
New Symmetric Key Cipher Based
on Quasigroup

Umesh Kumar, Aayush Agarwal, and V. Ch. Venkaiah

Abstract Stream ciphers that use the XOR function for mixing the plaintext and
the keystream are vulnerable to attacks such as known-plaintext attack and insertion
attack. To overcome such shortcomings of the existing ciphers, we hereby propose
a new stream cipher that uses AES. The proposed cipher is based on a large-order
quasigroup. It is resistant to brute force attack, due to the exponential number of
quasigroups of its order. It is also analyzed against the chosen-ciphertext, chosen-
plaintext and known-plaintext attacks, and it is found to resist these attacks. The
output of the cipher is subjected to various statistical tests, such as the NIST-STS test
suite, and the results show a high degree of randomness of the ciphertext. Hence, it
is resistant to correlation-type attacks.
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1 Introduction

The need for securing the data has been increasing day by day and with that there
has been tremendous need for new encryption/decryption methods. A cryptosystem
typically consists of an encryption algorithm, a decryption algorithm and a key gen-
eration algorithm. A cryptosystem may be analyzed to determine either the message
or the secret key used.

Various cryptographic algorithms such as DES and AES are designed to achieve
message confidentiality. Depending on how the data is encrypted, ciphers can be of
two types: stream ciphers and block ciphers. Stream ciphers encrypt data bit by bit
or byte by byte using a keystream which is as long as the plaintext and is generated
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using a secret key. The keystream used for stream ciphers cannot be used again since
stream ciphers are vulnerable to reused key attack [19, 20]. These ciphers are also
vulnerable to attacks such as a known-plaintext attack and insertion attack since
they use XOR function with plaintext and keystream [2]. The proposed algorithm
is resistant to both these attacks since it uses quasigroup operation in place of XOR
function and the keystream can be reused for encryption. Block ciphers encrypt a
fixed size of data called blocks at one time. The size of the block depends on the
encryption algorithm. DES and AES are examples of block ciphers. The DES was
previously used as the standard for encryption. It was vulnerable to attacks such
as brute force attack [4] because of its small key size of 56 bits, chosen-plaintext
attack [3] and known-plaintext attack [11]. Hence, a new standard was required, and
therefore, DES was replaced by AES [16].

AES is currently the standard for encryption and decryption. It is known to with-
stand various attacks. Though AES is highly secure, there is a need for an algorithm
that is stronger thanAES.Required promise comes from amathematical object called
a quasigroup.

Quasigroups are very simple non-associative algebraic structures. Since the num-
ber of quasigroups grows exponentially with the size, they make an important case
for the design of cryptosystems. Using quasigroups, simple and efficient encryption
algorithms can be produced. One of the factors that favor quasigroups is that they can
be efficiently stored. Previous works [10, 15] that use quasigroups in the design of
secure systems are vulnerable to the chosen-plaintext and chosen-ciphertext attacks
[9, 21]. The proposed algorithm resists these attacks and hence is secure.

This paper proposes a new cipher algorithm for the encryption/decryption of the
messages that replaces the XOR operation of the conventional stream ciphers by the
quasigroup operation and its inverse. It is a stream cipher and uses AES for its
keystream generation. In fact, any secure pseudorandom number generator such as
CRT-DPR4 [1] can be employed for the generation of the keystream. However, we
choose to describe the proposed stream cipher using the AES256. The security of
the cipher is analyzed, and the randomness of the obtained ciphertext is tested. It was
found that the proposed system satisfied all the required properties.

In this context, we would like to mention that similar scheme without any analysis
was proposed in [5]. This scheme is based on deterministic finite automaton and uses
Latin squares for encryption and decryption.

2 Preliminaries

In this section, a brief overview of quasigroups and their uses in the design of cryp-
tosystems is discussed.
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2.1 Latin Squares

A Latin square of order m is a m × m array in which the entries are taken from a
finite set S and the symbols are arranged in such a way that each symbol occurs only
once in each column and only once in each row.

Example 1: The following array (Table1) is an example of a Latin square of order 4.
It can be seen that each symbol occurs only once in each row and each column. The
number of Latin squares of order n increases greatly as n increases. An estimate of
the number of Latin squares of order n is given in [6, 7]

n∏

k=1

(k!) n
k ≥ LS(n) ≥ (n!)2n

nn2
, (1)

where LS(n) denotes the number of Latin squares of order n. For n = 2k, k = 7, 8
the estimated number is:

0.164 × 1021091 ≥ LS(128) ≥ 0.337 × 1020666, (2)

0.753 × 10102805 ≥ LS(256) ≥ 0.304 × 10101724. (3)

2.2 Quasigroup

A quasigroup Q =< S, ∗ > is a groupoid which has the following properties:

(i) If a pair a, b ∈ S, then a ∗ b ∈ S (Closure property).
(ii) ∀ a, b ∈ S, there exists unique x, y ∈ S such that

a ∗ x = b and y ∗ a = b.

Let Q = <S, ∗> be a quasigroup. Let \ (Left Inverse) and / (Right Inverse) be two
operations on Q such that

a ∗ b = c ⇔ b = a \ c, (4)

b ∗ a = c ⇔ b = c/a, (5)

Table 1 Latin square of order 4

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2
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Table 2 Operation table of Q

* 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Table 3 Operation table of L I Q

\ 0 1 2

0 0 1 2

1 2 0 1

2 1 2 0

Table 4 Operation table of RI Q

/ 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

where a, b and c are elements of the quasigroup Q. Then, L I Q = <S, \> and
RI Q = <S, /> are called the Left Inverse and Right Inverse quasigroups of the
quasigroup Q =< S, ∗ >, respectively.

Example 2: Consider the quasigroup Q = <S, ∗> with S = {0, 1, 2}, let its oper-
ation table be as in Table2. Then the corresponding Left Inverse quasigroup is
L I Q = <S, \> whose operation table is given in Table3. And the correspond-
ing Right Inverse quasigroup is RI Q = <S, /> whose operation table is given in
Table4.

Properties (i) and (ii) of quasigroups enforce the operation table of a quasigroup to
be a Latin square. Therefore, the number of quasigroups is same as that of the number
of Latin squares. Therefore, Eq.1 is also an estimate of the number of quasigroups.
Hence, an estimate of the number of quasigroups of order 256 is given by Eq.3.

2.3 Encryption and Decryption Using Quasigroups

Quasigroups are used for encryption purposes. Let PT = p1 p2 p3 . . . pn , K ′ =
k1 k2 k3 . . . kn andCT = c1 c2 c3 . . . cn denote theplaintext to be encrypted, keystream
to be used for encryption, and the resulting ciphertext, respectively. Then a way of
encrypting PT with the keystream K ′ to obtain the corresponding CT is as follows:
c1 = p1 ∗ k1 , c2 = p2 ∗ k2 , . . . , cn = pn ∗ kn .
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For decryption of the ciphertext, the Right Inverse quasigroup RI Q = <S, />

is used. The following procedure decrypts the ciphertext CT , obtained from the
foregoing encryptionprocedure, using the keystream K ′ to arrive at the corresponding
plaintext PT . p1 = c1/k1 , p2 = c2/k2 , . . . , pn = cn/kn .

Note that the conventional stream ciphers that exist in the literature use XOR
operation in place of ∗ and / operations. The algorithm works on characters of 1
byte (8 bits) each. Hence, all pi , ki , ci are characters. Similarly, the message can
be encrypted and decrypted with the quasigroup and its Left Inverse quasigroup,
respectively.

Example 3: Consider the plaintext as PT = p1 p2 p3 = 021 and the keystream to
be K ′ = k1 k2 k3 = 011. Then applying the foregoing encryption procedure using
the quasigroup Q (Table 2) of example 2, we have the ciphertext as

CT = c1 c2 c3 = 002.

To decrypt the ciphertext, Right Inverse Quasigroup RIQ (Table4) is used. The
recovered plaintext will be

PT = p1 p2 p3 = 021.

Other methods of encryption/decryption using quasigroups are addressed in [7].

2.4 Advanced Encryption Standard

Advanced Encryption Standard or AES is a symmetric key block cipher. It has 128-
bit data with 128/192/256-bit key. AES is widely used for encryption/decryption
process in various fields. It has fast implementation in both software and hardware.
AES is used in various modes of operation such as Cipher Block Chaining (CBC)
mode, Cipher Feedback (CFB) mode , Output Feedback (OFB) and Counter (CTR)
mode. Each mode of operation has their advantages and disadvantages [8, 18].

3 Proposed Cipher Algorithm Structure

3.1 Quasigroup Selection

The main principle used is the quasigroup operation of 1-byte plaintext characters
with 1-byte random keystream characters to produce 1-byte ciphertext characters
at a time. Any order quasigroup can be used in the algorithm. Since as the order
increases the number of quasigroups grows exponentially, higher-order quasigroups
are preferred. The order of 256 is used in our proposed algorithm because all the
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ASCII values can be represented in 8 bits and each character has an integer value
of 0 to 255. Also, from Eq.3 we can see that the number of quasigroups of order
256 is very large and therefore practically impossible to guess the correct quasigroup
selected. That is, it is impossible to determine the quasigroup Q = <S, ∗>, where
S = {0, 1, 2, . . . , 255} and ∗ is the binary operation used in our algorithm. The issue
of generating large-order quasigroups is addressed in [13, 14].

3.2 Keystream Generation

The encryption/decryption algorithm uses a keystream of size as long as themessage.
To generate such a long keystream, the algorithm uses AES. Using an initialization
vector (I V ), a secret key (K ), and aCounter , theAESalgorithmproduces keystream
of required length. The keystream generated is represented by K ′. Since the encryp-
tion algorithm requires the keystream to be random,AES ensures this. Block diagram
of the keystream generation is given in Fig. 1.

Note that the secret key K used in AES is different from the keystream K ′, gener-
ated using AES. Each round generates 16 bytes of keystream and is repeated until the
keystream size is the same as that of the plaintext. This generates the keystream K ′ =
k1 k2 k3 . . . kn , where each ki is a 1-byte character and will be used to encrypt 1-byte
character of the plaintext. The keystream generation can use AES in encryption or

Fig. 1 Keystream generation using AES256
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Fig. 2 Encryption algorithm

decryption mode. The keystream generation procedure is used in both encryption
and decryption processes of the proposed stream cipher. The secret key size can
be 128/192/256 bits. The AES algorithm used in the proposed cipher is AES256
encryption algorithm.

3.3 Encryption Algorithm

The encryption algorithm uses the method described earlier. The main principle used
is as follows: For plaintext, PT = a1 a2 a3 . . . an and the generated keystream, K ′ =
k1 k2 k3 . . . kn the ciphertext,CT = c1 c2 c3 . . . cn is produced as c1 = a1 ∗ k1, c2 =
a2 ∗ k2, . . . , cn = an ∗ kn, where ’∗’ is the operation of the chosen quasigroup. The
algorithm can encrypt 16 bytes of plaintext in one iteration. Block diagram of the
encryption algorithm is given in Fig. 2.

3.4 Decryption Algorithm

The decryption algorithm uses the inverse of the quasigroup Q =< S, ∗ > cho-
sen for encryption. Depending on the operation used in encryption either the Left
Inverse or the Right Inverse can be used to generate the plaintext PT . The main
principle used is as follows: For ciphertext, CT = c1 c2 c3 . . . cn and the keystream,
K ′ = k1 k2 k3 . . . kn the corresponding plaintext PT = a1a2a3 . . . an can be recov-
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Fig. 3 Decryption algorithm

ered as a1 = c1/k1, a2 = c2/k2, . . . , an = cn/kn , where ’/’ is the Right Inverse of
the operation of the chosen quasigroup. The algorithm uses the same secret key as
that of the encryption algorithm. It can decrypt 16 bytes of ciphertext in one iter-
ation. The cipher algorithm uses the Right Inverse quasigroup RI Q = <S, /> for
decryption. Block diagram of the decryption algorithm is given in Fig. 3.

4 Security Analysis

The key elements for the algorithm consist of the secret key K , the initialization
vector I V , the Counter , and the selected quasigroup Q of order 256. Since the
secret key size is 256 bits, it is resistant to brute force approach since there are
2256 possible keys. Since the keystream generation for the proposed stream cipher
is similar to AES in Cipher Block Chaining (CBC) mode encryption, it is already
secure from attacks. Hence, the keystream K ′ generation is safe from various attacks.

The other element is the quasigroup. Since the order of used quasigroups is 256,
the number of possible quasigroups is at least

0.304 × 10101724.

Therefore, it is impossible to determine the selected quasigroup. The general method
given in [10, 15] used for encryption using quasigroups is found to be vulnerable to
chosen-ciphertext attack and chosen-plaintext attack [9, 21], whereas the proposed
algorithm is resistant to these attacks because of the following argument: Suppose the
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cryptanalyst chooses the ciphertext CT = c1 c2 c3 . . . cn , and obtains the plaintext
PT = p1 p2 p3 . . . pn , corresponding to the chosen-ciphertext and tries to determine
the quasigroup Q employed in the encryption-decryption process. The adversary,
then, for the keystream K ′, must solve the system of equations:

c1 = p1 ∗ k1 ,

c2 = p2 ∗ k2 ,

· · ·
cn = pn ∗ kn ,

where

K ′ = k1 k2 k3 . . . kn

is the generated keystream. This system has as many solutions as there are quasi-
groups of order 256. Hence, determining the quasigroupmakes it practically impossi-
ble. Therefore, the cipher is resistant to chosen-ciphertext attack. Even if the attacker
has knowledge of both the plaintext and the corresponding ciphertext, the cipher
still remains secure as determining K ′ still requires finding the selected quasigroup.
Therefore, it is resistant to known-plaintext attack as well. Similar argument shows
that the system is secure from the chosen-plaintext attack also. The decryption algo-
rithm uses the Right Inverse (same can be achieved using Left Inverse L I Q quasi-
groups as well) of the quasigroup Q denoted by RI Q. The cipher encrypts/decrypts
a stream of characters; hence no padding of plaintext is required and hence is safe
from padding oracle attacks which are a known threat to ciphers where padding is
required as shown in [12].

Note that the computational complexity is exactly the same as any stream cipher
that uses AES for keystream generation and XOR function for mixing the plaintext
and the keystream. Except that it differs in the following: Existing ciphers use XOR
function for every bit of the message; whereas our cipher works on a character by
character and uses one quasigroup operation for every character of the message. The
space complexity of our cipher is also the same as that of the existing ciphers, except
that our cipher needs one quasigroup table of 256 × 256. That is, our cipher needs
64k bytes of extra space.

4.1 Statistical Test for Randomness

The obtained ciphertext after encryption with the proposed algorithm passes various
tests of randomness. One such battery of tests is the NIST-STS test suite [17]. Each
test of the NIST-STS package gives a P-value which lies between 0 and 1 (both
included) and indicates Success/Fail status. The P-value is the probability that a
perfect random number generator would have produced a less random sequence than
the one being tested [17]. For these tests, we have chosen the significance level (α)
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Table 5 Parameters for the NIST-STS test

Tests Block length(m)

Block frequency test 128

Non-overlapping template test 9

Overlapping template test 9

Approximate entropy test 10

Serial test 16

Linear complexity test 500

Table 6 Results of the NIST-STS test

Tests P-value

Frequency 0.507678

Block frequency 0.513950

Cumulative sums-forward 0.675720

Cumulative sums-backward 0.530005

Runs 0.542138

Longest run 0.552834

Rank 0.443481

Discrete Fourier transform 0.500707

Overlapping template 0.479753

Approximate entropy 0.471052

Serial-1 0.550659

Serial-2 0.553913

Linear complexity 0.576939

to be 0.01 and the other parameters as shown in Table5. For the randomness of a
sequence, we compare the P-value of a sequence to a significance level (α). If P-
value ≥ α, then the sequence is considered to be random, otherwise non-random.
We run each of these tests over 20 obtained ciphertext sequences. The size of each
sequence is 200 KB. Table6 shows the average P-value of NIST-STS tests. We can
observe that the P-value of each test crosses the significance level (α = 0.01), so, we
conclude that the obtained ciphertext sequences are random.

5 Conclusion

A new stream cipher algorithm that uses the existing cipher for keystream generation
and a quasigroup for encryption and decryption is proposed. It masks the weaknesses
of stream ciphers and adds extra security. The new cipher is resistant tomost common



New Symmetric Key Cipher Based on Quasigroup 93

attacks such as chosen-ciphertext attack, chosen-plaintext attack andknown-plaintext
attack. The randomness of the obtained ciphertext is analyzed by the NIST-STS
test suit, and we noted that the new cipher produces high degree of randomness of
the ciphertext. The keystream in our proposed cipher as in the case of any stream
cipher can be preprocessed and kept ready, and then the encryption/decryption can
be performed parallelly. Storing of the generated key can be a challenge for very
large messages since the generated key is as long as the message. Our cipher can be
deployed in all the applications of stream ciphers such as secure wireless connection.

References

1. Barker E, Kelsey J (2007) Recommendation for random number generation using deterministic
random bit generators. Technical report, NIST (revised)

2. Bayer R, Metzger J (1976) On the encipherment of search trees and random access files. ACM
Trans Database Syst (TODS) 1:37–52

3. Biham E, Shamir A (1993) Differential cryptanalysis of the data encryption standard. Springer,
Berlin

4. DiffieW, HellmanME (1977) Special feature exhaustive cryptanalysis of the NBS data encryp-
tion standard. Computer 10:74–84

5. Domosi H (2017) A novel stream cipher based on deterministic finite automaton. Ninth work-
shop on non-classical models of automata and applications (NCMA 2017), pp 11–16

6. Jacobson MT, Matthews P (1996) Generating uniformly distributed random Latin squares. J
Combin Des 4:405–437

7. Koscielny C (2002) Generating quasigroups for cryptographic applications. Int J Appl Math
Comput Sci 12:559–570

8. Lipmaa H, Wagner D, Rogaway P (2000) Comments to NIST concerning AES modes of
operation: CTR-mode encryption

9. Malyutina NN (2019) Cryptanalysis of some stream ciphers. Quasigroups Rel Syst 27:281–292
10. Markovski S, Gligoroski D, Andova S (1997) Using quasigroups for one-one secure encoding.

In: Proceedings of VIII Conference on logic and computer science “LIRA”, vol 97, pp 157–162
11. Matsui M (1993) Linear cryptanalysis method for DES cipher. In: Workshop on the theory and

application of of cryptographic techniques. Springer, Berlin, pp 386–397
12. Paterson KG, Yau A (2004) Padding oracle attacks on the ISO CBCmode encryption standard.

In: Cryptographers’ track at the RSA conference. Springer, Berlin, pp. 305–323
13. Petrescu A (2007) Applications of quasigroups in cryptography. In: Proceedings of interdisci-

plinarity in engineering. TG-Mures, Romania. Academic Press
14. Petrescu A (2009) A 3-quasigroup stream cipher. In: The international conference interdisci-

plinarity in engineering INTER-ENG. Editura Universitatii “Petru Maior” din Tirgu Mures, p
168

15. Petrescu A (2010) n-quasigroup cryptographic primitives: stream ciphers. Stud Univ Babeş-
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