
A New Modified MD5-224 Bits Hash
Function and an Efficient Message
Authentication Code Based
on Quasigroups

Umesh Kumar and V. Ch. Venkaiah

Abstract In this paper, we have proposed (i) a hash function and (ii) an efficient
message authentication code based on quasigroup. We refer to these as QGMD5 and
QGMAC, respectively. The proposed new hash function QGMD5 is an extended
version of MD5 that uses an optimal quasigroup along with two operations named as
QGExp andQGComp. The operations quasigroup expansion (QGExp) and the quasi-
group compression (QGComp) are also defined in this paper. QGMAC is designed
using the proposed hash functionQGMD5 and a quasigroup of order 256 as the secret
key. The security of QGMD5 is analyzed by comparing it with both the MD5 and
the SHA-244. It is found that the proposed QGMD5 hash function is more secure.
Also, QGMAC is analyzed against the brute-force attack. It is resistant to this attack
because of the exponential number of quasigroups of its order. It is also analyzed
for the forgery attack, and it is found to be resistant. In addition, we compared the
performance of the proposed hash function to that of the existing MD5 and SHA-
224. Similarly, the performance of the proposed QGMAC is compared with that of
the existing HMAC-MD5 and HMAC-SHA-224. The results show that the proposed
QGMD5 would take around 2 μs additional execution time from that of MD5 but
not more than SHA-224, while QGMAC always takes less time than that of both the
HMAC-MD5 and the HMAC-SHA-224. So, our schemes can be deployed in all the
applications of hash functions, such as in blockchain and for verifying the integrity
of messages.

Keywords Cryptography · HMAC-MD5 · HMAC-SHA-224 · Latin square ·
MD5 · QGMAC · QGMD5 · Quasigroup · SHA-224

U. Kumar (B) · V. Ch. Venkaiah
School of Computer & Information Sciences, University of Hyderabad, Hyderabad, India
e-mail: kumar.umesh285@gmail.com

V. Ch. Venkaiah
e-mail: vvcs@uohyd.ernet.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
D. P. Agrawal et al. (eds.), Cyber Security, Privacy and Networking, Lecture Notes
in Networks and Systems 370, https://doi.org/10.1007/978-981-16-8664-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8664-1_1&domain=pdf
mailto:kumar.umesh285@gmail.com
mailto:vvcs@uohyd.ernet.in
https://doi.org/10.1007/978-981-16-8664-1_1

2 U. Kumar and V. Ch. Venkaiah

1 Introduction

These days the need for securing a message has been increasing and with that there
has been a tremendous need for new hashing techniques and message authentication
codes. In cryptography, two types of hash functions are used: (1) hash function
without a key (or simply a hash function) and (2) hash function with a key (or
HMAC)

1.1 Hash Function Without a Key

A hash function takes an arbitrary length input message and produces a fixed length
hash value, called the message digest or checksum. It detects the integrity of a
message which is sent by a sender. The properties of the cryptographic hash function
(H) are given in [12, 14]

Various cryptographic hash functions exist in the literature [3, 8]. Of these, MD5
is still a widely used hash function because it is one of the hash functions requiring
the least number of operations. Of late, many articles are published showing that the
MD5 is not secure because the length of the hash-value is too short. So, it is vulnerable
to brute force birthday attacks [15], and a collision can be found within seconds with
a complexity of around 224 [18]. It is also vulnerable to pre-image attacks and can be
cryptanalyzed using dictionary and rainbow table attacks [5, 19]. Various researchers
have analyzed theMD5 algorithm against these attacks and tried to modify it [2, 11].
However, no amendment has yet been proven to be fully effective at resolving the
vulnerability and therefore remains a challenge to address the problem against MD5
attacks.

1.2 Hash Function with Key or HMAC

The output of HMAC is used to verify both the authenticity and the data integrity of a
message when two authorized parties communicate in an insecure channel. It is also
used in Internet security protocols, including SSL/TLS, SSH, IPsec. HMAC uses a
hash function (H) and a secret key (k) shared between the sender and the receiver.
The properties of the HMAC are given in [12, 14].

The security of the proposed schemes is studied by verifying the basic properties
of hash function and message authentication code. It is heartening to note that the
schemes not justmeet the requirements but rather surpass them. Initially, our schemes
start with an optimal quasigroup of order 16. Later on, we would like to use optimal
quasigroups of order 256.

The paper is organized as follows: Next section gives a brief overview of quasi-
group, optimal quasigroup, andMD5. The proposed algorithm including the QGExp

A New Modified MD5-224 Bits Hash … 3

and QGComp operations is discussed in Sect. 3. The performance of the QGMD5
and QGMAC algorithms and its comparison with that of MD5, SHA-224, HMAC-
MD5, and HMAC-SHA-224 are discussed in Sect. 4. The security analysis of the
proposed QGMD5 and QGMAC is discussed in Sect. 5. The concluding remark is
given in Sect. 6.

2 Preliminaries

2.1 Quasigroup

Definition-1:A quasigroup Q=(Zn , *) is a finite nonempty set Zn of non-negative
integers along with a binary operation ’*’, satisfying the following properties:

(i) If x,y ∈ Zn then x*y ∈ Zn (Closure property).
(ii) For ∀ x,y ∈ Zn , ∃ unique a,b ∈ Zn such that x ∗ a = y and b ∗ x = y.

Example 1: Table1 is an example of a quasigroup of order 3 over the set Z3={0,1,2}.
Note that for x = 2 and y = 1, a = 0 and b = 1 are the unique elements of Z3

such that x ∗ a = y and b ∗ x = y, where ∗ denotes the quasigroup operation of
order 3. It is true for all x,y ∈ Z3.
Observe that in a quasigroup, every element appears exactly once in each row and
once in each column. Such a table is also called a Latin square [1]. So, the number of
quasigroups is the same as that of the Latin squares and the number of quasigroups
increases rapidly with its order [17]. In fact, the number is given by the following
inequality [9].

n∏

�=1

(�!) n
� ≥ QG(n) ≥ (n!)2n

nn2
, (1)

where QG(n) denotes the number of quasigroups of order n. For n = 2k, k = 4, 8
the bounds of the number are:

0.689 × 10138 ≥ QG(16) ≥ 0.101 × 10119, (2)

0.753 × 10102805 ≥ QG(256) ≥ 0.304 × 10101724. (3)

Table 1 Quasigroup of order 3

* 0 1 2

0 2 1 0

1 0 2 1
2 1 0 2

4 U. Kumar and V. Ch. Venkaiah

Table 2 Optimal Quasigroup of order 16

∗2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 8 0 11 2 9 14 7 6 13 3 15 4 5 10 12 1

1 11 2 8 0 7 6 9 14 15 4 13 3 12 1 5 10

2 2 11 0 8 6 7 14 9 4 15 3 13 1 12 10 5

3 10 5 1 12 3 13 4 15 14 9 6 7 0 8 2 11

4 9 14 7 6 8 0 11 2 5 10 12 1 13 3 15 4

5 0 8 2 11 14 9 6 7 3 13 4 15 10 5 1 12

6 12 1 5 10 15 4 13 3 7 6 9 14 11 2 8 0

7 1 12 10 5 4 15 3 13 6 7 14 9 2 11 0 8

8 14 9 6 7 0 8 2 11 10 5 1 12 3 13 4 17

9 7 6 9 14 11 2 8 0 12 1 5 10 15 4 13 3

10 3 13 4 15 10 5 1 12 0 8 2 11 14 9 6 7

11 6 7 14 9 2 11 0 8 1 12 10 5 4 15 3 13

12 5 10 12 1 13 3 15 4 9 14 7 6 8 0 11 2

13 4 15 3 13 1 12 10 5 2 11 0 8 6 7 14 9

14 15 4 13 3 12 1 5 10 11 2 8 0 7 6 9 14

15 13 3 15 4 5 10 12 1 8 0 11 2 9 14 7 6

2.2 Optimal Quasigroups

A quasigroup of order 2k that consists of a collection of k × k bits optimal S-boxes is
called an optimal quasigroup. Our hash function (QGMD5) uses 4 × 4 bits S-boxes
to form an optimal quasigroup. The description of a 4 × 4 bits optimal S-box is given
in [10]. Various approaches to generate the optimal S-boxes of 4 × 4 bits are given
in [10, 13]. Not all such S-boxes are capable of forming the quasigroups because
quasigroup is a mathematical object and has certain properties to be satisfied. We
have used 16 S-boxes that are suitable for forming the quasigroup, and these are
listed row-wise in Table 2.

2.3 Brief Description of MD5

MD5 is the most widely used hash function in cryptography. It is designed based
on Merkle–Damgard construction. It takes variable length input (message M) and
produces a fixed length 128-bit output (hash-value). Before starting the process, the
whole message is divided into 512-bit fixed size blocks. If a message length is not a
multiple of 512 bits, then it is padded as given in [16].

A New Modified MD5-224 Bits Hash … 5

Now each 512 bits message block m is divided into sixteen 32-bit words (16 sub-
blocks) as m = m0,m1, . . . ,m15. The algorithm of MD5 has four rounds, and each
round has 16 steps making 64 steps in total. These four round functions are defined
by the following four nonlinear Boolean functions:

R(1, j)(x, y, z) = (x ∧ y) ∨ (¬x ∧ z), 1 ≤ j ≤ 16

R(2, j)(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z), 17 ≤ j ≤ 32

R(3, j)(x, y, z) = (x ⊕ y ⊕ z), 33 ≤ j ≤ 48

R(4, j)(x, y, z) = y ⊕ (x ∨ ¬z), 49 ≤ j ≤ 64

(4)

where x, y, z are 32-bit words and ∧,∨,⊕, and ¬ are AND, OR, XOR, and NOT
operations, respectively. The R(r, j) is defined as the j th step of round r, 1 ≤ r ≤ 4
and 1 ≤ j ≤ 64.

3 Proposed Schemes

In this section, we have proposed two schemes based on quasigroup: (i) a new hash
function QGMD5: it expands the hash size of MD5 and converts 128 bits into 224
bits and (ii) a new message authentication code named here as QGMAC, which
is based on the QGMD5. It expands the MD5-based message authentication code
(MAC-MD5) to 224 bits. Both the expansions are done through a series of QGExp
and QGComp operations. The underlying structure of both the QGMD5 and the
QGMAC is similar. The only difference between the two is that the quasigroup used
in QGMD5 is publicly known, while the quasigroup used in QGMAC is a secret
key. Figure1 depicts the workflow of both the QGMD5 and the QGMAC. In these
schemes, at first, an arbitrary length message is divided into k fixed size blocks, each
ofwhich is 512 bits in size. If the length of amessage is not amultiple of 512 bits, then
the padding will be required, and it is padded as in the case of MD5 hash function
[16]. Observe that each round, except the last round of the last block of MD5, is
followed by a QGExp operation that inserts 96 bits and a QGComp operation that
deletes 96 bits. The last round of the last block of MD5 is followed by only a QGExp
operation. QGExp and QGComp are denoted by � and �, respectively. Since our
proposed schemes use quasigroups of orders 16 and 256, the functioning of QGExp
and QGComp operations with these order quasigroups is explained separately in
detail.

3.1 Quasigroup Expansion (QGExp) Operation

Let each byte of data be divided into two 4-bit integers. That is, a character (one byte
data) x is represented as x = x1x0, where x0 and x1 are 4-bit integers (hexadecimal

6 U. Kumar and V. Ch. Venkaiah

Fig. 1 Workflow of QGMD5 and QGMAC

digits or nibble values). The QGExp operation takes two bytes of data and produces
a sequence of three bytes of data. For the quasigroup of order 256, it is defined as

x1x0 �1 y1y0 = (x1x0, y1y0, z1z0), (5)

where z1z0= x1x0 ∗1 y1y0, and�1 and∗1 are theQGExpoperation and the quasigroup
operation for the order 256, respectively. Note that z1z0 is the resultant element which
is determined by looking up the element having the row index of x1x0 and the column
index of y1y0 in the table representation of the quasigroup of order 256. And, for the
quasigroup of order 16, it is defined as

x1x0 �2 y1y0 = (x1x0, y1y0, z1||z0), (6)

where z1=x1 ∗2 y1, z0=x0 ∗2 y0, and �2 and ∗2 are the QGExp operation and the
quasigroup operation for the order 16, respectively, and || is the concatenation oper-
ation that concatenates two 4 bits and makes it as one block of 8 bits. Note that z1
is determined by looking up the element having the row index of x1 and the column
index of y1 in the table representation of the quasigroup of order 16. Similarly, z0 is
determined by looking up the element having the row index of x0 and the column
index of y0 in the table representation of the quasigroup of order 16.

An application of the QGExp operation to a pair of sequences of elements is as
follows:
Let A=(a11a

1
0, a

2
1a

2
0, . . . , a

t
1a

t
0) and B= (b11b

1
0, b

2
1b

2
0, . . . , b

t
1b

t
0), where a

i
1a

i
0 and b

j
1b

j
0

are byte values whereas ai0, a
i
1, b

j
0, and b

j
1 are nibble (4 bits) values, for 1 ≤ i, j ≤ t ,

then

(A �1 B) or (A �2 B) = ((a11a
1
0, b

1
1b

1
0, r

1
1r

1
0), (a

2
1a

2
0, b

2
1b

2
0, r

2
1r

2
0), . . . ,

(at1a
t
0, b

t
1b

t
0, r

t
1r

t
0))

A New Modified MD5-224 Bits Hash … 7

where r j
1 r

j
0 =a

j
1a

j
0 ∗1 b

j
1b

j
0 , ∗1 is the quasigroup operation of order 256 with respect to

the QGExp operation �1 or r
j
1 r

j
0 =(a j

1 ∗2 b
j
1)||(a j

0 ∗2 b
j
0), ∗2 is the quasigroup opera-

tion of order 16 with respect to the QGExp operation �2 and || is the concatenation
operation.

Similarly if A= ((a111 a110 , a121 a120 , . . . , a1k1 a1k0), (a211 a210 , a221 a220 , . . . , a2k1 a2k0), . . . ,

(at11 a
t1
0 , at21 a

t2
0 , . . . , atk1 a

tk
0)) and B = (b11b

1
0, b

2
1b

2
0, . . . , b

t
1b

t
0), where a

i j
1 a

i j
0 is a byte

value, ai j0 and ai j1 are nibble (4 bits) values for 1 ≤ i ≤ t , 1 ≤ j ≤ k, bl1b
l
0 is a byte

value, bl0 and bl1 are nibble (4 bits) values for 1 ≤ l ≤ t , then

(A �1 B) or (A �2 B) = ((a111 a110 , a121 a120 , . . . , a1k1 a1k0 , b11b
1
0, r

1
1r

1
0),

(a211 a210 , a221 a220 , . . . , a2k1 a2k0 , b21b
2
0, r

2
1r

2
0),

. . . ,

(at11 a
t1
0 , at21 a

t2
0 , . . . , atk1 a

tk
0 , bt1b

t
0, r

t
1r

t
0))

where r j
1 r

j
0 =a

jk
1 a jk

0 ∗1 b
j
1b

j
0 , ∗1 is the quasigroup operation of order 256 with respect

to the QGExp operation �1 or r j
1 r

j
0 =(a jk

1 ∗2 b
j
1)||(a jk

0 ∗2 b
j
0), ∗2 is the quasigroup

operation of order 16 with respect to the QGExp operation �2 and || is the concate-
nation operation.

3.2 Quasigroup Compression (QGComp) Operation

The QGComp operation compresses the partial hash-value (or MAC-value) of 224
bits into 128 bits. The resulting 128 bits are then fed into the next round of MD5
algorithm. The application ofQGComp operation can be explained as follows: First it
divides the 224bits (28byte) into 4 sub-blocks of 7 bytes each. It then operates on each
of the 4 sub-blocks as follow: Let A=(a11a

1
0, a

2
1a

2
0, a

3
1a

3
0, a

4
1a

4
0, a

5
1a

5
0, a

6
1a

6
0, a

7
1a

7
0) be a

block of 7 byte, where ai0a
i
1 is a byte value, for 1 ≤ i ≤ 7. Then, QGComp(A)=(b11b

1
0,

b21b
2
0, b

3
1b

3
0, b

4
1b

4
0), where b

i
1b

i
0 = ai1a

i
0 ∗1 a

8−i
1 a8−i

0 , ∗1 is the quasigroup operatin of
order 256 or bi1b

i
0 = (ai1 ∗2 a

8−i
1)||(ai0 ∗2 a

8−i
0), ∗2 is the quasigroup operation of

order 16 for 1 ≤ i ≤ 3 and b41b
4
0 = a41a

4
0 .

4 Implementation and Software Performance

The proposed schemes have been implemented in C++ on a system that has the
following configuration: Intel(R)Core(TM) i5-2400CPU@3.40GHzprocessorwith
4 GB RAM and 64-bit Linux operating system. The source code of QGMD5, MD5,
SHA-224, QGMAC, HMAC-MD5, and HMAC-SHA-224 is run 103 times for the
message M=“The brown fox jumps over a lazy dog,” and it calculated the average
execution time inmicroseconds (μs). The C++ standard<chrono> library is used to

8 U. Kumar and V. Ch. Venkaiah

Table 3 Camparison of the average execution time for the message M in microseconds

Hash functions Message authentication codes

Parameters MD5 SHA-224 QGMD5 HMAC-
MD5

HMAC-
SHA-224

QGMAC

Avg. Exe.
time (μs)

7.94 10.27 9.84 10.12 15.71 9.84

measure the execution time [6]. The performance ofQGMD5 is comparedwith that of
both MD5 and SHA-224 and the performance of QGMACwith that of both HMAC-
MD5 and HMAC-SHA-224. The results of this analysis are presented in Table3.
Note that the average execution time of the proposed QGMD5 is 1.9 μs more than
that of MD5 but not more than SHA-224. Also, note that the average execution time
of the proposed QGMAC is always less than that of both HMAC-MD5 and HMAC-
SHA-224. This is because the underlying structure of both QGMD5 and QGMAC
is the same.

5 Security Analysis

5.1 Analysis of QGMD5

The proposed hash function was analyzed against the dictionary attack by subjecting
its output to the online tools such as CrackStation [4] and HashCracker [7]. These
tools are basically design to crack the hash-values of MD4, MD5, etc. They employ
massive pre-computed lookup tables to crack password hashes. The proposed hash
function is also analyzed and found to be resistant to various other attacks, including
the brute-force attack. The strength of a hash function against the brute-force attack
depends on the length of the hash-value produced by the hash function. The QGMD5
produces 224 bits hash-value instead of 128 bits, as in the case of MD5. Given an
n bits hash-value brute-force attack to compute the pre-images (both first pre-image
and second pre-image) requires 2n effort, and to find a collision, it requires 2n/2 effort,
where n is the size of the hash-value. Since the size of the hash-value of QGMD5 is
224 bits as against 128 bits of MD5, QGMD5 can be seen to be more secure than
the MD5.

5.2 Collision Resistance

Collision resistance is an important property to test the security of a hash function
because the space of messages and that of the hash values are related by a many-

A New Modified MD5-224 Bits Hash … 9

to-one mapping. This means different messages may have the same hash-value. For
this test, we randomly choose two messages M and M

′
, with hamming distance 1.

We compute the hash values h and h
′
for each pair of messages M and M

′
and store

in ASCII format (ASCII representation is a sequence of bytes in which each byte
value lies from 0 to 255), then perform the following experiment [20]: Compare h
and h

′
byte by byte and count the number of hits. That is, count the number of bytes

that have the same value at the same position. In other words, compute

v =
s∑

p=i

f (d(xp), d(x
′
p)), where f (x, y) =

{
1, x = y

0, x �= y.
(7)

The function d(.) converts the entries to their equivalent decimal values and s denotes
a number of bytes in a hash-value. Smaller v characterizes the stronger hash function
against collision resistance.

Theoretically, for N independent experiments, the expected number of times v

hits for an s bytes hash-value is calculated as follows:

WN (v) = N × Prob{v} = N × s!
v!(s − v)!

(
1

256

)v (
1 − 1

256

)s−v

, (8)

where v = 0, 1, 2, . . . , s. A collision will never happen if v = 0, and a collision
will happen if v = s. For N = 2048, we computed, using equation (8), the expected
values of WN (v) for s = 16 and s = 28 byte hash-values, compared these results
with those of the experimental values ofMD5, SHA-224, andQGMD5, and tabulated
these findings in Table4. From the entries in Table4,we observe that the experimental
results of QGMD5 not only coincide very well with the theoretical ones but also it
has the better collision resistance than that of both MD5 and SHA-224.

Table 4 Results of expected and experimental

Expected value of WN (v) Experimental value of WN (v)

v s = 16 s = 28 MD5 (s = 16) SHA-224
(s = 28)

QGMD5
(s = 28), Pro.

0 1923.69 1835.42 1912 1828 1841

1 120.70 201.54 130 212 199

2 3.55 10.67 6 8 8

v ≥ 3 0 0 0 0 0

10 U. Kumar and V. Ch. Venkaiah

5.3 Avalanche Effect

One of the desirable properties of a hash function is that it should exhibit a good
avalanche effect. That is, for a slight change in the input difference, there should
be a significant difference in the output of the hash function. The proposed hash
function is tested for this property, and the resulting values are compared with those
of MD5 and SHA-224. Details of the test are as follows: The message M = “The
brown fox jumps over a lazy dog” of 280 bits is randomly chosen, and 280 messages
(M0, M1, . . . , M279) are generated by changing the i th bit in M and 0 ≤ i ≤ 279.

Let h = H(M) be the hash-value of the original message M and hi = H(Mi) be
the hash-values of the messages Mi for 0 ≤ i ≤ 279. Since the size of hash-value
of MD5 is 128 bits and it differs from that of SHA-224 and QGMD5, the hamming
distance hi from h is measured in percentage using the following formula:

HDPi = D(h, hi)

N B(h)
× 100% (9)

where HDPi denotes the hamming distance of hi from h in percentage for 0 ≤ i ≤
279, D(h, hi) denotes the hamming distance between h and hi , and N B(h) denotes
the total number of binary digits in hash-value h. Table5 shows the number of times
the hamming distances (HDPi) of the hash-values h0, h1, . . . , h279 from h lie in the
specified range for the hash functions MD5, SHA-224, and QGMD5. Also given in
the table is the average (mean) of these values. From these values, we can conclude
that the avalanche effect of QGMD5 is better than that of both MD5 and SHA-224.

5.4 Analysis of QGMAC

The security of the proposed message authentication code QGMAC depends on the
hash function QGMD5 as well as on the quasigroup of order 256 that is used. This
is because the quasigroup used in QGMAC acts as a secret key. Since the number of
quasigroups of order 256 is lower bounded by 0.304 × 10101724, it follows that the

Table 5 Hamming distances for MD5, SHA-224, and QGMD5

Range of HDPi Number of hash pairs
of MD5

Number of hash pairs
of SHA-224

Number of hash pairs
of QGMD5 (proposed)

35–44.99 41 19 16

45–54.99 206 238 246

55–64.99 33 23 18

Avarage hamming distance

Mean: 49.76% 49.97% 50.02%

A New Modified MD5-224 Bits Hash … 11

probability of identifying the chosen quasigroup is close to zero. Hence, QGMAC is
resistant to brute-force attack. Also, QGMAC is resistant to forgery attack. In forgery
attack, an attacker chooses a fixed n number of differentmessages (M1, M2, . . . , Mn)

and their correspondingMAC-values (authentication tags) (h1, h2, . . . , hn) and tries
to solve the following equations for the key k :

hi = Hk(Mi), f or 1 ≤ i ≤ n, (10)

where, in our case, H is the QGMD5 and k is the quasigroup employed. This is
because if the attacker can get the key, then the attacker can forge an authentication
tag for any chosen message. But the above system of equations has as many solutions
as there are quasigroups of order 256. Hence, determining the quasigroup makes it
practically impossible. Therefore, the QGMAC is also resistant to forgery attack.

6 Conclusions

This paper has proposed an efficientmethod namedQGMAC to compute themessage
authentication codeof amessage.Thismethod is designedbasedon the concept called
a quasigroup. This QGMAC uses the new hash function, named QGMD5, which is
also proposed in this paper. The QGMD5 can be viewed as the extended version of
MD5, and it uses the MD5 along with 16 optimal S-boxes of 4 × 4 bits that form an
optimal quasigroup. Because of this, the relationship between the original message
and the corresponding hash-value is not transparent. We have analyzed the QGMD5
by comparing it with both the MD5 and the SHA-244, including brute-force attack,
collision resistance, and the avalanche effect. We observed that the QGMD5 is more
secure than that of bothMD5 and SHA-224. Also, the proposed QGMAC is analyzed
against brute-force attack and forgery attack. We found that QGMAC is resistant to
these attacks.

References

1. Denes J, Keedwell AD (1991) Latin squares: new developments in the theory and applications,
vol. 46. Elsevier

2. Farhan D, Ali M (2015) Enhancement MD5 depend on multi techniques. Int J Softw Eng
3. Gupta DR (2020) A Review paper on concepts of cryptography and cryptographic hash func-

tion. Eur J Mol Clin Med 7(7):3397–408 Dec 24
4. https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
5. https://en.wikipedia.org/wiki/Dictionary_attack
6. https://en.cppreference.com/w/cpp/chrono
7. https://www.onlinehashcrack.com
8. Ilaiyaraja M, BalaMurugan P, Jayamala R (2014) Securing cloud data using cryptography with

alert system. Int J Eng Res 3(3)

https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://en.wikipedia.org/wiki/Dictionary_attack
https://en.cppreference.com/w/cpp/chrono
https://www.onlinehashcrack.com

12 U. Kumar and V. Ch. Venkaiah

9. Jacobson MT, Matthews P (1996) Generating uniformly distributed random Latin squares. J
Combinator Des 4(6):405–437

10. Leander G, Poschmann A (2007) On the classification of 4 bit S-Boxes. In: Proceedings of the
1st international workshop on arithmetic of finite fields. Springer, Berlin, pp 159–176

11. Maliberan EV, Sison AM, Medina RP (2018) A new approach in expanding the hash size of
MD5. Int J Commun Netw Inf Secur 10(2):374–379

12. Meyer KA (2006) A new message authentication code based on the non-associativity of quasi-
groups

13. Mihajloska H, Gligoroski D (2012) Construction of optimal 4-bit S-boxes by quasigroups of
order 4. In: The sixth international conference on emerging security information, systems and
technologies, SECURWARE

14. Noura HN, Melki R, Chehab A, Fernandez Hernandez J (2020) Efficient and secure message
authentication algorithm at the physical layer. Wireless Netw 9:1–5 Jun

15. Paar C, Pelzl J (2009) Understanding cryptography: a textbook for students and practitioners.
Springer Science & Business Media

16. Rivest R (1992) The MD5 message-digest algorithm. RFC:1321
17. Selvi D, Velammal TG (2014)Modifiedmethod of generating randomized Latin squares. IOSR

J Comput Engi (IOSR-JCE) 16:76–80
18. Stevens M (2007) Master’s Thesis, On collisions for MD5
19. Theoharoulis K, Papaefstathiou I (2010) Implementing rainbow tables in high end FPGAs for

superfast password cracking. In: International conference on field programmable logic and
applications

20. Zhang J,WangX,ZhangW(2007)Chaotic keyed hash function based on feedforward-feedback
nonlinear digital filter. Phys Lett A 362(5–6):439–448

	 A New Modified MD5-224 Bits Hash Function and an Efficient Message Authentication Code Based on Quasigroups
	1 Introduction
	1.1 Hash Function Without a Key
	1.2 Hash Function with Key or HMAC

	2 Preliminaries
	2.1 Quasigroup
	2.2 Optimal Quasigroups
	2.3 Brief Description of MD5

	3 Proposed Schemes
	3.1 Quasigroup Expansion (QGExp) Operation
	3.2 Quasigroup Compression (QGComp) Operation

	4 Implementation and Software Performance
	5 Security Analysis
	5.1 Analysis of QGMD5
	5.2 Collision Resistance
	5.3 Avalanche Effect
	5.4 Analysis of QGMAC

	6 Conclusions
	References

