A Systematic Approach for Evading)
Antiviruses Using Malware Obfuscation oo

Keshav Kaushik, Harshpreet Singh Sandhu, Neelesh Kumar Gupta,
Naman Sharma, and Rohit Tanwar

Abstract Investigators and malware creators are getting neck to neck in the compe-
tition and thinking of new deadly implements in their fields. Normally, malware such
as viruses and others are detected by looking for a string of bits, which is present in the
virus or malware. These strings are considered as the “fingerprint” of the malware.
Malware creators are utilizing novel modern methods like metamorphosis to foil
recognition instruments while security experts are sprouting better approaches to defy
them. Today, virus scholars regularly cover their viruses by utilizing code confusion
procedures with an end goal to defeat signature-based discovery plans. Metamorphic
viruses are those in which their uses are slightly similar but they differentiate in their
inner structure. Both metamorphic viruses and polymorphic viruses are different in
the technique they use to concealing the mark. While metamorphic viruses conceal
their mark by manipulating their own code, polymorphic viruses principally depend
on encryption for signature confusion. In this paper, we have shown that we can
bypass virus detection on different platforms (operating system). The authors have
compared the three methods for bypassing the antivirus Veil-Evasion, Graffiti, code
obfuscation and have uncovered their results. Eventually, we give our methodology
to make any virus imperceptible utilizing various procedures.

Keywords Obfuscation - Antivirus + Veil-Evasion - Malware - Malicious -
Graffiti - Virus total -+ Antivirus bypass

K. Kaushik (X)) - R. Tanwar (B<)
Department of Systemics School of Computer Science, University of Petroleum and Energy
Studies, Dehradun, India

H. S. Sandhu - N. K. Gupta - N. Sharma
Bachelors of Technology in Computer Science, University of Petroleum & Energy Studies,
Dehradun, India

K. Kaushik - H. S. Sandhu - N. K. Gupta - N. Sharma - R. Tanwar
School of Computer Science, University of Petroleum and Energy Studies, Dehradun,
Uttarakhand, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 29
N. Marriwala et al. (eds.), Emergent Converging Technologies and Biomedical Systems,

Lecture Notes in Electrical Engineering 841,

https://doi.org/10.1007/978-981-16-8774-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8774-7_3&domain=pdf
https://doi.org/10.1007/978-981-16-8774-7_3

30 K. Kaushik et al.

1 Introduction

In the present age, where a greater part of the exchanges including delicate data access
occurs on systems and over the network, it is first thing to consider data security as
a worry of fundamental significance. Malware and system viruses are there from the
very starting of the computer systems and consider as a regular threat to home and
undertaking clients the same. A computer virus is a pernicious bit of programming
that adjusts different records to infuse its code. A code of virus varies from virus to
virus. Virus identification is a dubious measure. As against virus advancements devel-
oped to battle these viruses, the virus developers keep on changing their strategies and
method of activity so that virus prediction and identification become more complex,
and the battle between them continues forever. Antivirus frameworks utilize different
location methods including signature recognition what is more, code copying to iden-
tify malware. Signature-based tools tries to found the specific signature while code
emulators execute virus in a virtual atmosphere for recognizable proof. The most
mainstream virus discovery procedure utilized today is signature-based technique,
which includes searching for a fingerprint—bits taken out from a known example of
the virus in the speculate record. To dodge code imitating strategies, different strate-
gies of copying methods have been created by the malware creators. These incor-
porate, Entry Point Obscuring (EPO) strategies, unscrambling and executing code
piece by lump, utilizing odd guidelines those bamboozle an impersonator, irregular
disguising of unscrambling, and wide circling through dead code, numerous encryp-
tion layers. Veil-Framework is an assortment of tools that help with data assembling
and post-exploitation. One such tool is Veil-Evasion which is utilized for making
payloads that can undoubtedly sidestep antivirus utilizing known and archived proce-
dures. This is done through a variety of encoding plans that change the marks of
records significantly enough to dodge standard recognition methods. Graffiti is a tool
that can create obfuscated payloads utilizing a wide range of encoding methods. It
offers a variety of one-liners and shells in languages, for example, Python, Perl, PHP,
Batch, PowerShell, and Bash. Payloads can be encoded utilizing base64, hex, and
AES256, among others. It additionally includes two methods of activity: command-
line mode and interactive mode. Other valuable highlights of Graffiti incorporate the
capacity to make your own payload records, terminal history, and the choice to run
local OS commands, and tab-completion in interactive mode. Graffiti should work
out of the case on Linux, Mac, and Windows, and it tends to be introduced to the
framework as an executable on both Linux and Mac. We will utilize Kali Linux to
investigate the tool beneath.

A Systematic Approach for Evading Antiviruses ... 31

2 Related Work

Unique dispute is that the payload is encoded into different choices like Xor, Base64,
Hex, ROT13, and Raw. Fundamental thought behind it is we are attempting to change
the signature of the payload as to sidestep the generally present signatures of payloads
in the database of the antivirus. From a virus identification perspective, it is signifi-
cantly harder to distinguish viruses which do not convey their own signatures. After
the payload is produced, it is then encoded making it imperceptible for the antivirus.
Once the code is divided into blocks, the request for code blocks should be haphaz-
ardly rearranged. Later we rearranged blocks; spitted blocks of dead code (also called
trash code) must be embedded between blocks of unique code. Dead code happens
to be square of code, which is linguistically right yet semantically immaterial to the
set of instructions being executed. When dead code is added in the code, the right
progression of the infectious code is constrained by the outcome accomplished from a
numerical condition that consistently registers to equivalent system. The main objec-
tive is to utilize a condition that consistently brings about a similar outcome (condition
continuously obvious or in every case bogus) and yet is an adequately unpredictable
articulation that it is troublesome break down from assembly code. Evading antivirus
is regularly overlooked craftsmanship that can represent the moment of truth a pene-
tration test. Current antivirus items can recognize meterpreter payloads effectively
and can leave a pen-tester dishonestly accepting a framework is not exploitable.
Antivirus has a troublesome work; it needs to sort out if a document is malicious in
an amazingly short measure of time to not affect the client experience. It is critical
to comprehend antivirus sidestep strategies to plan all-encompassing security that
ensures your association. Two normal techniques utilized by antivirus answers to
look for malicious programming are heuristic and signature-based scans. Signature-
based filtering checks the type of a document, searching for strings and capacities
that coordinate a known bit of malware. Heuristic-based filtering takes a gander at
the capacity of a document, utilizing calculations and examples to attempt to decide
whether the product is accomplishing something dubious.

From a defense point of view, most antivirus arrangements are signature-based.
Disentangled, these frameworks looks for executables and different records for
different kind of characters, known to happen in explicit bits of malware/payload.
On the off chance that a record contains precisely the same set of bits as one of the
strings in the antivirus’s saved database, the document is distinguished as malware
[1]; else it will not. From the hacking point of view, considers had demonstrated
that approx. 22k new strains of malware show up consistently [2]. For an antivirus
based on signature, to precisely recognize every one of these strains, it would require
information on each and every strain delivered. By and by, this seems, to be a nearly
impossible task—unquestionably some payloads or malware will undoubtedly be
missed. First analyzing whether bits of payload or malware will be distinguished by
different antivirus systems and later by matching empirical studies about detection
rates later on will outline such difficult task.

32 K. Kaushik et al.

A Payload.dll containing an insignificant to recognize Windows, shellcode, (e.g.,
a totally un-encoded or decoded payload) at that point Windows Defender can be
produced that will positively distinguish your DLL as harmful and quarantine the
document. As such, you should even now encode your shellcode that will be stacked
from the DLL to guarantee that it bypasses signature-based recognition. Graffiti
currently underpins producing scrambled payloads that permits to make a payload
scrambled with RC4, AES256 or encoded yield utilizing Base64 or XOR. It happens
that basically XOR encoding your payload routine is adequate and utilizing the
implicit “x86/xor dynamic” encoder is everything necessary to create a sans signa-
ture DLL. Regardless of Windows Defender offering critical improved recognition
recently for basic schedules and created parallels, it is as yet unimportant to sidestep
and offers little security against meterpreter. Anyway, all things considered, this will
get identified soon and as such a variety of this ought to be adjusted for your own
employments. We strongly suggest utilizing Windows CryptoAPI and utilizing an
AES256 encoded payload to additionally hinder recognition of shellcode inside a
payload.dll, left as an activity to the reader, anyway XOR appears to be entirely
adequate as of now.

We can simply alter and execute these scripts or codes into OS like Linux and
Windows. There is least probability to get contracted by antivirus arrangements,
and this is the most successful technique to dodge antivirus in the event that you
can’t compose malware without anyone else. Antivirus avoidance toolboxes work
for brief timeframe, until unless they are not leaked to antivirus sellers. Later, when
antiviruses companies improve their system’s databases and strategies, organizations
can without much of a stretch perceive malware produced by toolboxes. That is the
reason minor changes in the already available shell codes on the net always help. We
can discover many payloads or reverse shell codes on the web, just simply change
IP address and the associated port number and we can pass through majority of the
defense systems of antivirus systems in less than an hour without composing a single
line of code.

3 Working Methodology

3.1 Obfuscate with Graffiti

It is energizing to get that reverse shell or execute a payload, yet some of the time
these things do not function true to form when there are sure protections in play.
One approach to get around that issue is by obfuscating the payload, and encoding it
utilizing various procedures will typically bring differing levels of accomplishment.
Graffiti can get that going. Graffiti is a tool that can produce obfuscated payloads
utilizing a wide range of encoding strategies. It offers a variety of jokes and shells
in dialects, for example, Python, Perl, PHP, Batch, PowerShell, and Bash. Payloads

A Systematic Approach for Evading Antiviruses ... 33

Veil evasion Graffiti
Output Format .py , .bat, .exe Text format
Server RPC server Local
| Sunpofted Onemtivg - Windows, Linux Windows, Linux

system

Fig. 1 Obfuscating with Graffiti

can be encoded utilizing base64, hex, and AES256, among others. It additionally
includes two methods of activity: command-line mode and interactive mode.

Other helpful highlights of Graffiti [3] incorporate the capacity to make your own
payload documents, terminal history, and the choice to run local OS commands, and
tab-fulfillment in intelligent mode. Graffiti should work out of the crate on Linux,
Mac, and Windows, and it tends to be introduced to the framework as an executable
on both Linux and Mac (Fig. 1).

3.2 Obfuscate with Code

The sequence of changes performed by our code obfuscation engine is appeared in
Fig. 2. The payload is right off the bat created in the bat record organization and this
code is recognized by a large portion of the antivirus so we need to transform it. We
can change the.bat record into a.exe document and around then we can change the
code. Here, we have eliminated the if-else proclamation, and it works for me. It will
bring about the detours of the antivirus.

If-else Deletion: We need to see which portion of code is required, and as indicated
by this, we can kill the if-else explanation so the code can vary from the genuine
payload document.

Dead Code Insertion: We can add some important code to the payload with
the goal that it will contrast with the real payload. Much the same as we added
some additional alternatives of PowerShell code; however, they are redundant for
the execution of the payload. We can add to vary the payload from the genuine.

Generate bat If else (ignv:nﬂ?:t Dead code Hi it
m Payload deletion 2l insertion [l
then split files

Fig. 2 Code obfuscation measure in our metamorphic engine

34 K. Kaushik et al.

4 Results and Comparison

These are the payloads Graffiti have, and we can use any of them to evade the antivirus.
These payloads can be encoded in different algorithms to not catch by the antivirus.
Most of time, they can be caught by antivirus, so then we have to manipulate or
make some changes to them. Graffiti is not as much effective to evade the antivirus,
it is detected by most of the antivirus. Like see the image below, PowerShell is not
running the base64 encoded payload. Therefore, we need to edit this or try some
other way to bypass it (Fig. 3).

Obfuscate with Veil-Evasion: Veil-Evasion is another famous framework
written in python. We can utilize this framework to produce payloads that can sidestep
most of AVs. The Evasion device is utilized to create a scope of various payloads with
the capacity to evade [4] standard endpoint antivirus. Like polymorphic malware [5],
Veil-Evasion makes a remarkable payload for which no mark should exist and can,
subsequently dodge against antivirus. This gives it an unmistakable bit of leeway
over other payload generators. We have generated a payload, which is a reverse tcp
meterpreter [6] PowerShell payload by using Veil as shown in image below (Fig. 4).

This payload is also detectable by most of the antivirus. Therefore, it is required
to convert it into exe file, and at this time, there is a need to change some part of code
to make it undetectable.

The below is PowerShell code in which there is two conditions with if and else.
One is if processor architecture is x86, and the other is else part which will run in
any other case. So, it is deleted the x86 part because the system has 64-bit processor
architecture. This will result as image below (Figs. 5 and 6).

After this, the Windows 10 defender is successfully bypassed and the payload work
smoothly. This new code with the meterpreter implanted inside will move beyond
most AV programming and security gadgets. Like whatever else, the AV developers
will probably figure out how to identify even the above payload, so be inventive and
attempt other payload muddling techniques in Veil-Evasion until you discover one
that shrouds your payload. Evading security programming and gadgets are among
the main errands of the hacker, and Veil-Evasion is another tool in our munitions
stockpile. Remember, however, that there will never be a single, last solution. The
hacker should be persevering and innovative in discovering ways past these gadgets,
so in the event that one strategy comes up short, attempt another, at that point attempt
another, until you discover one that works.

Fig. 3 Executing PowerShell

A Systematic Approach for Evading Antiviruses ...

ershell
compile,

1Framework

35

sestl.ar” | Options |\ Embed | | Versicn infoemasion |
1 echo oft
\ay swowbSiwindows powershelliv] Chpowershell exe -NoP -Nonl -W Hidden -Exec Bypass
Command “Invoke- s(woqm (=] [SMNew-Object ™ ken |
10.C O S(New-Object 10
{ H[Convest] meaasee-lsvm;(. IVPDAILAEHIX VW CEAR LOlKﬂ-DOE(SO(bA\-’DhWYmMZ I Passwers
KLEi2kvtO0r qNEAL Y BI3TOF GV
FOMKLHy RIGIMNS N+ SbUK DRI T3+ Working dreciory Cusrent deecsory ¥
BACTIONC WMBGEF s N2rV CIvOoRy U3 X DI SaPunjpl60ev SK nulk +
LB W IWE 6 TSDGRHIS GWLAM/eLDIBLIZWSS{Lparmwy ELoOWAILH Ity VEY widY ECPILuinEToMeaM e Pt [Goicomon vt =]
SKONVRGFIHIGFOZgN-
GIPUZECHGINE TTgUAGYSAJ4DUY LK f5ZRpnz 1002 /QDAENCOCY W ra
enr-ugeenswqwgm Pl 2K Bk QIF Al FP 09O DHxkrp s o,
IXM2BHTSSUBZ I Request user privieges
U-\mwktmﬂFFE(NYW BOCLFWaki M5 B prn LTCﬁS"Y‘VGL""‘"' Lt
W GLBSAE: a2 DT Opik Y egrgbidaf LpkjnG Ty 'erruxrowussov- Packer I Enatie UPX compression
6 P MW WiV LI 2o AR QG2 A TR TH== 1),
[10. Compression Compressionioda] Decompress}), [Text Encoding]:-ASCIIY) ReadToEna(."
Embedded tems
Exractio Cuerent eeesey -
Mesod Synehronous -
Dwietn cn ex o =
e Oveemes No -
terame. 2 waribivedcupesourcetessl ene
orma: 32 Bt | Console (Visibie) Save amribuses o >
AM] JAdding resources... O
.:.;Exs Depiay rames Na -

me: 2 war i houputsourcetestl exe
orman. 32 Bt | Conacls (Visisle)

Fig. 5 Output of Veil-Evasion

36 K. Kaushik et al.

Fig. 6 Malicious payload

Comparison: Graffiti offers us numerous highlights like making own payload
documents to run local orders. It likewise offers to encode payloads utilizing base64,
hex and Aes256, and so forth still it does not come out as a solid method to change
signature of the virus to bypass against virus. There are some different devices for
performing comparative sort of errand like Veil invasion and Shellter yet both offer
better payloads for bypassing the counter virus. As of now examined technique for
bypassing, it came out that we can utilize Shellter to make payload and gap it into
blocks; at last getting a more modest square to modify bits. Finally, it will go through
antivirus without disturbing any notices. At the point, when checked at VirusTotal
just barely any enemy of virus had the option to distinguish the first signature of the
payload (Fig. 7).

Fig. 7 Virus total
comparison of Veil-Evasion

and Graffiti VirusTotal Analysis

50

40 —

30 R
20

10

0
Veil

Evasion

Graffiti Shellter

™ No of Anti-virus
marked the
payload malicious
(out of 59)

41

A Systematic Approach for Evading Antiviruses ... 37

5 Conclusion

‘We have shown effectively that we can easily make a malware undetectable utilizing
code obfuscation strategies implementing insignificant changes by finding the partic-
ular signature. A big challenge for the antivirus companies to cook this improved
set of malware or virus that are based on metamorphic methods. Code obfuscation
utilization also demonstrated that size of the malware or payload was not changed
much. Each virus has its specific size, and after implementation, it still remained
unnoticeable. Indeed, we were able to achieve same usefulness as of the first virus
while accomplishing its untraceable behavior. Hence, we suggest a technique for
creating transformed duplicates of an easily available payload or virus that have a
similar usefulness as the available payload or virus and have negligible size differ-
ence of the transformed duplicates. At last, we conclude that code obfuscation can
be applied where signature of the payload or malware is distinguished in the avail-
able payload or virus. In the future, we can work on building a metamorphic system
that mechanizes this cycle. The best system to dodge protector is to make your own
obfuscate tools whether that be with a custom obfuscator or transforming them phys-
ically by hand. There is a major obfuscation local area with way bigger obfuscation
projects then this one, so another conceivable course is to alter one of those tools
barely enough as to not get captured by their old signatures.

References

1. Infinity.wecabrio.com (2021) Download learning malware analysis: explore the concepts, tools,
and techniques to analyze and investigate windows malware. http://infinity.wecabrio.com/178
8392507-1learning-malware-analysis-explore-the-concepts-to.pdf. Accessed 19 Jan 2021

2. Panda Security (2008) Creation of new malware increases by 26 percent to reach more than
73,000 samples every day, PandaLabs reports—Panda Security Mediacenter. https://www.pan
dasecurity.com/en/mediacenter/press-releases/creation-of-new-malware-increases-by-26-per
cent-to-reach-more-than-73000-samples-everyday-pandalabs-reports/ (accessed Dec. 29, 2021)

3. WonderHowTo (2021) Bypass antivirus software by obfuscating your payloads with
graffiti. https://null-byte.wonderhowto.com/how-to/bypass-antivirus-software-by-obfuscating-
your-payloads-with-graffiti-0215787/. Accessed 19 Jan 2021

4. WonderHowTo (2021) Hack like a Pro: how to evade AV software with Shellter. https://null-byte.
wonderhowto.com/how-to/hack-like-pro-evade-av-software-with-shellter-0168504/. Accessed
19 Jan 2021

5. En.wikipedia.org (2021) Polymorphic code. https://en.wikipedia.org/wiki/Polymorphic_code.
Accessed 19 Jan 2021

6. Scriptjunkie.us (2021) Why encoding does not matter and how Metasploit generates
EXE’S. Thoughts on Security. https://www.scriptjunkie.us/2011/04/why-encoding-does-not-
matter-and-how-metasploit-generates-exes/. Accessed 19 Jan 2021

http://infinity.wecabrio.com/1788392507-learning-malware-analysis-explore-the-concepts-to.pdf
https://www.pandasecurity.com/en/mediacenter/press-releases/creation-of-new-malware-increases-by-26-percent-to-reach-more-than-73000-samples-everyday-pandalabs-reports/
https://null-byte.wonderhowto.com/how-to/bypass-antivirus-software-by-obfuscating-your-payloads-with-graffiti-0215787/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-evade-av-software-with-shellter-0168504/
https://en.wikipedia.org/wiki/Polymorphic_code
https://www.scriptjunkie.us/2011/04/why-encoding-does-not-matter-and-how-metasploit-generates-exes/

	 A Systematic Approach for Evading Antiviruses Using Malware Obfuscation
	1 Introduction
	2 Related Work
	3 Working Methodology
	3.1 Obfuscate with Graffiti
	3.2 Obfuscate with Code

	4 Results and Comparison
	5 Conclusion
	References

