
Enhanced Quality of Service
(EQoS)-Enabled Load Balancing
Approach for Cloud Environment

Minakshi Sharma, Rajneesh Kumar, and Anurag Jain

Abstract Cloud computing uses the “pay as you go model” to provide on-demand
services to its users especially data storage, computing power, network, and others.
These services are provided to users without their direct active participation in
managing resources. Cloud computing relies upon resource sharing to acquire coher-
ence and economies of scale. Task scheduling in such an environment is used for the
task execution on a suitable resource by considering some parameters and constraints
to achieve performance. During high demand for these virtualized resources, effi-
cient task scheduling achieves the desired performance criteria by balancing the
load in the system. This paper presents a balancing mechanism by practicing task
scheduling to increase performance in the cloud environment. It perceives various
load balancing approaches based on task scheduling and concludes that their opti-
mization goals are multi-objective. The presented mechanism is an extension of
the previous proposed work QoS-enabled JMLQ [1]. This proposed approach has
been tested in the CloudSim simulator, and results show that the proposed approach
achieves better results in comparison with QoS-enabled JMLQ and its other variants
in the cloud environment.

Keywords Cloud computing · Load balancing · JMLQ · CloudSim · Task
scheduling

M. Sharma (B) · R. Kumar
Department of Computer Science and Engineering, MMEC, Maharishi Markandeshwar Deemed
to be University, Mullana, Ambala, Haryana 134002, India

R. Kumar
e-mail: drrajneeshgujral@mmumullana.org

A. Jain
School of Computer Science, Univesity of Petroleum and Energy Studies, Dehradun, Uttarakhand
248007, India
e-mail: anurag.jain@ddn.upes.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
N. Marriwala et al. (eds.), Emergent Converging Technologies and Biomedical Systems,
Lecture Notes in Electrical Engineering 841,
https://doi.org/10.1007/978-981-16-8774-7_44

527

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8774-7_44&domain=pdf
mailto:drrajneeshgujral@mmumullana.org
mailto:anurag.jain@ddn.upes.ac.in
https://doi.org/10.1007/978-981-16-8774-7_44


528 M. Sharma et al.

1 Introduction

The advent of various technologies such as distributed computing, utility computing,
autonomic computing, and the unveiling of service-oriented architecture has driven
the growth of cloud computing. It points toward the goal to serve the user at a low
cost without any expertise or deep knowledge of the system. The services provided
by it are software as a service (SaaS), platform as a service (PaaS), and infrastructure
as a service(IaaS).

Scheduling of user requests is an important concept in the cloud environment,
which includes a mechanism that maps a user request to an appropriate resource for
the execution of a task. The performance of the system is directly affected by the
efficiency of a scheduling technique. These algorithms are based on the manage-
ment of physical and virtualized resources in the environment. In this paper, a two-
level load balancing mechanism based on task scheduling has been discussed. The
research work presented here is a load balancing approach that efficiently sched-
ules tasks to virtual resources to increase the quality of service requirements. It is
an incremental approach to our previous proposed work QoS-enabled JMLQ [2, 3].
Enhanced QoS-enabled JMLQ is an improved version of QoS-enabled JMLQ. This
proposed algorithm is an attempt to override the random behavior of the algorithm.

2 Related Work

Scheduling of tasks is an important concept in the field of cloud computing, efficient
scheduling of tasks not only canmeet user requirements but can also improve resource
utilization, response time, and other performance parameters, thereby balancing the
load on the system [4, 5]. Task allocation is the task assigned to an appropriate
resource that suits user requirements while the task scheduling algorithm settles the
execution order of each task to be executed on the server [6, 7]. There are different
task scheduling algorithm exists in the literature that balances the load on the system
and enhances the performance of the system by considering different performance
parameter. The following is the research work studied for task scheduling-based load
balancing in the cloud environment.

In 2011, Yi Lu et al. proposed a load balancing approach JIQ based on the
scheduling of the tasks. The main objective of this proposed approach was to execute
the tasks in minimum response time by avoiding extra communication overheads
during the process of task assignment. It is a two-fold load balancing mechanism
that balances the load for a large system. It uses a data structure, i.e., I-queue that acts
as a communication medium during task assignment to the processor. The first level
of load balancing works for task assignment by probing the I-queues for idle server,
and the load balancing at the second level balances the load by idle processors place-
ment in any random I-queue attached with the dispatchers. The prime consideration
factor was response time for this approach [8].



Enhanced Quality of Service (EQoS)-Enabled Load … 529

In 2013, X. Wu et al. proposed a QoS-driven task scheduling approach in which
tasks were sorted based on the special attribute of tasks to decide precedence among
the tasks. Afterward, the completion time of tasks evaluated on different services and
the task was scheduled for a service according to the sorted queue based onminimum
completion time [9].

In 2015, Babu and Samuel devised a technique to balance the load based on the
foraging nature of honey bees. In their proposed technique the task with the lowest
priority has the higher chances of being migrated from an overwhelmed virtual
machine (VM) to the underwhelm virtual machine. Their algorithm relies on the
priority of tasks in a waiting queue for VM. Simulated results demonstrate that for
tasks that are limited in number makespan reduces, and there is a reduction in the
total number of migrations needed for operation, which shows that the proposed
algorithm has low scalability [10].

In 2016, H.E.D. Ali et al. proposed a grouped task scheduling approach for the
cloud environment based on QoS parameters. The incoming tasks from the user side
were categorized into five groups that depend upon task attributes. The categories
are user type, task type, task length, and task latency. The scheduling was carried out
in two steps. The first step decides the category to be scheduled based on the high
value of the attributes of tasks. The second step was based on tasks within the chosen
category to be scheduled first based on the minimum execution time of the tasks. The
latency of tasks and execution time considered as a performance parameter [11].

In 2017, Ashish Garg et al. proposed a metaheuristic search technique based on
ant colony optimization for solving task scheduling problems. The objective of this
algorithm was to balance the load across the system by optimizing the makespan
performance parameter. The algorithm attains the local optimal solution by using an
ant colony algorithm and at last, a Pareto set of solutions was attained by applying
non-domination sorting [12].

In 2018, Chunpu wang et al. devised a load balancing approach for low latency in
the cloud environment. The scheduler used a technique to dealwith an empty I-queue.
The task is allocated to the minimum loaded server after searching for d servers that
are randomly chosen. Every dispatcher attached to I-queue implements the same
strategy for task allocation when it is met with an empty I-queue. Low latency for
service time is considered as a performance parameter. Moreover to avoid the delay
in performance, a semiclosed-form expressions were also derived [13].

3 System Model for Enhanced QoS-Enabled JMLQ

The system model for “enhanced QoS-enabled JMLQ” comprises a two-fold load
balancing mechanism that consists of n parallel VMs having homogeneous configu-
ration VM (VM0, VM1, VM2,…….., VMn−1) interconnected with some networking
components. These VMs join the I-queues of the dispatchers (D0, D1, D2, ……….,
Dm−1) considered in a fixed ratio to the number of VMs, i.e., r = n/m (here, n is the
number of VMs, m represents an array of dispatchers, and r represents a ratio that is



530 M. Sharma et al.

fixed between n and m). The tasks processed in the system are considered indepen-
dent, and the rate of task arrival is considered general [14] To represent the current
scenario, the G/G/c like queuing model has been considered to represent the large
cloud system as there is high variability in the arrival process and service process of
the tasks [15, 16]. The system model consists of the following units.

Dispatcher: Every dispatcher is responsible for scheduling tasks and acts as an
independent scheduler. Each dispatcher in this proposed approach has its unique id
and a specified limit up to which it can possess the VMs in an I-queue.

I-Queue: This is attached to the dispatcher unit and acts as a communication
medium for allocating tasks. When a VM completes its task, it joins the I-queue.

Task allocation to VMs: The VMs presented in I-queues are responsible for
executing tasks that are removed from I-queues after task allocation. The incoming
task is allocated to the first VM present within the I-queue of the first dispatcher with
ID D0 if it is nonempty otherwise, it probes for the other minimum loaded VM in
adjacent dispatchers I-queue having dispatcher ID in sequence.

VMs allocation to I-queues using d-limit: This proposed approach place an upper
bound on each I-queue set by d-limit. After the task completion, VM is drifted toward
the first dispatcher’s I-queue having ID D0, it joins the I-queue if I-queue length is
less than d-limit otherwise, it probes for the next dispatcher I-queue in a sequential
manner. At a medium load, the I-queues remain well occupied with a large number
of VMs and these VMs are equally distributed among all the I-queues using d-limit.

At high load, the VMs present with in these I-queues are very less, most of the
I-queues remain empty and the probability of getting an empty I-queue is very high.
At this stage, if a VM gets idle, it always joins the first dispatcher I-queue with ID
D0 and the next incoming task allocated to it and task allocation continues for this
I-queue until and unless it gets empty. At high load, the algorithm behaves like a
centralized policy as an idle VM always join the first dispatcher I-queue with ID
D0. This nature of the algorithm helps in a further reduction in response time and to
utilize the resource more efficiently. If all the dispatcher I-queues are empty, then the
task will be allocated to the minimum loaded VM which is chosen among d random
VMs and the algorithm behaves like a randomized algorithm (Table 1).



Enhanced Quality of Service (EQoS)-Enabled Load … 531

Table 1 List of variables used in pseudocode

Variable notation Significance

n The number of available VMs in the system

m Represents the number of dispatchers based on a fixed ratio b/w
VMs and dispatchers

dl Represents dispatcher limit, i.e., maximum number of VMs an
I-queue can possess

D0 Represents a dispatcher with dispatcher ID D0

I-queue Length Represents the length of dispatcher I-queue that consists of a subset
of VMs that are minimum loaded in the system

Waiting task queue length The no. of tasks in the queue waiting to be allocated to VM

d Represents any random number from 1 to the total number of VMs
(n)

F Represents a flag value can be 0 or 1

Disipatcher_ID Represents any dispatcher identity number form 0–999

3.1 Pseudocode for Enhanced Qos-Enabled Join Minimum
Loaded Queue (JMLQ)



532 M. Sharma et al.

4 Experimental Setup and Result

To prove the better optimization effects of performance parameters by prac-
ticing “enhanced QoS-enabled JMLQ,” the authors selected some load balancing
approaches based on task scheduling including the previous versions of the proposed
approach JMLQ and QoS-enabled JMLQ [17, 3]. All these selected approaches have
been tested and analyzed in the simulated environment. CloudSim (version 3.0.3)
has been used for demonstrating the cloud environment. Eclipse IDE is used to



Enhanced Quality of Service (EQoS)-Enabled Load … 533

Table 2 Simulation environment configuration

Configuration Details

Cloudlets of variable length In-between (600,000–800,000)

Number of hosts 2500, each with four processing elements (Pe)

Number of virtual machines (VMs) 10,000

Different sets of cloudlets In-between (60,000 – 260,000)

Storage size for each VM 10,000 MB

RAM for each VM 512 MB

Million instructions per second (MIPS) 1000

Bandwidth 1000

Cloudlet scheduler CloudletSchedulerSpaceShared()

VM scheduler VmSchedulerTimeShared()

develop and implement the algorithm using JDK 1.8. The following table represents
the configuration details used in CloudSim (Table 2).

4.1 Validation of Results for Response Time

Figure 1 represents the comparison of response time for different distributed
approaches versus the proposed approach. This proposed approach average response

Fig. 1 Comparison of the response time for different distributed approaches with the proposed
approach



534 M. Sharma et al.

time is 6.86% less than QoS-enabled JMLQ and JIQ-Pod, 14% less than JMLQ,
15.35% less than JIQ-SQ(d), and 15.53% less than JIQ-Random.

Figure 1 depicts that response time declines with some points as the number of
cloudlets increases for the proposed approach, here, cloudlets represent the number of
tasks. This proposed approach uses the dispatcher ID for joining a VM in an I-queue,
therefore, all the VMs are placed in I-queues in a contiguous form without insertion
of empty I-queues, also, these VMs are equally distributed among the I-queues based
on d-limit. So an incoming task will always get a VM in an I-queue until these are
present in the I-queues. This proposed approach overcomes the random behavior of
the previous variants and eliminates the mapping of the incoming tasks with empty
I-queues until and unless VMs are not present in the I-queues. After, a set of 160,000
cloudlets response time gets stable.

4.2 Validation of Results for Resource Utilization

Figure 2 represents the percentage of resource utilization for different distributed
approaches in comparison with this proposed approach. It depicts from Fig. 2 that
the proposed approach utilizes the resource more efficiently in comparison with its
variants. The percentage of resource utilization is improved over QoS-enabled JMLQ

Fig. 2 Number of cloudlets versus percentage of resource utilization



Enhanced Quality of Service (EQoS)-Enabled Load … 535

by 2.55%, 16.51% better than JMLQ, 13.14% better than JIQ-Pod, 25.03% improved
over JIQ-SQ(d), and 25.88% improved over JIQ-random. It is an important parameter
to achieve an efficient load balancing policy that led to a decrease in cost for services
from the customer side.

4.3 Validation of Results for Average Waiting Time

Todetermine the optimization of performance parameters for this proposed approach,
next, parameter is considered as the average waiting time. The reduction in average
waiting time represents a decrease in the waiting period to serve user requests. It
can be analyzed from Fig. 3 that an increase in average waiting time with respect to
increase in the number of cloudlets is not very significant in comparison with other
distributed approaches. The decrease in waiting time observed 0.7% less than QoS-
enabled JMLQ, 1.68% less than JMLQ, 15.02% less than JIQ-pod, 16.59% improved
over JIQ-SQ(d), and 15.92% less than JIQ-random. These experimental results
prove the efficacy of this proposed approach in comparison with other distributed
approaches.

Fig. 3 Average waiting time versus no. of cloudlets



536 M. Sharma et al.

Fig. 4 Makespan versus a different set of cloudlets

4.4 Validation of Results for the Makespan

The next parameter considered to determine the effectiveness of the proposed
approach on the scale of performance is makespan. Makespan is compared for
the proposed approach for a set of 160,000 cloudlets of variable length in compar-
ison with its variants. It was found a decrease in makespan by 1.04%, 4.56%,
13.74%, 16.55%, 17.47% from QoS-enabled JMLQ, JMLQ, JIQ-pod, JIQ-SQ(d),
JIQ-random approaches respectively. Figure 4 depicts the decrease in the makespan
of this proposed approach in comparison with other variants.

4.5 Statistical Analysis of Cloudlet Distribution

Equal distribution of tasks (cloudlets) among available resources is one of the most
desirable features to achieve load balancing for an algorithm. It increases the stability
of the system so cloudlet distribution among the available resources is one of the
important parameters to determine the efficiency of an algorithm. Statistical analysis
is done to determine the cloudlet distribution. It is based on the standard deviation that
determines the variance of cloudlet distribution of the proposed approach in compar-
ison with other distributed approaches. For the proposed approach, the coefficient of



Enhanced Quality of Service (EQoS)-Enabled Load … 537

Fig. 5 Number of cloudlets versus the variance of cloudlets distribution

variation has a value less than one, which signifies the distribution of cloudlets with
a low variance in comparison with other distributed approaches. Figure 5 represents
the variation of the cloudlet distribution of this proposed approach in comparison
with others.

5 Conclusion and Future Scope

This research work presented here is a load balancing approach based on task
scheduling that efficiently balances the load in a cloud environment by optimizing
the performance parameters. The experimental results have been validated and
analyzed in a simulation environment developed using CloudSim. The objective
of this research work is to achieve multi-dimensional performance parameters. This
proposed algorithm minimizes the response time of user requests by utilizing the
resource more efficiently by balancing the load in the system. As a future scope,
enhanced QoS-enabled JMLQwork can also be extended by developing more hybrid
methods during task allocation at high load to minimize response time by invoking
intelligence during task allocation based on some intelligent information.



538 M. Sharma et al.

References

1. Sharma M, Kumar R, Jain A (2019) A system of quality of service enabled (QoS) join
minimum loaded queue (JMLQ) for cloud computing environment. Patent Application, no.
201911039375, 51328, India

2. Sharma M, Kumar R, Jain A (2020) A proficient approach for load balancing in cloud
computing-join minimum loaded queue: join minimum loaded queue. Int J Infor Syst Model
Des (IJISMD) 11(1):12–36

3. Sharma M, Kumar R, Jain A (2021) A QoS enabled load balancing approach for cloud
computing environment join minimum loaded queue(JMLQ): QoS enabled JMLQ. Int J Grid
High-Perform Comput (IJGHPC) 4(14), Article 5

4. Sharma M, Kumar R, Jain A (2019) Implementation of various load-balancing approaches for
cloud computing using CloudSim. J Comput Theor Nanosci 16(9):3974–3980

5. Sharma M, Kumar R, Jain A (2021) Load balancing in cloud computing environment: a broad
perspective. Intelligent data communication technologies and internet of things. Sringer science
and business media, India

6. Åström E (2016) Task scheduling in distributed systems. Model and prototype
7. Mishra SK, Sahoo B, Parida PP (2020) Load balancing in cloud computing: a big picture. J

King Saud Univ Comput Inform Sci 32(2):149–158
8. Lu Y, Xie Q, Kliot G, Geller A, Larus JR, Greenberg A (2011) Join-Idle-queue: a novel load

balancing algorithm for dynamically scalable web services. Perform Eval 68(11):1056–1071
9. Wu X, Deng M, Zhang R, Zeng B, Zhou S (2013) A task scheduling algorithm based on

QoS-driven in cloud computing. Proc Comput Sci 17:1162–1169
10. Babu KR, Samuel P (2015) Enhanced bee colony algorithm for efficient load balancing and

scheduling in cloud. Innovat Bio-Insp Comput Applic 424:67–78
11. Ali HGEDH, Saroit IA, Kotb AM (2017) Grouped tasks scheduling algorithm based on QoS

in cloud computing network. Egypt Inform J 18(1):11–19
12. Gupta A, Garg R (2017) Load balancing based task scheduling with ACO in cloud computing.

In: Proceedings of international conference on computer and applications IEEE (ICCA), pp
174–179

13. Wang C, Feng C, Cheng J (2018) Distributed Join-the-Idle-Queue for low latency cloud
services. IEEE/ACM Trans Network 26(5):2309–2319

14. Abraham GT, James A, Yaacob N (2015) Group-based Parallel Multi-scheduler for grid
computing. Futur Gener Comput Syst 50:140–153

15. Bramson M, Lu Y, Prabhakar B (2010) Randomized load balancing with general service time
distributions. ACM Sigmet Perform Eval Rev 38(1):275–286

16. Atmaca T, Begin T, Brandwajn A, Castel-Taleb H (2015) Performance evaluation of cloud
computing centers with general arrivals and service. IEEE Trans Parallel Distrib Syst
27(8):2341–2348

17. Sharma M, Kumar R, Jain A (2019) A system of distributed join minimum loaded queue
(JMLQ) for load balancing in cloud environment. Patent Application, no. 201911007589,
pp. 12780, India


	 Enhanced Quality of Service (EQoS)-Enabled Load Balancing Approach for Cloud Environment
	1 Introduction
	2 Related Work
	3 System Model for Enhanced QoS-Enabled JMLQ
	3.1 Pseudocode for Enhanced Qos-Enabled Join Minimum Loaded Queue (JMLQ)

	4 Experimental Setup and Result
	4.1 Validation of Results for Response Time
	4.2 Validation of Results for Resource Utilization
	4.3 Validation of Results for Average Waiting Time
	4.4 Validation of Results for the Makespan
	4.5 Statistical Analysis of Cloudlet Distribution

	5 Conclusion and Future Scope
	References


