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Abstract Sleep is a basic requirement of human life. It is one of the vital roles
in human life to maintain the proper mental health, physical health, and quality
of life. In this proposed research work, we conduct an automated sleep staging
classification system to a proper investigation of irregularities that occurred during
sleep based on single-channel electroencephalography (EEG) signal using machine
learning techniques. The major advantage of this proposed research work over the
standard polysomnographymethod are: (1) It measures the sleep irregularities during
sleep by considering three different medical condition subjects of different gender
with different age groups. (2) One more important objective of this proposed sleep
study is that here we obtain different session recordings to investigate sleep abnor-
mality patterns, which can help to find better diagnosis toward the treatment of
sleep-related disorder. (3) In the present work, we have obtained two different time-
framework epochs from individual subjects to check which window size is more
effective toward identification on sleep irregularities. The present research work
based on a two-state sleep stage classification problem based on a single channel of
EEG signal was performed in a different stepwise manner such as the acquisition of
data from participated subjects, preprocessing, feature extraction, feature selection,
and classification. We obtained the polysomnographic data from the ISRUC-Sleep
data repository for measuring the performances of the proposed framework, where
the sleep stages are visually labeled. The obtained results demonstrated that the
proposed methodologies achieve a high classification accuracy of 99.46 and 97.46%
using SVM and DT classifiers, respectively, and which support sleep experts to accu-
ratelymeasure the irregularities that occurred during sleep and also help the clinicians
to evaluate the presence and criticality of sleep-related disorders.
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1 Introduction

Sleep is one of the important physiological activities for the human body, which
directly controls memory consolidation, and it also decides the performance of the
daily activities. Sleep plays an important role in the human body because it repre-
sents the primary functions of the human brain. One human individual is spending
one-third of its duration as sleep. Proper quality of sleep maintains the physical and
mental fitness of the human body, which is alternatively helpful to perform well in
workplaces, control emotions, and be able to take proper decisions [1, 2]. Nowa-
days, it has seen that sleep diseases (SD) are becoming one of the major causes of
death across the world. The main reason for this serious health issue is an imbal-
ance of sleep patterns, and it has occurred due to job pressure, and rapid changes in
lifestyles. Across the globe. It has been observed that the prevalence of sleep diseases
has significantly increased over the past years. According to the report of the Center
for Control of Disease and Prevention (CDC) of the US Government, around 9
million populations have difficulty maintaining good quality sleep [3]. According to
a survey of the National Highway Traffic Safety Administration in the USA, it has
been found that due to the drowsiness factor, around 56,000 to 100,000 car accidents
have happened, which directly reported that more than 1500 have died and 71,000 are
affectedwith injuries annually [4]. It has been found that sleep diseases are considered
to be the most predominant death cause with the different age groups of populations
across the globe. In general, different types of sleep disorders are categorized such as
obstructive sleep apnea, insomnia, hypersomnia, narcolepsy, breathing-related disor-
ders, stroke, stress, and cardiovascular diseases [5]. All these diseases progressively
increased with age. So early diagnosis is helpful for the human being to prevent the
severity of these diseases, and it helps to improve the subject’s quality of life. The
first most important step for sleep diseases is sleep scoring. The most popular test
for analyzing sleep quality is the polysomnography (PSG) test. PSG tests include the
signals such as electroencephalogram (EEG), electrocardiogram (ECG), electromyo-
gram (EMG), and electrooculogram (EOG). The entire sleep staging procedures
are analyzed according to two available sleep standards such as the Rechtschaffen
and Kales (R&K) [6] and the American Academy of Sleep Medicine (AASM) [7].
According toR&Ksleepguidelines, thewhole sleep cycle is categorized into six sleep
stages such as wake stage(W), non-rapid eyemovement (NREM stage1 (N1), NREM
stage2 (N2), NREM stage3 (N3), and NREM stage4 (N4)) and rapid eye movement
(REM) stage. The only changes reflected with the AASM manual incomparable to
R&K standards are NREM sleep stages. According to the AASM guidelines, the
total sleep stages are five, the NREM stage 3 (N3) and the NREM stage 4 (N4)
are combined into one sleep stage called the NREM stage3. Traditionally the sleep
scoring procedure was conducted through the visual inspection method, where one
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clinician was monitoring the sleep behavior of the subject for 6–8 h. of sleep. This
traditional sleep analysis method requires more human resources for monitoring the
whole sleep recordings, and also, it consumes more time for analysis, due to more
human interpretation, sometimes the results are erroneous [6]. Sometimes it is also
one of the major causes of not achieving higher classification accuracy in the clas-
sification of sleep stages. With consideration of all these above-mentioned facts, the
automated sleep scoring approach has gained a lot of attention in recent researches
[7, 8]. Automated sleep scoring not only causes accuracy improvements but also
provides quick diagnosis [9]. It has been observed that the PSG test is one of the
costly experiments, and it also gives so many unpleasant scenarios for the subjects
because of its so much connectivity of wires in the different parts of the body [10,
11]. Henceforth instead of PSG signals, most of the researchers preferred to EEG
signal, because it directly provides the brain activities during sleep hours. This helps
a lot for analyzing the sleep abnormality, and it is also more popular for its easier
recording facility. In general, EEG signals are combinations of different waveforms,
which help to characterize the different sleep stages with different frequency bands
such as delta band (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz),
spindle(12–14 Hz), sawtooth (2–6 Hz), and k-complex (0.5–1.5 Hz). Finally, the
scoring and decisions are taken by the sleep experts through proper interpretation of
the quantitative and visual analysis of collected sleep recordings. In some cases, the
sleep experts use an algorithm for pre-scoring the entire sleep recordings, and these
successive representations of the sleep stages information called hypnograms, which
is highly required during the diagnosis of the different types of sleep disorders. Sleep
staging is generally a tedious job, which requires highly experienced technicians and
experts. This other limitation with subject to sleep staging is variations on sleep
scoring from experts to experts, which is also one of the major causes for diagnosing
sleep diseases [12, 13].

In this paper, we have obtained a single-channel EEG signal for sleep staging
analysis; this approach makes it more interesting because of its ease of operational
deployments on mobile devices. It also makes more comfortable situations for the
patients due to less cabling used during recordings. It has been observed that most of
the contributions with single-channel EEG signals were executed two-step method-
ology. In the first step, the different hand-engineered features are extracted from the
different waveforms, and in the second step, the extracted features are forwarded to
a classifier for classifying the sleep stages based on the feature characteristics. In
general, it has been seen that most of the authors obtained one of the three following
domains of the features [14] (a) time-domain features, (b) frequency-domain features,
(c) nonlinear features. It is a very difficult part for sleep experts to manually moni-
toring the recorded EEG signals, and it raises so many errors because during long
7–8 h. EEG recordings, its hectic situation for sleep experts to monitoring within the
30 s framework and fix the labeling of sleep stages. This approach consumed more
time and required more manpower for hours of sleep recordings. To overcome diffi-
culty from the manual approach, nowadays automated sleep stage classification is
obtained to analyze the sleep-related disorder and real-time diagnosis, and the most
important step is designing sleep stage classification. Currently, overnight sleep study
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through polysomnography is one of the standard procedures for measuring sleep
irregularities during sleep [14].

1.1 Related Work

Several sleep analysis studies were proposed for characterization the sleep-related
abnormalities based on the sleep standards recommended by R&K and AASM
manuals. Various computational methodologies were proposed by researchers to
support sleep experts for assisting sleep staging. Those carried steps were on the
information extraction (polysomnography channel selection), on the preprocessing
(removing the data artifacts and data normalization), on the feature extraction step
(transformation of time- and frequency-domain features), on the feature selection
technique (identifying the most relevant features) and finally on the classification
algorithm.Herewe have presented some comparative studies regarding sleep staging.
In [15], the authors have obtained wavelet concept techniques for feature extraction
and classified the selected features using the fuzzy algorithm. The classification
model provided 85% accuracy. Güneş, K et al. [16] used K-means clustering and
feature weighting techniques to design an ASSC system. Welch spectral transform
was considered for feature extraction, and those selected features were forwarded to
a decision tree (DT) and obtained with an overall accuracy of 83%. Aboalayon [17]
used EEG signal and obtained Butterworth bandpass filters and used SVM classifiers
and reported 90% classification accuracy.

In [18], extracted features form an empiricalmode decomposition of the signal and
use bootstrap-aggregating techniques for multi-class sleep staging classifications.

In [19] applied the EEMD algorithm for signal enhancement from single-channel
EEG signal, and extracted statistical features are forwarded into boosting techniques,
and the reported accuracy for two-six sleep stages is reported as 98.15%, 94.23%,
92.66%, 83.49%, and 88.07%, respectively.

Kristin M. Gunnarsdottir et al. have designed an automated sleep stage scoring
systemwith overnight PSGdata.Here the authors extracted both time- and frequency-
domain properties from PSG signal, and considered healthy individual subjects with
no prior sleep diseases and the extracted properties were classified through DT
classifiers. The overall accuracy for test set data was reported as 80.70% [20].

Sriraam,N. et al. used amulti-channelEEGsignal from tenhealthy subjects. In this
study, the author has proposed the automated sleep stage scoring in betweenwake and
stage1 of sleep. In this research work, spectral entropy features are extracted from the
input channels to distinguish the irregularities among the sleep states. The extracted
features processed through a multilayer perceptron feedforward neural network and
the overall accuracy with 20 hidden units were reported as 92.9%, and subsequently
for 40,60, 80, and 100 hidden units in MLP, it was reported as 94.6, 97.2, 98.8, and
99.2, respectively [21].

In [22] proposed two-state sleep staging and the acquired signal decomposed into
eight sub-bands, finally 13 features are extracted from each sub-band epoch. The
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suitable features are identified through the mRMR feature selection algorithm. The
model achieved an overall accuracy of 95.31% through a random forest classifier.
Da Silveira et al. used discrete wavelet transform (DWT) for signal segmentation.
Skewness, kurtosis, and variance features were extracted from respective input chan-
nels. The extracted features were applied to a random forest classifier, and overall
accuracy was reported as 90% [23]. Prochaska et al. [24] used polysomnography
data features to identify the sleep abnormalities from three different medical condi-
tions of subjects and used an SVM classifier for two-state classifications in between
the Wake versus NREM stage and another one in between the Wake versus REM
stage. The proposed study achieved an overall accuracy of classification between the
Wake-NREM and Wake-REM stage as 85.6% and 97.5%, respectively. Xiaojin Li
et al. introduced the hybrid model for identifying the irregularities that occurred in
different stages of sleep during the night, and extracted features were forwarded into
random forest classifiers. It has been reported that overall classification accuracy has
reached 85.95% [25].

2 Experimental Data

To analyze the proposed methodology effectiveness, we have obtained the session-1
and session-2 sleep recordings from the subjects who were already affected by the
different types of sleep-related disorders. These required recordings were retrieved
from the subgroups of ISRUC-Sleep dataset, which is one of the public databases
specifically available for sleep research. These recordings were prepared by the
groups of domain experts at sleep center in the Hospital of Coimbra University.
This dataset contained the recorded subject details from different age groups, gender
categories, and medical conditions. All recordings were recorded through the sleep
experts in the sleep laboratory at the Hospital of Coimbra University (CHUC). As
per our proposed research objective, the first subject used for experimental work
from Subgroup-I of ISRUC-sleep repository. The second category of a subject is
taken for our proposed experimental work from Subgroup-II of the ISRUC-sleep
database. The distribution of sleep stages epochs per individual subjects is presented
in Table 1.

3 Methodology

In this work, we proposed a machine learning-based sleep scoring system using a
single channel with subjects having different medical conditioned subjects. Themain
objective of this proposed work is to study the sleep stages behavior of the subjects
who were already had some types of sleep diseases symptoms. Additionally, in
this research work we also analyzed the sleep quality of the subjects by obtaining
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Table 1 Detailed information of each subject sleep dataset records used in this study

Enrolled subjects Wake N-REM1 N-REM2 N3-REM3 REM

Subject-16 Subgroup I/
One Session

128 125 280 120 97

Subject-23 Subgroup I/
One Session

212 99 270 65 104

Subject-3 Subgroup-II/
One Session

68 126 271 175 110

Subject-3 Subgroup-II/
Two Session

76 127 236 168 143

the different session recordings on two different dates. The complete layout of this
proposed work is described in Fig. 1.

Fig. 1 Complete layout of the proposed sleep staging system
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Table 2 Short explanation of the extracted features for this proposed study

Feature set Feature no. Feature set Feature no.

Time-based

Mean 1 Minimum 3

Maximum 2 Standard Deviation 4

Median 5 Variance 6

Zero Crossing Rate 7 75percentile 8

Signal Skewness 9 Signal Kurtosis 10

Signal Activity 11 Signal Mobility 12

Signal Complexity 13

Frequency-based

RSP in delta, theta, beta and alpha bands 14,15,16,17 Power Ratios 18,19,20,21
22,23,24Band powers 25,26,27,28

3.1 Feature Extraction

The selection of inputs for the classifier is the most valuable for identifying sleep
pattern abnormality. Even if obtained highly effective classificationmodel performed
very poor performance, if proper inputs are to be identified. It can be found that
the different classifiers performed different results for the same set of features; it
indicates matching both may found results. On the other part, sometimes we have
given some set of features that favors the classification process. It has been found
that the sleep behavior of the subjects is highly unstable and non-stationary because
the changes characteristics are directly linked with the time and frequency ranges. To
properly discriminate the sleep stages, we need to analyze the signals by obtaining
the time- and frequency-based parameters. In this study, we have as whole extracted
28 features from the input signal, out of those 13 features are time-based and the
other 15 features are frequency-based [26–28]. The obtained features are described in
Table 2.

3.2 Feature Selection

Next to feature extraction, the other important task with regard to classification
problem is screening the relevant parameters which help to model for properly clas-
sifying the sleep stages. Sometimes it has been found that the extracted fall the
features may not be more effective with respect to analyze of the sleep behavior,
which directly put impacts on the classification performance of the models. In our
study, we adopted the feature screening techniques as online streaming feature selec-
tion (OSFS) techniques to screen the suitable features from the pool of extracted
features [29]. The selected features concerning the individual subject are presented
in Table 3.
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Table 3 Screened Feature Lists

Name/Gender Selected features

Subject-16
MALE

F116,F216,F316,F416,F516,F716,F916,F1016,F1116,F1316,F1416,
F1516,F2216,F2516,F2716,F3116 (16 Features)

Subject-23
FEMALE

F123,F223,F323,F423,F523,F723,F1123,F1223,F1523,F1623,F1723,
F2023,F2423,F2623,F3123,F3323,F3723 (17 Features)

Subject-03
MALE
(Session-1)
Recording

F103S1,F203S1,F303S1,F403S1,F503S1,F703S1,F803S1,F903S1,F1103S1,
F1203S1,F1303S1,F1403S1,F2103S1,F2203S1,F2503S1 (15 Features)

Subject-03
MALE
(Session-2)
Recording

F103S2,F203S2,F303S2,F403S2,F503S2,F703S2,F803S2,F903S2,F1103S2,
F1203S2,F1303S2,F1403S2,F2103S2,F2203S2,F2503S2 (15 Features)

4 Experimental Results and Discussion

The main intention behind this research is to analyze the changes sleep stages
and classifying the sleep stages using machine learning classification models. This
entire procedure is called as sleep scoring. In this work, the entire experiments were
performed on two different subgroups of sleep recordings one from ISRUC-Sleep
subgroup-I and the other from ISRUC-Sleep subgroup-II dataset. The entire sleep
staging experiments followed according to the AASM sleep standards. The proposed
sleep scoringmethodology is executed through four basic steps that are signal prepro-
cessing, feature extraction, feature screening, and finally classification. In this work,
we have considered only the single channel of EEG signal for acquisition of the
signal recordings. Next to the acquisition, the required signals need to be processed
for further eliminating the irrelevant noises and artifacts which are contaminated
during recordings in the raw signal and eliminated these muscle artifacts and noisy
portions from recorded signals through the Butterworth band-pass filter. In the next
phase, a set of experiments were conducted to extract the features from both the
time and frequency domains. As a whole 28 features were extracted from recorded
signals of the subjects, and the same details are mentioned in Table 2. The size of
the feature vectors for all enrolled subjects for 30 s epoch length is 28× 750. Matrix
dimension for feature vector is feature number x epoch number. The next task is
the selection of the most efficient features from among the feature vector. To work
out this selection experiment, we have applied OSFS feature selection techniques.
The matrix representation for feature selection vectors is selected feature number x
epoch number. These matrixes are 16 × 750, 17 × 750, 15 × 750, 15 × 750 for
subject-16, subject-23, subject-03 (session-1 recording), and subject-03 (session-2
recording), respectively, for input length of epoch is 30 s. By implementations of
tenfold cross-validation techniques on the SVM [30, 31] and DT [32] classifiers, the
selected best features are fed as input to the model. We also conducted a comparative
analysis with all these enrolled subjects and their session recordings, and finally,



Accurate Machine Learning-Based Automated Sleep Staging … 371

comparison experimental results are presented according to the single channel of
EEG signals and two sleep classes (wake versus sleep). In this proposed study, we
have used some criteria of evaluation metrics for measuring the performances of the
proposed sleep scoring study. Here, we have considered six performance metrics
for analyzing the performance of the proposed methodology such as classification
accuracy [33], recall [34], specificity [35], precision [36], F1-score [37], and Kappa
score [38]. Analysis of the comparative results from conducted experiments, and
obtained results are presented below.

4.1 Classification Accuracy of Category-I Subject
ISRUC-Sleep Database

In this experimental part, we have obtained two subjects who have been affected
by some kind of sleep-related disorders and here from subject session-1 recording
recorded by sleep experts for diagnosing the irregularities that happened during sleep
hours. Table 4 presents the confusion matrix for two-state sleep stage classification
problems for both the subjects 16 and 23 with time length of epoch is 30 s. It has been
observed that the SVMdepicts an overall classification accuracy of 95.62 and 91.20%
achieved through DT classifiers for subject-16. For subject-23, the same classifiers
SVM and DT reached overall accuracy of 91.46% and 87.73%, respectively, for
epoch length 30 s.

The results achieved from the input of 30 s length epoch for subject-16 and subject-
23 are specified in Table 5. Figure 2 displays performance statistics for 30 s epoch
length for subject-16 and subject-23.

Table 4 Confusion matrix of
subjects 16 and 23 according
to AASM guidelines

Subject-16

W S

SVM W 133 30

S 3 584

W S

DT W 133 29

S 37 551

Subject-23

W S

SVM W 174 38

S 512 26

W S

DT W 167 45

S 29 509
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Table 5 Performance of the proposed SleepEEG study using SVM and DT classifiers

Subject enrolled epochs length-30s

Channel SVM classifier DT classifier

C3-A2 16 23 16 23

Accuracy (%) 95.62 91.46 91.20 87.73

Precision (%) 95.14 93.09 94.99 91.45

Recall (%) 99.59 95.17 93.70 91.45

Specificity (%) 81.64 82.08 82.21 78.30

F1-Score (%) 97.29 94.12 94.34 91.45

Accuracy Precision Recall Specificity F1-Score
SVM Classifier 16 95.62% 95.14% 99.59% 81.64% 97.29%
SVM Classifier 23 91.46% 93.09% 95.17% 82.08% 94.12%
DT Classifier 16 91.20% 94.99% 93.70% 82.21% 94.34%
DT Classifier 23 87.73% 91.45% 91.45% 78.30% 91.45%

0%
10%
20%
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40%
50%
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70%
80%
90%

100%
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Fig. 2 Performance statistics of model with 30 s epoch duration for subject-16 and subject-23
using SVM and DT classifiers

The overall performance value of the proposed Category-I subject ISRUC-Sleep
database is measured through the evaluation parameters that are recall, specificity,
precision, and F1-score, and it reported for subject-16 as 99.59%, 81.64%, 95.14%,
and 97.29% through SVM, 93.70%, 82.21%, 94.99%, and 94.34% through DT,
respectively; similarly, the same parameters reached for subject-23 through SVMand
DT are 95.17%, 82.08%, 93.09%, and 94.12%, and 91.45%, 78.30%, 87.73%, and
91.45%. The computation of score is of six levels of agreements:0.81–1, 0.61- 0.80,
0.41–0.60, 0.21–0.4,0.00–0.20, and less than 0 correspond to excellent, substantial,
moderate, fair, slight agreement, and poor agreement [38]. Table 6 gives the kappa
coefficient score concerning obtained classification techniques for both the subjects
16 and 23, and it has been found from results that all classification techniques are
found excellent agreement with subject to best accuracy for investigation on sleep
irregularities.
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Table 6 Performance of the accuracy and Kappa score based on the two-state sleep classification
problem for subjects 16 and 23

Classifiers Subject-16 Subject-23

Accuracy (%) Kappa
score

Accuracy (%) Kappa
score

SVM 95.62 0.92 91.46 0.78

DT 91.20 0.73 87.73 0.69

4.2 Classification Accuracy of Category-II Subject
ISRUC-Sleep Database

In the ISRUC-Sleep subgroup-II dataset experiment, the proposed sleep stage clas-
sification model has experimented based upon only a single channel with two
different session recordings from one gender enrolled subject with suspected sleep-
related disorder symptoms. Table 7 represents the confusion matrix for both session
recordings of subject 03 with the duration of epoch 30 s.

The achieved results for subject-03 for both the sessions are shown in Table 8.
The performance graph results for subject-03 for both session recordings of epoch
length 30 s are displayed in Fig. 3.

Figure 3 presents the reported performances for the two-state sleep classification
model, Subgroup-II with session-2 recordings for subject-03.

Table 7 Performance of the
proposed SleepEEG study
using SVM, and DT
Classifiers for Subject-03
(session-2 Recordings)

30 s epoch length

Subject-03

Session1_Recording

W S

SVM W 20 47

S 20 663

W S

DT W 12 63

S 55 620

30 s epoch length

Subject-03

Session2_Recording

W S

SVM W 20 69

S 10 651

W S

DT W 18 63

S 40 629
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Table 8 Performance of the
proposed SleepEEG study
using SVM and DT classifiers
for Subject-03 (session-2
recordings)

30 s epoch length

Subject-03

Session1_Recording

W S

SVM W 20 47

S 20 663

W S

DT W 12 63

S 55 620

30 s epoch length

Subject-03

Session2_Recording

W S

SVM W 20 69

S 10 651

W S

DT W 18 63

S 40 629

Fig. 3 Performance measures using SVM and DT classification techniques for the two-state sleep
classification model with session-2 recordings for subject-03 (30 s epochs Length)
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Table 9 Performance of the accuracy and Kappa score based on the two-state sleep classification
problem for subject with mild sleep problem having session-2 recording for subject-03

Classifiers Subject-03
(Session-1 Recording)

Subject-03
(Session-2 Recording)

Accuracy (%) Kappa
score

Accuracy (%) Kappa
score

SVM 91.06 0.87 89.46 0.86

DT 84.26 0.67 86.26 0.74

From each subject, here we have acquired two different session recordings; it has
been observed that subject 03 with session-1 recording SVM classification model
depicts an overall accuracy of 91.06% and 84.26% for DT, respectively. Similarly, it
has been found that the classification results of subject 03 with session-2 recordings
through SVM and DT were reported as 89.46% and 84.2%. The overall performance
of recall, specificity, precision, and F1-score reported with the session-1 recording of
ISRUC-Sleep Subgroup-II database of subject-03 through SVM as 97.07%, 29.85%,
93.38%, and 95.19%, similarly for DT classifier, the performances reached 93.70%,
82.21%, 94.99%, and 94.34%. Similarly, the performances with session-2 record-
ings are reported as 98.49%, 22.47%, 90.42%, and 94.28% through SVM, 91.45%,
78.30%, 91.45%, and 91.45% through DT. The results of the kappa coefficient for
subject-03 with both session recordings are presented in Table 9.

For measuring the impact of session recordings for the classification of sleep
stages, we have computed the Cohens kappa coefficient; according to session-1
recording for subject-03, the kappa score through SVM and DT is 0.87 and 0.67.
From this kappa score, it concludes that DT is not up to themark performance incom-
parable to the SVM classification techniques. Similarly for session-2 recording, the
kappa performance for SVM and DT is 0.86 and 0.74, respectively.

4.3 Comparative Analysis in Between Proposed Study
and State-Of-The-Art Works

Here we have made a comparison with other similar contributions work to measure
the proposed research work effectiveness toward the identification of sleep disorder.
Table 10 presents the comparison of the performances based on single-channel EEG
acquisition among the proposed research work results with five contributed works.
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Table 10 Comparison of performances of the proposed work with previously published works

Author Year Signal type Method Accuracy (%)

Eduardo T. Braun et al.
Ref. [27]

2018 Single-channel
EEG

FFT + Random forest
classifier

97.1

Hassan, A. R. et al.
Ref. [18]

2017 Tunable-Q wavelet
transform (TQWT)
+Bootstrap
aggregating

92.43

Diykh, M. et al.
Ref. [19]

2016 Structural graph
similarity K-means
(SGSKM) +SVM
classifier

95.93

K. Aboalayon et al.
Ref. [17]

2014 Frequency sub-bands
features extraction + SVM
classifier

92.5

Zhu, G. et al.
Ref. [23]

2014 Graph domain features +
SVM classifier

96.1

Proposed Work 2020 SleepEEG study +SVM
and DT classifier

99.46

97.46

5 Conclusion and Future Directions

The present proposed research work application showed themost effectiveness in the
sleep stage scoring by using a single channel of EEG signal. This proposed SleepEEG
study would provide an effective mechanism for handling different health conditions
of the subjects with high accuracy of sleep abnormality identification from sleep
recordings. The main objective of this application is to analyze the irregularities that
occurred during sleep hours from various session recordings, and additionally, this
application also successfully deals with the specially aged category of subjects with
various disease conditions. The major part of this research work is to find the proper
solutions based on irregularity’s accuracy during sleep. Another important signifi-
cance of this proposed SleepEEG study is that, according to our best knowledge, this
proposed researchwork considered different session recordings from the participated
subjects in these experimental processes.

This experimental research study provides new directions on scoring sleep stages
to identify sleep abnormality through the extraction of different features from both
domains such as frequency and time. The major changes are shown between the two
different session recordings of sleep stages from two different days, and the general
sleep stage classification problem is that annotations of sleep stages are another
important source of information. These certain things support for discovering new
concepts of investigation on sleep irregularities during sleep, and it may get more
advantage for predicting the proper diagnosis plan for treating the disorder.

The proposed scheme automated sleep stage classification based on a single
channel of EEG signal gives the benefits with the inclusion of different session
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recordings and obtained different health condition subjects. It has been observed
from the experimental results that the proposed sleep analysis indicated an excellent
agreement between automated sleep staging and the gold standard.

The present research work has certain disadvantages that the (1) data used for
the experimental purpose from ISRUC-Sleep repository for statistical evaluation
was relatively small, (2) only we have included single channel of EEG signal was
used for classification, (3) we have not considered the subjects who were effects of
diseases, such as narcolepsy and insomnia.
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