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Abstract Ductile fracture inmetals occurs due to the nucleation, growth and coales-
cence of microscopic voids, resulting in a macroscopic crack. These voids often
originate at different length scales due to cracking of large-sized inclusions or deco-
hesion at second-phase particles. In several structural materials like low-alloy steels,
secondary voids accelerate the ductile damage process, thus, resulting in a severe
reduction in ductility. A systematic study analyzing the effect of spatial distribution
of secondary voids on the growth and coalescence of primary voids has yet not been
reported. In the present work, finite element-based cell model studies are carried
out to understand the void interactions in elastic–plastic solids containing voids at
two distinct length scales. A double periodic array of primary and secondary voids
subjected to uniaxial loading under plane strain condition is analyzed. The effect of
secondary void location and its orientation on the mesoscale response and evolution
of porosity is studied numerically. Our numerical results suggest that the interactions
between the two-scale voids accelerate the growth and coalescence of primary voids.
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Nomenclature

2A0 Intervoid distance of primary voids in X1 direction in undeformed state
2B0 Intervoid distance of primary voids in X2 direction in undeformed state
DP0 Initial diameter of primary void
DS0 Initial diameter of secondary void
a0 Undeformed radius of primary void in X1 direction
c0 Undeformed radius of primary void in X2 direction
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P Distance between primary and secondary void
θo Angle between secondary void and X1 direction in the undeformed state
σy Yield strength
E Young’s modulus
ν Poisson’s ratio
n Hardening exponent
σe Equivalent stress
σh Hydrostatic stress
T Stress triaxiality ratio
Ee Equivalent strain
VVF Void Volume Fraction
Fp Primary void volume fraction
FS Secondary void volume fraction
FT Total void volume fraction
Fp0 Initial volume fraction of primary void
Fs0 Initial volume fraction of secondary void
V0,V Initial and current volume of the cell, respectively

1 Introduction

Ductile fracture in metals comprises a three-stage process namely; void nucleation,
growth and coalescence [1]. In structural metals like low-alloy steels, voids typi-
cally nucleate at different length scales due to cracking of large-sized inclusions
or decohesion at second-phase particles. The larger-sized (primary) voids nucleate
relatively early and enlarge due to plastic deformation of the surrounding matrix up
to a point where plasticity localizes in the ligament between neighbouring voids [2,
3]. This stage is often referred to as the onset of void coalescence. Beyond this stage,
primary voids typically link up to each other or to a main crack due to new surfaces
created by nucleation, growth and coalescence of much smaller (secondary) voids
that nucleate at relatively large strains [2]. Typically, secondary voids are defined
as being one order of magnitude smaller than primary voids. The volume fraction
of these secondary voids can be of the order of 1%. Experimental evaluation of the
effect of secondary voids on the growth and coalescence of primary voids and, hence,
on macroscopic ductility poses several challenges [2].

It is generally agreed that the mechanism of fracture in ductile materials is a mani-
festation of the role played by void population attributes, namely porosity, shape of
voids and their spatial distribution (location and orientation), and the matrix hard-
ening attributes in the mechanism of plastic flow and localization. The existing
models of ductile fracture, however, have mainly focussed on the role of primary
voids in the macroscopic fracture process. The development of these models is moti-
vated by the seminal work of McClintock [4] and Rice and Tracey [5], who analyzed
the growth of an isolated void in an infinite medium. Later, Gurson [6, 7] performed
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a limit-analysis of a hollow sphere of finite radius, thus, incorporating the effect of
arbitrary non-zero porosities on themacroscopic response of a rigid-plastic solid. The
model was extended to include the effect of matrix hardening in a heuristic manner.
Since the Gurson model accounted only for the void growth, heuristic corrections
were incorporated to account for the mechanism of void nucleation and coalescence,
notably based on micromechanical cell model studies. In recent years, an increasing
attention has been paid to improved characterization of ductile fracture at low stress
triaxiality [8]. Various generalizations of the Gurson model have been proposed to
account for the anisotropies associated with plastic deformation of the matrix and
the evolution of void shapes at arbitrary finite strains [10]. The existing ductile frac-
ture models (including the recent ones which account for the anisotropic effects of
matrix deformations and void shapes, as well as those based on rigorous nonlinear
bounds), were developed on the basis that the void growth is driven by some diffuse
plastic flow in the matrix. Consequently, predictions based on these models overesti-
mate measured ductilities [2, 3]. Experimental observations suggest strong evidence
for a termination to stable void growth by various mechanisms of flow localiza-
tion in the intervoid matrix. An important contribution to the modelling of internal
necking was made by Koplik and Needleman [11]. Void coalescence can also occur
due to formation of a micro shear band between the neighbouring voids. Material
instability inside this band is described by the localization condition proposed by
Rice [12] and Needleman and Rice [13]. These studies, however, were focused on
modelling the flow localization in a matrix containing only one population of void
nucleating particles.

Although the role played by secondary voids in the macroscopic fracture process
is well-recognized, till date only limited studies have focussed on modelling their
effects on the fracture ductility. Perrin and Leblond [14] analyzed a hollow sphere
containing one large primary void surrounded by a porous plastic matrix containing
the secondary voids. Brocks et al. [15] and Fabregue and Pardoen [16] numerically
modelled the effect of second population of voids using a Gurson-type model. Gao
and Kim [17] proposed to account for the secondary voids through calibration of a
critical porosity for the coalescence of primary voids. Faleskog and Shih [18], and
Tvergaard [19, 20] carried out numerical studies with an explicit representation of
both primary and secondary voids. These studies were focused on analyzing the role
of increased local stresses resulting from the growth of larger voids in a cavitation
type instability at the smaller void. The effect of void volume fraction on the void
growth rate was studied numerically. While the former authors performed plane
strain analysis of cylindrical voids, the later author carried out axi-symmetric studies
on a special void configuration where each larger void was surrounded by a smaller
void and vice-versa. More recent research in this area has focused on bringing the
size effects of the secondary voids, [21–25] for a fixed volume fraction, on ductile
fracture. While Zybell et al. [25] performed cell model studies, Hutter et al. [24]
focused on modelling the process zone near the crack tip. In both these studies, the
primary voids were modelled discretely, and the size of the secondary voids was
incorporated indirectly in terms of an intrinsic length that was introduced in the
non-local formulation of the GTN model.
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Most of the above-mentioned studies, employing a homogenized representation
of the secondary voids, suggest that the nucleation and growth of secondary voids
mainly accelerate the void coalescence process, the primary void growth is largely
uninfluenced [16]. Based on an explicit representation of primary and secondary
voids, Khan and Bhasin [26] have shown that the secondary voids can enhance the
growth of primary voids and the mesoscopic ductility depends on the spatial distri-
bution of secondary voids. In the present work, the effect of location and orientation
of a secondary void, in the intervoid ligament between the primary voids, on the
mesoscopic response and evolution of porosity is studied numerically. In particular,
focus is laid on understanding how the voids originating at two distinct length scales
interact with each other. Both the primary and secondary voids are assumed to be
present from right from the beginning of the deformation history. Plane strain condi-
tion is assumed, and a uniaxial tensile load is applied. Our numerical results suggest
that the interactions between the two-scale voids accelerate the growth and, hence,
the coalescence of primary voids.

2 Problem Formulation

An elastic–plastic solid containing pre-existing voids of two different sizes is
analyzed numerically. 2D double periodic arrays containing cylindrical primary and
secondary voids are shown in Fig. 1. The diameters of primary and secondary voids,
in the undeformed state, are denoted as Dpo and Dso, respectively. The initial spacing

Fig. 1 2D double periodic arrays of primary and secondary voids analyzed in this study a two
secondaryvoids are located in the intervoid ligament between the twoprimaryvoidsb four secondary
voids surround each primary void. Dashed square is showing a unit cell and the hatched portions
are analyzed due to symmetry conditions. The initial volume fraction of primary and secondary
voids is kept the same in (a) and (b)
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between the two primary (large sized) voids is 2Ao and 2Bo in the X1 and X2 direc-
tions, respectively. Two different spatial distributions of secondary voids are consid-
ered. In Fig. 1a, two secondary voids are located in the intervoid ligament between
the two primary voids. In the undeformed state, the distance of a secondary void
from the neighbouring primary void is denoted by P. Figure 1b depicts an arrange-
ment where four secondary voids surround each primary void and are lying at a fixed
distance P from the neighbouring primary void. The initial orientation of a secondary
void with respect to the intervoid ligament is described by the angle θ. A uniaxial
tensile load is applied at X2 = Bo. The initial volume fraction of the secondary voids
is kept the same for the two different voids arrangements, shown in Fig. 1.

2.1 Governing Equations

A Lagrangian finite strain formulation of the field equations is used. The initial
unstressed state is taken as the reference configuration and the position of a material
point, relative to a fixed Cartesian frame, in the reference configuration is denoted

as x. The material point, initially at x, is at
−
x in the current configuration. The

displacement vector u and the deformation gradient F are defined as

u = x- x, F =
∂x

∂x
(1)

The finite element formulation is based on the principle of virtual work written as

∫
v

s : δFdV =
∫
s
T · δu dS (2)

where s is the (nonsymmetric) nomial stress, T is the traction, u is the displacement,
V and S are, respectively, the volume and surface of the body in the reference config-
uration. The traction and the reference configuration normal are related by T = n.s
and s = F−1 τ with τ = det(F)σ and σ the Cauchy stress.

Due to symmetry considerations only 1/4th models, shown by hatched lines in
Fig. 1, are analyzed numerically. Symmetry conditions are incorporated using the
following boundary conditions,

u1 = 0 at x1 = 0 (3)

u2 = 0 at x2 = 0 (4)

The boundary of the cell model at x1 = Ao is constrained to remain plane
throughout the loading history to simulate periodic boundary condition. Plane strain
condition is simulated by constraining the nodal displacements, that is,
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u3 = 0 at x3 = 0 and x3 = 1 (5)

2.2 Constitutive Relations

Most of the numerical calculations reported in this study are carried out using a rate-
independent J2 isotropic hardening response for the elastic–plastic matrix between
the two populations of voids. The matrix response is characterized by the following
representation in uniaxial tension,

ε =
{

σ
E , for σ ≤ σy
σy
E

(
σ
σy

)n
for σ > σ y

(6)

Here, E is Young’s modulus, σy is the initial yield stress, and n is the strain-
hardening exponent. In all our studies, σy/E = 0.004, ν = 0.333 and n = 0.1 are
used.

And the modified Gurson model is used for the homogenized representation
of secondary voids volume fraction (0.036%) over the matrix. The following
constitutive equation describes the matrix behaviour

(σe

σo

)2 + 2q1Fs cosh

(
q2

3σh

2σo

)
− 1 − q3F

2
s = 0 (7)

where q parameters values are taken q1 = 1.5, q2 = 1 and q3 = q12. Fs is the current
volume fraction of secondary voids and σ0 is the equivalent tensile flow stress in the
matrix.

The mesoscopic response of the unit cell is described by the following variables,

Equivalent stress : σe =
√
1

2

[
(σ1−σ 2)

2+(σ2−σ 3)
2+(σ3−σ 1)

2
]

(8)

Hydrostatic stress : σh

(σ1+σ 2+σ 3)

3
(9)

Stress Triaxiality : T = σh

σe
(10)

Equivalent strain : Ee =
(√

2

3

)√
(E1 - E2)

2+(E2 - E3)
2+(E3 - E1)

2 (11)
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Here, σ1, σ2 and σ3 are the Cauchy stresses and E1, E2 and E3 are the logarithmic
strains in X1, X2 and X3 direction, respectively. Numerical analyses are performed
at fixed triaxiality, T = 1/3.

3 Results and Discussion

In this section, the numerical results obtained from finite element analysis of a unit
cell containing two-scale voids are presented. As mentioned earlier, both primary
and secondary voids are assumed to be present right from the beginning of the
deformation history. IN all our numerical analyses, the initial volume fraction of
the primary voids (Fpo) and secondary voids (Fso) is taken as 2.4% and 0.036%,
respectively. The two populations of voids are modelled explicitly and an assumption
of plane strain deformation is made. Twenty noded hexahedral brick elements are
used to discretize the quarter symmetric models. A unit thickness is assumed in the
X3 direction and only one element is modelled across the thickness. Typical finite
element meshes used to model the two different spatial arrangements of secondary
voids, shown in Fig. 1, are presented in Fig. 2. We first present the results for the case
where only primary voids exist and then analyze the influence of small secondary
voids on interactions between the two-scale voids and plastic flow localization.

Fig. 2 Typical finite element meshes used to discretize a quarter symmetric unit cell containing
primary and secondary voids a Secondary void lying in the ligament between the two primary voids
b Secondary void at an orientation of 30° with respect to the intervoid ligament (ao and co are the
undeformed radii of the primary void in X1 and X2 directions, respectively)
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3.1 Mesoscopic Response of an Elastic–Plastic Solid
Containing Only Primary Voids

Themesoscopic equivalent stress s equivalent strain response of a unit cell containing
only primary void is shown in Fig. 3a. A competition between matrix material strain
hardening and the porosity-induced softening can be clearly observed. Towards the
later stages of the deformation history (Ee > 0.4), the stress carrying capacity reduces
abruptly. For an elastic–plastic solid containing only primary voids, the evolution
of porosity is rather straightforward. Based on matrix incompressibility condition,
Koplik and Needleman [11] have proposed the following relation to compute the
void volume fraction F,

F = 1 - (1 - F0)

(
V0

V

)
−�Ve

V
(12)

Here, V0 and V are the initial and current volume of the unit cell, respectively,
and F0 is the initial void volume fraction. �Ve is the elastic dilation of the matrix
resulting from the hydrostatic stress and can be obtained as

�Ve = V0(1 − F0)
3(1 − 2ν)

E
σh (13)

The evolution of porosity obtained from the Koplik and Needleman scheme is
presented in Fig. 3b. Initially, the void growth is slow, and the porosity evolution curve
is varying almost linearly with the equivalent strain. As the deformation progresses,
the deformation mode shifts to a uniaxial mode of straining that corresponds to
flow localization in the ligament between the two adjacent voids. At this stage,
the void volume fraction increases rapidly, often referred to as the onset of void
coalescence, and the event is associatedwith a rapid drop in the load carrying capacity.
An interested reader can find further details elsewhere [11]. Apart from porosity the
evolution of void aspect ratio W, defined as the ratio of axial to transverse semi-axes
(W = c/a), with the equivalent strain is also analyzed, see Fig. 3c. Under uniaxial
tension, the void first evolves into a prolate shape. With the onset of plastic flow
localization, the void starts growing rapidly in the transverse direction with internal
necking as the mode of coalescence.

3.2 Effect of Secondary Voids Location on Void Interactions
and Plastic Flow Localization

The spatial arrangement of secondary voids shown in Fig. 1a is analyzed in this sub-
section. The position of primary void is kept fixed and the location of secondary void,
in the intervoid ligament between the two primary voids, is varied to understand the
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influence of secondary voids distribution on the interactions between the two-scale
voids and plastic flow localization. The mesoscopic equivalent stress Vs equivalent
strain response of the unit cell for the three different arrangements of secondary
voids (P/Ao = 0.25, 0.50 and 0.75) is shown in Fig. 4a. For comparison purpose, the
results for the case where only primary voids exist, presented in Sect. 3.1, are also
included. For an initial void volume fraction of 0.036%, a homogenized representa-
tion of the secondary voids, using the Gurson model, lead to a very small additional
constitutive softening and the mesoscopic response is almost the same as observed
for the case where only primary voids exist. In contrast, the discrete representa-
tion of secondary voids has shown an interesting effect of voids distribution on the
mesoscopic response. When a secondary void is located close to a primary void
(P/Ao = 0.25), the intervoid ligament is quite small. As the voids grow, the ligament
reduces, leading to the coalescence of the secondary void during the early stage of
the deformation history.

Beyond this stage, the two coalesced voids start behaving like a single primary
void but with a larger void volume fraction. As a result, the mesoscopic stress–
strain curve deviates from that of primary voids almost right from the beginning.
When P/Ao = 0.5, initially, both the voids grow almost independent of each other.
As deformation progresses, the von-mises stress around the secondary void distorts
its shape. This leads to magnification of the hydrostatic stress around the primary
void causing it to grow at a faster rate. The accelerated growth of the primary void
generates sufficient hydrostatic stress around the secondary void, thus, enhancing the
growth of the latter. This complex interaction between the two-scale voids results
in a rapid evolution of total porosity. As a result, the mesoscopic response becomes
soft and starts falling below that of the primary voids. With further deformations, the
localization of plastic flow sets in with a consequent rapid drop in the load carrying
capacity. When the distance of the secondary void from the neighbouring primary
void is large (P/Ao = 0.75), it is basically the two secondary voids that interact with
each other, and the growth of primary voids is largely uninfluenced. The mesoscopic
response, therefore, is almost like that of primary voids till the localization of plastic
flow starts. A plot of mesoscopic transverse strain E1 Versus equivalent strain for
the three different arrangements of secondary voids is presented in Fig. 4b. Near the
onset of flow localization, the deformation mode abruptly shifts to a uniaxial mode
of straining and the cell transverse deformation stops. The maximum reduction in
the mesoscopic ductility is observed when the secondary voids are located at the
distance of P/Ao = 0.5. Figure 4d, f shows the influence of secondary voids locations
on the evolution of porosity. A numerical integration scheme was used to evaluate
the primary and secondary void volume fractions separately. The accuracy of the
numerical scheme was assessed by comparing the total void volume fraction (Fp +
Fs) with that obtained from the Koplik and Needleman scheme [11]. For P/Ao =
0.25, the coalescence between primary and secondary void occurs during the early
stage of the deformation process. The porosity evolution curves of the two voids
are terminated at the stage of void collapse and subsequently, only the evolution of
total porosity is shown. When P/Ao = 0.5, the void collapse occurs after significant
plastic deformation, and the total porosity at this stage is more than three times the



A Numerical Study of Void Interactions … 375

(a) (d)

(b) (e)

(c) (f)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5

Eq
ui

va
le

nt
 s

tr
es

s 
(

e/ σ
y) 

 

Equivalent strain (Ee)

primary void
Gurson
P/Ao=0.25
P/Ao=0.5
P/Ao=0.75

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5

Tr
an

sv
er

se
 s

tr
ai

n 
(E

1)

Equivalent strain (Ee)

Primary void
P/Ao=0.25
P/Ao=0.50
P/Ao=0.75

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

Vo
id

 s
ha

pe
 fa

ct
or

 (S
 =

 ln
 W

)

Equivalent strain (Ee)

Primary void
P/Ao=0.25
P/Ao=0.50
P/Ao=0.75

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 0.1 0.2 0.3 0.4 0.5

Vo
id

 v
ol

um
e 

Fr
ac

tio
n 

(F
)

Equivalent strain (Ee)

Primary void
Fp
Fs
Ft

P/Ao=0.25

Void collapse

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 0.1 0.2 0.3 0.4 0.5

Vo
id

 v
ol

um
e 

Fr
ac

tio
n 

(F
)

Equivalent strain (Ee)

Primary void
Fp
Fs
Ft

P/Ao=0.75

Void collapse

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 0.1 0.2 0.3 0.4 0.5

Vo
id

 v
ol

um
e 

Fr
ac

tio
n 

(F
)

Equivalent strain (Ee)

Primary void
Fp
Fs
Ft

P/Ao=0.50

Void collapse

Fig. 4 Effect of secondary voids location on a equivalent stress Versus equivalent strain b Trans-
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fraction is denoted as Ft
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initial porosity. When secondary void is located at a large distance P/Ao = 0.75,
the localization of plastic flow arising due to growth of the primary void accelerates
the growth of the secondary void. As a result, the collapse between primary and
secondary void is observed at a strain level that is higher than that required for
localization of plastic flow.

The effect of secondary voids distribution on the evolution of primary void shape
was also analyzed, see Fig. 4c. For P/Ao = 0.25, the presence of a secondary void and
its early coalescence results in some changes in the shape of primary voids particu-
larly in the initial stage of deformations. Subsequently, the primary void continues
to evolve into a prolate shape till the localization of plastic flow starts. When P/Ao =
0.5, the strong interactions between the two-scale voids arrest the axial stretching of
primary void and void flattening starts resulting in collapse between the primary and
secondary void. For the case, where secondary voids are located at a large distance
from the primary void P/Ao = 0.75, the shape of the latter, until the commencement
of flow localization, remains almost the same as observed for the case where only
primary voids exist.

The effect of secondaryvoids distribution, in the ligament between the twoprimary
voids, on the two-scale voids interactions is shown pictorially in Fig. 5. The plots
of equivalent plastic strain for the case where only primary voids exist and the other
three cases where secondary voids are at different locations in the intervoid ligament
are extracted at a fixed imposed strain (E2 = 0.2).

3.3 Effect of Secondary Voids Orientation on Void
Interactions and Plastic Flow Localization

Wenowexamine the effect of secondary voids orientationwith respect to the ligament
between the two primary voids, see Fig. 1b, on the two-scale voids interaction and
plastic flow localization. Since the boundary conditions imposed on the cell model
exclude the possibility of bifurcation, internal necking is the only mode of void
coalescence that can be simulated in our numerical studies. Nevertheless, some useful
insights can still be gained by analyzing the effect of the spatial distribution of
secondary voids on mesoscale plastic flow. In all the results presented in this sub-
section, the secondary voids are located at a fixed distance P/Ao = 0.5 and the
orientation angle θ is varied. Numerical results of mesoscopic stress–strain response,
the evolution of porosity and primary void shape is presented for θ = 0, 15 and 30°,
see Fig. 6. Results for the case θ = 0° have already been presented in the previous
sub-Sect. 3.2 and are included here just for comparison’s sake. As expected, the case
θ = 0° leads to a maximum reduction in the mesoscopic ductility. As the angle θ

increases, the effect of secondary voids on the mesoscopic stress–strain response and
porosity evolution diminishes and for θ ≥ 30° it becomes almost insignificant.

It is recognized that typically the secondary voids nucleate in the regions of
strain concentration arising due to flow localization in the ligament between the two
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(c) (d)

Secondary void

Primary void

Secondary void

Fig. 5 Contours of equivalent plastic strain for the case where only primary voids exist is shown
in (a). The distance of the secondary void from the neighbouring primary void P/Ao is 0.25, 0.5
and 0.75 in (b), (c) and (d), respectively. The contours are extracted at a fixed value of axial strain
E2 = 0.2

neighbouring primary voids. If due to local heterogeneity in the matrix or some other
reason the secondary void has nucleated at an arbitrary location, then to what extent
its growth may affect the macroscopic response is examined numerically.

The configuration of voids shown in Fig. 1, especially under the uniaxial loading
condition, is favourable to internal necking as the mode of coalescence between the
neighbouring primary voids. Initially, as the deformation increases, the tendency for
shear band formation is observed. Since the kinematic constraint in our cell model
analysis excludes the possibility of bifurcation, the developed stress fields around the
secondary voids oriented at an angle of 15° and 30° are not strong enough to trigger
the growth of voids. With further deformation, internal necking occurs between the
ligament of primary voids. As a result, the secondary voids located at 0-degree
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Fig. 6 Effect of orientation of secondary voids on (a) equivalent stress versus equivalent strain
(b) Transverse strain versus equivalent strain (c) evolution of primary void shape. The evolution
of void volume fraction for P/Ao = 0.25, 0.5 and 0.75 is shown in (d), (e) and (f), respectively.
Notations Fp and Fs denote the void volume fraction of primary and secondary voids, respectively.
The total void volume fraction is denoted as Ft
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exhibits an accelerated growth, see Fig. 6d, resulting in a significant loss of stress
carrying capacity and an earlier localization of plastic flow.

At θ = 0°, the secondary void is lying in the relatively higher stress triaxiality
regime and, therefore, exhibits a much faster lateral growth. In fact, a physical
collapse (void impingement) between primary and secondary void occurs slightly
before the mesoscopic flow localization. For θ = 15°, the growth of secondary voids
is comparatively slow, see Fig. 6e, and themesoscopic flow localization occurs earlier
before their physical collapse. For θ= 30°, a collapse between primary and secondary
voids is not observed. It is perhaps worth discussing the influence of secondary voids
orientation on their shape evolution. In general, a high stress triaxiality promotes void
growth whereas void shape changes and void rotations are more prominent at low
stress triaxiality. The contours of equivalent plastic strain, shown in Fig. 7, clearly
show this tendency. As the orientation angle θ increases, shear stress field around

Primary

Seconddary void

y void 

                (a) 

Secondary vvoid

          (c) 

(b) 
Secondary

Fig. 7 Contours of equivalent plastic strain for three different orientations of secondary voids. The
secondary void is at a fixed distance (P/Ao = 0.5) from the primary void. The orientation angle θ

is 0, 15 and 30° in (a), (b) and (c), respectively. The contours are extracted at a fixed value of axial
strain E2 = 0.25
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the secondary void becomes significant, thus, leading to noticeable changes in shape
and orientation of secondary voids.

4 Conclusions

The numerical results reported in this study have led to the following conclusions:

1. Secondary voids even of small initial volume fraction (fso/fpo ≈ 0.015) may
exhibit a significant influence on the evolution of porosity and, hence, on the
mesoscopic ductility.

2. Depending upon the location of secondary voids in the intervoid ligament
between the primary voids, a complex interaction between the two-scale voids
sets in which results in a faster evolution of total porosity. In such cases, a
physical collapse between the primary and secondary void is observed slightly
before the onset of plastic flow localization. If the secondary voids are too near
or too far from the primary voids, then it is the localization of plastic flow that
accelerates the evolution of porosity.

3. For themode of internal necking analyzed in this study, a secondary void lying in
the intervoid ligament between the primary voids (θ = 0°) leads to a maximum
reduction in mesoscopic ductility.
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