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Abstract

The discovery of the G-protein coupled-recep-
tor (GPCR) CXCR4 as a major coreceptor of
HIV-1 entry about three decades ago
explained why the chemokine SDF-1/
CXCL12 inhibits specific viral strains. The
knowledge that RANTES, MlP-1α, and
MlP-1β specifically inhibit other primary
HIV-1 strains allowed the rapid discovery of
CCR5 as second major viral coreceptor and
explained why individuals with deletions in
CCR5 are protected against sexual HIV-1
transmission. Here, we provide an update on
endogenous ligands of GPCRs that act as
endogenous inhibitors of HIV-1, HIV-2, and
simian immunodeficiency virus (SIV) entry. In
addition, we summarize the development of
optimized derivatives of endogenous GPCR
ligands and their perspectives as antiviral
agents and beyond. Finally, we provide
examples for other endogenous peptides that
may contribute to our innate immune defense
against HIV-1 and other viral pathogens and
offer prospects for preventive or therapeutic
development.
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5.1 Introduction

Our innate immune response represents the first
line of defense against viral pathogens. Detection
of foreign viral invaders by immune sensors
induces the interferon system and consequently
increases expression of numerous antiviral factors
as well as activation of immune-associated
proteases. Antimicrobial peptides (AMPs) are an
important component of the innate immune
response (Ahmed et al. 2019; Sørensen et al.
2008). While many intracellular antiviral factors
restrict viral replication in cells that are already
infected, AMPs usually act outside of the cell and
may destroy viral particles directly and/or protect
uninfected cells against viral entry. Many human
AMPs, such as defensins and cathelicidin LL-37,
are positively charged and helical and best known
for their broad antibacterial activity (Diamond
et al. 2009; Wang et al. 2014). It has become
clear, however, that AMPs are structurally more
versatile than initially thought and also display
antiviral and immunomodulatory activities (Vilas
Boas et al. 2019; Pahar et al. 2020).

In the case of HIV-1 and related nonhuman
primate lentiviruses, endogenous inhibitors may
not only play a role in controlling viral replication
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but were also instrumental in elucidating the viral
entry process. Since depletion of CD4+ T cells is
a hallmark of HIV-1 infection in vivo, CD4 was
identified as primary receptor soon after the dis-
covery of this virus as causative agent of AIDS
(Sattentau and Weiss 1988). While it also rapidly
became clear that additional factors are required
for viral entry, their identification took more than
a decade (Alkhatib and Berger 2007). The break-
through came with the discovery of CXCR4 as
entry cofactor of HIV-1 strains causing strong
cytopathic effects in immortalized T cell lines.
CXCL12 (initially named SDF-1), the chemokine
ligand of CXCR4, inhibited infection of some
HIV-1 strains (Ahmed et al. 2019). Many other
HIV-1 strains, however, were inhibited by CCL5
(initially named RANTES) and to a lesser extent
by CCL3 (MlP-1α) and CCL4 (MlP-1β), which
were all already known to interact with CCR5
(Lusso 2006). This knowledge allowed the rapid
discovery of CCR5 as major coreceptor of pri-
mary HIV-1 strains (reviewed in: Alkhatib and
Berger 2007). Subsequent studies showed that
CCR5 plays the key role in virus transmission
and during chronic infection, while CXCR4-
tropic HIV-1 strains emerge in about half of all
AIDS patients and are associated with rapid dis-
ease progression in the absence of combined anti-
retroviral therapy (cART) (Connor et al. 1997;
Schuitemaker et al. 2011).

Since the initial discovery of CCR5 and
CXCR4 as major coreceptors of HIV-1, several
other GPCRs have been reported to mediate
HIV-1 entry albeit with lower efficiency (Pollakis
and Paxton 2012; Wetzel et al. 2018). It has also
been established that HIV-2 and related simian
immunodeficiency viruses (SIVs) are more pro-
miscuous in coreceptor usage. A variety of
chemokines and peptidic GPCR ligands have
been reported to specifically inhibit HIV-2 and
SIV entry (Fig. 5.1). Most but not all of them also
regulate the physiological signaling function of
the respective GPCRs and may thus play impor-
tant roles in the trafficking and function of
immune cells. In this review, we summarize key
findings on endogenous peptide inhibitors of
HIV-1 and related primate lentiviruses, with a
focus on entry inhibitors. We also discuss their

mechanism of action, the optimization of endog-
enous agents, and their potential prospects for
preventive or therapeutic development and
application.

5.2 Antiviral Host Defense
Peptides

5.2.1 Defensins

Peptides exhibiting antimicrobial, antifungal, or
antiviral activity are referred to as Host Defense
Peptides (HDPs). These are commonly constitu-
tively expressed in mucous tissue and induced
early during immune activation as a first line of
defense against human pathogens (Schröder and
Harder 1999). Defensins form a diverse group of
30–40 amino acid long peptides sharing similar
charge, morphology and antimicrobial properties
(Shafee et al. 2016). While the α-defensin
precursors DEFAs (Defensin, alpha) proteins,
cluster on chromosome 8, β-defensin are encoded
on a variety of genes and grouped based on their
structure and function. All defensins are
characterized by three intramolecular cysteine-
disulfide bonds, β-sheet structure and their cat-
ionic and amphipathic properties (Bulet et al.
2004). The human α-defensins 1–3, and human
β-defensin-2 and 3 inhibit replication of CCR5-
and CXCR4-tropic strains of HIV-1, including
several primary isolates in the low μM range
(Hu et al. 2019; Quiñones-Mateu et al. 2003;
Wu et al. 2005). Structural integrity of the three
intramolecular cysteine-disulphide bonds, as well
as side chain hydrophobicity, were shown to be
critical for antiviral activity. Human α-defensins
1–3 and 5 are lectin-like and bind the glycosyla-
tion sites of the HIV-1 gp120, thereby inhibiting
virion attachment. However, the antiviral activity
of human α-defensin 5 remains controversial
(Ding et al. 2013; Furci et al. 2012). α-defensin
concentrations in human saliva vary between
1 and 10 μg/ml, being in the range of antimicro-
bial and antiviral active concentration (Gardner
et al. 2009).

Of three known classes of defensins (α-, β-,
and θ-defensin) only α- and β-defensins are
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transcribed in humans. Human θ-defensin is a
pseudogene harboring a premature stop codon
(Daher et al. 1986; Zhao et al. 2013).
θ-defensins, which are expressed in monkeys, or
synthesized based on the human pseudogene
sequence, are named retrocyclins (Cole et al.
2002; Nguyen et al. 2003). Unlike α- and
β-defensin, retrocyclins are circular peptides but
contain the disulphide bonds that are characteris-
tic for defensins. Retrocyclins were found to bind
and restrict the HIV-1 glycoproteins gp120, gp41
and its cellular receptor CD4 due to its lectin-like
ability to bind N-and O-linked carbohydrates,
while having little to no effect on cell fusion of
HIV-2 and SIV (Münk et al. 2003; Owen et al.
2004; Wang et al. 2003). Additionally,
retrocyclins may bind the HIV-1 heptad repeats,
thereby inhibiting 6-helix bundle formation of
gp120 and virus-cell fusion (Cole et al. 2006;
Gallo et al. 2006). The retrocyclin congener
RC-101 was confirmed safe during in vivo appli-
cation in pigtailed macaques. RC-101 was
applied in the cervix and vagina of the primates

as a quick-dissolving film, where it remained for
several days and kept its activity against HIV-1
and SIV (Cole et al. 2010). Recent studies char-
acterize the role of defensins in HIV response in
human macrophage systems and connect the
antiviral effect of defensins to GPCR mediated
signaling pathways (Bharucha et al. 2021). It
remains to be determined, whether defensins
play a role in the innate defense against HIV-1
in vivo. However, their broad antiviral and anti-
microbial effects make defensins interesting for
future therapeutic applications (Park et al. 2018).

5.2.2 LL-37

Most HDPs are expressed as precursor proteins
and proteolytic processing leads to the release of
the bioactive peptides. A well-studied member of
the cathelicidin protein family is hCAP-18.
hCAP-18 can be processed in 16 different
fragments some of which show antimicrobial
and antiviral activity (Agerberth et al. 1995;

Fig. 5.1 Schematic presentation of HIV and SIV entry
and endogenous (poly)peptides inhibiting this process.
CD4 binding of the viral glycoprotein (e.g., HIV-1
GP120) and subsequent interactions with GPCRs result
in the liberation and membrane insertion of the GP41
fusion peptide (FP). Subsequent six-helix bundle

formation triggers the fusion of viral and cellular
membranes and ultimately leads to the release of the
viral capsid into the cytosol of the host cell. Virus infection
can be blocked at several stages by the indicated endoge-
nous antiviral chemokines and peptides
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Steinstraesser et al. 2005). The latter, in particu-
lar, has been described for LL-37, a 37-aa cationic
peptide generated by proteinase 3 mediated cleav-
age of the C-terminal end of hCAP18. LL-37 has
an α-helical structure and forms aggregates in
solution (Shahmiri et al. 2016; Wang et al.
2014). Its amphipathic nature allows LL-37 to
insert into lipid bilayers. Thus, unlike other
HDPs, LL-37 is protected from proteolytic degra-
dation (Oren et al. 1999). Further optimization of
LL-37 led to the identification of FK-17 as mini-
mal active antiviral peptide (Wang et al. 2008).
The antibacterial activity of LL-37 is mediated by
permeabilization of bacterial membranes. Choles-
terol, which is absent in bacterial cell membranes,
protects mammalian cells from LL-37 mediated
pore formation (Brender et al. 2012; Sancho-
Vaello et al. 2020). The antiviral mechanism
of LL-37 is under debate. An inhibitory effect of
LL-37 on the HIV-1 protease has been observed
(Wong et al. 2011) but effects on membrane
integrity of enveloped viruses have also been
proposed (Wang et al. 2014). Current studies
focus on the antimicrobial activity of LL-37 and
its application in multivalent systems
(Lakshmaiah Narayana et al. 2021; Mori et al.
2021). Notably, LL-37 was also found to directly
interact with the HIV-1 cofactor CXCR4 (Pan
et al. 2018; Podaza et al. 2020), but it is currently
unclear whether LL-37 inhibits CXCR4-tropic
HIV-1 infection.

5.3 Endogenous Ligands Targeting
CXCR4-Mediated HIV Infection

C-X-C chemokine receptor type 4 (CXCR4) is a
typical G-protein coupled receptor composed of
seven transmembrane domains (Wu et al. 2010).
It plays important roles in immunity, tissue regen-
eration and hematopoietic stem cell homeostasis
(Pozzobon et al. 2016). CXCR4 dysfunction is
associated with several malignancies, such as
inflammatory diseases and cancer, making
CXCR4 an important drug target (Pozzobon
et al. 2016). Besides this, CXCR4 is also a
major coreceptor for HIV-1 entry (Moore et al.
2004) (Fig. 5.1). HIV-1 infection is typically

initiated by unspecific attachment of the virion
to a host cell by its external gp120 envelope
glycoprotein (Env). Subsequent binding to the
primary CD4 receptor induces structural
rearrangements in gp120 resulting in the interac-
tion with viral coreceptors, mainly CXCR4 and
CCR5, triggering conformational changes in
gp41 that finally drive membrane fusion
(reviewed in Chen 2019). CCR5-tropic HIV-1
variants dominate during acute and chronic infec-
tion. During or after AIDS progression a
coreceptor switch or expansion is observed in
some patients. CXCR4-tropic viruses are
associated with a more rapid deterioration of the
immune system leading to faster disease progres-
sion (Mosier 2008) in the absence of cART. The
gp120 V3 loop determines coreceptor interaction
and only a few amino acid changes are required to
switch from CCR5 to CXCR4 coreceptor usage
(De Jong et al. 1992). So far, it is largely
unknown, which factors trigger the coreceptor
switch (Connell et al. 2020; Regoes and
Bonhoeffer 2005).

5.3.1 CXCL12

C-X-C motif chemokine 12 (CXCL12, formerly
named SDF-1) is so far the only classical chemo-
kine known to interact with CXCR4 and to block
CXCR4-tropic HIV-1 infection (Bleul et al. 1996;
Janssens et al. 2018). It is constitutively
expressed in many tissues, especially the bone
marrow and lymph nodes, where it acts as
chemoattractant for lymphocytes (Nagasawa
2007). CXCL12 is encoded by a single gene and
several splice variants are described with molec-
ular weights between 8 and 14 kDa (Gleichmann
et al. 2000; Yu et al. 2006). CXCL12 shares the
common structure of chemokines: a disordered
N-terminus followed by a globular core domain.
Binding of CXCL12 to CXCR4 is initiated by
interactions with the receptor N-terminus and
then the binding pocket, which is shaped by the
receptor transmembrane domains and extracellu-
lar loops (Wu et al. 2010; Xu et al. 2013). This so
called “two-site”-binding model has also been
implicated for gp120 interaction with CXCR4,
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which interacts with the N-terminus of CXCR4
and subsequently with the second and third extra-
cellular loops of the receptor (Kalinina et al.
2013; Lin et al. 2003; Wu et al. 2010). The
basic V3 loop may also penetrate the positively
charged receptor binding pocket (Wu et al. 2010).
Considering the similar binding modes, it is plau-
sible that CXCL12 inhibits CXCR4-tropic HIV-1
by blocking access of the viral gp120 to the
GPCR. However, CXCL12 also induces
CXCR4 downmodulation and this effect
correlates with the antiviral activity of CXCL12
isoforms, suggesting that receptor
downmodulation contributes to its antiviral activ-
ity (Altenburg et al. 2010; Amara et al. 1997).
CXCL12α and CXCL12β are the two most abun-
dant isoforms in humans, both inhibiting
CXCR4-tropic HIV-1 with IC50 values in the
nanomolar range (Altenburg et al. 2007, 2010).
CXCL12γ has been shown to have even more
potent anti-HIV-1 activity due to increased affin-
ity to CXCR4 and more efficient receptor inter-
nalization. However, this isoform is mainly
expressed in the adult human heart and hardly
detected in other tissues (Yu et al. 2006).

It is tempting to speculate that CXCL12 might
be involved in HIV-1 transmission and pathogen-
esis. HIV-1 is mainly sexually transmitted and in
most cases single, so called “transmitted/founder”
(T/F) viruses establish infection (Parrish et al.
2013; Joseph et al. 2015). T/F viruses are almost
exclusively CCR5-tropic, indicating a selective
strong transmission barrier for CXCR4-tropic
viruses (Grivel et al. 2010). The reason(s) for
specific restriction of CXCR4-utilizing viruses
are currently unclear. One plausible explanation
is the presence of inhibitory CXCR4 ligands at
sites of initial virus infection. CXCL12 is consti-
tutively produced by epithelial vaginal cells and
might contribute to selective inhibition of
CXCR4-tropic viruses (Francis et al. 2016). How-
ever, CXCL12 levels in vaginal fluids vary and
are frequently low (17.4–2071.5 pg/ml) (Francis
et al. 2016), arguing against a major role of
CXCL12 in preventing sexual transmission of
CXCR4-tropic HIV-1 strains.

In infected individuals, CXCL12 plasma
levels reach up to 10 ng/ml (Ikegawa et al.

2001). Concentrations may even be higher in
tissues that are relevant for HIV-1 pathogenesis,
such as lymph nodes and the gut (González et al.
2010; Müller et al. 2001). In addition, genetic
CXCL12-polymorphisms affect disease progres-
sion (Modi et al. 2005; van Rij et al. 1998;
Winkler 1998) suggesting that CXCL12 may
restrict CXCR4-tropic HIV-1 in vivo. However,
other studies did not confirm a role of CXCL12 in
viral pathogenesis (Brambilla et al. 2000;
Ioannidis 2001; Mehlotra et al. 2015; Petersen
et al. 2005; Watanabe et al. 2003; Wei et al.
2018). A more recent study identified CXCR4-
tropic HIV-1 variants that are resistant to inhibi-
tion by CXCL12 (Armani-Tourret et al. 2021).
These variants emerged in late stage AIDS
patients with low CD4 T cell counts and may
show an enhanced ability to infect naive CD4 T
cells surrounded by CXCL12 (Armani-Tourret
et al. 2021). Altogether, the relevance of
CXCL12 in viral transmission, propagation, and
pathogenesis is far from clear and warrants fur-
ther studies.

The identification of CXCL12 as potent inhib-
itor of CXCR4-tropic HIV-1 infection stimulated
research to develop CXCL12-based antiviral
agents for therapeutic approaches. N-terminal
truncations and sequence modifications allowed
to design CXCL12 analogs lacking agonistic and
thus pro-inflammatory activity (Crump 1997;
Heveker et al. 1998). Findings showing that not
only the CXCL12 N-terminus but also residues in
the loop region (Crump 1997) and the C-terminal
α-helix (Luo et al. 1999a, b) contribute to receptor
interaction led to the design of more sophisticated
CXCL12-derivatives (Tudan et al. 2002). The
lead compound, CTCE0021 is composed of
CXCL12(5–14) linked to CXCL12(55–67) by a
four-glycine linker mimicking the distance
between the N- and C-terminal regions of
CXCL12. In the optimized CTCE0214 deriva-
tive, the α-helical structure was stabilized by
lactamization leading to enhanced receptor bind-
ing and the peptide was cyclized to improve
plasma stability (Zhong et al. 2004). Furthermore,
modifications and dimerization of the N-terminus
allowed to convert derivatives into CXCR4
antagonists (Faber et al. 2007; Loetscher et al.
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1998). To our best knowledge, none of these
CXCL12-derived peptides has been evaluated as
therapeutic agents against CXCR4-tropic HIV-1
in advanced clinical trials. Among other reasons,
lack of oral bioavailability of CXCL12-derived
peptides may have accounted for the termination
of further development as antiviral drugs. How-
ever, some CXCL12 derivatives showed potent
anti-inflammatory properties or mobilized stem
cells in vivo and may be further developed for
other CXCR4-linked diseases (Fan et al. 2012;
Zhong et al. 2004).

5.3.2 EPI-X4

A second CXCR4 ligand with antiviral activity is
EPI-X4. This peptide was identified in a fraction
of a peptide library derived from human
hemofiltrate that selectively inhibited CXCR4-
tropic HIV-1 infection (Zirafi et al. 2015). The
active compound turned out to be an 1832 Da and
16 amino acid long peptide derived from serum
albumin (position 408–423), which was termed
EPI-X4 (Endogenous Peptide Inhibitor of
CXCR4). EPI-X4 is generated from human
serum albumin under acidic conditions by
aspartic proteases (e.g., Cathepsin D and E)
(Buske et al. 2015; Gilg et al. 2021, Mohr et al.
2015; Zirafi et al. 2016). The peptide is evolution-
ary conserved and interacts with the CXCR4
binding pocket thereby antagonizing CXCL12-
induced signaling and cell migration (Sokkar
et al. 2021; Zirafi et al. 2015). In addition,
EPI-X4 suppresses basal CXCR4 signaling, and
thus also acts as inverse agonist of the receptor
(Zirafi et al. 2015). Notably, EPI-X4 only
interacts with CXCR4 but no other GPCRs
including CXCR7. Thus, this peptide is a highly
selective inhibitor of CXCR4 function. However,
its physiological role remains to be clarified.

EPI-X4 not only antagonizes CXCR4 but also
prevents CXCR4-tropic HIV-1 infection in cell
culture with an IC50 value of ~10–20 μg/ml, while
having no effect on CCR5-tropic HIV-1 infection
(Harms et al. 2020a, b; Zirafi et al. 2015). EPI-X4
interacts with the CXCR4 binding pocket via its
seven N-terminal amino acids, presumably

blocking access of the viral glycoprotein to the
coreceptor (Sokkar et al. 2021). The CXCR4
antagonizing peptide is not detectable at relevant
concentrations in plasma or serum of healthy
individuals or HIV-1 patients (Mohr et al. 2015;
Zirafi et al. 2015), suggesting that EPI-X4 does
not play a major role in controlling CXCR4-
tropic HIV-1 infection in vivo (Mohr et al. 2015;
Zirafi et al. 2015). However, it is currently not
known whether EPI-X4 may also be locally pro-
duced in lymphoid tissues, the major sites of viral
replication, and affect CXCR4-tropic HIV-1.
Notably, high amounts of EPI-X4 sufficient to
block CXCR4-tropic HIV-1 can be easily
generated upon acidification of plasma, which
activates proteolytic digestion of the abundant
precursor albumin (Mohr et al. 2015; Müller
et al. 2016; Zirafi et al. 2015). Acidic pH values
are also characteristic for vaginal fluid (Boskey
et al. 1999). Thus, it is conceivable that EPI-X4
might be locally generated from albumin-rich
semen in the acidic environment of the vaginal
tract, where the peptide might selectively restrict
CXCR4-tropic HIV-1 upon sexual intercourse.

EPI-X4 is a promising candidate for further
development as CXCR4 antagonist to treat
CXCR4-tropic HIV-1 infection or other
CXCR4-linked diseases (Buske et al. 2015; Zirafi
et al. 2015). EPI-X4 is not cytotoxic, can be easily
modified, acts as antagonist and inverse agonist of
CXCR4, and was shown to reduce airway inflam-
mation in a mouse asthma model without having
side effects (Zirafi et al. 2015). Based on compu-
tational modeling and empiric approaches,
EPI-X4 derivatives with increased plasma stabil-
ity and reduced size (<1000 Da) were developed,
that antagonize CXCR4 and inhibit CXCR4-
tropic HIV-1 infection in the low nanomolar
range (Harms et al. 2020a, b; Sokkar et al. 2021;
Zirafi et al. 2015). The optimized EPI-X4
derivatives WSC02 and JM#21 were successfully
tested in preclinical mouse models of
Waldenström’s macroglobulinemia (a CXCR4-
linked disease with constitutive overactivation of
the receptor) and acute myeloid leukemia (Kaiser
et al. 2021), as well as atopic dermatitis, and
allergic asthma (Harms et al. 2020a, b). Currently,
they are evaluated as antiviral agents against
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CXCR4-tropic HIV-1 in humanized mice. The
small size of some improved EPI-X4 with molec-
ular weights below 1000 Da might also pave the
way for future oral administration (Sokkar et al.
2021).

5.3.3 Other CXCR4 Ligands

CXCL12 was long-thought to be the only chemo-
kine ligand of CXCR4. In 2007, however, the
lymphokine macrophage migration inhibitory
factor (MIF) was reported as novel interaction
partner for CXCR4 and CD74 (Bernhagen et al.
2007). However, in contrast to CXCL12, addition
of MIF to HIV-1 infected cell cultures promoted
viral replication independently of coreceptor
usage (Regis et al. 2010), demonstrating that
MIF does not inhibit CXCR4-tropic HIV-1
strains.

Ubiquitin is a small regulatory protein found in
most human tissues (Mayor and Peng 2012).
Extracellular ubiquitin functions as an immune
modulator with anti-inflammatory properties
(Majetschak 2011) and was shown to bind and
agonize CXCR4 (Saini et al. 2010a, b). Similar to
CXCL12, ubiquitin evoked signal transduction
via CXCR4, and CXCR4-expressing cells
migrated along a ubiquitin gradient (Saini et al.
2010a, b). However, ubiquitin did not inhibit
CXCR4-tropic HIV-1 at concentrations up to
10 μM (Saini et al. 2011). Since extracellular
ubiquitin levels usually do not exceed
concentrations of 10 nM (Majetschak 2011), it
does most likely not contribute to the control of
HIV-1 in vivo.

As discussed in Sect. 5.2.2, LL-37 is an anti-
microbial peptide which may also inhibit viral
infections (Pahar et al. 2020). It has been reported
that LL-37 affects CXCR4 distribution on the cell
surface and its incorporation into lipid rafts
(Wu et al. 2012). Interestingly, LL-37 induces
CXCR4 signaling and internalization via interac-
tion with an alternative binding site on the recep-
tor, revealing it as a novel agonist for CXCR4
(Pan et al. 2018; Podaza et al. 2020). However,
whether LL-37 binding to CXCR4 inhibits
CXCR4-tropic HIV-1 infection is unclear.

Another host defense factor interacting with
CXCR4 is the human β-defensin-3 (hBD-3)
(Feng et al. 2006, 2013). hBD-3 acts as CXCR4
antagonist and inhibits CXCL12-induced recep-
tor signaling and chemotaxis toward CXCL12. It
has been reported that hBD-3 also reduces the
infection by CXCR4-tropic HIV-1 in vitro, albeit
only at high concentrations (20 μg/ml) that may
not be reached in the human body (Feng et al.
2013; Sun et al. 2005).

More recently, the chemokine CXCL17 was
described as novel ligand of CXCR4 (White et al.
2019, 2021). CXCL17 is expressed by mucosal
tissues where it is presumably involved in innate
immune response and angiogenesis (Burkhardt
et al. 2012). CXCL17 inhibits CXCR4-mediated
signaling and ligand binding via a
glycosaminoglycan-containing accessory protein.
If CXCL17 also has an impact on CXCR4-tropic
HIV-1 and contributes to HIV-1 pathogenesis
remains to be determined.

5.4 Chemokine Ligands of CCR5
Inhibit CCR5-Tropic HIV-1

C–C chemokine receptor type 5 (CCR5) is a
GPCR possessing the typical seven transmem-
brane helical structure of all GPCRs. It is
expressed on cells of the immune system includ-
ing helper and effector T lymphocytes and
antigen-resenting cells. CCR5 and its chemokine
ligands are involved in immune regulation and
inflammatory processes and have been associated
with the pathogenesis of several inflammatory
diseases (Vangelista and Vento 2018). CCR5-
targeting strategies gained significant interest
and the small molecule CCR5 antagonist
Maraviroc has been approved by the FDA for
HIV-1 treatment (Lieberman-Blum et al. 2008).

CCR5 interacts with several chemokines and
most of them have been reported to inhibit infec-
tion by CCR5-tropic HIV-1. The first chemokines
that were described to block HIV-1 infection were
the CD8 T cell derived inflammatory proteins
CCL3 (MIP-1β, i.e., macrophage inflammatory
protein 1 beta), CCL4 (MIP-1α), the respective
isoforms CCL3L1 and CCL4L1, and CCL5
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(RANTES, i.e., regulated on activation, normal T
expressed and secreted) (McBrien et al. 2018). It
was later discovered that also CCL2, CCL7,
CCL8, CCL11, CCL13, CCL14, and CCL16 are
ligands for CCR5, of which CCL7, and the latter
two were the only ones not reported to reduce
CCR5-tropic HIV-1 infection (Blain et al. 2007;
Blanpain et al. 1999; Detheux et al. 2000).
Among all CCR5 chemokine ligands, CCL3,
CCL4, truncated versions of CCL14 (see below)
and in particular CCL5 most efficiently inhibit
CCR5-tropic HIV-1 (Blanpain et al. 1999;
Detheux et al. 2000; Münch et al. 2002). As
discussed above for CXCR4/CXCL12, inhibition
of CCR5-tropic HIV-1 by chemokines involves
two distinct mechanisms: (1) downmodulation of
the CCR5 receptor from the cell surface, and
(2) sterically hindrance of CCR5 interaction
with the viral glycoprotein gp120 (Alkhatib
et al. 1997; Blanpain et al. 1999; Cocchi et al.
1995; Oberlin et al. 1996). Although native
CCR5-chemokines are described to bind to
G-protein coupled CCR5 with high affinity, they
appear to have low affinity to the uncoupled
receptor. In contrast, CCR5-tropic HIV-1
interacts with its coreceptor independently of cou-
pled G-protein. This difference might limit
antiviral activity of native chemokines and
explain why CCR5-tropic HIV-1 persist despite
high chemokine production at inflammatory sites
(Brelot and Chakrabarti 2018).

Another CCR5 ligand, CCL14, is converted
into an active chemokine by proteolytic
processing (Detheux et al. 2000). Full-length
CCL14 is a weak ligand for CCR1 and lacks
potent chemotactic activity (Tsou et al. 1998). It
is a 74 amino acid protein that shares ~46%
sequence identity with CCL3 and CCL4
(Detheux et al. 2000). A truncated form of
CCL14, termed CCL14[9–74], was isolated
from human hemofiltrate and shown to be a
potent CCR1 and CCR5 agonist that blocks
CCR5-tropic HIV-1 (Detheux et al. 2000).
CCL14[9–74] targets the second extracellular
loop (ECL-2) of CCR5, induces CCR5

internalization, and inhibits CCR5-tropic HIV-1
strains in primary T cells and macrophages
(Münch et al. 2002). CCL14[9–74] promotes cal-
cium flux and migration of T lymphocytes,
eosinophils, and monocytes (Münch et al. 2002).

β-chemokine mRNA expression is markedly
upregulated in HIV-1 infected patients
(Trumpfheller et al. 1998) and genetic variations
in CCR5 ligands or copy numbers might be
linked to progression to AIDS (Brelot and
Chakrabarti 2018). Also, it has been suggested
that decreased CCL5-sensitivity of CCR5-tropic
primary HIV-1 isolates correlates with CD4+ T
cell decline and disease progression in infected
patients (Karlsson et al. 2004; Kwa et al. 2003).
However, findings are debated and it is presently
unclear, if the direct inhibition of CCR5-tropic
HIV-1 by respective chemokines influences the
course of HIV-1 infection (Brelot and Chakrabarti
2018).

Based on the anti-HIV-1 activity of natural
chemokine ligands, several groups developed
analogues of CCL5 to treat or prevent HIV-1
infection. To avoid receptor mediated signaling
that could lead to adverse effects, initial studies
focused on the design of CCR5 antagonists. It has
been shown that the N-terminus of CCL5 is criti-
cal for receptor interaction and signaling (Choi
et al. 2012). One of the first CCL5-derived thera-
peutic peptides was CCL5(9–68). Deletion of the
first eight N-terminal amino acids abrogated the
signaling function but also reduced binding effi-
ciency to CCR5 (Arenzana-Seisdedos et al.
1996). A second strategy for eliminating agonistic
functions of CCL5 was the extension of the
N-terminus by a methionine residue. Since
[Met]CCL5 showed no agonistic activity,
CCL5-derivatives were generated with
N-terminal modifications mimicking the hydro-
phobic nature of methionine (Gaertner et al.
2008; Kawamura et al. 2004; Lederman 2004;
Mack et al. 1998; Wilken et al. 1999). One of
those derivatives was [5P12]CCL5, which
revealed no calcium signaling activity and did
not induce receptor internalization (Gaertner
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et al. 2008; Nedellec et al. 2011). [5P12]CCL5
protected rhesus macaques against vaginal chal-
lenge with simian/human immunodeficiency
virus (SHIV) (Veazey et al. 2009) and success-
fully surpassed pharmacokinetic studies in a
sheep model following vaginal administration
(McBride et al. 2017). In addition, [5P12]CCL5,
demonstrated unusually high thermal and
biological stability and could be produced at
low-cost (Cerini et al. 2016, 2017; McBride
et al. 2017). Therefore, the construct is currently
further developed as vaginal and rectal microbi-
cide for prevention of sexual HIV-1 transmission
(McBride et al. 2017, 2019a, b).

Other studies focused on new CCL5-derived
therapeutic molecules, including other
N-terminally modified variants (Hartley et al.
2003; Nardese et al. 2001), polymer-conjugated
derivatives (Shao et al. 2005), or other derivatives
of the endogenous sequence (Nishiyama et al.
1999; Secchi et al. 2012; Vangelista et al. 2006;
Vyroubalova et al. 2006). One of those peptides
[5P7]CCL5 has been used to determine a crystal
structure of CCR5 in complex with the modified
chemokine analogue showing occupation of all
gp120 binding sites within the receptor (Zheng
et al. 2017).

One concern of using chemokine-based thera-
peutic agents is their potential pro-inflammatory
activity, which could lead to detrimental chronic
activation of the immune system (Baggiolini
2001). In addition, immune activation might
lead to increased susceptibility of activated T
cells to HIV-1 infection (Kinter et al. 1998).
Another point to consider is the broad specificity
for different chemokine receptors for most of the
CCR5 ligands. CCL5 additionally interacts with
CCR1, CCR3, and GPR75, what might lead to
unwanted therapy-related effects. Due to the lack
of CCR5 signaling, high stability and tolerability
in preclinical studies, [5P12]CCL5 might be a
good candidate for further development as micro-
bicide for the prevention of HIV-1 infection.
However, despite 25 years of research, none of
the chemokine derivatives successfully passed
through phase II/III trials or were approved for
the therapy of HIV-1/AIDS.

5.5 CysC Fragments Inhibit
GPR15-Mediated HIV-2 and SIV
Infection

The basic entry mechanism of HIV-1, HIV-2, and
SIVs are highly similar but the latter show
broader coreceptor usage. As described above,
HIV-1 almost exclusively utilizes CCR5 and/or
CXCR4. In comparison, HIV-2 frequently also
uses the CXC-chemokine receptor 6 (CXCR6)
and G protein-coupled receptor 15 (GPR15) in
addition to CCR5 and CXCR4 for viral entry
(Gilbert et al. 2003; Mörner et al. 1999; Popper
et al. 1999; Reeves et al. 1999).

GPR15 has been proposed to be a key player
in mucosal immunity as it is supposedly involved
in the homing and trafficking of T cells to the
inflamed mucosa of the gut (Fischer et al. 2016;
Nguyen et al. 2015; Suply et al. 2017). It is a
GPCR with a molecular weight of ~40.8 kDa
expressed by e.g. lymphocytes, endothelial cells
and synovial macrophages (Cartwright et al.
2014; Clayton et al. 2001; Pan et al. 2017). In
addition to its physiological functions, GPR15 is
an entry cofactor for HIV-2 and SIVs (Kiene et al.
2012; Unutmaz et al. 1998). In a recent study,
C-terminal fragments of the abundant plasma pro-
tein Cystatin C, e.g. CysC95-146 (5914 Da), were
identified as specific, neutral ligands of GPR15
that prevent lentiviral infections via this GPCR
(Hayn et al. 2021). Cystatin C is small, basic
protein expressed by all nucleated cells in the
human body at constant rates (Grubb et al.
1985; Onopiuk et al. 2015; Zi and Xu 2018). In
healthy individuals, Cystatin C plasma levels are
~0.1 μM, however, they can reach up to
0.5–0.7 μM under conditions of uremia and
inflammation (Abrahamson et al. 1986). Notably,
the plasma levels of CysC are increased in HIV
infected individuals and decrease with the initia-
tion of cART (Longenecker et al. 2015).

Antiviral Cystatin C fragments can be
generated by proteolytic digestion of CysC with
the proteases Cathepsin D, chymase, and Napsin
A (Hayn et al. 2021). In vivo, these proteases are
either secreted by specialized granules or lyso-
somal exocytosis during immune responses and
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activated under acidic conditions (Okajima 2013;
Rodríguez et al. 1997; Yamamoto et al. 2012).
The generation of these GPR15-specific peptides
shows parallels to the generation of the CXCR4
antagonist EPI-X4 (Sect. 5.3.2) from serum albu-
min by cathepsin D and E under acidic conditions
(Zirafi et al. 2015), as well as the CCR5 agonist
(CCL14[9–74]) from CCL14 (Detheux et al.
2000b; Münch et al. 2002). It is therefore tempt-
ing to speculate that these GPCR-targeting
peptides are locally generated and cooperate to
inhibit GPR15-, CXCR4-, and CCR5-mediated
lentiviral infection. SIVs are most likely infecting
primate species for millions of years (Compton
et al. 2013; Gifford et al. 2008) and the presence
of such endogenous peptides might have been a
driving force for promiscuous coreceptor usage.

In 2017, Suply et al. reported the discovery of
a chemokine ligand of GPR15, a peptide they
termed GPR15L (Suply et al. 2017). GPR15L is
a polypeptide consisting of 57 amino acids which
is expressed in the colon, stomach, tonsils, skin,
and the cervix in humans (Suply et al. 2017).
GPR15L affects downstream pathways upon
binding to GPR15 (Ocón et al. 2017; Suply
et al. 2017) but fails to inhibit GPR15-dependent
infection by lentiviral pathogens (Hayn et al.
2021). This was unexpected since the agonistic
chemokine ligands of CCR5 and CXCR4,
e.g. CCL5 and CXCL12, inhibit CCR5- or
CXCR4-tropic HIV infection, respectively
(Bleul et al. 1996; Mosier et al. 1999; Oberlin
et al. 1996). Conversely, antivirally active,
C-terminal CysC peptides do not induce GPR15
signaling, making them neutral ligands of this
GPCR (Hayn et al. 2021). These findings show
that endogenous peptide ligands may prevent a
detrimental activity of a GPCR (e.g., virus entry)
without compromising its physiological signaling
function.

5.6 VIRIP Blocks Fusion Peptide
Insertion into the Cell
Membrane

Many viral glycoproteins utilize hydrophobic
fusion peptides as membrane anchors (Albertini

et al. 2012; Söllner 2004; White et al. 2009).
Upon exposure, those 20–30 amino acid, nonpo-
lar domains perturbate the proximal layer of its
target cell membrane (Agirre et al. 2000;
McMahon and Gallop 2005). FPs are enriched
in hydrophobic and aromatic amino acids. In
almost all FP sequences repetitive patterns of
two to four hydrophobic amino acids connected
by glycine are found (Epand 2003). Fusion
peptides mediate an essential step during host
cell entry, which makes them useful targets for
therapeutic approaches (Badani et al. 2014;
Fumakia et al. 2016; Vigant et al. 2015).

VIRIP (VIRus-Inhibitory Peptide) is a
20 amino acid fragment of α1-AT (α1-
antitrypsin). It blocks HIV-1 entry by binding to
the gp41 FP, preventing the insertion of the FP
into the cellular membrane and consequently the
viral anchoring and fusion process. The antiviral
peptide was identified by screening of a human
hemofiltrate library and found to inhibit a wide
variety of HIV-1 strains (Münch et al. 2007).
Full-length α1-AT can reach plasma
concentrations of up to 250 μM during infection
or inflammation (Brantly et al. 1988). VIRIP is
produced by the proteolytic digest of α1-AT by
matrix metalloproteases and enriched in the
plasma of HIV-1 patients during acute viremia
(Kramer et al. 2010). Notably, a HIV-1-infected
patient with severe α1-AT deficiency showed
very rapid progression to AIDS (Potthoff et al.
2007) suggesting that α1-AT or VIRIP may con-
tribute in suppressing HIV-1 replication.

The unique mode of action and high barrier to
resistance made VIRIP an interesting candidate
for further development. A structure activity
study resulted in the generation of optimized
VIRIP derivatives, such as VIR-576, with IC50

values of 10–50 nM, which is about two orders of
magnitude more potent than endogenous VIRIP
(Münch et al. 2007). The increased antiretroviral
efficacy is due to additional hydrophobic residues
enhancing its interaction with the gp41 FP and a
cysteine bridge stabilizing the active conforma-
tion (Münch et al. 2007; Venken et al. 2011)
VIR-576 was safe and efficient in a phase I/II
trial and reduced the mean plasma viral loads by
1.23 log10 copies per ml without causing severe
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adverse effects (Forssmann et al. 2010). The
genetic barrier for HIV-1 to overcome VIRIP
mediated restriction is very high. During long-
term passage of HIV-1 for more than 1 year
with increasing concentrations of VIR-353 on
MT-4 cells, resistance was achieved but
associated with strongly reduced viral fitness
(Gonzalez et al. 2011; Müller et al. 2018). Despite
high efficacy in vitro, treatment with VIR-576
required infusion of large amounts of the peptide
in vivo. Proteolytic degradation, tissue distribu-
tion, and/or absorption to the extracellular matrix
or serum components may reduce the efficacy of
VIR-576 in patients (Forssmann et al. 2010).
However, this study provided evidence that
endogenous peptides can be optimized and sup-
press viral loads and established the HIV-1 FP as
therapeutic target. Studies to generate VIRIP
derivates with further increased antiviral activity
and improved pharmacokinetic properties are
ongoing.

5.7 Conclusions and Perspectives

HIV-1 entry into target cells is a complex multi-
step process involving attachment, coreceptor
binding, anchoring, and fusion. Essentially each
step can be inhibited by (poly)peptides naturally
existing in the human body. Defensins,
retrocyclin and VIRIP directly target the virion
and may prevent CD4 binding and viral fusion
with the host cell. In comparison, chemokines and
other GPCR ligands (EPI-X4, CysC fragments)
inhibit entry through occupation and/or
downregulation of the viral coreceptors. These
endogenous antiviral factors may play important
roles in the innate immune response against
HIV-1. However, their contribution in controlling
viral transmission and replication remains to be
clarified. Notably, some of these peptides are
generated by proteolytic processing of abundant
precursor proteins with non-related function and
inhibit HIV-1 entry by novel and unexpected
mechanisms: Degradation of the protease inhibi-
tor Cystatin C results in fragments that specifi-
cally bind GPR15 without agonizing or
antagonizing the receptor but preventing

GPR15-mediated infection. VIRIP is released
from the acute phase protein α1 antitrypsin and
blocks HIV-1 fusion by preventing the insertion
of the viral fusion peptide into the cellular mem-
brane. EPI-X4, a highly specific CXCR4 antago-
nist, is produced by processing of human serum
albumin, the most abundant protein in the circu-
lation and extravascular space. The common prin-
ciple underlying the generation of these peptides
is a low pH trigger, which activates acidic
proteases that release the effector peptide. These
endogenous viral entry inhibitors are particularly
promising for development as drugs for HIV-1/
AIDS or GPCR-linked diseases, because they are
already evolutionarily optimized to perform their
respective function(s) in humans. Furthermore,
improved derivatives thereof should be better
tolerated and are less immunogenic than those
based on foreign antigens. Moreover, EPI-X4
and VIRIP are relatively small peptides and
hence easy to modify by means of peptide syn-
thesis and/or chemical modifications allowing to
develop analogs with improved bioavailability
and pharmacokinetic properties.
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