
QL4POMR Interface as a Graph-Based Clinical
Diagnosis Web Service

Sabah Mohammed, Jinan Fiaidhi(B), and Darien Sawyer

Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada
{mohammed,jfiaidhi,dsawyer}@lakeheadu.ca

Abstract. Most of the experienced physicians follow the SOAP note structure in
documenting patient cases and their care journey. The SOAP note was originated
from the problem-orientedmedical record (POMR) developed nearly 60 years ago
by Lawrence Weed, MD. However, the POMR/SOAP is not commonly found in
electronic medical records (EMR) used today due to the flexible nature of building
patient cases. Previous EMRs aswell as clinical decisionmaking software requires
information to follow a strict schema which pushed POMR away from being
implemented. However, the development of GraphQL is a wind of change that
offer building a flexible interface and providing the query on the data that have
semi structured schema like the POMR. This article developed a QL4POMR as
a GraphQL implementation to the POMR SOAP note. Physicians can use this
interface and create any patient case and present it for the purpose of diagnosis
and prognosis with a varying backends. The QL4POMR implemented a mapping
module to map graphs from POMR to HL7 FHIR and vise versa. Neo4j was used
as backend to integrate all the data irrelevant of their nature as soon as the data
is identified by objects and relations. The progress reported in this article is quite
encouraging and advocates for further enhancements.

Keywords: POMR · SOAP · GraphQL · Neo4J · e-Diagnosis · Graph Databases

1 Introduction

Over the past five decades, healthcare over all the world is undergoing an immense trans-
formation to tab on the technological advancement of havingmore pervasive connections
with people and devices. The goals of these transformation include sensitive issues like
promoting patient independence, improving patient outcomes, reducing risk, enforcing
important policies like patient privacy, minimizing avoidable services, focus on pre-
vention, understanding complex healthcare data, decrease medical errors, reduce cost,
increase integration and partnership, clinical workflow consolidation and to timely pre-
vent the spread of diseases. Connectivity in healthcare needs to go beyond the enabling
connectivity infrastructure includingwireless,mobile, cloud or any form of tele-health to
include information connectivity. Much of the stated goals are only possible with highly
connected information that goes beyond the hospital database silos. Tomake sense of the
information connections and leveraging the connections within the healthcare existing

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
X. Shi et al. (Eds.): LISS 2021, LNOR, pp. 43–56, 2022.
https://doi.org/10.1007/978-981-16-8656-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8656-6_5&domain=pdf
https://doi.org/10.1007/978-981-16-8656-6_5

44 S. Mohammed et al.

data one need a holistic approach that uses graph representation and graph databases [1,
2]. Designing connected information based on graph databases produces efficient data
management and data services at the same time [3]. In legacy healthcare systems, data
services are often a missing component where data management is the only functionality
that is only used for building error-tolerant and non-redundant database systems with
traditional relational database query capability. Data services, however, provide retrieval,
analytic and data mining queries capabilities encompassing high degree of relationships.
There are other advantages behind supporting graph databases as they possess the ability
to accommodate unstructured data and deal with schema less or to deal with structured
data with strongly typed schema. In this research we are proposing a method to deal with
all forms of data (with or without schema) as well as with data dealing with healthcare
data having flexible schema that have defined upper structure but they vary with their
subcomponents. In dealing with flexible schema, our method uses an interface for the
popular GraphQL to buildWebAPI for clinical diagnosis that uses a flexible schema like
the POMR SOAP [4]. The GraphQL interface is connected to Neo4j schema less graph
database. The GraphQL schema is build around the popular problem oriented medical
record SOAP note that was introduced by Lawrence Weed [5] that describe medical
cases based on the subjective observations as presented by the patient and the objective
examinations conducted by the physician. Based on these two attributes the physician
builds the assessment (i.e. diagnosis) and the plan to cure the patient case. SOAP is kind
of diagnostic schema and a cognitive model that allows physicians to systematically
approach a diagnostic problem by providing a structured scaffold for representing the
clinical problem and all the associated clinical scenarios including physical exam, lab
tests, assessments and planning. Based on SOAP schema physicians can reason about
the chief complaint presented patient and identify the causes of presented encounters. By
approaching SOAP, physicians can systematically access and explore individual illness
scripts as potential diagnoses. SOAP is kind of clinical reasoning upper schema that uses
a semi-structured model where the problem representation cannot be accommodated in
a relational database model that requires a strict and well structured schema. SOAP can
provide awell defined upper structure but the shape and contents of lower structures used
depends on the purpose and the problem case. Clinicians highly support this approach
as it provides several advantages including [6]:

• Flexible clinical case representation with lower problem structures that can easily be
changed according to the differential diagnosis and the assessment progress

• Helps to manage physician cognitive load and maintain effective problem-solving.
Flexible schema helps trigger clinicians to perform differentiating historical or
physical exam maneuvers to refine the differential diagnosis.

• It help to teach others how to approach a clinical problem diagnosis
• It allow clinicians to adapt, refine and individualize their diagnosis schema by modi-
fying, collapsing certain categories, or creating new ones, allows a schema to “work”
best for them.

• Provide proper record keeping improves patient care and enhances communication
between the provider and other parties: claims personnel, peer reviewers, case man-
agers, attorneys, and other physicians or providers who may assume the care of the
patients.

QL4POMR Interface as a Graph-Based Clinical Diagnosis Web Service 45

However, the major drawback of using semi-structured model is that the clinical data
cannot be easily saved and retrieved as efficiently as in a more constrained structure,
such as in the relational model. Records generated by the semi structured schema can
only be accommodated using generic representation such as XML, JSON or OEMwhere
clinical elements need to have unique ID or tag to enable their future reuse and retrieval.
Based on these representations, clinicians can produce a range of different types of
diagnosis problem cases, in efforts to meet different patient’s encounters. To manage
the data exchange for such semi-structured data, applications must follow the ISO/IEC
11179 Metadata Registry (MDR) standard1 which paves the way to represent, share and
query such semi structured data. The basic principle of data modeling in this standard
is the combination of an object class and a characteristic. For example, the high-level
concept “Chest Pain” is combined with the object class “Patient ID” to form the data
element concept “Patient ID with Chest Pain”. Note that “Patient ID with Chest Pain “
is more specific than “Chest Pain”. Efforts to implement the ISO 11179 in representing
clinical cases resulted in using GraphQL API [7, 8]. In this article we are describing an
interface based on GraphQL the POMR SOAP which follows the guidelines of the ISO
11179. The proposed interface is calledQL4POMRwhich defines objects, fields, queries
and mutation types. Entry points within the schema define the path through the graph to
enable search functionalities, but also the exchange is promoted bymutation types,which
allow creating, updating and deleting of metadata. QL4POMR is the foundation for the
uniform interface, which is implemented in a modern web-based interface prototype.
The QL4POMR interface is linked to the Neo4J Graph Database.

2 The POMER Flexible Diagnostic Schema

The problem oriented medical record (POMR) was introduced in 1968 as an attempt
by Lawrence Weed (MD) to address the most common problems in diagnosis. It has
been widely used afterwards by the medical community and approved by the American
Institute of Medicine during 1974. Although there were no standard for it and no real
implementation, the medical community from 2015 repeatedly restarted their efforts to
implement it as POMR fits in the trend of care becoming more patient-centered [9].
A problem-oriented approach is also useful because patients and physicians can relate
easily to the problems on the problem list and assess, update and respond to them [10].
Moreover, a problem oriented approach is seen as good solution to the bottleneck of
interoperability by focusing on care services [11]. This design ideology been supported
by the recent HL7 FHIR healthcare record representation based on service-oriented
architecture for seamless information exchange. In this direction, POMR can be viewed
as the upper uniform interface for defining every diagnostic problem. It will use a flexible
schema where its top nodes are well defined and it lower level nodes vary according to
the patient case. Figure 1 illustrate our view to the POMR schema where the yellow
nodes (i.e. subjective, objective, assessment and plan) must exist while the remaining
sub nodes marked green will vary according to the patient problem.

GraphQL is a query language for graph-structured data which is a common standard
for querying semi structured data like the POMR. It has gained wide popularity with

1 https://en.wikipedia.org/wiki/ISO/IEC_11179.

https://en.wikipedia.org/wiki/ISO/IEC_11179

46 S. Mohammed et al.

Fig. 1. The POMR flexible schema layout.

major IT venders like Facebook and Netflix [12]. Technically, GraphQL is a query
language for APIs - not databases. It can be considered as abstraction layer providing a
single API endpoint both for queries and mutations (i.e. data changes) for any database
including NoSQL. The query objects are defined using GraphQL schema, which has
an expressive expression to define objects, supports inheritance, interfaces, and custom
types and attribute constraints. AGraphQL schema is created by supplying the root types
of each type of operation, query and mutation (optional).

class GraphQLSchema {

 constructor(config: GraphQLSchemaConfig)

}

type GraphQLSchemaConfig = {

 query: GraphQLObjectType;

 mutation?: ?GraphQLObjectType;

}

The GraphQL server uses the defined schema to describe the shape of the semi-
structured data graph. The defined schema describes a hierarchy of types with fields that
are populated from the back-end data stores. The schema also specifies exactly which
queries and mutations (changes) are available for clients to execute against the described
data graph. GraphQL uses the Schema Definition Language(SDL) using buildSchema
to define queries and the requested resolver. In the following example we are using the
GraphQL SDL to fetch a Patient Object with name and age as attributes.

QL4POMR Interface as a Graph-Based Clinical Diagnosis Web Service 47

import { buildSchema } from 'graphql';
const typeDefs = buildSchema(`

type Patient {
name: String
age: Int

 }
type Query {

getUser: User
}

`);
const resolvers = {

Query: {
getUser: () => ({

name: 'Sabah Mohammed',
age: 66

}
),

},
};

GraphQL provides two important capabilities: building a type schema and serving
queries against that type schema. So developers need first to build the GraphQL type
schema which can be mapped to the required codebase. In this sense, GraphQL function
is executing a GraphQL query against a schemawhich in itself already contains structure
as well as behavior. The main role of GraphQL thus is to orchestrate the invocations
of the resolver functions and package the response data according to the shape of the
provided query. Such approach is generally known as schema first programming. In our
case we design our POMR SOAP schema. GraphQL API provides set of tools (graphql-
tools) a basic thin layer which include parse and buildASTSchema, GraphQLSchema,
validate, execute and printSchema.

By using the graphql-tools we can connect the schema types with resolvers that may
change its content.

48 S. Mohammed et al.

const { makeExecutableSchema } = require('graphql-tools')
const typeDefs = `
type Query {

user(id: ID!): Patient
subjective: {

type: Schema.Types.ObjectId,
ref: 'Subjective'

},
objective: {

type: Schema.Types.ObjectId,
ref: 'Objective'

},
assessment: {

type: Schema.Types.ObjectId,
ref: 'Assessment'

},
plan: {

type: Schema.Types.ObjectId,
ref: 'Plan'

}
}
type Patient {

id: ID!
name: String

}`
const resolvers = {

Query: {
user: (root, args, context, info) => {

return fetchUserById(args.id)
},

},
}
const schema = makeExecutableSchema({

typeDefs,
resolvers,

})

Based on the schema design principles we can make our modification on top of what
was reported by QL4MDR [7] to create our own QL4POMR schema that complies with
the MDR ISO 11179. Figure 2 illustrates our overall QL4POMR echo system to define
a diagnosis service interface that can work with the POMR semi structured schema and
have all the nodes created to be stored at a graph database like Neo4j.

The QL4POMR is enforced with a CRUD Agent to manage the complexity of the
schema and resolvers as well as to make structured querying through four modules
(Create, Read, Update and Delete). For this we will need to use the graphql-modules
library to facilitate building these modules. With using the graphql-modules, the CRUD
Agent would be structured as follows:

QL4POMR Interface as a Graph-Based Clinical Diagnosis Web Service 49

Fig. 2. QL4POMR diagnostic web service interface.

However, exchanging information between the QL4POMR interface and the Neo4j
backend aswell as withHL7 FHIR requires other primitivemodules tomanagematching
and mapping operations required for facilitating information exchange. In the next two
sections we are describing these primitive operations.

3 Interfacing QL4POMR with Neo4j

To connect QL4POMR to Neo4j we will need to use a programming language environ-
ment that have APIs for such connectivity. The best API for connectivity is the nxneo4j
Python 3.8 library that enables you to use NetworkX type of commands to interact with

50 S. Mohammed et al.

Neo4j. To demonstrate this connectivity we will use the following snippets from the
Python Jupiter notebook:

(1) Connect to Neo4j

(2) Create some patient nodes:

(3) Create three POMR SOAP Nodes according to QL4POMR Schema:

(4) Now we can see the three patient SOAPs displayed at the Jupiter notebook (Not
Persistent see Fig. 3-a) and on the Neo4j (Persistent see Fig. 3-b)

QL4POMR Interface as a Graph-Based Clinical Diagnosis Web Service 51

Fig. 3. Patient POMR patient data as displayed by jupiter (not persistent) and Neo4J desktop
(persistent).

We followed this style of connectivity to build ourNeo4jGraph databasewith POMR
patient cases using our CRUD modules. However, the POMR patient data that resides
at the Neo4j platform will provide clinicians with additional capabilities to monitor and
update patient cases through the use of the Neo4J Cypher query language. For example
executing the following Cypher query will provide information on the current patients
encountered what conditions (see Fig. 4):

MATCH p = ()-[r:Encounter]- > () RETURN p LIMIT 25.

52 S. Mohammed et al.

Fig. 4. Executing a Neo4j cypher query to browse what patients have encountered.

4 Interfacing QL4POMR with HL7 FHIR

Connecting with the HL7 FHIR requires mapping the QL4POMR types to the FHIR
Resources types which are the common building blocks for all information exchanges
with the FHIR. A single resource (e.g., Condition2) contains several Element Definitions
(e.g., Encounter) which has Data Type (e.g. String) and cardinality associated with it
(see Fig. 5). Figure 6 illustrates how the process of mapping the data types between the
FHIR Resource and the QL4POMR. This is part of the matcher and mapper modules.
Additionally we will need to use the graphql-fhir API3 from Asymmetrik to connect to
the FHIR server. Prior to the connection with FHIR server, we find that experimenting
with the matcher and mapper based on FHIR sample record example is a useful practice.
FHIR provide a JSON record example4 for this purpose.

Fig. 5. FHIR condition data type.

2 http://hl7.org/implement/standards/fhir/condition.html.
3 https://github.com/Asymmetrik/graphql-fhir.
4 https://www.hl7.org/fhir/patient-example.json.

http://hl7.org/implement/standards/fhir/condition.html
https://github.com/Asymmetrik/graphql-fhir
https://www.hl7.org/fhir/patient-example.json

QL4POMR Interface as a Graph-Based Clinical Diagnosis Web Service 53

Fig. 6. Mapping beteen FHIR resource and QL4POMR.

5 Connecting with Clinicians via Arrows

The QL4POMR interface allows the use of the Arrows.app5 which is a new tool from
Neo4j Labs. It will enable clinicians who have been trained on the POMR Types and
naming convention to draw graphs for patient cases from using any web or mobile
browser. The goal is not only to present the patient case but also to export its representa-
tion as JSON or Cypher file which can be integrated with the remaining Neo4J POMR
cases. If the POMR naming were used correctly the matcher and mappers modules will
be able to map them to the Neo4j graph database. Figure 7 illustrate how a physician
can use the visual facilities of the Arrows app to describe a patient with ID34 who
encountered joint pain and redness and his assessment with the skin test and blood test
demonstrated a positive Cellulitis diagnosis and have been prescribed a Primsol as med-
ication. Arrows can export the visual graph into several formats like Cypher which can
be used to integrate the described care with the POMR patient cases. Figure 8 illustrate
how the described case of the patient ID34 can be exported to Cypher. Once the Cypher
file has been saved to the local storage, the QL4POMR interface will be able to use the
matcher and mapper modules to integrate it with the Neo4J Graph Database. Having this
visual tool will enable clinicians to focus of care design rather than training themselves
to the information technology system that they are using. Figure 9 illustrate the patient
ID34 case after mapping it to the Neo4J.

5 https://github.com/neo4j-labs/arrows.app.

https://github.com/neo4j-labs/arrows.app

54 S. Mohammed et al.

Fig. 7. Physician using arrows to describe a POMR patient case.

Fig. 8. Exporting arrow visual graph into cypher.

QL4POMR Interface as a Graph-Based Clinical Diagnosis Web Service 55

Fig. 9. Mapping a patient case from arrows to Neo4J.

6 Conclusions

Since the release of GraphQL as open source API for web development by Facebook
in 2015 and the list of GraphQL users are increasing exponentially (e.g. Netflix, The
New York Times, Airbnb, Atlassian, Coursera, NBC, GitHub, Shopify, and Starbucks)
as this API enables the development of scalable systems which can deal with data
interoperability. By adopting GraphQL developers can add new types and fields to the
API, and similarly straightforward for the clients to begin using those fields. GraphQL’s
declarativemodel helps also to create a consistent, predictableAPI that we can use across
all the clients. Developers can add, remove, and migrate back-end data stores; however,
the API doesn’t change from the client’s perspective. Moreover, the declarative structure
of the GraphQL allow developer to accommodate data of all sort including unstructured
and semi structureddatawhich a commoncase in healthcare applications. The framework
includes a newgraph query languagewhose semantics has been specified informally only
to allow dealingwith the unstructured nature of data and the heterogeneity of the sources.
In this direction, GraphQL will fit designing clinical diagnostic services that collects all
the patient information from heterogeneous data sources and inputs it into the system as
well as to allow physicians to query and reason about it. This research paper illustrated
how GraphQL can be used to implement the problem oriented medical record (POMR)
and describing patient cases through is SOAP note. The QL4POMR is framework to
systematically describe patient care journey and to integrate it with the other cases at the
clinical practice. QL4POMR implemented a CRUD interface for describing the patient
cases as well as to query the graph data via the Neo4J Cypher query. QL4POMR is also
able to integrate with the HL7 FHIR healthcare record and map the POMR patient cases
into FHIR record and vice versa. Our efforts to fully build the QL4POMR are supported
by two national grants and we are anticipating more detailed to be published on this
research project in the coming months.

Acknowledgment. This research is funded by the first author NSERC DDG-2021–00014 and
first and second author MITACS Accelerates Grant IT22305 of 2021.

56 S. Mohammed et al.

References

1. Kundu, G., Mukherjee, N., Mondal, S.: Building a graph database for storing heterogeneous
healthcare data. In: Senjyu, T., Mahalle, P.N., Perumal, T., Joshi, A. (eds.) ICTIS 2020. SIST,
vol. 196, pp. 193–201. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7062-
9_19

2. Singh, M., Kaur, K.: SQL2Neo: moving health-care data from relational to graph databases.
In: 2015 IEEE International Advance Computing Conference (IACC), pp. 721–725. IEEE
(2015)

3. Park, Y., Shankar, M., Park, B.H., Ghosh, J.: Graph databases for large-scale healthcare
systems: a framework for efficient data management and data services. In: 2014 IEEE 30th
International Conference on Data Engineering Workshops, pp. 12–19. IEEE (2014)

4. Mowery, D., Wiebe, J., Visweswaran, S., Harkema, H., Chapman, W.W.: Building an auto-
mated SOAP classifier for emergency department reports. J. Biomed. Inf. 45(1), 71–81
(2012)

5. Cameron, S., Turtle-Song, I.: Learning to write case notes using the SOAP format. J. Counsel.
Dev. 80(3), 286–292 (2002)

6. Bayegan,E., Tu, S.: Thehelpful patient record system: problemoriented andknowledgebased.
In: Proceedings of the AMIA Symposium, p. 36. American Medical Informatics Association
(2002)

7. Ulrich, H., et al.: QL 4 MDR: a GraphQL query language for ISO 11179-based metadata
repositories. BMC Med. Inf. Decis. Mak. 19(1), 1–7 (2019)

8. Ulrich, H., Kern, J., Kock-Schoppenhauer, A.-K., Lablans, M., Ingenerf, J.: Towards a fed-
eration of metadata repositories: addressing technical interoperability. In: GMDS, pp. 74–80
(2019)

9. Salmon, P., Rappaport, A., Bainbridge, M., Hayes, G., Williams, J.: Taking the problem
oriented medical record forward. In: Proceedings of the AMIA Annual Fall Symposium,
p. 463. American Medical Informatics Association (1996)

10. Simons, S.M.J., Cillessen, F.H.J.M., Hazelzet, J.A.: Determinants of a successful problem
list to support the implementation of the problem-oriented medical record according to recent
literature. BMC Med. Inf. Decis. Mak. 16(1), 1–9 (2016)

11. Mukhiya, S.K., Rabbi, F., Pun, V.K.I., Rutle, A., Lamo,Y.: AGraphQL approach to healthcare
information exchange with HL7 FHIR. Procedia Comput. Sci. 160, 338–345 (2019)

12. Landeiro, M.I., Azevedo, I.: Analyzing GraphQL performance: a case study. In: Software
Engineering for Agile Application Development, pp. 109–140. IGI Global (2020)

https://doi.org/10.1007/978-981-15-7062-9_19

	QL4POMR Interface as a Graph-Based Clinical Diagnosis Web Service
	1 Introduction
	2 The POMER Flexible Diagnostic Schema
	3 Interfacing QL4POMR with Neo4j
	4 Interfacing QL4POMR with HL7 FHIR
	5 Connecting with Clinicians via Arrows
	6 Conclusions
	References

