) Smart technology for aging, disability and independence: the state of the
science. Wiley, New York

2. RodriguesM, et al (2013) Influência da velocidade de penetracão no limiar da dor à compressão.
In: Proceedings of the 5o Congresso Nacional de Biomecânica, Espinho, Portugal

3. Sanders J, Goldstein B, Leotta D (1995) Skin response to mechanical stress: adaptation rather
than breakdown - a literature review. J Rehabil Res Dev 32:214–226

4. Silva P (2011) Computational modelling of a wearable ankle-foot orthosis for locomotion
analysis and comfort evaluation. PhD thesis, Instituto Superior Técnico

5. Silva P, et al (2012) Measuring discomfort: from pressure pain threshold to soft tissues defor-
mation. J Biomech 45(S1 S576)

6. Seber G, Child D, Wild C (2017) Nonlinear regression. Wiley, Blackwell
7. Morgado L, Teodoro F, Perdicoulis T (2010) Métodos Estatísticos em Ciências Biomédicas.

Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila-Real, Portugal
8. Tamhane A, Dunlop D (2001) Statistics and data analysis: from elementary to intermediate.

Prentice Hall, New Jersey
9. Scheffé H (1959) The analysis of variance. Wiley, New York
10. Jonckheere A (1954) A distribution-free k-sample test again ordered alternatives. Biometrika

41:133–145
11. Terpstra T (1952) The asymptotic normality and consistency of kendall’s test against trend,

when ties are present in one ranking. Indagationes Mathematicae 14(3):327–333
12. Bewick V, Cheek L, Ball J (2004) Statistics review 9: analysis of variance. Crit Care 7:451–459
13. Bewick V, Cheek L, Ball J (2004) Statistics review 10: further nonparametric method. Crit

Care 8(3):196–199
14. Sprent P, Smeeton NRE (2001) Applied nonparametric statistical methods. Chapman &

Hall/CRC, London
15. Vitor A, et al (2008) The psychology of pain: a literature review. RECIIS - Electron J Commun

Inf Innov Health 2(1):85–94
16. Pons J (2008) Wearable robots: biomechatronic exoskeletons. Wiley, Blackwell



Reinforcement Learning to Refine FEM
Meshes for Acoustic Problems

Mathieu Gaborit, Gwénaël Gabard, and Olivier Dazel

Abstract Numerical methods are central to modern engineering and the Finite Ele-
ment Method (FEM) specifically is used in a variety of domains and for countless
applications. One of the main challenges of using FEM lies in the choice of param-
eters to generate the mesh. This is particularly the case in acoustics. Indeed, for the
phenomena to be correctly modelled, the mesh parameters must be chosen in con-
cordance with the frequency range of interest. So far, the choices regarding the mesh
are mostly guided by past experience or widely accepted guidelines (for instance
7–10 points per wavelength when using quadratic elements). In this contribution, we
explore the use of reinforcement learning to construct and refine a FEM mesh. This
technique implies that the machine is learning how to complete a given task based
solely on the so-called state of the environment (including a measure of the error
on the result). The key aspect of this research is to challenge the traditional guide-
lines used for acoustic problems by letting a machine explore and converge without
human intervention. The overall strategy will be introduced and demonstrated on
simple problems, the results compared with pre-existing recommendations and the
challenges ahead will be briefly presented.
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1 Introduction

Numerical methods are a cornerstone of modern engineering and the Finite Element
Method (FEM) particularly is employed in many, if not all, fields of engineering
sciences. Its versatility and ease of use make it ideal to obtain both quick estimates
or much refined final results. Hundreds of reports and papers every year reference or
extend FEM, thus contributing to its widespread recognition.

With modern software packages, obtaining a FEM prediction for a given problem
is just a few clicks away. However tuning the parameters to reach a satisfying result
with confidence still requires experience. In the case of acoustic problems, various
published works provide differing recommendations concerning the numbers of ele-
ments per wavelength or the critical features that should be finely meshed in order
to obtain a good approximation of the true solution. These heuristics depend on the
complexity of the domain, on the order and kind of interpolation chosen and on the
physical phenomena to be captured. A number of conditions have to be met for the
model to be accurate and fine-tuning the numerical parameters often relies on trial
and error.

The present contribution is a work in progress aiming to let a computer learn
how to adjust the meshing parameters of a FEM model. To this end, a simple Rein-
forcement Learning (RL, [2]) stack is implemented with a number of FEM-based
environments to be explored by the software. This attempt at using the adaptivity of
RL to infer a refinement strategy for a FEM problem is merely a first step that we
think could help better understand how an observable learning agent refines a FEM
mesh in a reproducible way.

2 Protocol Description

This section briefly describes the test problem and the key aspects of the RL stack.
As a general note, RL is a class of machine learning techniques based on (software)
agents interacting with a given environment in order to obtain a reward [2, 3]. The
training process helps agents refine their decision tomaximise the cumulative reward.
Many types of agents and reward schemes exist and will not be covered in detail here.

2.1 Environment

The environments in RL consist of a context represented by a set of states and a
reward function. In the present application, the context is a simple one-dimensional
FEM problem with two domains. It can be parametrized so that the agent can alter
the mesh refinement. The associated set of states can be represented by a 9-tuple
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Fig. 1 Depiction of the computational domain and its parameters

Table 1 Description of the reward rules

Type Definition Reward

Bounds More than 400 steps
Ni > Nmax, i = 1, 2
Ni < 1, i = 1, 2

−10000

Success ε < 10−4 10000

Step Step −1

containing the immutable set of parameters for each FEM domain, the number of
elements in each domain and the latest relative error.

The FEM problem to be solved, and shown in Fig. 1, consists of a 1D finite space
separated into two fluid domains, each having different parameters. The acoustic
pressure in this domain is governed by the Helmholtz equation and discretized by
linear elements. The left boundary condition induces an incoming plane wave with
a unit pressure. The right boundary is rigid (null pressure gradient). The relative
numerical error ε is computed by comparing the reflection coefficient obtained using
FEM and using a semi-analytical resolution based on Ref. [1] (similar to transfer
matrices).

For clarity, the density, speed of sound and number of elements in the domain i
are denoted by ρi , ci and Ni .

The proposed reward function is simple and described in Table1. Basically, failure
to comply with set bounds concerning the number of elements in each domain or the
maximum number of steps leads to a large negative reward. Success, i.e. the error
dropping below a given threshold, leads to an equally large positive one. In addition
to these rules, each step taken leads to a small negative reward as an incentive for
the agent to solve the problem in a minimum number of steps.

The environment used in this contribution proposes a set of actions of the form:

Ni ← Ni + Δi , (1)

where i = 1, 2 andΔi ∈ {−10,−1, 0, 1, 10}. The left arrow denotes the assignation
of a new value (right-hand side) to the symbol on the left-hand side. Depending on
the current state, only legal actions are proposed to the agent at each step, i.e. actions
that break none of the constraints on Ni exposed in Table1.
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2.2 Agents

The RL agents used in the present contribution are based on q-learning which relies
on querying and updating a table Q matching possible (state, action) pairs to their
expected reward. At each step, the agent receives the current state of the environ-
ment and a list of possible actions. It picks an action following a so-called ε-greedy
policy [3]: {

optimal action, if x < ε
random action, otherwise

, (2)

with x a realisation of a uniform random variable on [0, 1] and ε is a hyperparameter
controlling the trade-off between exploration and exploitation of the existing knowl-
edge. The optimal action is defined as the one that maximises the expected return,
i.e. the overall reward.

The agent have a number of hyperparameters standard for q-learning: the explo-
ration/exploitation trade-off parameter ε, the learning rate α that controls how fast
the agent corrects the errors and the discount rate γ that controls how the previously
earned rewards are discounted at each step. The tuning of these hyperparameters is
a subject in itself and described in the literature relevant to RL [2]. For the record,
all the results proposed hereafter are generated using

ε = 0.6, α = 0.4, γ = 0.98 . (3)

2.3 Training and Success Assessment

The training and validation process are based on solving many of these two-domain
problems. First, we define a target application range and bounds for the parameters
(frequency f and domain variables ρi and ci ):

15 ≤ f ≤ 1000,
L = L1 + L2 = 1, 0.4L ≤ L1 ≤ 0.6L ,

ρ1 = 1.2, 0.5ρ1 ≤ ρ2 ≤ 2ρ1,
c1 = 343, 0.5c1 ≤ c2 ≤ 2c1.

(4)

Sets of parameters are then drawn in these ranges usingLatinHypercubeSampling
to ensure optimal coverage of the ranges. The training dataset consists of Ntrain =
270 examples and the test set of Ntest = 30 cases. The training is performed for
a number of epochs as presented in Algorithm1 which leads to matrices E and T
containing the final error and number of required steps for each test examples at each
epoch.
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Algorithm 1: Training process
Result: the errors E and number of steps T on the test set
populate Q with 0 for all (state,action) pair;
initialize matrices T and E of size Nepochs × Ntest ;
for each epoch in 1 . . . Nepoch do

for each training case do
initialise environment with the case’s parameters;
initialize agent with local Qa = Q;
t ← 0;
ε ← 1;
while ε > 10−4 and t ≤ 400 do

t ← t + 1;
state, ε ← agent interacts with environment;
update Qa ;

end
Q ← Qa ;

end
for each test case do

initialise environment with the case’s parameters;
initialize agent with local Qa = Q;
t ← 0;
ε ← 1;
while ε > 10−4 and t ≤ 400 do

t ← t + 1;
state, ε ← agent interacts with environment;
update Qa ;

end
E(epoch, case) ← ε;
T (epoch, case) ← t ;

end
end

3 Results

Figure2 presents the evolution of the mean relative error on the training and test
datasets with respect to the epoch. In Fig. 2, it is clear that the mean numerical
error is decreasing as the epochs pass, both on the training datasets and on the test
dataset. More interestingly, one can note in Fig. 3 that the number of steps required
to solve the test problems decrease with the epochs. This is a sign that the system as a
whole is learning how to solve the refinement problem better by looking at previous
examples. Overall, the reward obtained by the agents one the test datasets increases
as the training goes (see Fig. 4).
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Fig. 2 Evolution of themean errorwith respect to the training epoch on the training and test datasets

Fig. 3 Evolution of the number of steps require to solve the test problems with respect to the
training epoch

4 Perspectives

In this contribution we present the first steps taken to implement a RL solution
to a mesh refinement task for an acoustic problem. The current setup is simplistic
and work is under way to extend the approach to 2D domains and more complex
problems. Overall, our objective is less to improve the refinement task itself than to
investigate how the agents approach the problem and tune the parameters.
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Fig. 4 Mean reward obtained by the agents with respect to the epoch

Different extensions regarding the agent behaviour or the environment can be
considered and among them, we intend to replace the continuous state-space mostly
controlled by the error by a discrete one. This will allow to reduce the number of
states to be stored in Q and overall help transfer training between different cases.
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