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Abstract The task of 3D shape generation for realistic data is an important challenge
that needs to be addressed in the domain of computer vision, robotics, and graphics
which serve as a building block for many real-time applications like autonomous
driving or 3D modeling, etc. Estimating shapes from a few 2D images are funda-
mentally ill-posed as numerous 3D shapes can be explained by a few images. In
the absence of complete information, recently, deep learning has been used to fill in
the gap by leveraging data driven category level priors. In this work, we propose a
novel 3D shape estimation network that uses an image transformer to better encode
the shape features into a latent representation which is later decoded using a multi-
layer perceptron. Our experiments show that image transformers are better than
convolution-based encoders due to their wide attention capability. We perform both
qualitative and quantitative experiments to demonstrate the effect of new architecture
on shape quality and detail.

Keywords Computer vision · Multiview shape · 3D reconstruction · Shape
estimation · Multiview images · Image transformers

1 Introduction

We are particularly interested in the problem of 3D shape estimation, which involves
estimating the complete structure of objects from multiview images of the target.
Many relevant real-world applications need this as prerequisite. 3D shape estimation,
for example, will help autonomous vehicles track objects [1], and robots find out
the best grasping position [2]. Humans can naturally approximate the shapes of
objects using only themost basic information. Human eyes can easily perceive the 3D
structure from the limited, ambiguous, and even occluded 2D details. However, this
task becomes particularly challenging, when this concept is applied to the machines,
due to ambiguity generated from single view images, occluded images, and sparse
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point clouds [3]. It is unfair to expect them to predict a deterministic output from an
uncertain input [4].

The aim of this paper is to create a geometric representation of the underlying 3D
world from a set of images captured fromvarious camera positions.We are estimating
the 3D shape of an object using 2D images taken from (digital) cameras by using
learned data driven priors of other objects.

With the rising popularity of deep learning, several methods have been proposed
to do 3D shape generation from single [5] andmultiple images [6]. At the core of this,
development is the successes in designing convolutional kernels in 2D/3D space that
can learn meaningful features. Frequently, these convolutional neural networks are
designed to have several consecutive layers making them “deep” with the objective
of increasing their receptive field that is found to aid in learning richer features [6].
Recent research efforts have, however, highlighted the limitations of convolutional
neural networks in learning long range relationships in spatial [7] and temporal [7]
dimensions. To resolve these limitations, several methods have been investigating
transformer networks to learn richer representations that additionally encode long
range spatio-temporal dependencies [8].

In this work, we exploit the capability of image transformers to learn such long
range dependencies to improve the task of multiimage 3D shape generations. In
particular, we show that compared to the popular ResNet-18 [9] encoder, an image
transformer such as data efficient transformer (DiT) [7] can capture long range depen-
dencies in the input image and consequently learn richer latent shape representa-
tions. We also propose a novel architecture that uses this image transformer and a
point-based multilayer perceptron to generate 3D shapes.

While recurrent neural networks (RNNs) have been used in recent approaches
to learn object’s mapping between distinct views, [10]. These designs are ineffi-
cient in terms of computation, and the RNN model’s input views are sensitive to
the order of permutation [11] which makes it difficult to work with a collection of
different unordered acquired views. In contrast, we useMax pooling operation to fuse
latent representations from multiple views, thus making our approach permutation
invariant.

This paper has been broken down into different sections. The first section of this
paper includes the paper’s introduction, as well as the problem statement’s goal,
inspiration, and objectives. Section 2 discusses the literature review of the concepts
used in the study. The image transformers’ background is detailed in Sect. 3. Section 4
includes qualitative and quantitative experiments analysis. Section 5 covers the inter-
pretation and discussion of the results, as well as the work’s contribution to the
previous studies. This segment also discusses the potential scope of the work.

2 Related Work

Generating the shape of a 3D object from a few images is an ill-posed problem.
We now review the relevant literature in both traditional and learning-based 3D
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reconstruction. We then briefly review the recent transformer literature as it relates
to this work.

A. Traditional Multiview 3D Reconstruction: In geometric processing, shape
completion has a long history. Many relevant real-world applications need
this as a prerequisite such as in tracking objects for autonomous vehicles [1]
grasping for autonomous robotic manipulators [2]. For dense point clouds, a
common technique to convert them to meshes is Poisson surface reconstruction
[12]. Other classical techniques resort to 3D reconstruction from 2D images
by leveraging multiview consistency [13]. While more broadly, structure from
motion is performed to do large-scale reconstruction with both posed [14] and
in the wild images [15], they are often plagued by non-lambertian surfaces,
occlusions, small baselines causing degeneracy, and changes in illuminations.
Thus, only by collecting millions of images [16] and using hand-crafted edits
by artists can such techniques be used reliably. These limitations motivate
explorations into data driven methods that do not suffer from such issues.

B. Deep Learning on 3D Shapes: Deep learning allows use of data driven priors
for resolving shape ambiguities and thus enabling complete shape generation.
Broadly, they can be characterized based on the type of 3D representation that
is regressed. A mesh-based representation [17] stores the surface information
as a list of vertices and faces. Choy et al. [10] put forth a deep generative
model for modeling voxelized 3D shapes that leverage 3D convolution kernels
for shape generation. To address the drawbacks of the voxel representation,
authors argued for generating point clouds [18] instead using a single image.
Rich literature on implicit function learning [19, 20] for shape representation
and reconstruction tasks has been done by the researchers in the computer vision
and graphics community.

C. Transformers: Transformer models have excelled at a number of tasks in
natural language processing, including computer translation, document classi-
fication [21]. The core part of a transformer is itsmulti-head self-attentionmech-
anism that combines the characteristics of each token pair in the embedding
sequence. Transformer has recently been applied to the domain of computer
vision with great success [8, 22]. Impactful and promising applications have
been shown by [23]. ViT [8] applies transformer to sequences of image-patches
for the task of image classification, without using CNN features, when pre-
trained on a large-scale dataset, and demonstrates comparable and higher clas-
sification accuracy. These have significant advantages over their CNN counter-
parts when it comes to attending to long range spatio-temporal dependencies.
This is key to learning much richer representations opening several avenues for
future research not just in 3D reconstruction but also video understanding [24],
scene understanding [25].
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3 Method, Background, and Notations

We now describe our image transformer-based multiview 3D object reconstruction
method, which has been given a set of images (3 in this case) extracts per image latent
vectors and fuses them using a Max pooling operation. The pooled representation
is permutation invariant and is later used to extract complete 3D shape via a point-
based multilayer perceptron network. We will first provide a brief background on the
architecture of a vision transformer [8] and then elaborate our proposed pipeline.

3.1 Background on Vision Transformer

Transformers were first introduced in [26] as a two-part architecture (encoder and
decoder) that allows you to turn one series into another. However, it differs from
existing sequence models like RNN and LSTM in a sense that it does not include
recurrent networks. Figure 1 shows the visualization of transformers. The encoder is
located on the left, while the decoder is located on the right. Encoder and decoder are
both made up of components that can be placed on top of each other several times,
as shown by Nx in the diagram. As shown in the Fig. 1, the modules are primarily
made up of multi-head attention and feedforward layers.

Positional encoding is another crucial component of the model. Since a sequence
relies on the order of its components, and we do not have any recurrent networks
that can remember how sequences are fed into a model, we need to allocate each
component of our sequence a relative place. These coordinates are added to the
embedded representation of each letter (n-dimensional vector).

For a sequence of Y query vectors (packed into Z ∈ R Y×d), it produces an output
matrix (of size Y × d):

Attention(Z, K, V) = Softmax
(
ZKT/

√
d
)
V, (1)

where the Softmax function is applied over each row of the input matrix and the
√
d

term is used to normalize the result.

3.2 Architecture Details

We now provide details about the network architecture. In the Fig. 2, we show how
a set of images (set of 3 in this case) is fed to a ResNet-18 encoder Rφ, with shared
network weights. This results in view dependent latent vectors L1, L2, L3. In order
to fuse them together while maintaining permutation invariance, we use the “Max”
operator that takes the max(L1, L2, L3) along the views and results in the global
latent code L. This latent code is then decoded via a set of MLP layers Qθ to generate
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Fig. 1 Transformer model

a point cloud of 1024 points. TheMLP being used here has the architecture as [1024,
1000, 1000, 1000, 3072]. While this architecture is plausible and gives us a point
cloud based on input views of the object, we propose to further improve the results
by means of transformer layers. As discussed above, transformers are able to better
capture the long range dependencies in images and as such providemuch richer latent
codes. Here, the data efficient transformer [8] Tφ is used to encode the image set I,
which is passed through the max operator to get global latent code L and subsequent
point cloud via the decoder Qθ (same as above). We train both these architectures on
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Fig. 2 ResNet-18 as encoder

Fig. 3 Image transformer encoding the imageSet

ShapeNet dataset [27] and use the renderings provided by [10] for 120 epochs with
a learning rate of 1e-3 and weight decay of 0.98 after every 250 iterations. In total,
this takes roughly 30 h on a single NVIDIA 2080Ti GPU (Fig. 3).

4 Experiments and Result Analysis

We now provide some quantitative and qualitative results and comparisons between
ResNet-18 encoder and image transformer to highlight benefits of using image
transformers for the task of multiview 3D reconstruction.
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Table 1 Comparing chamfer distance for multiview reconstruction on resnet-18 and image
transformer

Encoder type Resnet-18 Image transformer (ours)

Chamfer distance 0.83 0.78

A. Quantitative Results

For quantitative comparisons, we evaluate the bidirectional chamfer distance (Eq. 1)
of the generated point clouds. Here, lower values are better. Chamfer distance is a
common metric that quantifies distance of two point clouds, from p to q, which is
defined as

L(�) =
∑

min
q∈MG

||p − q||2 +
∑

min
p∈MP

||p − q||2 (2)

where MG and MP are ground mesh and predicted mesh, respectively (Table 1).

B. Qualitative Results

We now visualize some examples of the reconstructions obtained from ResNet-
18 and image transformer encoders, respectively, based on the input image triplets
(Table 2).

5 Conclusion and Future Scope

In this work, we presented a novel architecture for 3D shape generation frommultiple
point clouds and demonstrated that image transformers achieve significantly better
performance for this task compared to their ResNet counterparts. We provide both
qualitative and quantitative results to establish this claim. In future, we would like to
investigate the effects of using a transformer-based decoder (instead of an MLP). I
believe that the gains we see by replacing convolutional encoders with transformers
will also translate to the decoder side and would hopefully result in much higher
fidelity of reconstructions.
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Table 2 Qualitative results on 3d reconstruction

Image ResNet-18 Image transformer (ours) Ground truth

References

1. Giancola S, Zarzar J, Ghanem B (2019) Leveraging shape completion for 3d siamese tracking.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1359–
1368

2. Varley J, DeChant C, RichardsonA, Ruales J, Allen P (2017) Shape completion enabled robotic
grasping. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS),
pp 2442–2447. IEEE

3. Qi CR, Su H,MoK, Guibas LJ (2017) Pointnet: deep learning on point sets for 3d classification
and segmentation. In Proc CVPR

4. Mandikal P,NavaneetKL,AgarwalM,BabuRV(2018) 3D-LMNet: latent embeddingmatching
for accurate and diverse 3D point cloud reconstruction from a single image. arXiv preprint
arXiv:1807.07796

5. Niu C, Yu Y, Bian Z, Li J, Xu K (2020). Weakly supervised part-wise 3D shape reconstruction
from single-view RGB images. In Computer graphics forum, vol 39, No 7, pp 447–457

http://arxiv.org/abs/1807.07796


Designing Deep Learning Architectures for Multiview … 513

6. Choy CB, Xu D, Gwak J, Chen K, Savarese S (2016) 3d-r2n2: a unified approach for single
and multi-view 3d object reconstruction. In European conference on computer vision (ECCV)

7. Touvron H, CordM, DouzeM,Massa F, Sablayrolles A, Jégou H (2020) Training data-efficient
image transformers & distillation through attention. arXiv preprint arXiv:2012.12877

8. TouvronH,CordM,DouzeM,Massa F, SablayrollesA, J´egouH (2020) Training data-efficient
image transformers & distillation through attention. arXiv preprint arXiv:2012.12877

9. Ou X, Yan P, Zhang Y, Tu B, Zhang G, Wu J, Li W (2019) Moving object detection method via
ResNet-18with encoder–decoder structure in complex scenes. IEEEAccess 7:108152–108160

10. Choy CB, Xu D, Gwak J, Chen K, Savarese S (2016) 3d-r2n2: a unified approach for single and
multi-view 3d object reconstruction. In Proceedings of the European conference on computer
vision (ECCV)

11. Vinyals S Bengio, Kudlur M (2016) Order matters: sequence to sequence for sets. In
International Conference on Learning Represen-tations (ICLR)

12. Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing, vol 7

13. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision (cambridge
university). C1 C3, 2

14. Yingze Bao S, Chandraker M, Lin Y, Savarese S (2013) Dense object reconstruction with
semantic priors. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 1264–1271

15. Wang N, Zhang Y, Li Z, Fu Y, Liu W, Jiang YG (2018) Pixel2mesh: generating 3d mesh
models from single rgb images. In Proceedings of the European conference on computer vision
(ECCV), pp 52–67

16. Agarwal S, Furukawa Y, Snavely N, Simon I, Curless B, Seitz SM, Szeliski R (2011) Building
Rome in a day. Commun ACM 54(10):105–112

17. Achlioptas P, Diamanti O, Mitliagkas I, Guibas L (2018) Learning representations and gener-
ative models for 3d point clouds. In International conference on machine learning, pp 40–49.
PMLR

18. Liu Y, Fan B, Meng G, Lu J, Xiang S, Pan C (2019) Densepoint: learning densely contex-
tual representation for efficient point cloud processing. In Proceedings of the IEEE/CVF
international conference on computer vision, pp 5239–5248

19. Park JJ, Florence P, Straub J, Newcombe R, Lovegrove S (2019) Deepsdf: learning continuous
signed distance functions for shape representation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp 165–174

20. Michalkiewicz M, Pontes JK, Jack D, Baktashmotlagh M, Eriksson A (2019) Deep level sets:
implicit surface representations for 3d shape inference. arXiv preprint arXiv:1901.06802

21. Brown TB,MannB, Ryder N, SubbiahM,Kaplan J, Dhariwal P, ... Amodei D (2020) Language
models are few-shot learners. arXiv preprint arXiv:2005.14165

22. Devlin M-W, Chang K Lee, Toutanova K (2018) Bert: pre-training of deep bidirectional
transformers for language understanding. arXivpreprint arXiv:1810.04805

23. Dosovitskiy L, Beyer A, Kolesnikov D, Weissenborn X, Zhai T, Unterthiner M, Dehghani
M, Minderer G, Heigold S, Gelly J Uszkoreit, Houlsby N (2021) An image is worth 16 x 16
words: Trans-formers for image recognition at scale. In International Conference on Learning
Representations (ICLR)

24. Kwon H, Kim M, Kwak S, Cho M (2020) Motionsqueeze: neural motion feature learning for
video understanding. In European conference on computer vision, pp 345–362. Springer, Cham

25. Guo Z, Huang Y, Hu X, Wei H, Zhao B (2021) A survey on deep learning based approaches
for scene understanding in autonomous driving. Electronics 10(4):471

26. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser LU, Polosukhin
I (2017) Attention is all you need. In Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R,
Vishwanathan S, Garnett R (eds) Advances in neural information processing systems, vol 30.
Curran Associates, Inc

27. Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, ... Yu F (2015) Shapenet: an
information-rich 3d model repository. arXiv preprint arXiv:1512.03012

http://arxiv.org/abs/2012.12877
http://arxiv.org/abs/2012.12877
http://arxiv.org/abs/1901.06802
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1512.03012

	 Designing Deep Learning Architectures for Multiview 3D Shape Estimation Using Image Transformers
	1 Introduction
	2 Related Work
	3 Method, Background, and Notations
	3.1 Background on Vision Transformer
	3.2 Architecture Details

	4 Experiments and Result Analysis
	5 Conclusion and Future Scope
	References


